
En
oding FIX in Obje
t Cal
uliRoy L. CroleDepartment of Mathemati
s and Computer S
ien
e,University of Lei
ester, University Road,LEICESTER, LE1 7RH,United Kingdom.tel: (+44) (0)116 252 3404 email: Roy.Crole�m
s.le.a
.ukFebruary 27, 2002Abstra
tResum�e: Nous montrons que la th�eorie du type FIX introduite par Crole et Pitts[3℄ peut être 
od�ee dans une variante du 
al
ul d'objets de Abadi et Cardelli. Pluspr�e
isement, nous montrons que la th�eorie du type FIX pr�esent�ee ave
 les jugementsd'�egalit�e et de r�edu
tion op�erationnelle, peut être traduite dans le 
al
ul d'objets,
ette translation pr�eservant la validit�e.La tradu
tion que nous donnons utilise le 
al
ul d'objets 
omme m�etalangagedans lequel FIX est repr�esent�e. Une analogie est permise ave
 la th�eorie des Arit�eset Expressions de Martin L�of. Les tradu
tions donnent une des
ription de 
ertainsobjets r�e
ursifs int�eressants en termes d'expressions plus simples de la th�eorie dutype FIX. Ces tradu
tions serviront �egalement l'automatisation des s�emantiquesop�erationnelles.Abstra
t: We show that the FIX type theory introdu
ed by Crole and Pitts [3℄
an be en
oded in variants of Abadi and Cardelli's obje
t 
al
uli. More pre
isely,we show that the FIX type theory presented with judgements of both equalityand operational redu
tion 
an be translated into obje
t 
al
uli, and the translationproved sound.The translations we give 
an be seen as using obje
t 
al
uli as a metalangugewithin whi
h FIX 
an be represented; an analogy 
an be drawn with Martin L�of'sTheory of Arities and Expressions. As well as providing a des
ription of 
ertaininteresting re
ursive obje
ts in terms of rather simpler expressions found in theFIX type theory, the translations will be of interest to those involved with theautomation of operational semanti
s.1 MotivationThe results and ideas presented in this paper 
on
ern type theories equipped with eitherequational or operational semanti
s. We shall assume that readers are familiar with type1



theory, and more spe
i�
ally with type theories possessing judgements of both equality,and operational redu
tion. A good general referen
e for (dependent) type theory is thebook [10℄. For operational redu
tion, see for example [2, 4, 6, 8, 11, 12, 13℄.In fa
t the results presented here are founded on the FIX type theory introdu
ed by Croleand Pitts in [3℄, and the obje
t type theories (
al
uli) introdu
ed by Abadi and Cardelliin [1℄. If the reader is not familiar with the details of these type theories, we would askthat they 
onsult the key referen
es whi
h we have just given. However, we will give someinformal explanations of the theories in lo
 
it whi
h should help readers through the keyideas of the 
urrent paper. We shall also repeat some of the te
hni
al details in lo
 
itwhen it is sensible to do so. Before moving on to explain the results of this paper, let usreview informally the FIX and obje
t type theories.The FIX type theory was (in part) designed to be used as a metalanguage for program-ming language semanti
s. It 
ontains natural numbers, produ
ts and sums, higher orderfun
tions, 
omputation types [9℄ to interpret lazy and eager evaluation strategies, and�nally a �xpoint type whi
h provides (in the presen
e of 
omputation types) a frame-work in whi
h re
ursive programming 
onstru
ts 
an be interpreted. Previous work ofthe author, and others, used the FIX type theory (sometimes embedded in a logi
) togive semanti
s to programming languages.Abadi and Cardelli introdu
ed obje
t type theories (
al
uli) to provide a foundation for thetheory of obje
t oriented languages at the level of an operational semanti
s. In their book[1℄ one �nds dis
ussions of very many systems, but broadly ea
h system provides a theoryof obje
ts with either equational semanti
s, single step operational semanti
s, or naturalsemanti
s. Abadi and Cardelli have shown that obje
t 
al
uli are highly expressive,leading to the prin
iple that \everything is an obje
t". Various people (see for example[5℄) have provided eviden
e for this, in the form of examples, and simple translations oren
odings. One of the key properties of obje
t 
al
uli is that their operational semanti
sare \highly re
ursive", and as a simple 
onsequen
e of this Abadi and Cardelli have alsoshown that su
h 
al
uli model re
ursion operators.These observations lead to the questions1. Can a ri
h type theory su
h as FIX be en
oded in obje
t 
al
uli?2. Can this be done in a way whi
h uni�es those examples given by Abadi and Cardelli(and others)?3. What uses 
an we �nd for the en
oding?The aim of this paper is to provide answers to these questions. The short answer to both(1) and (2) is \yes". We answer (1) by giving a translation of FIX into obje
t 
al
uli,and proving the translation sound. In fa
t we shall 
onsider both an equational version ofFIX , and an operational version, and spe
ify sound translations into suitable equationaland operational obje
t type theories. We shall show that the de�nitions of the en
odinggiven here 
an be explained in a 
anoni
al way. It is this 
anoni
al translation whi
hprovides us with at least one answer to (3). In re
ent work of Ambler and the author,the theorem prover Isabelle has been used to represent programming languages and toverify properties of the languages. We have used the simply typed lambda 
al
ulus as2



M ::= hM;Mi pairsj Split(M; v:v:M) splittingj Inl(M) left 
opair insertionj Inr(M) right 
opair insertionj Case(M; v:M; v:M) 
asesj �(v:M) fun
tionsj MM fun
tion appli
ationj Val(M) value 
omputation typesj Let(M; v:M) sequen
ing 
omputation typesj ! �xpoint indexj s(M) �xpoint su

essorj (v:M)M �xpoint iteratorFigure 1: Term Grammar for FIXa metalanguage in whi
h to represent obje
t level programming languages. In fa
t thetranslation we des
ribe in this paper 
an also be viewed as using OBJ as a metalanguage.This gives us a new system for representing obje
t level programming languages. Thefa
t that our translation is 
anoni
al, as explained in detail in Se
tion 3, provides a usefulguiding prin
iple when formulating automated ma
hine translations in theorem proverssu
h as Isabelle.The paper pro
eeds as follows. In Se
tion 2 we give a short but te
hni
ally detailedreview of FIX , and an obje
t type theory whi
h we 
all OBJ . Both of these systems areequational theories. In Se
tion 3 we give a translation of FIX into OBJ . We explain howthe translation has been derived in a 
anoni
al way. We give a proof that the translationis sound, that is, we show that we have given an en
oding of FIX in OBJ . The se
tionends with a dis
ussion of FIX re
ursion and its translation into OBJ . In Se
tion 4 weintrodu
e the systems FIX op and OBJop. These are analogues of FIX and OBJ whi
hhave an operational semanti
s. This is essential for the kind of work mentioned above,namely the representation of obje
t level programming languages. In Se
tion 5 we give atranslation of FIX op into OBJop, and prove it sound. We then 
on
lude the paper.2 The Systems FIX and OBJWe outline the type theories used in Se
tion 3. For general ba
kground on type theory,see [10℄. The equational theory FIX was introdu
ed by Pitts and the author; please see[3℄ for further details. This theory is simply typed, with types given by the grammar� ::= KFIX j �x j � � � j � + � j � ) � j T�where KFIX is an arbitrary ground type (su
h as natural numbers). The terms M aregiven in Figure 1 where v ranges over a �xed set of variables. As outlined in Se
tion 1the system provides a type theory suitable for programming language semanti
s: groundtypes, produ
ts (pair types), 
oprodu
ts (sum types), higher order fun
tions, 
omputation3



