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Abstract

This work expounds the notion that (structured) categories are
syntax free presentations of type theories, and shows some of the ideas
involved in deriving categorical semantics for given type theories. It is
intended for someone who has some knowledge of category theory and
type theory, but who does not fully understand some of the intimate
connections between the two topics. We begin by showing how the
concept of a category can be derived from some simple and primitive
mechanisms of monadic type theory. We then show how the notion of a
category with finite products can model the most fundamental syntac-
tical constructions of (algebraic) type theory. The idea of naturality is
shown to capture, in a syntax free manner, the notion of substitution,
and therefore provides a syntax free coding of a multiplicity of type
theoretical constructs. Using these ideas we give a direct derivation
of a cartesian closed category as a very general model of simply typed
λ-calculus with binary products and a unit type. This article provides
a new presentation of some old ideas. It is intended to be a tutorial
paper aimed at audiences interested in elementary categorical type
theory. Further details can be found in [Cro93].
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1 Introduction

Typed λ-calculus is a subject very well understood by today’s computer sci-
entists, being an embodiment of the basic principles which underlie functional
programming. In fact the foundations of λ-calculus were laid many years ago
by logicians, but this will not concern us here. The interested reader might
care to consult [Chu40] and [Chu41]. Many computer scientists are also aware
that the λ-calculus has a formal connection with the notion of a cartesian
closed category; this idea is due to Lambek [Lam80]. However, experience
shows that this connection is often only fully appreciated by those work-
ing in very theoretical areas of computer science. We hope that this article
will go some way towards bridging this gap, as well as high-lighting some of
the more fundamental connections between category theory and type theory.
The techniques described here can be used to derive categorical semantics
for quite general type theories and similar logical systems.

2 Deriving a Category from Monadic Type

Theory

Readers not familiar with type theory will find that [NPS90] is an excellent
reference. There are a number of textbooks now available which cover basic
category theory; see for example [BW90] or [Pie91].

Before we embark on our derivation of a category, let us review the traditional
set-theoretic semantics which can be given to elementary type theory. The
“elementary” type theory which we shall consider is sometime also called
algebraic type theory. In order to define such a type theory, we shall as-
sume that we are given a signature Sg which consists of some types and some
function symbols. Each function symbol f has an arity which is a natu-
ral number a, and a sorting which is a list of a + 1 types, usually written
f :α1, . . . , αa → β, or just f :α in the case that f has arity 0. In the latter
case we usually call f a constant function symbol. For each type α take a

countably infinite set Varα
def
= {xα1 , xα2 , . . .} of variables (we assume that such

sets of variables are disjoint for different types α) and define the terms of the
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algebraic type theory by the rules

x ∈ V arα

x:α k:α

M1:α1, . . . ,Ma:αa

f(M1, . . . ,Ma): β

where k:α and f :α1, . . . , αa → β are function symbols. A set-theoretic
semantics would then be defined by giving a set [[α]] for each type α, an
element [[k]] ∈ [[α]] for each constant k:α and a function of the form [[f ]]: [[α1]]×
. . .×[[αn]]→ [[β]] for each function symbol f :α1, . . . , αn → β. An environment
for the type theory is essentially a function which assigns a meaning to each
of the variables. More precisely an environment ρ is a function

ρ:
⋃
{Varα | α is a type} →

⋃
{[[α]] | α is a type}

where ρ(xα) ∈ [[α]] for xα ∈ Varα. Given such an environment ρ, we assign a

meaning to the terms by setting [[xα]]
def
= ρ(xα) and

[[f(M1, . . . ,Mn)]]
def
= [[f ]]([[M1]], . . . , [[Mn]]),

so in general if M :α then [[M ]] ∈ [[α]].

There are at least two problems with this approach. The first is that each of
the types must be interpreted by non-empty sets and that we must restrict
to a set of types. For if any of the [[α]] were empty, or we had a proper class
of types, then we would not be able to define the function ρ. The second
problem is that the semantics is specified in terms of elements of sets. Of
course, we might consider replacing the sets by some mathematical object
which has an underlying set-theoretic structure. But we would be in a much
stronger position if we could interpret our syntax in a more general setting,
such as a category. Categories are very general mathematical structures, and
category theory is a powerful organisational tool, but are categories suitable
worlds in which to interpret syntactical systems such as algebraic theories?
We shall see that categories are in fact tailor made mathematical universes
for interpreting type theories.

