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Overview

� We aim to study some of the connections between type theory

and category theory.

� We shall assume knowledge of basic logic, and an appreciation

of basic type theory from programming.

� We shall cover the category theory and type theory required for

understanding the connections . . .

� . . . with certain topics being taught in more detail by José, so

we include only notational summaries.
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High Level Topics

� Order Theory: We shall study properties of orders, and

show how these give rise to basic examples of categories and

categorical structures.

� Category Theory: We shall study some simple category

theory, enough to model simple type theories.
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High Level Topics

� Type Theory: We will define a simple type system, derive a

categorical semantics from first principles, and show how a theory

in the type system “corresponds” to a special category.

� Applications: We apply the correspondence to obtain a result

about type theory.

� If there is time we will also look at an application to logic.
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Order Theory

� A (mathematical) order makes precise our intuitions about

relations such as less than or less than or equal to.

� What’s the point? Order relations are used extensively in

computing; and a particular kind of order gives rise to simple

examples of categories.

� We review some formal definitions of order relations.

� We progress to basic mathematical structures that can be

defined using order relations.
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Order Theory

� Why? These structures are simple examples of the common

structures found in categories!

� We also define functions which preserve order structure.

� Why? Such functions will give us examples of functors, which

are mappings between categories, and are fundamental to

category theory.
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Basic Definitions

� A binary relation R on a set X is any subset R⊆ X×X. If

x,y∈ X, then we will write x R yfor (x,y) ∈ R.

� R is reflexive if whenever x∈ X we have x R x;

� transitive if whenever x,y,z∈ X,

(x R yand y R z) implies x R z;
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� symmetric if whenever x,y∈ X then x R yimplies y R x;

� anti-symmetric if whenever x,y∈ X,

(x R yand y R x) implies x = y.

� R is an equivalence relation if it is reflexive, symmetric

and transitive.

� We will not make much use of the definitions on this slide,

but they are (of course) used throughout computer science.
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Preordered Sets

� A preorder on a set X is a binary relation ≤ on X which is

reflexive and transitive.

� A preordered set (X,≤) is a set X, equipped with a preorder ≤

on the set X.

� NOTE: We often just refer to a “preorder X”.

� Every preorder is an example of a category! Elements x in X are

objects and each relationship x≤ x′ is a morphism x→ x′.

� The axioms that make X a preorder are exactly those required

to make X a category.
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Examples of Preordered Sets

� The set P (X) = {A | A⊆ X} is called the powerset of X.

The powerset is a preorder with order given by inclusion of

subsets, A⊆ A′.

� Given preorders X and Y, their cartesian product has

underlying set

X×Y
def
= {(x,y) | x∈ X,y∈Y}

with order given pointwise, that is (x,y) ≤ (x′,y′) iff x≤X x′

and y≤Y y′ (using the obvious notation).
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� Fix any set X. Consider the set Sub(X) of all injective

functions i : A→ X, and order i : A→ X ≤ j : A′ → X provided

there is f : A→ A′ such that

A′

A

f
6

i
- X

j
-

� If X is a preorder, then Xop is a preorder given by

changing the order to ≤op where for x,x′ ∈ Xop def
= X, we

define x≤op x′ if and only if x′ ≤ x.
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Monotone Functions between Preordered Sets

� Let f : X →Y be a function, with X and Y equipped with

preorders. f is monotone if for all x,x′ ∈ X we have x≤ x′

implies f (x) ≤ f (x′).

� f is also called a homomorphism of preorders, or

sometimes simply a morphism.

� If X is regarded as a category then such a function is an

example of a functor between categories.
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Examples of Monotone Functions

� The function f : N → N given by f (n)
def
= n+3 is monotone;

there are many such functions on N (and of course R).

� The projection functions π : X×Y → X and π′ : X×Y →Y

are monotone if X×Y is cartesian product.

� Given a set U , there is a function S: P (U) → P (P (U))

given by S(X)
def
= P (X). This is monotone.

� If f : X →Y is any set function, then f−1 : P (Y) → P (X)

defined by f−1(B)
def
= { x∈ X | f (x) ∈ B } is monotone.
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Notions of Isomorphism

� The preorders X and Y are isomorphic if there are

monotone functions f : X →Y and g : Y → X for which

g◦ f = idX and f ◦g = idY.

� The monotone function g is an inverse for f ; and vice

versa.

� The elements x and x′ in X are isomorphic if x≤ x′ and

x′ ≤ x. We write x∼= x′.

� We can regard ∼= as a relation on X, which is in fact an

equivalence relation.
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Partially Preordered Sets

� A partial order on a set X is a binary relation ≤ which is

reflexive, transitive and anti-symmetric.

� A partially ordered set (poset) (X,≤) is a set X equipped

with a partial order ≤ on the set X.

� Trivially, any poset is of course a preorder in which

isomorphic elements are always equal. Many of our

examples of preorders will in fact be posets.
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Properties in Ordered Sets

� Suppose that X is a preorder and A is a subset of X. An

element x∈ X is an upper bound for A if for every a∈ A we

have a≤ x (sometimes written A≤ x).

� An element x∈ X is a greatest element of A if it is an

upper bound of A which belongs to A;

� Lower bounds and least elements are defined analogously.

� Greatest and least elements are unique up to

isomorphism; so too for lower and upper bounds.
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Binary Meets and Joins

� Meets and joins are very simple examples of universal

constructions from category theory.

� Given a pair of elements x,x′ ∈ X in a preorder X, the set L of

lower bounds for {x,x′} is

L
def
= { l ∈ X | l ≤ x and l ≤ x′ }

� A meet of a pair of elements x,x′ ∈ X, if it exists, is a greatest

element in the set L of lower bounds for {x,x′ }.

� This is a simple example of a universal construction in category

theory. A binary meet is an example of a binary product.
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� Writing → instead of ≤ we have

x x′

x

wwwwwwww
x∧x′

-

�
x′

wwwwwww

l ∈ L

6
...........

∃

∀
-

�
∀
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� A join of a pair of elements x,x′ ∈ X, if it exists, is a least

element in the set U of upper bounds for {x,x′ }.

� Writing → instead of ≤ we have

u∈U

x
∀

-

x∨x′

6
...........
∃

x′

�

∀
x

wwwwwwww

-

x′

wwwwwww
�
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Top and Bottom Elements; Uniqueness Properties

� For a preorder X, a top element ⊤ ∈ X satisfies x≤⊤ for

all x∈ X.

� For a preorder X, a bottom element ⊥ ∈ X satisfies ⊥≤ x

for all x∈ X.

� In a preorder, if a meet, join, top or bottom element

exists, then it is unique up to isomorphism.
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Some Examples

� With the usual order on the natural numbers N, binary

meets and joins are given by simply taking the least and

greatest elements (of the pair).

� With the inclusion order on P (X), binary meets and joins

are given by the operations of intersection and union. What

are the top and bottom elements?

� Define the order d | n to mean that (∃k∈ N)(n = k∗d).

With this order, binary meets and joins are given simply by

highest common factor and lowest common multiple

respectively. Are there top and bottom elements?
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Arbitrary Meets and Joins

� Let X be a preordered set and A⊆ X. A join of A is a least

element in the set of upper bounds for A. All joins are isomorphic.

� A meet of A is a greatest element in the set of lower bounds for

A. All meets are isomorphic.

� If A has at least one join (it might not!) we write
W

A for a

choice of one of the joins of A. Write also x∨x′ for
W

{x,x′}.

�
V

A is a choice of meet A. Write also x∧x′ for
V

{x,x′}.

� If a preorder has all meets we say it is complete.

� If a preorder has all joins we say it is cocomplete.
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Prelattices

� A prelattice is a preordered set which has binary meets

and joins, plus top and bottom elements.

� In fact the examples (N, |) and (P (X),⊆) are prelattices.

� So too is (Sub(X),≤) but it requires a little more work to

verify than the other three examples.

� (N,≤) is not a prelattice.
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Heyting Prelattices

� A Heyting prelattice X is a prelattice in which for each pair of

elements y,z∈ X there is an element y⇒ z∈ X such that

x≤ y⇒ z iff x∧y≤ z.