types, and the �xpoint type. Without going into te
hni
al detail here, the �xpoint typeallows re
ursion to be interpreted. In fa
t any term whose type is of the form T� )T� (informally a term whi
h transforms 
omputations into 
omputations) must have a�xpoint whi
h 
an be represented dire
tly within the type theory. Note that while we havepresented a formal term grammar, we shall often use a suggestive notation to indi
ate thetypes of terms, su
h as P for a pair (term of type � � �0), C for a 
opair (term of type� + �0), F for a fun
tion (term of type � ) �0) and so on.The theory OBJ 
ontains rules for deriving judgements of the following forms� `M : � type assignment� `M = M 0 : � equalitywhere � is an environment assigning types to terms, often denoted by [x1: �1; : : : ; xn: �n℄.Thus, formally, � is a (�nite) partial fun
tion from the set of variables to the set of types.The rules for deriving type assignments and equalities are all standard, and may be foundin [10℄ together with [3℄. Note that a 
onsequen
e of deriving an equality judgement isthat the two terms involved are well typed; for example if � ` M = M 0 : � is a validjudgement, then � `M : � and � `M 0 : � are valid type assignments.Although we ask that the reader be familiar with the FIX theory, we remind the readerof the ideas behind the simple domain theoreti
 model of FIX , whi
h will help to givemeaning to those parts of FIX whi
h are asso
iated with 
omputation types [9℄ and the�xpoint type. We model types as (bottomless) !
pos, and type assignments as 
ontinuousfun
tions. Let � and �0 be modelled by the !
pos D and D0. Also, let M : � be modelledby d 2 D. T� is modelled by the lifted domain D?. The term Val(M) 2 D? is modelledas the in
lusion �:D ! D? of d in D?. The term Let(E; x:E 0) is modelled as the Kleisli
omposition of the fun
tions modelling E and x: � ` E 0 : T�0. �x is modelled as theverti
al natural numbers with in�nity, N1 . Let x:T� ` F : � be modelled by thefun
tion f :D? ! D; let ` E : T�x modelled by e 2 N1? ; and let ` N : �x be modelledby n 2 N1 . Then ! is modelled by 1 2 N1 ; the term (x:F )N 
an be thought of as theNth re
ursive unfolding of F and is modelled by (� Æ f)n(?); s(E) is modelled by e + 1if e 6=1 and 1 otherwise; and �nally (x:F )! is modelled by W(� Æ f)1(?), whi
h is theleast �xpoint of � Æ f .Let us now move to a brief des
ription of OBJ . This type theory is essentially Abadiand Cardelli's Ob [�8 [��. This system is their basi
 
al
ulus of obje
ts, enri
hed with8-types (see page 170 of [1℄) and re
ursive foldings and unfoldings (see page 114 of [1℄).Thus OBJ has types � ::= V variablesj KOBJ ground typej [li: �i i2I ℄ obje
t typej 8(V:�) universal typej �(V:�) re
ursive typewhere V ranges over a set of type variables, the symbol l is an element of a �xed setof labels and I ranges over �nite subsets of N . Su
h labels give names to the �elds andmethods (sometimes referred to as attributes and operations) of obje
ts. The terms are4



given by the grammarM ::= v variablesj [li= &(vi)Mi i2I ℄ obje
tsj M � l method invo
ationj M � l ( &(v)M method updatej �(V:M) type variable abstra
tionj M� type variable appli
ationj Fld(M) folding for re
ursive typesj UFld(M) unfolding for re
ursive typesThe results are given by the grammarR ::= [li= &(vi)Mi i2I ℄j �(V:M)j Fld(M)One 
an think of the results as �nal values returned by operational redu
tions; they areused on page 17.The theory FIX 
ontains rules for deriving judgements of the forms� `M : � type assignment� `M =M 0 : � equalitywhose intended meaning is the same as the analogous 
onstru
ts from FIX . Here, � def=� j � is an environment assigning types to variables in �, and listing free type variablesin �. Thus a typi
al � is [X1; : : : ; Xn℄ with the Xi all type variables. As usual, in anytyping judgement [X1; : : : ; Xn℄ j [x1: �1; : : : ; xn: �n℄ `M : �the free type variables o

uring in the �i, � and M must appear in [X1; : : : ; Xn℄, andthe free term variables o

uring in M must appear in [x1: �1; : : : ; xn: �n℄. We omit � or� if either is empty. The equational theory for OBJ 
onsists of the usual equations ofAbadi and Cardelli's 
ore obje
t 
al
ulus, the usual equations for 8-types, and the usualfold/unfold equations whi
h spe
ify that fold and unfold 
onstru
tors are mutual inverses.3 An En
oding For Equality Judgements3.1 Explaining a Translation of FIX into OBJNow we address the �rst new topi
 of this paper, namely giving an en
oding of FIXinto OBJ . Thus we need to spe
ify a translation of FIX into OBJ and prove it sound.The en
oding is 
anoni
al in the sense that it is based on an adaptation of the followingidea. It is well understood that the simply typed lambda 
al
ulus with 
onstants, L, 
anbe used as a metalanguage into whi
h other type theories T 
an be translated [10℄ in a
anoni
al fashion. This paper pro
eeds in a similar manner, but we shall explain how touse OBJ as a metalanguage into whi
h T 
an be translated in a 
anoni
al way. In order5



T def= FIXConstr hM;M 0iDestr Split(P; x:x0:N)Eq Split(hM;M 0i; x:x0:N) = Nfx; x0  M;M 0gL def= E ::= x j k j E E j v:EConstr kPair [[M ℄℄ [[M 0℄℄Destr kSplit [[P ℄℄ (x:x0:[[N ℄℄)Eq kSplit (kPair [[M ℄℄ [[M 0℄℄) (x:x0:[[N ℄℄) = [[N ℄℄fx; x0  [[M ℄℄; [[M 0℄℄gFigure 2: Explaining Arities and Expressions with Produ
t Typesto better understand these ideas, we shall �rst re
all how to use L as a metalanguagefor general type theories T , by giving a translation fun
tion [[�℄℄: T ! L. This idea,sometimes known as Martin L�of's theory of arities and expressions, is explained fully in[10℄.1. Variable binders in T are modelled by abstra
tion in L. More pre
isely, if T has abinding 
onstru
tion of the form ~v:T , then it will be 
anoni
ally represented in Lby �~v:[[T ℄℄. Note that we often drop the � and simply write ~v:[[T ℄℄ overloading thenotation.2. Constru
tor and destru
tor terms in T are represented in L by 
onstants. In either
ase, if a term in T is built out of n sub-terms ~v:Ti, where the ~v may be emptyif there are no bound variables in the subterm, then it will be represented in Lby k(~v:[[T1℄℄; : : : ; ~v:[[Tn℄℄) where k is a 
onstant in L and the notation is the usualshorthand1 denoting nested fun
tion appli
ations in L.3. If an equation T = T 0 holds in T , then we assert that [[T ℄℄ = [[T 0℄℄ holds (in thetheory representing T ) in L. Thus equalities in T are represented by (non-logi
al)equalities in L.We give an example of this methodology when T is FIX . The FIX produ
t 
onstru
torterms take the form hM;M 0i; the destru
tor terms take the form Split(P; x:y:N). Theysatisfy the equationSplit(hM;M 0i; x:y:N) = Nfx; y  M;M 0g (y)where we have omitted environments and types whi
h would 
lutter our explanation ofthe 
entral ideas. The pair 
onstru
tor is built from two terms, M and M 0, and thesplit destru
tor is built from a pair P and a term x:y:N in whi
h any o

urren
es of thevariables x and y in N are bound in the destru
tor term. We require two L 
onstants torepresent the 
onstru
tor and destru
tor terms respe
tively; we 
all these kPair and kSplit.1For example, k(T1; T2; T3) denotes ((kT1)T2)T3 6