Let us consider the first problem high-lighted above. We can think of a term
as giving rise to a function with the variables of the term taking input data
and the effect of the term on such data as the output. With this perspective,
we can give a meaning to the types by assigning sets to them, and a meaning
to the terms as functions. With due regard for this interpretation of the
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syntax, we should abandon type tagged variables and present the syntax
using terms which have an associated environment of declared variables. We
do this using the following three rules

Γ, x:α,Γ′ ` x:α
(k:α)

Γ ` k:α

Γ `M1:α1 . . . Γ `Ma:αa
(f :α1, . . . , αa → α)

Γ ` f(M1, . . . ,Ma):α

along with the usual structural and substitution rules. Here, each Γ is a
context of (variable, type) pairs in which the variables are distinct, and we
refer to a judgement of the form Γ ` M :α as a term-in-context. Thus
a term-in-context x1:α1, . . . , xn:αn ` M : β will be modelled by a function
f :A1 × . . . × An → B, where we think of the n input variables of M being
modelled by an element of the cartesian product A1× . . .×An. We may now
(if we wish) interpret types by empty sets: we no longer need to define the
environment ρ.

Now let us think about terms M with exactly one variable; thus x:α `M : β,
for example, where x occurs in M . We tacitly assume that we are only
dealing with function symbols of arity 1 and will refer to this limited type
theory as monadic. We shall try to generalise our set-theoretic model using
as few assumptions as possible. Suppose we model α and β by “objects” A
and B of which we make no assumptions. So we have in mind that A and
B are sets, but are not held to this. For the time being the word “object”
is just some arbitrary reference. A function is a form of relation; so let us
model x:α ` M : β as a “relation” m between A and B of which we make
no assumptions; we write A

m−→ B for this. While we are not at this stage
being mathematically precise, we will make things more watertight later on.
For the time being we are just trying to set up a very general framework in
which to model our monadic type theory.

Now let us think about how our syntactic term language is built up. The
crucial point is that terms are built up by substitution, in the sense that a
raw term f(M) is precisely f(x)[M/x]. We now think about the process of
substitution in general. Suppose that we have terms-in-context x:α ` M : β
and y: β ` N : γ. One can prove by induction on the structure of N that there
is a derived term-in-context x:α ` N [M/y]: γ—so how should we model this?
Let us just say for the moment that whatever models this term depends on

4



how we model x:α `M : β and y: β ` N : γ. We can write this as

[[x:α `M : β]]
def
= A

m−→ B [[y: β ` N : γ]]
def
= B

n−→ C

[[x:α ` N [M/y]: γ]]
def
= A

�(n,m)−→ C

where one reads [[ξ]]
def
= ζ to mean that ξ is modelled by ζ, and �(n,m) is

some relation depending on n and m. What about the order of substitution
of terms for term variables? Let z: γ ` L: δ be a further term-in-context
(where we tacitly assume that x, y and z are distinct variables). Well, both
of the terms-in-context

x:α ` (L[N/z])[M/y]: δ and x:α ` L[N [M/y]/z]: δ

are syntactically the same (caution - why is this?). So the relations which

model them ought to be the same too, namely A
�(�(l,n),m)−→ C and A

�(l,�(n,m))−→
C, and we will write �(�(l, n),m) = �(l,�(n,m)) to indicate this.

Now we shall take a step backward and think about how terms-in-context
with at most one variable are formed. We will have to model x:α ` x:α
as a relation A

?A−→ A. If we think about how the substitution of terms for
variables is modelled, then we deduce that if E

e−→ A and A
m−→ B then

�(?A, e) = e and �(m, ?A) = m. This follows from the observation that
E = x[E/x] and M = M [x/x]. A term-in-context x:α ` f(M): β′, where
f : β → β′ is a function symbol, is the term-in-context x:α ` f(y′)[M/y′]: β′,

and so will be modelled by the relation A
�(r,m)−→ B′, where B′ models β′ and

we specify that the term-in-context x: β ` f(x): β′ is modelled by B
r−→ B′.