We call y⇒ z the Heyting implication of y and z.

� In a Heyting prelattice X, the Heyting implication of y and z is

unique up to isomorphism.

Suppose that a and a′ are two candidates for the element

y⇒ z∈ X. Then a≤ a implies a∧y≤ z implies a≤ a′; the converse

is similar.
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Distributive Prelattices and Examples

Let X be a prelattice. Then X is distributive if it satisfies

x∧ (y∨z) ∼= (x∧y)∨ (x∧z) for all x,y,z in X.

� P (X) is a Heyting prelattice where A⇒ A′ def
= (X \A)∪A′.

� Any finite distributive prelattice X is a Heyting prelattice.

One may define

y⇒ z
def
=

_

{ l ∈ X | l ∧y≤ z}
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Homomorphisms of Prelattices and Heyting Prelattices

� A homomorphism of prelattices is a function f : X →Y

(with X and Y prelattices) which preserves finite meets and

joins, that is

f (
^

{x1, . . . ,xn}) ∼=
^

{ f (x1), . . . , f (xn)}

and

f (
_

{x1, . . . ,xn}) ∼=
_

{ f (x1), . . . , f (xn)}

and also f (⊤) ∼= ⊤ and f (⊥) ∼= ⊥.

� A homomorphism of Heyting prelattices is as above but

also preserves Heyting implications.
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Examples of Homomorphisms of Prelattices

� Consider the inverse image function f−1 : P (Y) → P (X).

This is a homomorphism of Heyting prelattices.

� The function that multiplies by a natural number k

preserves lowest common multiples, that is, preserves binary

joins in (N, |) where recall d | m means that d divides exactly

into m.
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Definition of a Category

A category C is specified by the following data:

� A collection obC of entities called objects, written A, B,

C. . .

� A collection morC of entities called morphisms written

f , g, h. . .

� For each morphism f a source src( f ) which is an object

of C and a target tar( f ) also an object of C . We shall write

f : src( f ) −→ tar( f ) or perhaps f : A→ B.
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� Morphisms f and g are composable if tar( f ) = src(g). If

f : A→ B and g : B→C, then there is a morphism g◦ f : A→C.

� For each object A of C there is an identity morphism

idA : A→ A, where

idtar( f ) ◦ f = f

f ◦ idsrc( f ) = f

� Composition is associative, that is given morphisms f : A→ B,

g : B→C and h : C→ D then

(h◦g)◦ f = h◦ (g◦ f ).

� If the collection of morphisms from A to B forms a set, then we

write C (A,B) for this set. Such categories are called locally small.
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� Sets and total functions, Set. The objects are sets and

morphisms are (A, f ,B) where f ⊆ A×B is a function.

Composition is given by

(B,g,C)◦ (A, f ,B) = (A,g◦ f ,C)

Finally, if A is any set, the identity is (A, idA,A).

� Any preordered set (X,≤) is a category. The objects are

elements of X. The collection of morphisms is the set of pairs

(x,y) where x≤ y. Composition is (y,z)◦ (x,y)
def
= (x,z)

(because ≤ is transitive). The identities are the pairs (x,x)

(because ≤ is reflexive).
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Definition of a Functor

A functor F : C →D is specified by

� an operation taking objects A in C to objects FA in D, and

� an operation sending morphisms f : A→ B in C to

morphisms F f : FA→ FB in D,

for which F(idA) = idFA, and whenever the composition of

morphisms g◦ f is defined in C we have F(g◦ f ) = Fg◦F f .
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Examples of Functors

� The functors between two preorders A and B are precisely

the monotone functions from A to B.

� The set [A] of finite lists over a set A gives a monoid via

list concatenation.

Hence we may define F : Set→Mon by FA
def
= [A] and

F f
def
= map( f ), where map( f ) : [A] → [B] is defined by

map( f )([a1, . . . ,an]) = [ f (a1), . . . , f (an)],

with [a1, . . . ,an] any element of [A].
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To see that F(g◦ f ) = Fg◦F f where A
f

−→ B
g

−→C note that

F(g◦ f )([a1, . . . ,an])
def
= map(g◦ f )([a1, . . . ,an])

= [(g◦ f )(a1), . . . ,(g◦ f )(an)]

= [g( f (a1)), . . . ,g( f (an))]

= map(g)([ f (a1), . . . , f (an)])

= map(g)(map( f )([a1, . . . ,an]))

= (Fg◦F f )([a1, . . . ,an]).
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� Let C be a category. The identity functor idC is defined by

idC (A)
def
= A where A is an object of C and idC ( f )

def
= f where f

is a morphism of C .

� Given a set A, recall that the powerset P (A) is the set of

subsets of A. We can define a functor P : Set→ Set which is

given by

f : A→ B 7→ f∗ : P (A) → P (B),

where f : A→ B is a function and f∗ is defined by

f∗(A′)
def
= { f (a′) | a′ ∈ A′} where A′ ∈ P (A). We call

P : Set→ Set the covariant powerset functor.
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� Given a category C , the category C op has objects those of

C , and morphisms f op : A→ B in C op are morphisms

f : B→ A in C . Composition is gop◦ f op def
= ( f ◦g)op.

� We can define a functor P : Setop → Set by setting

f : B→ A 7→ f−1 : P (B) → P (A),

where f : A→ B is a function in Set, and the function f−1 is

defined by f−1(B′)
def
= {a∈ A | f (a) ∈ B′} where B′ ∈ P (B).

� Note that the source of the functor is an opposite category.

We refer to P as the contravariant powerset functor.
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� Let F : C →D and G : C ′ →D be functors. The comma

category (F ↓ G) has objects triples (A, f ,A′) where A and A′

are objects of C and C ′ respectively and f : FA→ GA′ is a

morphism of D. A morphism (A, f ,A′) → (B, f ′,B′) is a pair

(g,h) where g : A→ B in C and h : A′ → B′ in C ′ for which the

following diagram commutes:

FA
Fg- FB

GA′

f
?

Gh
- GB′

f ′

?
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Definition of a Natural Transformation

Let F,G : C →D be functors. Then a natural transformation α
from F to G, written α : F → G, is specified by giving a

morphism αA : FA→ GA in D for each object A in C , such that

for any f : A→ B in C , we have

FA
αA- GA

FB

F f

?

αB

- GB

G f
?
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Examples of Natural Transformations

� Recall F : Set→Mon where FA
def
= [A] and F f

def
= map( f )

and map( f ) : [A] → [B]. We can define a natural

transformation rev : F → F by

revA([a1, . . . ,an])
def
= [an, . . . ,a1]

We check

(F f ◦ revA)([a1, . . . ,an]) = [ f (an), . . . , f (a1)] = (revB◦F f )([a1, . . . ,an]).
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� Let C and D be categories and let F , G, H be functors

from C to D. Also let α : F → G and β : G→ H be natural

transformations. We can define a natural transformation

β◦α : F → H by setting the components to be

(β◦α)A
def
= βA◦αA.

This yields a category [C ,D] with objects functors from C to

D, morphisms natural transformations between such

functors, and composition as given above.
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� Define a functor FX : Set→ Set by

− FX(A)
def
= (X ⇒ A)×X on objects

− FX( f )
def
= ( f ◦−)× idX on morphisms

Then define a natural transformation ev: FX → idSet by

evA(g,x)
def
= g(x) where (g,x) ∈ (X ⇒ A)×X. To see that we

have defined a natural transformation evA : (X ⇒ A)×X → A

let f : A→ B and (g,x) ∈ (X ⇒ A)×X and note that

(idSet( f )◦evA)(g,x) = f (evA(g,x))

= . . .(evB◦FX( f ))(g,x).
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Isomorphisms and Equivalences

� A morphism f : A→ B is an isomorphism if there is some

g : B→ A for which f ◦g = idB and g◦ f = idA.

� We shall say g is an inverse for f and vise versa.