The translations of the 
onstru
tor and destru
tor terms are shown in Figure 2. Finallynote that we assert that the translation of the equands appearing in y are equal in L asan axiom.We shall now explain how we 
an repla
e L by OBJ . We now regard OBJ as a metalan-guage, and des
ribe a translation [[�℄℄: T ! OBJ . First, we need a little more notation.We write " def= &(z)z � l. Then for any obje
t of the form O def= [: : : ; l= &(z)z � l; : : :℄ we haveO � l = O � l = : : :. Thus we 
an regard O as a \looping obje
t". In fa
t the 
losed term" 
an be instantiated at any type, and we shall use it as a generi
 obje
t whi
h inhabitsall types. One might liken it to the re
ursive term re
x:x for \unde�nedness". Often, wewill wish to 
reate an obje
t in whi
h the names of labels are known, but the attributebody is not. We 
an use �elds of the form l =" to ful�l this role. We shall now explainthe general formulation of [[�℄℄ on terms of non-�x or non-
omputation type.1. Variable binders in T are all modelled by the OBJ self binder. More pre
isely, if Thas a binding 
onstru
tion of the form ~v:T , then it will be 
anoni
ally representedin OBJ by [[v1 : : : vK:T ℄℄ def= &(z)[[T ℄℄fvk  z � l 1�k�Kk g. The 
hoi
e of a
tual nameof the labels lk will be explained in 3 below.2. A 
onstru
tor term in T will be represented by an obje
t some of whose �elds
orrespond to its sub-terms. The 
onstru
tor term has a 
orresponding destru
torterm. This destru
tor term will itself 
ontain sub-terms whi
h spe
ify the possible�nal results when the destru
tor 
onsumes a 
onstru
tor. Fields in the obje
t willbe used to indi
ate these �nal result terms. The remaining �eld is used to indi
atethe a
tual �nal result.In more detail, if a 
onstru
tor term in T is built out of n sub-terms ~v:Ti, and its
orresponding destru
tor returns one of m possible �nal result terms, then it willbe represented in OBJ by an obje
t of the form[l1=[[~v:T1℄℄; : : : ; ln=[[~v:Tn℄℄; 
nxt1= "; : : : ; 
nxtm= "; res= &(z)R℄where the term R is used to sele
t a �nal result from the 
nxt �elds. For example,in the 
ase of translations of FIX terms with non-�x or non-
omputation type, if
nxtj labels the �nal result, R will be z � 
nxtj.3. A typi
al destru
tor term will be built out of a single subterm T , whi
h represents a
onstru
tor term to be 
onsumed, together with a sequen
e of subterms v1 : : : vK :Niwhi
h spe
ify the possible �nal results from 
omputing the destru
tor. If the termhas a non-�x or non-
omputation type then these data will typi
ally be translatedinto an obje
t of the form[[T ℄℄ Æ [[T1℄℄ Æ [[T2℄℄ Æ : : : Æ [[Tm℄℄ def= ([[T ℄℄ � 
nxt1 ( &(z)[[T1℄℄fvk  z � lk 1�k�Kg...� 
nxtm ( &(z)[[Tm℄℄fvk  z � lk 1�k�Kg):res4. If an equation T = T 0 holds in T , then the 
hoi
e of �elds and methods suggestedabove will ensure that [[T ℄℄ = [[T 0℄℄ holds in OBJ .7



Let us apply these ideas when T is FIX to develop a 
anoni
al translation of FIX produ
tsinto OBJ .1. Variable bindings will appear below.2. Consider the 
onstru
tor term hM;M 0i. This term has two sub-termsM andM 0 andthus its translation has two �elds whose labels we 
all fst and snd. The 
orrespondingdestru
tor term is Split(hM;M 0i; x:y:N) whi
h 
an return just one possible �nalresult term based on N . The translation will have just one �eld of the form 
nxt= ".Finally, adding in a method to return the result value held in the 
nxt �eld, we seethat we obtain the obje
t[fst=M; snd=M 0; 
nxt= "; res= &(z)z � 
nxt℄This is the obje
t pair [[M ℄℄;[[M 0℄℄X given in Figure 4 and is used for the translation ofpairs.3. Consider the destru
tor term Split(P; x:y:N). This has a main (sub-)term P whi
hrepresents a pair 
onstru
tor and just one other subterm x:y:N . Thus this term istranslated to an obje
t term of the form[[P ℄℄ Æ [[N ℄℄ = ([[P ℄℄ � 
nxt( &(z)[[N ℄℄fx; y  z � fst; z � sndg) � resThe obje
t [[P ℄℄ 
ontains a �eld 
nxt whi
h should hold the 
omputation of the �nalresult of (the translation of) the split term. This �nal result is obtained from [[N ℄℄,whose bound variables must be updated to hold the �rst and se
ond 
omponents ofthe (translation of) the pair P . These are sele
ted using fst and snd. Finally, theinvo
ation of res returns the �nal result.4. By 
al
ulating in OBJ , using just logi
al equalities we 
an see that[[hM;M 0i℄℄ Æ [[N ℄℄ = [[N ℄℄fx; y  [[M ℄℄; [[M 0℄℄gIn fa
t, as we shall see later, [[Nfx; y  M;M 0g℄℄ = [[N ℄℄fx; y  [[M ℄℄; [[M 0℄℄g andthus the en
oding is sound|re
all y on page 3.1. We summarise these ideas inFigure 3. Note that the 
onstru
tor translation involves a type abstra
tion. This isan extra pie
e of book-keeping to ensure the 
orre
tness of types. The type variableX will be instantiated with the translation of the type of the split term when the
onstru
tor is a
tually 
onsumed by a destru
tor|hen
e the term [[P ℄℄[[� ℄℄ in Figure 3.Let us now explain our translation of the type �x and its terms. It will be useful torefer to a 
ategori
al model of FIX as given by a FIX-
ategory. See [3℄ for details. Thetype T� indi
ates a 
omputation of type �. This is translated to the obje
t type [lT : [[�℄℄℄whi
h re
ords that any 
omputation with result type [[�℄℄ 
an be extra
ted by invokingthe lT method. With this, we 
an de�ne [[fix℄℄ def= �(X:[lT :X℄). The translation is theexpe
ted one, using standard fold/unfold type re
ursion. The 
onstru
tor s is modelledas the stru
ture map (isomorphism) T�x ! �x of the initial T -algebra in a FIX -
ategory.Given this, we 
an expe
t to translate the term s(E) as Fld([[E℄℄). The term ! representsa global element of �x in any 
ategori
al model. In parti
ular, it is used to \enumerate"8