The specification of r is just a reflection of the fact that we already have
some intended meaning for the function symbol f .

Now we summarise our deductions, writing n ◦ m for �(n,m) and idA for
?A:

• Types are interpreted by “objects,” say A, B . . .

• Terms-in-context are interpreted by “relations,” say A
m−→ B . . .

• For each object A there is a relation idA.

• Given relations A
m−→ B and B

n−→ C, there is a relation A
n◦m−→ C.
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Interpreting Substitution by Composition

Here, x:α ` M :β and x: γ ` M ′:α are terms of an algebraic type
theory, and [[x:α ` M :β]] and [[x: γ ` M ′:α]] are morphisms of a
category C interpreting the proved terms.

[[x: γ `M [M ′/x]:β]]︸ ︷︷ ︸ = [[x:α `M :β]] ◦ [[x: γ `M ′:α]]︸ ︷︷ ︸
Interpretation ofM [M ′/x] in
a category C

6

Composition of the
interpretations of M
and M ′

6

Figure 1: A Basic Principle of Categorical Type Theory

• Given relations E
e−→ A and A

m−→ B, then we have idA ◦ e = e and
m ◦ idA = m.

• For any A
m−→ B, B

n−→ C and C
l−→ D, we have l◦(n◦m) = (l◦n)◦m.

The above summary amounts to the specification of a category! Thus we
have deduced, subject to certain primeval assumptions about how to model
function symbols and substitution, that we can interpret algebraic type the-
ory in which at most one variable appears in a term, in an arbitrary category.
In such a category, the substitution of raw terms for variables will be inter-
preted by composition of morphisms; because of the importance of this idea,
we give a special summary: see Figure 1.

3 Categories for Algebraic Type Theory

In the previous section we deduced that monadic type theory could be
soundly interpreted in an arbitrary category. What happens when we con-
sider full algebraic type theory? In the original model based around sets
and functions, a term-in-context was modelled by a function which took n
arguments. There is nothing in the formal rules for giving an algebraic type
theory which will allow us to deduce how to model contexts in the same way
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that we deduced a framework for modelling substitution. The nearest cat-
egorical structure which mimics a set-theoretic function with n arguments
is a morphism in a category induced by a finite product.1 Here we assume
that the reader has some knowledge of categories with finite products. The
definition can be found in any basic book on category theory, such as [Mac71]
or [BW90]. Using such a category we can give a semantics to algebraic type
theory as follows:

Let C be a category with finite products and let Sg be an algebraic signature.
A structure, M, in C for Sg is specified by giving

• for every type α of Sg an object [[α]] of C,
• for every constant function symbol k:α, a morphism [[k]]: 1→ [[α]] where 1
is the terminal object of C, and

• for every function symbol f :α1, . . . , αn → β of Sg a morphism

[[f ]]: [[α1]]× . . .× [[αn]]→ [[β]].

Given a context Γ = [x1:α1, . . . , xn:αn] we set

[[Γ]]
def
= [[α1]]× . . .× [[αn]].

Then for every proved term Γ `M :α we shall specify a morphism

[[Γ `M :α]]: [[Γ]]→ [[α]]

in C. The semantics of proved terms is specified inductively using the rules
for generating terms-in-context:

• [[Γ, x:α,Γ′ ` x:α]]
def
= π: [[Γ]]× [[α]]× [[Γ′]]→ [[α]] where π is a projection,

• [[Γ ` k:α]]
def
= [[k]]◦!: [[Γ]]→ 1→ [[α]], and

• [[Γ ` f(M1, . . . ,Ma)]]
def
= [[f ]] ◦ 〈[[M1]], . . . , [[Ma]]〉: [[Γ]]→ (Πa

1[[αi]])→ [[α]].

The interpretation given to the terms-in-context models our intended mean-
ing of the syntax. For example, the meaning assigned to a term of the form

1Apologies to linear categorical logicians; I am just considering one possibility in this
article.
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f(M1, . . . ,Ma) comes as a direct generalisation of the idea that substitution
is modelled by composition of morphisms where in this case the finite prod-
uct structure is modelling the n inputs to f as contrasted to the single input
in the previous section.