� We say that A is isomorphic to B, A∼= B, if such a

mutually inverse pair of morphisms exists.
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� An isomorphism α : F ∼= G in a functor category is referred

to as a natural isomorphism. This is the same as having a

collection of isomorphisms FA∼= GA for each object A which

are “natural in A. . . ”

� Two categories C and D are equivalent if there are

functors F : C →D and G : D → C together with natural

isomorphisms ε : FG∼= idD and η : idC ∼= GF. We say that F is

an equivalence with an inverse equivalence G and denote

the equivalence by F : C ≃D : G.
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Examples

� Bijections in Set are isomorphisms.

� In the category determined by a partially ordered set, the

only isomorphisms are the identities, and in a preorder X

with x,y∈ X we have x∼= y iff x≤ y and y≤ x. Note that in

this case there can be only one pair of mutually inverse

morphisms witnessing the fact that x∼= y.

� Let an object of 1/Set be a pair (A,a) where a∈ A and a

morphism g : (A,a) → (B,b) be a function g : A→ B for which

b = g(a). Let Part be the category of sets and partial

functions. Then Part ≃ 1/Set.
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Definition of Binary Products

A binary product of objects A and B in a category C is specified

by

� an object A×B of C , together with

� two projection morphisms πA : A×B→ A and

πB : A×B→ B,

for which given any object C and morphisms f : C→ A,

g : C→ B, there is a unique morphism 〈 f ,g〉 : C→ A×B for

which πA◦ 〈 f ,g〉 = f and πB◦ 〈 f ,g〉 = g.
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� The data for a binary product is more readily understood

as a commutative diagram,

A �
πA

A×B
πB

- B

C

∃! 〈 f ,g〉
6

g

-
�

f

The unique morphism 〈 f ,g〉 : C→ A×B is called the

mediating morphism for f and g.

� The definition can be extended to families of objects

(Ai | i ∈ I).
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Definition of Finite Products

Given a family of objects in C , a product is specified by

� an object Πi∈I Ai in C , and

� for every j ∈ I , a morphism π j : Πi∈I Ai → A j in C called the jth

product projection,

such that for any C and ( fi : C→ Ai | i ∈ I) there is a unique morphism

〈 fi | i ∈ I〉 : C→ Πi∈I Ai

for which given any j ∈ I , we have π j ◦ 〈 fi | i ∈ I〉 = f j .
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Examples

� A binary product of x and y in a preordered set X is given

by x∧y with projections x∧y≤ x and x∧y≤ y.

� A (non-empty) finite product of (Ai | i ∈ I) in Set is given

by the cartesian product ΠAi∈I . The product of the empty

family is a terminal object 1, with the property that there is a

unique morphism !A : A→ 1 for every A.
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Definition of Binary Coproducts

A binary coproduct of A and B is specified by

� an object A+B, together with

� two insertion morphisms ιA : A→ A+B and ιB : B→ A+B,

such that there is a unique [ f ,g] for which

C

A
ιA-

f
-

A+B

∃! [ f ,g]

6

�ιB
B

�

g
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Definition of Cartesian Closed Categories

� C is cartesian closed if it has finite products, and for any B and

C there is B⇒C and morphism

ev: (B⇒C)×B→C

such that for any f : A×B→C there is a unique morphism

λ( f ) : A→ (B⇒C) such that f = ev◦ (λ( f )× idB).

� B⇒C is called the exponential of B and C

� λ( f ) is the exponential mate of f .
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Examples

� The category Set.

− The terminal object is {∅} and binary products are given by

cartesian product.

− B⇒C is the set of functions from B to C.

− The function ev: (B⇒C)×B→C is given by ev(h,b) = h(b),

where b∈ B and h : B→C is a function.

− Given f : A×B→C we define λ( f ) : A→ (B⇒C) by

λ( f )(a)(b) = f (a,b).

� A Heyting prelattice viewed as a category is indeed cartesian

closed, with Heyting implications as exponentials. In fact such a

prelattice also has finite coproducts.
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Definition of Distributive and Bicartesian Closed
Categories

� A category with finite products and coproducts is said to

be distributive if the mediating morphisms

[idA× i, idA× j] : (A×B)+(A×C)
∼=

−→ A× (B+C)

and !A×0 : 0
∼=

−→ A×0 are isomorphisms.

� A category C is a bicartesian closed category if it is a

cartesian closed category which has finite coproducts.
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Examples

� The category Set.

� Any category [C ,Set]. Categorical structure is defined pointwise

meaning, for example, that (F ×G)(A)
def
= FA×GA and so on.

� Any Heyting prelattice which is regarded as a category.

� In fact any bicartesian closed category is automatically

distributive–we will see why this is so later on.
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Functors Preserving Products

� The functor F : C →D preserves finite products if for any

finite family of objects (A1, . . . ,An) in C the morphism

m
def
= 〈Fπi | i ∈ I〉 : F(A1× . . .×An) → FA1× . . .×FAn

is an isomorphism.

� We refer to m as the canonical isomorphism.

� F is strict if the above isomorphisms are identities.

� The functor C (C,−) preserves finite products.



Jiangxi Normal University, Nanchang, July 2009 54'

&

$

%

Functors Preserving Coproducts and Exponentials

� A functor F : C →D is said to be bicartesian closed if it

preserves finite products, coproducts and exponentials.

� We shall also call such a functor a morphism of

bicartesian closed categories.
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Adjunctions between Preorders

� A pair of monotone functions

X
l -�
r

Y

is said to be an adjunction if for all x∈ X and y∈Y,

l(x) ≤ y ⇐⇒ x≤ r(y)

� We say that l is left adjoint to r and that r is right adjoint

to l . We write l ⊣ r.
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Examples

� Let 1
def
= {∗} be the one element preorder. Then there are

adjunctions (⊥ ⊣ ! ⊣ ⊤)

X
! -�
⊥

1 X
! -�
⊤

1

provided that X has both top and bottom elements. For

example, for any x∈ X,

!(x)
def
= ∗ ≤ ∗ ⇐⇒ x≤⊤(∗)

def
= ⊤
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Examples

� Define ∆ : X → X×X by ∆(x)
def
= (x,x). Then there are

adjoints (∨ ⊣ ∆ ⊣ ∧)

X
∆-�
∨

X×X X
∆-�
∧

X×X

provided that X has both binary meets and joins. For

example, for any l ∈ X,

∆(l)
def
= (l , l) ≤ (x,x′) ⇐⇒ l ≤ ∧(x,x′)

def
= x∧x′
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Adjunctions between Categories

� Let L : C →D and R : D → C be functors. L is left adjoint

to R, written L ⊣ R, if given any objects A of C and B of D we

have

• a bijection between morphisms LA→ B in D and A→ RB in

C ,
f : LA→ B

f : A→ RB

g : A→ RB

ĝ : LA→ B

• this bijection is natural in A and B: given morphisms

a : A′ → A in C and b : B→ B′ in D we have

b◦ f ◦La = Rb◦ f ◦a and (Rb◦g◦a)∧ = b◦ ĝ◦La.
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Notation for Adjunctions

Let A and B be objects of a locally small category C . We define

a functor

C (−,+) : C op×C → Set

by taking any morphism ( f ,g) : (A,B) → (A′,B′) in C op×C to

the set-theoretic function

C ( f ,g) : C (A,B) → C (A′,B′)

where C ( f ,g)(h) = g◦h◦ f for each morphism h : A→ B. (Note

that f is a morphism A′ → A in C).
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We can also define

C (A,+) : C → Set.

This takes B of C to the set C (A,B), and if g : B→ B′ is a

morphism of C then the functor C (A,+) takes g : B→ B′ to the

function

C (A,g) : C (A,B) → C (A,B′)

defined by setting

C (A,g)(h)
def
= g◦h,

where h : A→ B.

Similarly, we can define a functor C (−,B) : C op→ Set.
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If a categories C and D are locally small, then L ⊣ R provided that

there is an isomorphism

D(−,+)◦ (Lop× id)
def
= D(L−,+) ∼= C (−,R+)

def
= C (−,+)◦ (id×R)

in the functor category [Cop×D,Set] where Lop : Cop →Dop is

defined by

Lop( f : A′ → A)
def
= L f : LA′ → LA

We also say that R is right adjoint to L.
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Examples

� The forgetful functor U : Mon→ Set taking a monoid to its

underlying set, and the functor [−] : Set→Mon taking a set

to lists over the set, are adjoints: [−] ⊣U .