OBJConstr � def= �(X:[fst=[[M ℄℄; snd=[[M 0℄℄; 
nxt= "; res= &(z:PROD [[�℄℄;[[�0℄℄X )z � 
nxt℄)Destr ([[P ℄℄[[� ℄℄ � 
nxt( &(z)[[N ℄℄fx; x0  z � fst; z � sndg) � resEq (�[[� ℄℄ � 
nxt( &(z)[[N ℄℄fx; x0  z � fst; z � sndg) � res = [[N ℄℄fx; x0  [[M ℄℄; [[M 0℄℄gFigure 3: Explaining the En
oding Prin
iple at Produ
t Typesany \in�nite" re
ursive unfolding of a term modelled by a morphism TA! TA (re
all theFIX -
ategory example on page 4). It satis�es an equation of the form ! = s(Val(!)). By
onsidering this equational property, one soon de
ides that Fld([lT = &(z: [lT : [[�x ℄℄℄)Fld(z)℄)is a suitable 
andidate for the translation. Finally, we 
onsider the term (x:F )N and alsothe equality � ` (x:F )s(E) = Ffx Let(E; n:Val((x:F )n))g : � (�)The obje
t that (x:F )N is translated to should have attributes to represent x:F andN . Let us name the label for [[N ℄℄ by pow. Note that x:F is a 
omputation, hen
e itsattribute will be labelled by lT . The translation should also have a \�nal result" attribute,whi
h will perform re
ursive unfoldings, say with label re
. This leads to a translationtype IT � def= [lT : [lT : �℄; pow: [[�x ℄℄; re
: �℄. Let us think about the attribute bodies in thetranslation of (x:F )N . First, pow simply re
ords the translation of the term N . Next,the method re
 is used to return re
ursive unfoldings. Thus we 
an set its body to bere
= &(z0: IT�)[[F ℄℄fx  z0 � lTg. This obje
t body sele
ts the result of the 
omputationx:[[F ℄℄ by invoking lT , and passes this (re
ursively) into x:[[F ℄℄ by binding the result to x.Finally, we think about the remaining attribute lT . This will hold a 
omputation (say 
)whi
h mat
hes the right hand side of �, as this will impli
itly ensure the soundness of �in the translation. We obtain 
 by asking how the right hand side of � is evaluated. Theterm s([[E℄℄) (given by z � pow) is unfolded to [[E℄℄ and then this 
omputation is evaluated;this 
orresponds to UFld(z � pow) � lT . This value is the new value taken by pow, andhen
e we should have an update of pow. The �nal result given by 
 should be extra
tedby invoking re
. Thus we have 
 = (z � pow ( UFld(z � pow) � lT ) � re
. Putting this alltogether gives rise to the translation of (x:F )N in Figure 5.3.2 The TranslationLet us formally de�ne a translation fun
tion [[�℄℄:FIX ! OBJ on the types and terms ofFIX . This translation fun
tion was developed using the basi
 ideas whi
h we have justpresented. The fun
tion [[�℄℄ maps type assignments to type assignments:� `M : � [[�℄℄- [ ℄ j [[�℄℄ ` [[M ℄℄ : [[�℄℄
judgement in FIX6 judgement in OBJ6

9



� IT� def= [lT : [lT :�℄; pow:�xOBJ ; re
:�℄ where �xOBJ def= �(X:[lT :X℄)� PROD�;�0X def= [fst:�; snd:�0; 
nxt:X; res:X℄� COPR�;�0X def= [inl:�; inr:�0; 
nxtl:X; 
nxtr:X; res:X℄� itN ;Fv def= [lT = &(z: IT �)�; pow=N; re
= &(z0: IT �)Ffv  z0 � lT g℄where � def= [lT =(z � pow( UFld(z � pow) � lT ) � re
℄� pairM ;M 0X def= [fst=M; snd=M 0; 
nxt= "; res= &(z:PROD�;�0X )z � 
nxt℄� inlMX def= [inl=M; inr= "; 
nxtl= "; 
nxtr= "; res= &(z:COPR�;�0X )z � 
nxtl℄� inrMX def= [inl= "; inr=M; 
nxtl= "; 
nxtr= "; res= &(z:COPR�;�0X )z � 
nxtr℄� funMv def= [arg= "; val= &(z)Mfv  z � argg℄�M �N def= (M � arg( N) � valFigure 4: Auxiliary De�nitions for Translating FIX into OBJNote that a 
onsequen
e of the en
oding is that [[�℄℄ and [[M ℄℄ have no free type variables,and thus have an environment of the form [ ℄ j [[�℄℄.The de�nition of � 7! [[�℄℄ appears in Figure 5. Note that given the de�nition of [[�℄℄ forany type �, we de�ne the translation on 
ontexts by[[[x1: �1; : : : ; xn: �n℄℄℄ def= [x1: [[�1℄℄ : : : ; xn: [[�n℄℄℄Given these de�nitions, the spe
i�
ation of the assignment M 7! [[M ℄℄ also appears inFigure 5; note that given � ` M : �, the de�nition of [[M ℄℄ depends on [[�℄℄ and [[�℄℄, andthat there are auxiliary de�nitions of types and terms in Figure 4. The \Æ" notation isde�ned in Lemma 3.3. We have already met this notation informally on page 7. Finally,Mfv  Ng denotes substitution for free variables (whose formal de�nition we omit).3.3 Proving SoundnessWe wish to prove that the translation spe
i�ed in Figure 5 soundly models FIX equalitiesin OBJ . The soundness of the translation depends on three key lemmas. Lemma 3.1 is aversion of a standard result that translations respe
t substitutions. Lemmas 3.2 and 3.3provide the key properties whi
h ensure that the translations we have given for terms ofnon-�x or non-
omputation type will soundly model equalities.Lemma 3.1 If � ` M : � and �; v: � ` N : � in FIX , then for [[�℄℄:FIX ! OBJ wehave [[N ℄℄fv  [[M ℄℄g � [[Nfv  Mg℄℄where � denotes synta
ti
 identity.Proof This is proved easily by indu
tion on the stru
ture of N . We omit the details.210



� [[KFIX ℄℄ def= KOBJ ;� [[�x ℄℄ def= �xOBJ� [[� � �0℄℄ def= 8(X:PROD [[�℄℄;[[�0℄℄X ) � [[� + �0℄℄ def= 8(X:COPR[[�℄℄;[[�0℄℄X )� [[� ) � ℄℄ def= [arg: [[�℄℄; val: [[� ℄℄℄� [[T�℄℄ def= [lT : [[�℄℄℄� [[� ` v : �℄℄ def= [[�℄℄ ` v : [[�℄℄;� [[� ` hM;M 0i : � � �0℄℄ def= [[�℄℄ ` �(X:pair [[M ℄℄;[[M 0℄℄X ) : [[� � �0℄℄� [[� ` Split(P; x:y:N) : � ℄℄ def= [[�℄℄ ` [[P ℄℄[[� ℄℄ Æ [[N ℄℄ : [[� ℄℄� [[� ` Inl(M) : � + �0℄℄ def= [[�℄℄ ` �(X:inl [[M ℄℄X ) : [[� + �0℄℄� [[� ` Inr(M) : � + �0℄℄ def= [[�℄℄ ` �(X:inr [[M ℄℄X ) : [[� + �0℄℄� [[� ` Case(C; x:N; y:N 0) : � ℄℄ def= [[�℄℄ ` [[C℄℄[[� ℄℄ Æ [[N ℄℄ Æ [[N 0℄℄ : [[� ℄℄� [[� ` �(v:M) : � ) �0℄℄ def= [[�℄℄ ` fun [[M ℄℄v : [[� ) �0℄℄� [[� ` F A : �0℄℄ def= [[�℄℄ ` [[F ℄℄ � [[A℄℄ : [[�0℄℄� [[� ` Val(M) : T�℄℄ def= [[�℄℄ ` [lT =[[M ℄℄℄ : [[T�℄℄� [[� ` Let(E; v:F ) : T�0℄℄ def= [[�℄℄ ` [[F ℄℄fv  [[E℄℄ � lT g : [[T�0℄℄� [[� ` ! : �x ℄℄ def= [[�℄℄ ` Fld([lT = &(z: [lT :�xOBJ ℄)Fld(z)℄) : [[�x ℄℄� [[� ` s(E) : �x ℄℄ def= [[�℄℄ ` Fld([[E℄℄) : [[�x ℄℄� [[� ` (v:F )N : �℄℄ def= [[�℄℄ ` it [[N ℄℄ ; [[F ℄℄v � re
 : [[�℄℄Figure 5: Translating FIX into OBJLemma 3.2 If �; x: � `M : � and � ` N : � in OBJ , then� ` funMx �N =Mfx Ng : �Proof A simple 
al
ulation in OBJ . See [1℄ for details. 2Lemma 3.3 All judgements in this lemma are in OBJ . Suppose that � ` Mi : �iwhere 1 � i � n, and �; xk: �kk2Sj ` Nj : � where 1 � j � m and Sj � f 1; : : : ; n g andLj def= f lk j k 2 Sj g. LetGEN �1;:::;�nX def= [li: �i i2n; 
nxtLj :X j2m; res:X℄and alsogenM1;:::;MnX;j def= [li=Mi i2n; 
nxtLj = " j2m; res= &(z:GEN �1;:::;�nX )z � 
nxtLj ℄Note that X;� ` genM1;:::;MnX;j : GEN �1;:::;�nX11