4 Natural Transformations derived from In-

troduction Rules

Let us suppose that we are now working with a general type theory in which
the forms of judgement still take the simple form Γ `M :α. As in Section 1,
types will be modelled by objects in a category; and as a simplifying assump-
tion we shall take all categories to be locally small, that is, the collection of
morphisms A → B (where A and B are objects) can be indexed by a set.
This set will be denoted by C(A,B).

As discussed in Section 2, the interpretation of a term-in-context Γ `M :α is
given by a morphism [[Γ `M :α]]: [[Γ]]→ [[α]] in C. At the moment we do not
know how to define such an interpretation, but by looking at how to soundly
interpret the terms and equations of the type theory we will deduce how to
do this.

Let us think about the rules of formation of term-in-contexts in general,
assuming just one hypothesis. A typical rule looks like

Γ `M :α
(R)

Γ ` R(M): β

where R(M) is a new raw term depending on M . Suppose that m
def
= [[Γ `

M :α]] which is an element of C([[Γ]], [[α]]). How do we model

[[Γ ` R(M): β]] ∈ C([[Γ]], [[β]])?

All we can say at the moment is that this latter morphism will depend on
m, and we can model this idea by having a function

Φ[[α]],[[β]],[[Γ]] : C([[Γ]], [[α]]) −→ C([[Γ]], [[β]])

and setting [[Γ ` R(M): β]]
def
= Φ[[α]],[[β]],[[Γ]](m). Now think about how the raw

terms are formed. The crucial point is that new raw terms are formed from
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old raw terms by substitution; and we can easily see that a derived rule for
our type theory is

x: γ `M :α y: γ′ ` N : γ
(Sub)

y: γ′ `M [N/x]:α

Suppose that x: γ `M :α and y: γ′ ` N : γ are any two given term-in-contexts.
Using our basic assumption that substitution is modelled by composition of

morphisms, if m
def
= [[x: γ ` M :α]] and n

def
= [[y: γ′ ` N : γ]] then we must have

that [[y: γ′ ` M [N/x]:α]] = m ◦ n. Applying each of (Sub) and (R) in turn,
we deduce that there are term-in-contexts

y: γ′ ` R(M)[N/x]: β and y: γ′ ` R(M [N/x]): β.

However, both of the above raw terms should be syntactically identical (by
the definition of substitution), and therefore the categorical interpretations
should be the same, that is

Φ[[α]],[[β]],[[γ]](m) ◦ n = Φ[[α]],[[β]],[[γ′]](m ◦ n). (∗)

The reader may notice that (∗) looks similar to a naturality condition; in
fact we can be certain that it will hold if we demand the following. For every
object A and B of C there is a natural transformation

ΦA,B : C(−, A) −→ C(−, B) : C −→ Set .

We can summarise these thoughts in the slogan:

Categorical Modelling of Substitution

The sound categorical interpretation of the notion of substitution of
syntax amounts to requiring that certain naturality conditions hold
in the categorical model.

5 How to Model Binary Products and the

Unit Type

The categorical semantics given to algebraic theories was strongly motivated
by traditional set-theoretic semantics. We shall now show how to derive a
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semantics for the syntax of binary products and unit. Some readers will know
that this syntax can be modelled in categories with finite products. However,
we shall present a uniform analysis of the syntax and rules of the unit type
and binary product type to discover what, in categorical terms, is the most
general interpretation.

Let us recall that the raw syntax of binary products, in a setting which
subsumes algebraic type theory. First we specify a collection of ground types.
The types are then given by the grammar α ::= γ | unit | α× α where γ is
any ground type. The raw terms are given by

M ::= x | f(M, . . . ,M) | 〈〉 | Fst(M) | Snd(M) | 〈M,N〉.

The interpretation of a type α×β will depend on the interpretations of α and
β. The term-in-contexts will be interpreted by morphisms in a category, and
the assumption that the equations-in-context are soundly interpreted will
then determine equations which hold between morphisms: this will become
clearer later on. In the cases of binary product types, we shall see that the
equations between morphisms will determine the objects which model the
types up to isomorphism. Finally, recall the basic assumption that all of our
syntax is interpreted in a category with (at least) finite products: products
are used to model the list of types which appear in contexts.