Given a monoid M and a set A any function g : A→UM

corresponds to a unique monoid morphism ĝ : [A] → M.
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Indeed, there is a bijection for each A and M

(−) : Mon([A],M) ∼= Set(A,UM) : (̂−)

given by

g : A−→UM - ĝ : [A]
[a1, . . . ,an] 7→ g(a1) . . .g(an)- M,

f : [A] −→ M - f : A
a 7→ f ([a])- UM.



Jiangxi Normal University, Nanchang, July 2009 64'

&

$

%

and a natural isomorphism

Ψ : Mon([−],+) ∼= Set(−,U(+)) : Setop×Mon→ Set

where at any object (A,M) of Setop×Mon we have

(Ψ)(A,M)
def
= (−)

and (say)

Ψ−1
(A,M)

def
= (̂−).
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� There are other examples of forgetful functors. The

functor U : C → Graph taking a category to its underlying

graph has a left adjoint taking a graph to the free category

over the graph.

� The functor U : Group→ Set taking a group to its

underlying set has a left adjoint taking a set to the free group

over the set.
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� F : Set→ VecK is the functor taking set X to the vector

space FX with vectors linear combinations Σi∈nkixi where

xi ∈ X and ki ∈ K. Given function f : X →Y, the linear map

F f : FX → FY is

F f (Σi∈nkixi)
def
= Σi∈nki f (xi).

The functor U : VecK → Set is forgetful. Any function

g : X →UV has a unique extension to a linear map

ĝ : FX →V. The assignment g 7→ ĝ has an inverse: any linear

f : FX →V restricts to function f : X →UV. Thus we have a

natural bijection

(−) : Set(X,UV) -� VecK(FX,U) : (̂−)
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� The diagonal functor ∆ : Set→ Set×Set taking a function

f : A→ B to ( f , f ) : (A,A) → (B,B) has right and left adjoints

Π and Σ taking any morphism ( f ,g) : (A,A′) → (B,B′) of

Set×Set to f ×g
def
= 〈 f ◦πA,g◦πB〉 : A×A′ → B×B′ and

f +g
def
= [ιB f , ιB′g] : A+A′ → B+B′ respectively, where

A � πA
A×A′ πA′

- A′

B
ιB- B+B′ �ιB′

B′

This example remains valid if we replace Set by any category

C , where we leave the reader to define the diagonal functor

∆ : C → C ×C .
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� Let C be a category with finite products. Existence of a right

adjoint R to the functor (−)×B : C → C for each object B of C , is

equivalent to C being cartesian closed.

(⇒) Given an object B of C set B⇒C
def
= R(C) for any object C of

C . Given a morphism f : A×B→C we define λ( f ) : A→ (B⇒C)

to be the mate of f across the given adjunction. The morphism

ev: (B⇒C)×B→C

is the mate (idB⇒C)⋆ of the identity idB⇒C : (B⇒C) → (B⇒C).
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(⇐) Conversely, let B be an object of C . We define a right adjoint to

(−)×B denoted by B⇒ (−), by setting

c : C−→C′ 7→ B⇒ c
def
= λ(c◦ev) : (B⇒C) → (B⇒C′)

for each morphism c : C→C′ of C . We define a bijection by declaring

the mate of f : A×B→C to be λ( f ) : A→ (B⇒C) and the mate of

g : A→ (B⇒C) to be

g⋆ def
= ev◦ (g× idB) : A×B→C.
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The Yoneda Lemma — Preliminaries

Let C be a locally small category, F : C → Set a functor and A an

object of C . Then the collection Nat(C (A,+),F) of natural

transformations C (A,+) → F is a set and so we can define a functor

Nat(C (−,+),+) : C × [C ,Set] −→ Set

− The morphism (g,µ) : (A,F) → (A′,F ′) in C × [C ,Set] is taken to

the function

Nat(C (g,+),µ) : Nat(C (A,+),F) → Nat(C (A′,+),F ′)

− Nat(C (g,+),µ)(α)
def
= µ◦α◦C (g,+) where α : C (A,+) → F is a

natural transformation.
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The Yoneda Lemma

There is an “evaluation” functor

Ev : C × [C ,Set] −→ Set.

Then there is a natural isomorphism

Φ : Nat(C (−,+),+) ∼= Ev : Ψ

If A is an object of C , this amounts to saying that there is an

isomorphism (set-theoretic bijection)

Φ(A,F) : Nat(C (A,+),F) ∼= FA : Ψ(A,F)

and this isomorphism is natural in (A,F).
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Categorical Type Theory

� We shall define an equational type theory with products, sums,

and functions.

� Working from first principles, we shall derive a semantics.

− First we examine the rules for deriving type assignments, and

show that basic properties lead naturally to categorical models.

− Second, we examine each of the rules for deriving equations,

and extract constraints on our models which guarantee

soundness.
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Categorical Type Theory

� We show how structure preserving functors can transform

one model into another . . .

� and use this to show how theories correspond to

categories with a universal property.
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Signatures

A λ×+-signature, Sg, is given by :

� A collection of ground types. The collection of types is

inductively defined:

γ unit null

σ τ

σ× τ

σ τ

σ+ τ

σ τ

σ ⇒ τ

� A collection of function symbols f : σ1 . . .σa → σ which

may be constants k : σ when a = 0.
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Raw Terms

We define the raw terms generated by a λ×+-signature:

x k

M1 . . . Ma

f (M1, . . . ,Ma) 〈〉

M N

〈M,N〉

P

Fst(P)

P

Snd(P)

S

Empσ(S)

M

Inrτ(M)

M

Inlτ(M)

S E F

Case(S, x.E | y.F)

M

λx : σ.M

F A

F A

� We will use simultaneous substitution of raw terms for free

variables, T[~U/~v]. For example, 〈x,y〉[Inl(y),x/x,y] = 〈Inl(y),x〉.
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Proved Terms

� A context is a finite list of (variable, type) pairs, usually

written as Γ = [x1 : σ1, . . . ,xn : σn], where the variables are

required to be distinct.

� A term-in-context is a judgement of the form Γ ⊢ M : σ

� Given a signature Sg, the proved terms are those

terms-in-context which are inductively generated by the

following rules.
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Γ,x : σ,Γ′ ⊢ x : σ Γ ⊢ k : σ

Γ ⊢ M1 : σ1 . . . Γ ⊢ Ma : σa

Γ ⊢ f (M1, . . . ,Ma) : τ

Γ ⊢ 〈〉 : unit

Γ ⊢ M : σ Γ ⊢ N : τ

Γ ⊢ 〈M,N〉 : σ× τ

Γ ⊢ P : σ× τ

Γ ⊢ Fst(P) : σ

Γ ⊢ P : σ× τ

Γ ⊢ Snd(P) : τ
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Γ ⊢ S: null

Γ ⊢ Empσ(S) : σ

Γ ⊢ M : σ

Γ ⊢ Inlτ(M) : σ+ τ

Γ ⊢ N : τ

Γ ⊢ Inrσ(N) : σ+ τ

Γ ⊢ S: σ+ τ Γ,x : σ ⊢ E : δ Γ,y : τ ⊢ F : δ

Γ ⊢ Case(S, x.E | y.F) : δ

Γ,x : σ ⊢ M : τ

Γ ⊢ λx : σ.M : σ ⇒ τ

Γ ⊢ F : σ ⇒ τ Γ ⊢ A : σ

Γ ⊢ F A : τ
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Admissible Properties

Whenever Sg ⊲ Γ ⊢ M : σ, we have Sg ⊲ πΓ ⊢ M : σ.

We use rule induction. More precisely we prove

∀ Sg ⊲ Γ ⊢ M : σ. Sg ⊲ πΓ ⊢ M : σ

We give some examples of property closure.
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Γ ⊢ M1 : σ1 . . . Γ ⊢ Ma : σa
( f : σ1, . . . ,σa → σ)

Γ ⊢ f (M1, . . . ,Ma) : σ

(Property Closure for the inductive rule for function

symbols): The inductive hypotheses are Sg ⊲ πΓ ⊢ Mi : σi

for each i, that is, there is a derivation for each

term-in-context. But now we can just apply an instance of the

rule to these derivations to deduce that

Sg ⊲ πΓ ⊢ f (M1, . . . ,Ma) : σ, as required.
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Theories

� A λ×+-theory, Th, is a pair (Sg,Ax) where Ax is a

collection of equations-in-context for Sg.