We shall also writeO ÆN1 ÆN2 Æ : : : ÆNm def= (O � 
nxtL1 ( &(z)N1fxk  z � lk k2S1g...� 
nxtLm ( &(z)Nmfxk  z � lk k2Smg):resThen it follows that� ` (�(X:genM1;:::;MnX;j ))� ÆN1 ÆN2 Æ : : : ÆNm = Njfxk  Mk k2Sjg : �Proof The proof is a simple 
al
ulation of equalities in OBJ . For 
larity, we omit thetyping environments.(�(X:genM1;:::;MnX;j ))� ÆN1 ÆN2 Æ : : : ÆNm= (genM1;:::;Mn� ;j : : : � 
nxtLj ( &(z)Njfxk  z � lk k2Sjg : : :) � res= � � res= � � 
nxtLj= Njfxk  � � lk k2Sjg= Njfxk  Mk k2Sjgwhere� def= [li=Mi i2n; 
nxtLj = &(z)Njfxk  z � lk k2Sjg j2m; res= &(z:GEN �1;:::;�nX )z � 
nxtLj ℄2We 
an now state the �rst soundness result. Theorem 3.4 states that OBJ en
odes FIX .Theorem 3.4 We have given an en
oding of FIX into OBJ . More pre
isely, if � `M : � in FIX , then [[�℄℄ ` [[M ℄℄ : [[�℄℄ in OBJ , and if � ` M = M 0 : � in FIX , then[[�℄℄ ` [[M ℄℄ = [[M 0℄℄ : [[�℄℄ in OBJ .Proof The proof pro
eeds by indu
tion on derivations. We illustrate the proof on 
aseand iteration terms. The typing rule for 
ase terms is� ` C : � + �0 �; x: � ` N : � �; x0: �0 ` N 0 : �� ` Case(C; x:N; x0:N 0) : �By indu
tion, we have [[�℄℄ ` [[C℄℄ : 8(X:COPR[[�℄℄;[[�0℄℄X )[[�℄℄; x: [[�℄℄ ` [[N ℄℄ : [[� ℄℄[[�℄℄; x0: [[�0℄℄ ` [[N 0℄℄ : [[� ℄℄12



and hen
e we 
an derive[[�℄℄ ` [[C℄℄[[� ℄℄ : COPR[[�℄℄;[[�0℄℄[[� ℄℄[[�℄℄; z:COPR[[�℄℄;[[�0℄℄[[� ℄℄ ; x: [[�℄℄ ` [[N ℄℄ : [[� ℄℄ (by weakening)[[�℄℄; z:COPR[[�℄℄;[[�0℄℄[[� ℄℄ ; x0: [[�0℄℄ ` [[N 0℄℄ : [[� ℄℄ (by weakening)[[�℄℄; z:COPR[[�℄℄;[[�0℄℄[[� ℄℄ ` z � inl : [[�℄℄From this we have �; z:COPR[[�℄℄;[[�0℄℄[[� ℄℄ ` [[N ℄℄fx z � inlg : [[� ℄℄with a similar result for N 0. Thus[[�℄℄ ` [[C℄℄[[� ℄℄ � 
nxtl( &(z)[[N ℄℄fx z � inlg � 
nxtr( &(z)[[N 0℄℄fx0  z � inrg : COPR[[�℄℄;[[�0℄℄[[� ℄℄Finally, note that if we invoke the above obje
t at the label res, we get pre
isely[[�℄℄ ` [[C℄℄[[� ℄℄ Æ [[N ℄℄ Æ [[N 0℄℄ : [[� ℄℄as required.The typing rule for iteration terms is�; x:T� ` F : � � ` N : �x� ` (x:F )N : �By indu
tion we have [[�℄℄; x: [lT : [[�℄℄℄ ` [[F ℄℄ : [[�℄℄ and [[�℄℄ ` [[N ℄℄ : �xOBJ . Then we have[[�℄℄ ` it [[N ℄℄ ; [[F ℄℄x : IT [[�℄℄ by typing rules in OBJ , and thus [[�℄℄ ` it [[N ℄℄ ; [[F ℄℄x � re
 : [[�℄℄.The soundness of equalities not involving the �xpoint type is a dire
t 
onsequen
e ofLemma 3.2, whi
h deals with fun
tions, and Lemma 3.3 whi
h deals with the other terms,together with Lemma 3.1.For example, soundness of� ` Case(Inl(M); x:N; x0:N 0) = Nfx Mg: �requires [[�℄℄ ` [[Case(Inl(M); x:N; x0:N 0)℄℄ def= �(X:inl [[M ℄℄X )[[� ℄℄ Æ [[N ℄℄ Æ [[N 0℄℄=3:3 [[N ℄℄fx [[M ℄℄g: [[� ℄℄�3:1 [[Nfx Mg℄℄As for the �xpoint terms, we prove soundness for� ` (x:F )s(E) = Ffx Let(E; n:Val((x:F )n))g : �13