First we consider the types of Sg . We have to give an object [[γ]] of C to
interpret each of the ground types γ, and an object [[unit ]] to interpret unit—
for the moment we cannot say anything more specific about [[unit ]]. We will
assume that the interpretation of binary product types α×β depends on the
interpretations of α and β. So there should be operation in C which gives an
object A�B for all objects A and B so that we can define

[[α× β]]
def
= [[α]]�[[β]].

Having done this, we can now choose a morphism [[f ]]: [[α1]]× . . .× [[αn]]→ [[β]]
in C for each function symbol f :α1 . . . αn → β of Sg . We will obviously have
an intended interpretation of the function symbol f and the choice of the
morphism [[f ]] will reflect this.

Let us now think about specific types and terms.

First we deal with the type unit . The rules for the unit type are

Γ ` 〈〉: unit

Γ `M : unit

Γ `M = 〈〉: unit
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To interpret the first rule there must always be a morphism

u0
def
= [[Γ ` 〈〉: unit ]]: [[Γ]]→ [[unit]].

To soundly interpret the equation-in-context, whenever there is a morphism

m
def
= [[Γ ` M : unit ]] in C, we must have m = u0. All this amounts to

saying that for every object A of C, there must exist a unique morphism
!:A→ [[unit ]], that is up to isomorphism [[unit ]] is a terminal object 1 of C.
Recall that the rule for introducing product terms is

Γ `M :α Γ ` N : β

Γ ` 〈M,N〉:α× β

In order to soundly interpret this rule we shall need a natural transformation

ΦA,B : C(−, A)× C(−, B) −→ C(−, A�B)

for all objects A and B of C. Now let m:C → A and n:C → B be morphisms
of C. Applying naturality in C at the morphism 〈m,n〉:C → A×B we deduce

(ΦA,B)C(πA〈m,n〉, πB〈m,n〉) = (ΦA,B)A�B(πA, πB) ◦ 〈m,n〉,

that is (ΦA,B)C(m,n) = (ΦA,B)A�B(πA, πB) ◦ 〈m,n〉. Now let us define the
morphism qA,B:A×B → A�B to be (ΦA,B)A×B(πA, πB). Then we can make
the definition

[[Γ ` 〈M,N〉:A�B]]
def
=

[[Γ]]
〈[[Γ `M :α]], [[Γ ` N : β]]〉

- [[α]]× [[β]]
q[[α]],[[β]]- [[α]]�[[β]].

Recall one of the rules for eliminating product types

Γ ` P :α× β

Γ ` Fst(M): β

Arguing as above, to model this rule we shall need (for each A and B) a
natural transformation ΦA,B: C(−, A�B) −→ C(−, A). So for any object C,
and morphisms m:C → A�B and θ:C ′ → C of C, we have

(ΦA,B)C(m) ◦ θ = (ΦA,B)C′(m ◦ θ).
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By considering the instance of this equation when m = idA�B, we see that

in general we have (ΦA,B)C(θ) = pA,B ◦ θ where pA,B
def
= (ΦA,B)A�B(idA�B).

So now we can define

[[Γ ` Fst(P ):α]]
def
= [[Γ]]

[[Γ ` P :α× β]]
- [[α]]�[[β]]

p[[α]],[[β]]- [[α]].

Of course we can deduce a semantics for term-in-contexts of the form Γ `
Snd(P ): β in much the same way, involving a morphism p′A,B:A�B → B.
Our last task is to see what information we obtain by soundly interpreting
the equations-in-context for product types. These are

Γ `M :α Γ ` N : β
(1)

Γ ` Fst(〈M,N〉) = M :α

Γ `M :α Γ ` N : β
(2)

Γ ` Snd(〈M,N〉) = N : β

Γ ` P :α× β
(3)

Γ ` 〈Fst(P ), Snd(P )〉 = P :α× β

If we put h
def
= [[Γ ` P :α × β]]:C → A�B, m

def
= [[Γ ` M :α]]:C → A and

n
def
= [[Γ ` N : β]]:C → B, and demand that our categorical interpretation

satisfies the equations-in-context, this forces

pA,B ◦ qA,B ◦ 〈m,n〉 = m (1)

p′A,B ◦ qA,B ◦ 〈m,n〉 = n (2)

qA,B ◦ 〈pA,B ◦ h, p′A,B ◦ h〉 = h. (3)

At last we are done, because these equations imply that, up to isomorphism,
A�B and A×B are the same. Thus we may soundly interpret binary product
types by binary categorical product.