� An equation-in-context is a judgement Γ ⊢ M = M′ : σ
where Γ ⊢ M : σ and Γ ⊢ M′ : σ are proved terms.

� The theorems of Th consist of the judgements of the form

Γ ⊢ M = M′ : σ inductively generated by the rules on the

following slides—it is a consequence of the rules that

Sg ⊲ Γ ⊢ M : σ and Sg ⊲ Γ ⊢ M′ : σ.
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Ax ⊲ Γ ⊢ M = M′ : σ

Γ ⊢ M = M′ : σ

Γ ⊢ M = M′ : σ
(where π is a permutation)

πΓ ⊢ M = M′ : σ

Γ ⊢ M = M′ : σ
(where Γ ⊆ Γ′)

Γ′ ⊢ M = M′ : σ

Γ,x : σ ⊢ N = N′ : τ Γ ⊢ M = M′ : σ

Γ ⊢ N[M/x] = N′[M′/x] : τ

plus rules to ensure that = is an equivalence relation.
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Sg ⊲ Γ ⊢ M : unit

Γ ⊢ M = 〈〉 : unit

Sg ⊲ Γ ⊢ M : σ Sg ⊲ Γ ⊢ N : τ

Γ ⊢ Fst(〈M,N〉) = M : σ

Sg ⊲ Γ ⊢ M : σ Sg ⊲ Γ ⊢ N : τ

Γ ⊢ Snd(〈M,N〉) = N : τ

Sg ⊲ Γ ⊢ P : σ× τ

Γ ⊢ 〈Fst(P),Snd(P)〉 = P : σ× τ
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Sg ⊲ Γ ⊢ S: null Sg ⊲ Γ,x : null ⊢ M : σ

Γ ⊢ Empσ(S) = M[S/x] : σ

Sg ⊲ Γ ⊢ M : σ Sg ⊲ Γ,x : σ ⊢ E : δ Sg ⊲ Γ,y : τ ⊢ F : δ

Γ ⊢ Case(Inlτ(M), x.E | y.F) = E[M/x] : δ

Sg ⊲ Γ ⊢ N : τ Sg ⊲ Γ,x : σ ⊢ E : δ Sg ⊲ Γ,y : τ ⊢ F : δ

Γ ⊢ Case(Inrσ(N), x.E | y.F) = F [N/x] : δ
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Sg ⊲ Γ ⊢ S: σ+ τ Sg ⊲ Γ,z : σ+ τ ⊢ L : δ
(provided x,y 6∈ fv(L))

Γ ⊢ Case(S, x.L[Inlτ(x)/z] | y.L[Inrσ(y)/z]) = L[S/z] : δ

Γ ⊢ S= S′ : σ+ τ Γ,x : σ ⊢ E = E′ : δ Γ,y : τ ⊢ F = F ′ : δ

Γ ⊢ Case(S, x.E | y.F) = Γ ⊢ Case(S′, x.E′ | y.F ′) : δ
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Sg ⊲ Γ,x : σ ⊢ M : τ Sg ⊲ Γ ⊢ A : σ

Γ ⊢ (λx : σ.M)A = M[A/x] : τ

Sg ⊲ Γ ⊢ F : σ ⇒ τ
(provided x 6∈ fv(F))

Γ ⊢ λx : σ.(Fx) = F : σ ⇒ τ

Γ,x : σ ⊢ M = M′ : τ

Γ ⊢ λx : σ.M = λx : σ.M′ : σ ⇒ τ
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Deriving a Semantics For Proved Terms

� Suppose we model (or interpret) σ and τ by “objects” A and B.

Let us model x : σ ⊢ M : τ as a “relationship” A
m

−→ B.

� We first think about the process of substitution. Let

[[x : σ ⊢ M : τ]] = A
m

−→ B [[y : τ ⊢ N : γ]] = B
n

−→C

Then

[[x : σ ⊢ N[M/y] : γ]] = A
2(n,m)
−→ C
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� Let z : γ ⊢ L : δ be a further proved term. Note that we

shall identify the semantics of the proved terms

x : σ ⊢ (L[N/z])[M/y] : δ and x : σ ⊢ L[N[M/y]/z] : δ

Thus

2(2(l ,n),m) = 2(l ,2(n,m))

� We will have to model x : σ ⊢ x : σ as a relationship

A
⋆A−→ A. We can deduce that if E

e
−→ A, then 2(⋆A,e) = e

because x[E/x] = E.
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We summarise our deductions, writing n◦m for 2(n,m) and idA for

⋆A, which amount to the definition of a category:

− Types are interpreted by “objects,” say A, B. . . and proved terms

are interpreted by “relationships,” say A
m

−→ B. . .

− For each object A there is a relationship idA.

− Given relationships A
m

−→ B and B
n

−→C, there is a relationship

A
n◦m
−→C.

− Given relationships E
e

−→ A and A
m

−→ B, then we have

idA◦e= e and m◦ idA = m.

− For any A
m

−→ B, B
n

−→C and C
l

−→ D, we have

l ◦ (n◦m) = (l ◦n)◦m.
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Summary

� We will model a proved term x1 : σ1, . . . ,xn : σn ⊢ M : τ in a

category with finite products as a morphism of the form

[[Γ ⊢ M : τ]] : [[Γ]] → [[τ]]

where Γ def
= x1 : σ1, . . . ,xn : σn and [[Γ]] stands for

[[σ1]]× . . .× [[σn]].

� Substitution of terms will be modelled by categorical

composition . . .
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Deriving a Semantics for Theories

� First we consider the types of Sg. We have to give an object [[γ]]
of C to interpret each of the ground types γ, [[unit]] to interpret unit,

and [[null]] to interpret null.

� We define [[σ× τ]] def
= [[σ]]2[[τ]], etc

� We choose a morphism [[ f ]] : [[σ1]]× . . .× [[σn]] → [[σ]] in C for each

function symbol.

� Recall that the interpretation of Γ ⊢ M : σ is given by

[[Γ ⊢ M : σ]] : [[Γ]] → [[σ]]. By looking at how to soundly interpret the

theorems of Th we will deduce what the interpretation must be.
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A typical rule looks like

Γ ⊢ M : σ
(R)

Γ ⊢ R(M) : τ

Now suppose that m
def
= [[Γ ⊢ M : σ]] which is an element of C ([[Γ]], [[σ]]).

How do we model [[Γ ⊢ R(M) : τ]] ∈ C ([[Γ]], [[τ]])? All we can say at the

moment is that this will depend on m, and we can model this idea by

having a function

Φ : C ([[Γ]], [[σ]]) −→ C ([[Γ]], [[τ]])

and setting [[Γ ⊢ R(M) : τ]] def
= Φ(m).
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Suppose that x : γ ⊢ M : σ and y : γ′ ⊢ N : γ are any two given proved

terms. If m
def
= [[x : γ ⊢ M : σ]] and n

def
= [[y : γ′ ⊢ N : γ]] then

[[y : γ′ ⊢ M[N/x] : σ]] = m◦n. Note that there are (definitionally) equal

proved terms

y : γ′ ⊢ R(M)[N/x] : τ and y : γ′ ⊢ R(M[N/x]) : τ.

and so

Φ(m)◦n = Φ(m◦n). (∗)

(∗) will hold if there are natural transformations

Φ : C (−,A) −→ C (−,B) : Cop −→ Set.
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Recall that the rule for introducing product terms is