We have, using Lemma 3.1 and setting O def= itFld([[E℄℄) ; [[F ℄℄x ,[[�℄℄ ` [[(x:F )s(E)℄℄ def= O � re
= [[F ℄℄fx O � lTg= [[F ℄℄fx [lT =(O � pow( UFld(O � pow) � lT ) � re
℄g= [[F ℄℄fx [lT =(O � pow( UFld(Fld([[E℄℄)) � lT ) � re
℄g= [[F ℄℄fx [lT =(O � pow( [[E℄℄ � lT ) � re
℄g= [[F ℄℄fx [lT = it [[E℄℄�lT ; [[F ℄℄x � re
℄g� [[F ℄℄fx [lT = itn ; [[F ℄℄x � re
℄fn [[E℄℄ � lTgg� [[Ffx Let(E; n:Val((x:F )n))g℄℄: [[�℄℄ 23.4 En
oding FIX FixpointsOne interesting payo� of the en
oding we have given is to look at the 
onne
tions betweenFIX terms and their en
odings. In fa
t some of the more obs
ure obje
ts whi
h Abadiand Cardelli dis
uss when looking at re
ursion are rendered in a rather trivial form byexamining possible pre-images under the translation. For example, their so-
alled \self-returning" (untyped) obje
t, [l= &(z)z℄, in the typed setting, would beFld([lT = &(z)Fld(z)℄)But a pre-image under [[�℄℄ is exa
tly !. This demonstrates beautifully (in the author'sopinion!) how the primitive operation of \re
ursive" obje
t redu
tion is 
aptured in thesingle FIX 
onstant !. Further, the obje
t type system allows the stru
ture map s ofFIX to be naturally interpreted as a re
ursive folding, using the standard fold/unfoldterms.It is also interesting to look at the en
odings in OBJ of the �xpoint operators whi
h arede�nable in FIX . Suppose that ` F : T� ) T� in FIX . Then if we de�ne (see [3℄)Fix(F ) def= (e:Let(e; x:F x))!where e:TT�, we 
an show that Fix(F ) = F Fix(F ) in FIX . The en
oding of Fix(F ) inOBJ is easily seen to be it !̂ ; [[F ℄℄�(e�lT )e � re
 where we have de�ned !̂ def= [[!℄℄. Noting that[[T� ) T�℄℄ = [arg: [lT : �℄; val: [lT : �℄℄ we 
an then show the following lemma.Lemma 3.5 Suppose that � ` F : [arg: [lT : �℄; val: [lT : �℄℄ in OBJ . Then we have thetype assignment � ` it !̂ ;F�(e�lT )e � re
 : [lT : �℄ and moreover� ` it !̂ ;F�(e�lT )e � re
 = F � (it !̂ ;F�(e�lT )e � re
) : [lT : �℄Proof Of 
ourse, the lemma is an immediate 
onsequen
e of Theorem 3.4. However, itis instru
tive to perform the 
omputations dire
tly.14



First note that UFld(!̂) � lT def= UFld(Fld([lT = &(z)Fld(z)℄)) � lT= [lT = &(z)Fld(z)℄ � lT= Fld([lT = &(z)Fld(z)℄)� !̂Hen
eit !̂ ;F�(e�lT )e � re
= F � (e � lT )fe it !̂ ;F�(e�lT )e � lTg= F � ([lT =(it !̂ ;F�(e�lT )e � pow( UFld(it !̂ ;F�(e�lT )e � pow) � lT ) � re
℄ � lT )= F � ((it !̂ ;F�(e�lT )e � pow( UFld(it !̂ ;F�(e�lT )e � pow) � lT ) � re
)= F � ((it !̂ ;F�(e�lT )e � pow( UFld(!̂) � lT ) � re
)= F � ((it !̂ ;F�(e�lT )e � pow( !̂) � re
)= F � (it !̂ ;F�(e�lT )e � re
) 24 The Systems FIX op and OBJopHere we replay the ideas of Se
tion 2 but turn our attention to operational redu
tionsrather than simple equalities. If we wish to 
onsider using obje
ts to represent the oper-ational behaviour of 
omputational systems, this will be essential. Let us �rst 
onsideran operational semanti
s for FIX . While this is easily formulated, the details are notpublished expli
itly. Thus we give the de�nition of FIX op. This system is essentially theFIX syntax equipped with a one-step operational semanti
s, developed by orienting theFIX equalities.The theory FIX op 
ontains rules for deriving judgements of the following forms� `M : � type assignment� `M  M 0 : � lazy one-step redu
tionsNote that a 
onsequen
e of deriving an operational judgement is that the two termsinvolved are well typed; for example if � ` M  M 0 : � is a valid judgement, then� ` M : � and � ` M 0 : � are valid type assignments. We give the rules for derivingthe lazy one-step redu
tions, whi
h are not present in [3℄, in Figure 6. The system islazy: we regard 
onstru
tor terms as fully evaluated (and hen
e su
h terms do not featureas redu
tands in the rules). The 
hoi
e has been made be
ause the rules are slightlysimpler than the analogous eager system. None-the-less, the lazy system is perfe
tly �nefor explaining the 
ore ideas of our en
odings. (We do not des
ribe a notion of value, aswe do not 
onsider evaluation semanti
s [7℄ in this paper.)15



� ` P  P 0 : (�; �0) �; x:�; x0:�0 ` N : �� ` Split(P; x:x0:N) Split(P 0; x:x0:N) : � � `M : � � `M 0 : �0 �; x:�; x0:�0 ` N : �� ` Split(hM;M 0i; x:x0:N) Nfx; x0  M;M 0g : �� ` C  C 0 : � + �0 �; x:� ` N : � �; x0:�0 ` N 0 : �� ` Case(C; x:N; x0:N 0) Case(C 0; x:N; x0:N 0) : �� `M : � �; x:� ` N : � �; x0:�0 ` N 0 : �� ` Case(Inl(M); x:N; x0:N 0) Nfx Mg : � � `M 0 : �0 �; x:� ` N : � �; x0:�0 ` N 0 : �� ` Case(Inr(M 0); x:N; x0:N 0) N 0fx0  M 0g : �� ` F  F 0 : � ) �0 � ` A : �� ` F A F 0 A : �0 �; x:� `M : �0 � ` A : �� ` �(x:M)A Mfx Ag : �0� ` E  E0 : T� �; x:� ` F : T�0� ` Let(E; x:F ) Let(E0; x:F ) : T�0 � `M : � �; x:� ` F : T�0� ` Let(Val(M); x:F ) Ffx Ng : T�0� ` N  N 0 : �x� ` (x:F )N  (x:F )N 0 : � �; x:T� ` F : � � ` E : T�x� ` (x:F )s(E)  Ffx Let(E; n:Val((x:F )n))g : �� ` ! : �x� ` !  s(Val(!)) : �xFigure 6: Rules for Generating � `M  M 0 : � in FIXOur last task in this se
tion is to des
ribe the system OBJop whi
h is new. This systemextends OBJ . It provides an operational semanti
s for the OBJ syntax. It also hassome extra term forming operations whi
h are used to 
orre
tly model the lazy FIX opredu
tions. The types are the same as those of OBJ . The terms are given by the samegrammar as for OBJ , but extended byM ::= : : : terms from OBJj Evall(M) eager method and update bodiesj Letval v = M inM eager lo
al de
larationj Letinv v = M inM eager lo
al method invo
ationThe rules for deriving type assignment in OBJop extend those of OBJ . We also have therule � `M : [li: �ii2I ℄� ` Evall(M) : [li: �ii2I ℄and the rules for the typing of Letval v = M inN and Letinv v = M inN are exa
tly thesame as those usually asso
iated with let-evaluation terms.Abadi and Cardelli present one step operational redu
tions for our OBJ syntax. Forexample, the rules for folding and unfolding appear on page 120 of [1℄. The rules forderiving redu
tions in OBJop extend these rules. The additional rules are those given inFigure 7. The basi
 idea is that Evall(�) enfor
es an eager evaluation of obje
t methodbodies and obje
t update bodies. The term Letval v = M inN is an eager lo
al de
la-ration, evaluating M as far as possible before binding the result to v in N . The term16