6 How to Model Function Types

Now we shall enrich our type theory so that it contains not only product
types but also function types α ⇒ β. The raw terms are the same as in
Section 5 but also include the terms λx:α.M and M N . To model the type
α ⇒ β we shall need an object A♦B for all pairs of objects A and B of C.
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To soundly interpret the introduction rule

Γ, x:α ` F : β

Γ ` λx:α.F :α⇒ β

we shall need (for every object A and B) a natural transformation

ΦA,B: C(−× A,B) −→ C(−, A♦B),

and we can then define

[[Γ ` λx:α.F :α⇒ β]]
def
= (Φ[[α]],[[β]])[[Γ]]([[Γ, x:α ` F : β]]) : [[Γ]]→ ([[α]]♦[[β]]).

To soundly interpret the elimination rule

Γ `M :α⇒ β Γ ` N :α

Γ `MN : β

we shall need a natural transformation

ΨA,B: C(−, A♦B)× C(−, A) −→ C(−, B)

for all objects A and B of C. Given any two morphisms m:C → A♦B and
n:C → A and applying naturality, we have

(ΨA,B)C(m,n) = (ΨA,B)(A♦B)×A(π, π′) ◦ 〈m,n〉

where π: (A♦B) × A → A♦B and π′: (A♦B) × A → A. So if we define the

morphism evA,B
def
= (ΨA,B)(A♦B)×A(π, π′), we can make the definition

[[Γ `MN : β]]
def
=

[[Γ]]
〈[[Γ `M :α⇒ β]], [[Γ ` N :α]]〉

- ([[α]]♦[[β]])× [[α]]
ev [[α]],[[β]]- [[β]].

The equations-in-context for the function type are

Γ, x:α ` F : β Γ `M :α
(4)

Γ ` (λx:α.F )M = F [M/x]: β

Γ ` N :α⇒ β
(5)

Γ ` λx:α.(Mx) = M :α⇒ β
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If our categorical interpretation is to satisfy the equation-in-context (4), then
we must have evA,B〈(ΦA,B)C(f),m〉 = f〈id,m〉 for all morphisms f :C×A→
B and m:C → A. Using the naturality of ΦA,B we can show that this
equation holds just in case

evA,B((ΦA,B)C(f)× id) = f. (∗)

Satisfaction of (5) requires that (ΦA,B)C(evA,B(m × idA)) = m for every
morphism m:C → A♦B and from the naturality of ΦA,B this holds just in
case

(ΦA,B)A♦B(evA,B) = id. (†)
Now we come to the crucial point. If we define a natural transformation

θ: C(−× A,B) −→ C(−, A♦B)

by setting θC(f)
def
= evA,B◦(f×id) the equations (∗) and (†) imply that θC is a

natural bijection. Thus, up to isomorphism in the category C, the object A♦B
is exactly the exponential A⇒ B and of course evA,B: (A♦B)×A→ B is the
evaluation morphism, and such categorical structure will soundly interpret
function types.

7 Conclusion and Acknowledgements

By considering some of the underlying principles of set-theoretic models of
equational type theory, we have set up a very general framework in which such
type theories can be modelled, and shown that such a framework corresponds
to the notion of a category. We have also shown that introduction rules
can be soundly modelled by suitable natural transformations. This very
general framework was then used to find a minimal categorical structure for
soundly interpreting a specific elementary type theory, namely simply typed
λ-calculus with finite products. The methodology of manipulating naturality
and soundness equations to compute general categorical structures can be
applied to less well known type theories. Examples can be found in [Cro91].

I would like to thank Andrew Pitts for discussions which threw light on my
understanding of the way category-theoretic ideas capture slickly the essence
of intricate syntactic constructions. I would also like to thank the Science
and Engineering Research Council for providing funding in the form of a
Research Fellowship.
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