Γ ⊢ M : σ Γ ⊢ N : σ

Γ ⊢ 〈M,N〉 : σ× τ

In order to soundly interpret this rule we shall need a natural

transformation

Φ : C (−,A)×C (−,B) −→ C (−,A2B)

for all objects A and B of C .
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Now let m : C→ A and n : C→ B be morphisms of C . Applying

naturality in C at the morphism 〈m,n〉 : C→ A×B we deduce

ΦC(πA◦ 〈m,n〉,πB◦ 〈m,n〉) = ΦA×B(πA,πB)◦ 〈m,n〉,

that is ΦC(m,n) = ΦA×B(πA,πB)◦ 〈m,n〉. Now let us define the

morphism qA,B : A×B→ A2B to be ΦA×B(πA,πB). Then we can make

the definition

[[Γ ⊢ 〈M,N〉 : A×B]]
def
=

[[Γ]]
〈[[Γ ⊢ M : σ]], [[Γ ⊢ N : σ]]〉- [[σ]]× [[τ]]

q[[σ]],[[τ]]- [[σ]]2[[τ]].
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Γ ⊢ H : σ× τ

Γ ⊢ Fst(H) : σ

To model this rule we shall need a natural transformation

Φ : C (−,A2B) −→ C (−,A). Using the Yoneda lemma (see notes), the

components of Φ are given by θ 7→ p◦θ for some p : A2B→ A. So

now we can define

[[Γ ⊢ Fst(H) : σ]]
def
= [[Γ]]

[[Γ ⊢ H : σ× τ]]- [[σ]]2[[τ]]
p[[σ]],[[τ]]- [[σ]].
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Now we think about the equations

Γ ⊢ M : σ Γ ⊢ N : τ
(1)

Γ ⊢ Fst(〈M,N〉) = M : σ

Γ ⊢ M : σ Γ ⊢ N : τ
(2)

Γ ⊢ Snd(〈M,N〉) = N : σ

Γ ⊢ H : σ× τ
(3)

Γ ⊢ 〈Fst(H),Snd(H)〉 = H : σ× τ
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If we put h
def
= [[Γ ⊢ H : σ× τ]] : C→ A2B, m

def
= [[Γ ⊢ M : σ]] : C→ A

and n
def
= [[Γ ⊢ N : τ]] : C→ B, and our categorical interpretation

satisfies the equations-in-context, this forces

pA,B◦qA,B◦ 〈m,n〉 = m (1)

p′A,B◦qA,B◦ 〈m,n〉 = n (2)

qA,B◦ 〈pA,B◦h, p′A,B◦h〉 = h (3)

These equations imply that, up to isomorphism, A2B and A×B

are the same. Thus we may soundly interpret binary product

types by binary categorical product.
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To soundly interpret the rule

Γ ⊢ S: null

Γ ⊢ Empσ(S) : σ

we shall need a natural transformation Φ : C (−,N) −→ C (−,A),

where N = [[null]]. The Yoneda Lemma tells us that the

components of Φ are given by θ 7→ nA◦θ where nA : N → A is a

morphism, one for each A. So now we can define

[[Γ ⊢ Empσ(S) : σ]]
def
= [[Γ]]

[[Γ ⊢ S: null]]- N
n[[σ]]- [[σ]].



Jiangxi Normal University, Nanchang, July 2009 100'

&

$

%

If we write s
def
= [[Γ ⊢ S: null]] : C→ N, and

m
def
= [[Γ,x : null ⊢ M : σ]] : C×N → A then

Γ ⊢ Empσ(S) = M[S/x] : σ

will be soundly modelled providing that

nA◦s= m◦ 〈idC,s〉 (†)

holds for any such morphisms. Suppose that t : N → A. Taking s to be

idN and m to be t ◦πN, then

nA = t ◦πN ◦ 〈idN, idN〉 = t

Thus N is an initial object in the category C . (In fact (†) forces N to

be distributive, that is πN : C×N → N is an isomorphism for every C.)
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Formal Semantics of Proved Terms

Let C be a BCC. Then a structure, M, for some Sgin C is specified by:

� For every ground type γ an object [[γ]] of C ,

� for every function symbol f : σ1 . . .σn → τ a morphism

[[ f ]] : [[σ1]]× . . .× [[σn]] → [[τ]], where we define [[σ]] by recursion,

setting [[unit]]
def
= 1, [[σ× τ]] def

= [[σ]]× [[τ]] etc.

Then for every proved term Γ ⊢ M : σ we specify a morphism

[[Γ ⊢ M : σ]] : [[Γ]] → [[σ]]

by recursion.
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[[Γ,x : σ,Γ′ ⊢ x : σ]]
def
= π : [[Γ]]× [[σ]]× [[Γ′]] → [[σ]]

(k : σ)
[[Γ ⊢ k : σ]]

def
= [[k]]◦! : [[Γ]] → 1→ [[σ]]

[[Γ ⊢ M1 : σ1]] = m1 : [[Γ]] → [[σ1]] . . .

[[Γ ⊢ f (~M) : τ]] = [[ f ]]◦ 〈m1, . . . ,mn〉 : [[Γ]] → ([[σ1]]× . . .× [[σn]]) → [[τ]]
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(where 1 is the terminal object of C)
[[Γ ⊢ 〈〉 : unit]]

def
=! : [[Γ]] → 1

[[Γ ⊢ P : σ× τ]] = p : [[Γ]] → ([[σ]]× [[τ]])

[[Γ ⊢ Fst(P) : σ]] = π1◦ p : [[Γ]] → ([[σ]]× [[τ]]) → [[σ]]

[[Γ ⊢ P : σ× τ]] = p : [[Γ]] → ([[σ]]× [[τ]])

[[Γ ⊢ Snd(P) : τ]] = π2◦ p : [[Γ]] → ([[σ]]× [[τ]]) → [[τ]]

[[Γ ⊢ M : σ]] = m : [[Γ]] → [[σ]] [[Γ ⊢ N : τ]] = n : [[Γ]] → [[τ]]

[[Γ ⊢ 〈M,N〉 : σ× τ]] = 〈m,n〉 : [[Γ]] → ([[σ]]× [[τ]])
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[[Γ ⊢ S: null]] = s : [[Γ]] → 0

[[Γ ⊢ Empσ(S) : σ]] = !◦ ∼= ◦〈id[[Γ]],s〉 : [[Γ]] → [[Γ]]×0∼= 0→ [[σ]]

(where 0 is the initial object of C)

[[Γ ⊢ M : σ]] = m : [[Γ]] → [[σ]]

[[Γ ⊢ Inlτ(M) : σ+ τ]] = i ◦m : [[Γ]] → [[σ]] → [[σ]]+ [[τ]]

[[Γ ⊢ N : τ]] = n : [[Γ]] → [[τ]]

[[Γ ⊢ Inrσ(N) : σ+ τ]] = j ◦n : [[Γ]] → [[τ]] → [[σ]]+ [[τ]]
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



[[Γ ⊢ S: σ+ τ]] = s : [[Γ]] → [[σ]]+ [[τ]]

[[Γ,x : σ ⊢ E : δ]] = e : [[Γ]]× [[σ]] → [[δ]]

[[Γ,y : σ ⊢ F : δ]] = f : [[Γ]]× [[τ]] → [[δ]]

[[Γ ⊢ Case(S, x.E | y.F) : δ]] =

[e, f ]◦ ∼= ◦〈id[[Γ]],s〉 : [[Γ]] → [[Γ]]× ([[σ]]+ [[τ]])
∼= ([[Γ]]× [[σ]])+([[Γ]]× [[τ]]) → [[δ]]



Jiangxi Normal University, Nanchang, July 2009 106'

&

$

%

[[Γ,x : σ ⊢ M : τ]] = m : [[Γ]]× [[σ]] → [[τ]]

[[Γ ⊢ λx : σ.M : σ ⇒ τ]] = λ(m) : [[Γ]] → [[σ]] ⇒ [[τ]]

[[Γ ⊢ F : σ ⇒ τ]] = f : [[Γ]] → ([[σ]] ⇒ [[τ]]) [[Γ ⊢ A : σ]] = a : [[Γ]] → [[σ]]

[[Γ ⊢ F A : τ]] def
= ev◦ 〈 f ,a〉 : [[Γ]] → ([[σ]] ⇒ [[τ]])× [[σ]] → [[τ]]
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Modelling Composition

Let Γ′ ⊢ N : τ be a proved term where Γ′ = [x1 : σ1,x2 : σ2] and let

Γ ⊢ Mi : σi be proved terms for i = 1,2. Then one can show that

Γ ⊢ N[M1,M2/x1,x2] : τ and

[[Γ ⊢ N[M1,M2/x1,x2] : τ]] = [[Γ′ ⊢ N : τ]]◦ 〈[[Γ ⊢ M1 : σ1]], [[Γ ⊢ M2 : σ2]]〉

Proof: By rule induction on the derivation of the judgement

Γ′ ⊢ N : τ.
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Soundness

Let M be a structure for a λ×+-signature in a bicartesian

closed category C . M satisfies the equation-in-context

Γ ⊢ M = M′ : σ if [[Γ ⊢ M : σ]] and [[Γ ⊢ M′ : σ]] are equal. We say

that M is a model of a λ×+-theory Th= (Sg,Ax) if M satisfies

the axioms.