� `M  M 0 : � �; v: � ` N : �0� ` Letval v =M inN  Letval v = M 0 inN : �0� `M : � �; v: � ` N : �0� ` Letval v = R inN  NfR vg : �0� `M  M 0 : � �; v: � ` N : �0 6 9O: 6 9l: M � O � l� ` Letinv v = M inN  Letinv v =M 0 inN : �0� ` O : [li: �ii2I ℄ �; v: �j ` N : �0 O � [li= &(zi)Bi i2I ℄� ` Letinv v = O � lj inN  Nfv  Bjfzj  Ogg : �0� `M  M 0 : [li: �ii2I ℄� ` Evall(M) Evall(M 0) : [li: �ii2I ℄�; zj: [li: �ii2I ℄ ` Bj  B0j : �j� ` Evallj ([li= &(zi)Bii2I ℄) [li= &(zi)Bii 6=j; lj = &(zj)B0j℄ : [li: �ii2I ℄�; zj: [li: �ii2I ℄ ` Bj  B0j : �j � `M : [li: �i℄i2I� ` Evallj (M � lj ( &(zj)Bj) M � lj ( &(zj)B0j : [li: �i℄i2INote that we shall also write Letval vi = Mii2f 1;:::;r g inN as an abbreviation forLetval v1 = M1 in (Letval v2 = M2 in (: : : (Letval vr = Mr inN) : : :))provided that none of the variables vi appear in any of the Mj for any i; j 2 f 1; : : : ; r gThe notation Letinv vi = Mii2f 1;:::;r g inN will be used analogously.Figure 7: Additional Rules for Generating � `M  M 0 : � in OBJopLetinv v = M inN is an eager lo
al de
laration, evaluating M to an obje
t of the form[li= &(vi)Bi i2I ℄ � lj before binding the invo
ation of lj to v in N . We shall write alsode�ne Eval1l (M) def= Evall(M) and for n � 1 we set Evaln+1l (M) def= Evall(Evalnl (M)). Thisnotation will be used in Theorem 5.4.5 A Sound Translation For Operational Judgements5.1 The TranslationWe de�ne a translation fun
tion [[�℄℄:FIX op ! OBJop on the types and terms of FIX op.The de�nition of this fun
tion is similar to the one given in Se
tion 3. More pre
isely, thede�nition of � 7! [[�℄℄ is the same as that in Figure 5, ex
ept that we use the auxiliary17



� itN ;Fv def= [lT = &(z: IT �)�; pow=N; re
= &(z0)Letval v = z0 � lT inF ℄where � def= Eval3lT ([lT =(Eval2pow(z � pow( UFld(z � pow) � lT )) � re
℄)� funMv def= [arg= "; val= &(z)Letinv v = z � arg inM ℄Figure 8: Auxiliary De�nitions for Translating FIX op into OBJop� [[� ` ! : �x ℄℄ def= UFld(Fld(O)) � lT where O def= [lT = &(z)Fld([lT =UFld(Fld(z)) � lT ℄)℄� [[� ` (v:F )N : �℄℄ def= [[�℄℄ ` Letvaln = [[N ℄℄ in itn ; [[F ℄℄v � re
 : [[�℄℄Figure 9: Translating FIX op into OBJopde�nitions given in Figure 8, and one new 
lause given in Figure 9.5.2 A Proof of SoundnessThe soundness of the en
odings depends on three key lemmas. The motivation is thesame as for the equational setting (see Se
tion 3.3). If R is any binary relation, we shallwrite R� for its re
exive, transitive 
losure.Lemma 5.1 If � ` M : � and �; v: � ` N : � in FIX , then for [[�℄℄:FIX ! OBJop wehave [[N ℄℄fv  [[M ℄℄g � [[Nfv  Mg℄℄where � denotes synta
ti
 identity.Proof This is proved easily by indu
tion on the stru
ture of N . We omit the details.2Lemma 5.2 If �; x: � `M : � and � ` N : � in OBJop , then� ` funMx �N  � Letinv x = N inM : �Proof A simple 
al
ulation on OBJop. We havefunMx �N def= [arg= "; val= &(z)Letinv v = z � arg inM ℄ � arg( N � val [arg=N; val= &(z)Letinv v = z � arg inM ℄ � val Letinv v = [arg=N; val= &(z)Letinv v = z � arg inM ℄ � arg inM Mfv  Ng 218



Lemma 5.3 All judgements in this lemma are in OBJop. Suppose that � ` Mi : �iwhere 1 � i � n, and �; xk: �kk2Sj ` Nj : � where 1 � j � m and Sj � f 1; : : : ; n g andLj def= f lk j k 2 Sj g. LetGEN �1;:::;�nX def= [li: �i i2n; 
nxtLj :X j2m; res:X℄and alsogenM1;:::;MnX;j def= [li=Mi i2n; 
nxtLj = " j2m; res= &(z:GEN �1;:::;�nX )z � 
nxtLj ℄of type GEN �1;:::;�nX .We shall also write (see page 17 for the notation)O ÆN1 ÆN2 Æ : : : ÆNm def= (O � 
nxtL1 ( &(z)Letinv xk = z � lkk2S1 inN1...� 
nxtLm ( &(z)Letinv xk = z � lkk2Sm inNm):resThen it follows that� ` (�(X:genM1;:::;MnX;j ))� ÆN1 ÆN2 Æ : : : ÆNm  �Njfxk  Mk k2Sjg : �Proof The proof is a simple 
al
ulation of redu
tions in OBJop .(�(X:genM1;:::;MnX;j ))� ÆN1 ÆN2 Æ : : : ÆNm  genM1;:::;Mn� ;j ÆN1 ÆN2 Æ : : : ÆNm � � � res � � 
nxtLj Letinv xk = � � lkk2Sj inNj � Njfxk  Mk k2Sjgwhere� def= [li=Mi i2n; 
nxtLj = &(z)Letinv xk = z�lkk2Sj inNj j2m; res= &(z:GEN �1;:::;�nX )z�
nxtLj ℄2Theorem 5.4 states that obje
t 
al
uli en
ode FIX redu
tions:Theorem 5.4 We have given an en
oding of FIX into OBJop. More pre
isely, if � `M : � in FIX , then [[�℄℄ ` [[M ℄℄ : [[�℄℄ in OBJop , and if � ` M  M 0 : � in FIX , then[[�℄℄ ` [[M ℄℄ �[[M 0℄℄ : [[�℄℄ in OBJop.Proof The proof pro
eeds by indu
tion on the derivations of type assignments andredu
tions. For type assignments, the details are routine, and we omit them. For redu
-tions, we give a few details. Consider the �rst rule in Figure 6. We have to verify that if� ` [[P ℄℄  [[P 0℄℄ : [[(�; �0)℄℄ then � ` [[P ℄℄ Æ [[N ℄℄  [[P 0℄℄ Æ [[N ℄℄ : [[� ℄℄. Re
all that [[P ℄℄ Æ [[N ℄℄19



is simply an update and invo
ation of the obje
t [[P ℄℄; thus soundness follows from theOBJop rules � ` O O0 : �� ` O � l  O0 � l : � � ` O O0 : �� ` O � l ( &(z)B  O0 � l ( &(z)B : �The soundness of the remaining rules in Figure 6 with a similar format follows analogously,apart from the rule � ` N  N 0 : �x� ` (x:F )N  (x:F )N 0 : �Re
alling that [[� ` (x:F )N : �℄℄ def= [[�℄℄ ` Letvaln = [[N ℄℄ in itn ; [[F ℄℄x � re
 : [[�℄℄ one 
ansee that soundness follows from the �rst rule in Figure 7.The soundness of the rules in Figure 6 whi
h involve the destru
tion of a 
onstru
tor term(su
h as the se
ond rule, but ex
luding the penultimate rule) follows from Lemmas 5.2and 5.3.This leaves the �nal two rules in Figure 6, for whi
h we give an expli
it 
al
ulation. Onestates that � ` (x:F )s(E)  Ffx Let(E; n:Val((x:F )n))g : �We have, using Lemma 5.1 and setting O def= itFld([[E℄℄) ; [[F ℄℄x[[�℄℄ ` [[(x:F )s(E)℄℄ def= Letval Fld([[E℄℄) = n in itn ; [[F ℄℄x � re
 O � re
 Letval x = O � lT in [[F ℄℄ Letval x = Eval3lT ([lT =(Eval2pow(O � pow( UFld(O � pow) � lT )) � re
℄) in [[F ℄℄ Letval x = Eval2lT ([lT =(Eval1pow(O � pow( UFld(Fld([[E℄℄)) � lT )) � re
℄) in [[F ℄℄ Letval x = Eval1lT ([lT =(O � pow( [[E℄℄ � lT ) � re
℄) in [[F ℄℄ Letval x = [lT = it [[E℄℄�lT ; [[F ℄℄x � re
℄ in [[F ℄℄ [[F ℄℄fx [lT = it [[E℄℄�lT ; [[F ℄℄x � re
℄g� [[F ℄℄fx [lT = itn ; [[F ℄℄x � re
℄fn [[E℄℄ � lTgg� [[Ffx Let(E; n:Val((x:F )n))g℄℄: [[�℄℄The last states that � ` ! : �x� ` !  s(Val(!)) : �xSetting O def= [lT = &(z)Fld([lT =UFld(Fld(z)) � lT ℄)℄ we have[[�℄℄ ` [[!℄℄ def= UFld(Fld(O)) � lT O � lT Fld([lT =UFld(Fld(O)) � lT ℄)� [[s(Val(!))℄℄ 220



6 Con
lusionsIn this paper we have attempted to explain, in a general and uniform manner, the waysin whi
h obje
t 
al
uli are able to en
ode other type theories. In parti
ular, we haveshown that obje
t 
al
uli 
an en
ode many (simple) type systems, in a way whi
h isre
e
tive of the theory of arities and expressions. These ideas have been illustrated withexamples by Abadi, Cardelli and others, but we have shown how these examples �t intoa general framework. Further, we have given new en
oding results for the 
omputationallet 
al
ulus and the FIX system. The pre
ise details of the en
oding are enlightening,espe
ially with regard to the �xpoint type. Noti
e that Lemmas 3.2 and 3.3, togetherwith Lemmas 5.2 and 5.3, en
apsulate the soundness of our translation. It is only thoseterms and equations asso
iated with the �x or 
omputation types whi
h require separatetreatment in the proofs of type soundness and soundness of equalities.We have dealt with both equational and operational systems. The material on equationalsystems appears to work out very neatly. In 
ontrast, the material on operational seman-ti
s is rather less pleasing. We have attempted to demonstrate, in a rather intentionalway, that the operational behaviour of a well know type theory presented via transitions
an be 
aptured by the rather �ner grained transitions of an obje
t theory. However,in order to 
ope with the rather \neutral" obje
t transition semanti
s, whi
h is neither
learly 
all-by-value or 
all-by-name, we have introdu
ed some additional syntax whi
hfor
es expression evaluations. This is not parti
ularly desirable. Of 
ourse, our resultswould perhaps look neater if we translated the FIX type theory into an \abstra
t ma-
hine for obje
ts". In doing this, the high level term formers (su
h as Evall(M)) would berendered as simple ma
hine instru
tions. The author and S. Ambler have 
onsidered theuse of the results in this paper to provide a framework whi
h will use obje
t 
al
uli as ame
hanized metalanguage to represent programming language semanti
s. When me
ha-nizing theories, uniformity is essential to redu
e 
oding, and the results here provide this.In order to pursue this, we would ideally need stronger results about the properties ofthe translation, su
h as 
omputational adequa
y. More pre
isely, one might 
onsider thestandard OBJ operational semanti
s and asso
iated program equivalen
es, and prove thetranslation adequate.Other work in
ludes an a

ount of type theories with higher order 
ontexts and their
onne
tion with obje
ts; looking at dire
t implementations of the FIX theories and 
om-paring them with OBJ implementations; and a deeper investigation into issues of eagerand lazy redu
tion in the setting of obje
t 
al
uli.I would like to thank two anonymous referees for 
omments on this paper. The �rst refereeasked that the motivation and general ideas be made more 
lear; I think this resulted ina substantial improvement. The se
ond referee pointed out a te
hni
al problem with myexposition of the OBJop semanti
s, whi
h has now been remedied, and made a numberof useful 
omments about the se
ond half of the paper. Some of these 
omments arein
orporated in this 
on
lusion.Finally I would like to thank Simon Ambler (Lei
ester), Andy Gordon (Mi
rosoft, Cam-bridge) and Guy M
Cusker (Oxford) for useful 
omments on the original draft of thispaper. 21



Referen
es[1℄ M. Abadi and L. Cardelli. A Theory of Obje
ts. Monographs in Computer S
ien
e.Springer-Verlag, 1996.[2℄ R. L. Crole. Fun
tional Programming Theory, 1995. Department of Mathemati
sand Computer S
ien
e Le
ture Notes, LATEX format iv+68 pages with index.[3℄ R. L. Crole and A. M. Pitts. New Foundations for Fixpoint Computations: FIXHyperdo
trines and the FIX Logi
. Information and Computation, 98:171{210, 1992.LICS '90 Spe
ial Edition of Information and Computation.[4℄ A. D. Gordon. Bisimilarity as a theory of fun
tional programming. Ele
troni
 Notesin Theoreti
al Computer S
ien
e, 1, 1995.[5℄ A. D. Gordon. Everything is an obje
t. Seminar notes, Mi
rosoft Resear
h UK, 1997.[6℄ C. A. Gunter. Semanti
s of Programming Languages: Stru
tures and Te
hniques.Foundations of Computing. MIT Press, 1992.[7℄ G. Kahn. Natural semanti
s. In K. Fu
hi and M. Nivat, editors, Programmingof Future Generation Computers, pages 237{258. Elsevier S
ien
e Publishers B.V.North Holland, 1988.[8℄ Z. Luo. Computation and Reasoning, volume 11 ofMonographs on Computer S
ien
e.Oxford University Press, 1994.[9℄ E. Moggi. Notions of 
omputation and monads. Theoreti
al Computer S
ien
e,93:55{92, 1989.[10℄ B. Nordstr�om, K. Petersson, and J.M. Smith. Programming in Martin-L�of's TypeTheory, volume 7 of Monographs on Computer S
ien
e. Oxford University Press,1990.[11℄ A. M. Pitts. Operationally Based Theories of Program Equivalen
e. In P. Dybjerand A. M. Pitts, editors, Semanti
s and Logi
s of Computation, 1997.[12℄ G.D. Plotkin. A stru
tural approa
h to operational semanti
s. Te
hni
al ReportDAIMI{FN 19, Department of Computer S
ien
e, University of Aarhus, Denmark,1981.[13℄ G. Winskel. The Formal Semanti
s of Programming Languages. Foundations ofComputing. The MIT Press, Cambridge, Massa
husetts, 1993.
22