Then M satisfies any equation-in-context which is a theorem of

Th.

Proof: This can be shown by rule induction using the rules for

deriving theorems.
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Let

m
def
= [[Γ,x : σ ⊢ M : τ]] : [[Γ]]× [[σ]] → [[τ]]

and a
def
= [[Γ ⊢ A : σ]] : [[Γ]] → [[σ]]. Then we have

(Property Closure for the (base) rule):

Sg ⊲ Γ,x : σ ⊢ M : τ Sg ⊲ Γ ⊢ A : σ

Γ ⊢ (λx : σ.M)A = M[A/x] : τ

[[Γ ⊢ (λx : σ.M)A : τ]] = ev◦ 〈[[Γ ⊢ λx : σ.M : τ]], [[Γ ⊢ A : σ]]〉

= ev◦ 〈λ(m),a〉

= ev◦ (λ(m)× id)◦ 〈id,a〉

= m◦ 〈id,a〉

= [[Γ ⊢ M[A/x] : τ]]
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Transporting Models

Suppose that we are given a morphism of bicartesian closed

categories F : C →D. Let M be a model of Th in C . We shall

show how to define a new model, of Th in D, denoted by F∗M.

We shall need a lemma, that may be proved by induction over

types:

If we set [[γ]]F∗M
def
= F [[γ]]M where γ is a ground type of Th, then it

follows from this that there is a canonical isomorphism

[[σ]]F∗M
∼= F[[σ]]M where σ is any type of Th.
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A structure F∗M is given by [[γ]]F∗M
def
= F [[γ]]M on ground types and

[[ f ]]F∗M is given by the composition

[[σ1]]F∗M × . . .× [[σn]]F∗M
∼= F [[σ1]]M × . . .×F [[σn]]M

∼=′

F([[σ1]]M × . . .× [[σn]]M)
F [[ f ]]M−→ F [[τ]]M ∼= [[τ]]F∗M

where f : σ1, . . . ,σn → τ is a function symbol of Th, the isomorphims
∼= exist because of the lemma, and ∼=′ arises from F preserving finite

products.
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In fact F∗M is a model of Th.

Given a proved term Γ ⊢ M : σ one can show by induction that

the morphism [[Γ ⊢ M : σ]]F∗M is given by the composition

[[σ1]]F∗M × . . .× [[σn]]F∗M
∼= F([[σ1]]M × . . .× [[σn]]M)

F [[Γ⊢M:σ]]M−→ F [[σ]]M.

If we are given proved terms Γ ⊢ M : σ and Γ ⊢ N : σ for which

[[Γ ⊢ M : σ]]M = [[Γ ⊢ N : σ]]M then certainly

[[Γ ⊢ M : σ]]F∗M = [[Γ ⊢ N : σ]]F∗M. Thus if M is a model of Th in C

then F∗M is a model of Th in D.
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Classifying Categories

Let Th be a λ×+-theory. A bicartesian closed category Cl(Th)

is called the classifying category of Th if there is a model G of

Th in Cl(Th) for which given any category D with finite

products, and a model M of Th in D, then there is a functor

µ : Cl(Th) →D such that

Th
M - D

Cl(Th)

G
?

µ

-

where µ∗G = M.



Jiangxi Normal University, Nanchang, July 2009 114'

&

$

%

Constructing Classifiers

Every λ×+-theory Th has a classifying category Cl(Th). We can

construct a canonical classifying category using the syntax of Th.

Proof:

� The objects of Cl(Th) are the types of Th.

� A morphism σ → τ is an equivalence class (x : σ | M) of pairs

(x : σ,M) where Sg ⊲ x : σ ⊢ M : τ, with equivalence relation

(x : σ,M) ∼ (x′ : σ,M′) iff Th ⊲ x : σ ⊢ M = M′[x/x′] : τ.
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� Given σ and τ, the binary product is σ× τ with projection

πσ : σ× τ → σ given by (z : σ× τ | Fst(z)). If (x : γ | M) : γ → σ
and (y : γ | N) : γ → τ, then the mediating morphism is

(z : γ | 〈M[z/x],N[z/y]〉) : γ → σ× τ.

� (x : σ | 〈〉) is the unique morphism σ → unit so that unit is a

terminal object for Cl(Th).

� (x : null | Empσ(x)) is the unique morphism null → σ so that

null is a terminal object for Cl(Th).
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� We define a structure G for Sgin Cl(Th). [[γ]]G
def
= γ (and

hence it follows that [[σ]]G = σ for any type σ).

� Also define for f : σ1,σ2 → τ

[[ f ]]G
def
= (z : σ1×σ2 | f (Fst(z),Snd(z)))

Certainly we have

Sg ⊲ z : σ1×σ2 ⊢ f (Fst(z),Snd(z)) : τ

� If k : σ then [[k]]G
def
= (x : unit | k).
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We check that G is indeed a model of Th= (Sg,Ax). Suppose that

Sg ⊲ x : σ,y : τ ⊢ M : ρ. Then we can prove by induction that

[[x : σ,y : τ ⊢ M : ρ]]G = (z : σ× τ | M[Fst(z)/x,Snd(z)/y])

Now, if we have Th ⊲ x : σ,y : τ ⊢ M = M′ : ρ, then

Th ⊲ z : σ× τ ⊢ M[Fst(z)/x,Snd(z)/y] = M′[Fst(z)/x,Snd(z)/y] : ρ

and hence that [[x : σ,y : τ ⊢ M : ρ]]G = [[x : σ,y : τ ⊢ M′ : ρ]]G.
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� Now let M be a model of Th in D. We define

µ : Cl(Th) →D by

(x : σ | M) : σ −→ τ - [[x : σ ⊢ M : τ]]M : [[σ]]M −→ [[τ]]M

The soundness theorem says that the definition makes sense.

It is easy to see that µ is a bicartesian closed functor.
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It is routine to verify that µ∗G = M. For example, consider a

function symbol f : σ1,σ2 → τ. Then

[[ f ]]µ∗G = µ(z : σ1×σ2 | f (Proj1(z),Proj2(z)))

= [[z : σ1×σ2 ⊢ f (Proj1(z),Proj2(z)) : τ]]M

= [[ f ]]M ◦ 〈π,π′〉

= [[ f ]]M.
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Suppose that there is another bicartesian closed functor

µ′ : Cl(Th) →D for which µ′∗G = M. If σ is an object of Cl(Th)

then

µσ def
= [[σ]]M = [[σ]]µ′∗G

∼= µ′[[σ]]G = µ′σ

using a previous lemma that establishes the isomorphism, and

this gives rise to a natural isomorphism µ∼= µ′.
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Some Applications

� We show that by starting with a very simple type theory,

the expressive power (in a sense to be made precise) is not

increased by adding products, sums and functions. This is

proved by establishing an equivalent categorical problem,

and solving it using categorical methods.



Jiangxi Normal University, Nanchang, July 2009 122'

&

$

%

Algebraic Theories

An algebraic theory is a λ×+-theory in which there are no

product, sum, and function types. More precisely, an algebraic

theory Th= (Sg,Ax) consists of

• a collection of types and function symbols;

• raw terms generated from these data, using only the rules

x k

M1 . . . Ma

f (M1, . . . ,Ma)

• proved terms, generated as expected; and

• theorems, generated by the rules of equality.
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Classifiers for Algebraic Theories

Every algebraic theory Th has a classifying theory Cl(Th).

� The objects of Cl(Th) are finite lists of types from the

algebraic signature Sgof Th, for example ~σ def
= [σ1, . . . ,σn].

� The morphisms with source ~σ and target~τ, where

τ def
= [τ1, . . . ,τm] and both ~σ and~τ are non-empty lists, are

given by finite lists of the form

[(Γ | M1), . . . ,(Γ | Mm)] :~σ →~τ

where the types ~σ appear in Γ and we have Sg ⊲ Γ ⊢ M j : τ j

for 1≤ j ≤ m.
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A Conservative Extension

Let Th= (Sg,Ax) be an algebraic theory. Let Th′ = (Sg′,Ax′) be the

λ×+-theory with ground types and function symbols those of Sg,

and Ax′
def
= Ax. Let Γ def

= [x1 : γ1, . . . ,xn : γn]. Suppose that

Sg′ ⊲ [x1 : γ1, . . . ,xn : γn] ⊢ E : γ

Then there exists M for which

Sg ⊲ Γ ⊢ M : γ and Th′ ⊲ Γ ⊢ E = M : γ.

Moreover, if there is M′ for which Sg ⊲ Γ ⊢ M′ : γ and also

Th′ ⊲ Γ ⊢ E = M′ : γ then we have Th ⊲ Γ ⊢ M = M′ : γ.
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Free Bicartesian Closed Cateories

Let C be a category with finite products. Then FC is the relatively

free BCCC generated by C if there is a finite product preserving

functor I : C → FC such that if F : C →D is finite product preserving

and D is a BCCC then there is a BCCC functor F : FC →D for which

φ : FI ∼= F and F is unique up to isomorphism.

C
I - FC

D

F

?

F

-
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Relating Th and Th′ Categorically

We define a functor I : Cl(Th) → Cl(Th′). Very roughly, if

(x : γ | M)Th : γ → γ′

then we set

I(x : γ | M)Th
def
= (x : γ | M)Th′

Warning: the objects of Cl(Th) are in fact lists of types (in the

example above the source γ and target γ′ are lists of length

one) and the precise definition of I is rather messy . . . .
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On an object~γ of Cl(Th) set

I(~γ) def
= (. . .(γ1× γ2)× . . .)× γn

and given a morphism (Γ | ~M)Th :~γ →~γ′ (where the subscript Th

denotes equivalence up to provable equality in Th), then we set

I(Γ | ~M)Th
def
= (z : Πγi | 〈. . .〈M̂1,M̂2〉, . . . ,M̂m〉)Th′

in which we have written Πγi for (. . .(γ1× γ2)× . . .)× γn and

also

M̂ j
def
= M j [Proj1(z)/x1, . . . ,Proj j(z)/x j , . . . ,Projn(z)/xn]

where Proj j(z) is a term for j-th projection.
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Full and Faithful Functors

� F : C →D is faithful if given a parallel pair of morphisms

f ,g : A→ B in C for which F f = Fg, then f = g. Thus

C (A,B) −→D(FA,FB)

is 1-1.

� F is full if given objects A and B in C and a morphism

g : FA→ FB in D, then there is some f : A→ B in C for which

F f = g. Thus

C (A,B) −→D(FA,FB)

is onto.
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Outlining a Proof of the Con. Extension

1. Show that I : Cl(Th) → Cl(Th′) yields a free BCCC.

2. Prove a purely categorical result called the “logical

relations” gluing lemma.

3. Apply the gluing lemma and the free BCCC property, to

show that I is full and faithful . . .

Cl(Th)(γ,γ′)
∼= - Cl(Th′)(Iγ, Iγ′)
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Existence: Suppose that Sg′ ⊲ x : γ ⊢ E : γ′. Then we certainly

have

e
def
= (x : γ | E)Th′ : Iγ → Iγ′

in Cl(Th′). Using the fullness of I , there is a morphism

(x : γ | M)Th : γ → γ′ which is taken to e by I . But this implies

Th′ ⊲ x : γ ⊢ M = E : γ′

as required.
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A Free BCCC

The functor I : Cl(Th) → Cl(Th′) presents Cl(Th′) as the relatively free

BCC generated by Cl(Th).

Proof: Let F : Cl(Th) → C preserve finite products where C is a

BCCC. We shall define a functor F : Cl(Th′) → C by recursion over the

syntactic structure of Cl(Th′). For example

• Fγ def
= F [γ] where γ is a ground type of Sg′,

• F(σ× τ) def
= Fσ×Fτ,

• F(z : δ | 〈〉)
def
=! : Fδ → 1C ,

• F(z : δ | Fst(P))
def
= π1F(z : δ | P) where π1 : Fσ×Fτ → Fσ,
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Gluing Lemma by Logical Relations

Let D be a BCC and let I : C →D preserve finite products. We define

a category G l as follows:

• Objects of G l are (F,⊳,D) where F : Cop → Set is a functor, D is

an object of D, and for each object C of C , ⊳C ⊆ FC×D(IC,D).

• A morphism (α,d) : (F,⊳,D) → (F ′,⊳′,D′) is given by a natural

transformation α : F → F ′ and a morphism d : D → D′ in D for

which if x ⊳C u then αC(x) ⊳
′
C d◦u, where of course x∈ FC and

u∈D(IC,D).

Then G l is a bicartesian closed category and the obvious functor

π2 : G l →D is a morphism of BCCCs.



Jiangxi Normal University, Nanchang, July 2009 133'

&

$

%

Proof The structure of G l is specified by a “logical relations”

procedure on the subset ⊳C.

(Binary Products): We set

(F,⊳,D)× (F ′,⊳′,D′)
def
= (F ×F ′,⊳ × ⊳

′,D×D′)

where (x,x′)(⊳ × ⊳
′)Cu just in case x ⊳C πu and x′ ⊳′

C π′u where of

course π : D×D′ → D and π′ : D×D′ → D′ in D. The projections in G l

are given by pairing of projections in [Cop,Set] and D, such as:

π(F,⊳,D)
def
= (πF ,πD) : (F ×F ′,⊳ × ⊳

′,D×D′) −→ (F,⊳,D).
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Freeness Implies Full and Faithful

Let C be a locally small category, and FC the freely generated

bicartesian closed category. Then the canonical functor I : C → FC is

full and faithful.

Proof We apply the gluing lemma to I (so D
def
= FC). We define a

functor J : C → G l : on objects C of C define JC by (C (−,C),⊳C, IC)

where the subset

⊳
C
C′ ⊆ C (C′,C)×FC (IC′, IC)

is defined by just requiring c ⊳
C
C′ Ic for each morphism c : C′ →C in

C . On morphisms c of C we set Jc
def
= (C (−,c), Ic).



Jiangxi Normal University, Nanchang, July 2009 135'

&

$

%

The Yoneda functor C (−,+) : C −→ [C op,Set] is full and

faithful, where c : C→C′ 7→ C (−,c) : C (−,C) → C (−,C′).

J is faithful for C (−,+) is faithful. For fullness, let

(α,d) : JC→ JC′. Hence α : C (−,C) → C (−,C′) and so

α = C (−,c) for some c : C→C′ in C . Now certainly idC ⊳C
C idIC

and so

αC(idC) = C (C,c)(idC) = c ⊳
C′

C d◦ idIC = d

implying d = Ic; therefore Jc= (α,d), that is J is full.
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Consider the following diagram

Cl(Th′) === Cl(Th′)

Cl(Th)
J-

I
-

G l(Γ)

J
?

Cl(Th′)

P2

?
===

I -

Cl(Th′)

idCl(Th′)

?
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By freeness, the functor J exists and J◦ I ∼= J naturally. By

definition, P2◦J = I . It follows that P2◦J◦ I ∼= I naturally, that

is (P2◦J)◦ I ∼= I , and as idCl(Th′) ◦ I ∼= I (trivially!) it follows

from the universal property of relatively free bicartesian closed

categories that idCl(Th′)
∼= P2◦J naturally. This latter

isomorphism implies that J is faithful. This fact, together with

J full and faithful proved above, and J◦ I ∼= J implies that I is

full and faithful.


