
Factoring an Adequacy Proof

(Preliminary Version)

Roy L. Crole Andrew D. Gordon

1994

Abstract

This paper contributes to the methodology of using metalogics for rea-
soning about programming languages. As a concrete example we consider
a fragment of ML corresponding to call-by-value PCF and translate it into
a metalogic which contains (amongst other types) computation types and
a fixpoint type. The main result is a soundness property (?): if the de-
notations of two programs are provably equal in the metalogic, they have
the same operationally observable behaviour. As usual, this follows from
a computational adequacy result. In early notes, Plotkin showed how
such proofs could be factored into two stages, the first non-trivial and
the second (essentially) routine; our contribution is to rework his sugges-
tion within a new framework. We define a metalogic, which incorporates
computation and fixpoint types, and specify a modular translation of the
ML fragment. Our proof of (?) factors into two parts. First, the term
language of the metalogic is equipped with an operational semantics and
a (generic) computational adequacy result obtained. Second, a simple
syntactic argument establishes a correspondence between the operational
behaviour of an object program and of its denotation. The first part is
not routine but is proved once and for all. The second is a detailed but
essentially trivial calculation that is easily adaptable to other object lan-
guages. Such a factored proof is important because it promises to scale
up more easily than a monolithic one. We show that it may be adapted
to an object language with call-by-name functions and one with a simple
exception mechanism.

1 Motivation and Background

The motivation for this work is to contribute to the long term project of us-
ing denotational semantics to prove properties of programs written in realistic
languages like Standard ML or Haskell.

Our contribution is to the methodology of expressing and reasoning about
denotational semantics using what we term metalogics. By metalogic we mean a
formal system (such as a type theory or logic) intended to express denotational
semantics, that is implementable in a theorem-prover, and which is equipped

1

with general proof principles, such as natural number induction or fixpoint in-
duction. The intention is that the general proof infrastructure of the metalogic
can be applied to a particular object language via a translation into the meta-
logic. We shall define a metalogic (calledM) which has a basic syntax of types
and terms, and is equipped with both an equational and an operational seman-
tics. M is closely allied to Crole and Pitts’ FIX-logic [4, 3], a metalogic based on
ideas from Moggi’s computational let-calculus [10, 11] and a precursor of Pitts’
evaluation logic [15]. An important principle underlying each of these metalog-
ics is to distinguish simple data values from computations; more precisely, each
uses computation types, of the form Tσ, to represent computations that may
return data values of type σ. Each of these metalogics is monadic in the sense
that a computation type is modelled by a strong monad.

We consider the general problem of how to prove soundness of metalogical
reasoning about an object language. The object language we use as a vehicle
for this problem is O, a small fragment of ML corresponding to call-by-value
PCF. We give a translation intoM and prove its soundness: if the denotations
of two programs are provably equal in the metalogic, then the two are in fact
observationally equivalent. Given that ML is defined operationally, the result
justifies use of the metalogic to derive properties of the object language.

It is standard to derive such a soundness result from a proof that the de-
notational semantics respects evaluation in a sense known as computational
adequacy [8]. Proofs of computational adequacy are, usually, directly linked to
the denotational semantics of the object language in question. In his CSLI notes
[17], Plotkin showed how such proofs can be factored in two, via an operational
semantics for the metalogic. Our contribution is to rework (the idea of) such a
factorisation in the setting of a metalogic endowed with computation and fix-
point types. First, we prove a (non-routine) adequacy result which relates the
equational and operational semantics of M. Second, we obtain soundness of
metalogical reasoning for O via a simple but detailed proof of a correspondence
between the operational behaviour of each O program and its denotation, which
utilises the adequacy result forM. The computational adequacy ofM is generic
in the sense that a computational adequacy result for a new programming lan-
guage will only require a reworking of the second (and simpler) proof stage. We
present two variants of O as evidence for this genericity: one with call-by-name
functions and another with a simple exception mechanism. The use of computa-
tion types gives an elegant structure to the form of O’s denotational semantics
in general, and the fixpoint type gives rise to a uniform denotational semantics
for O’s recursive function declarations in particular. This factored proof is im-
portant as it is likely to scale up more easily than a monolithic one, and the
monadic presentation ought to be of use as monadic metalogics are mechanised
and applied to more realistic object languages.

2

Γ `M : σ

Γ ` ValL(M) : σ⊥

Γ `M : σ
(σ total)

Γ ` EvalL(M) : σ⊥

Γ ` E : σ⊥ Γ, x:σ ` F : τ⊥

Γ ` LetLx⇐ E inF : τ⊥

Γ, e:σ⊥ ` F : σ Γ ` N : fix

Γ ` It(e. F,N) : σ Γ ` ω : fix⊥

Γ ` E : fix⊥

Γ ` Inc(E) : fix

Table 1: Type assignment for M

2 An Equational Metalogic M
We now present a Martin-Löf style (simple) type theoryM which will be viewed
as a programming metalogic. This is based on the term language of the FIX-
logic [3, 4], thoughM has a few crucial differences. The term language ofM is
well known, except, perhaps, for the fragment associated with the fixpoint type
and lifted types σ⊥. Let us summarise the types and (raw) terms:

σ ::= unit | nat | fix | σ × σ | σ + σ | σ → σ | σ⊥

M ::= x | 〈〉 | Z | S(M) | (x.M)M (M) | ω | Inc(M) | It(x.M,M) |

〈M,M〉 | Split(M,x. x.M) | Inl(M) | Inr(M) | Case(M,x.M, x.M) |

λx.M |MM | ValL(M) | EvalL(M) | LetLx⇐M inM

The types are given by a unit type, natural numbers, fixpoint type, (co)products,
exponentials, and lifted types. In the cases of the unit type, natural numbers,
products, coproducts and exponentials, the raw terms are the usual ones of
Martin-Löf’s (simple) type theory—for background see Nordström et al [12].
The raw terms of the fixpoint type are described elsewhere [3, 4].

The type σ⊥ is thought of as the type of partial computations with values
of type σ. If M is any term, then ValL(M) is a computation which evaluates
immediately yielding result M . EvalL(M) is similar, but M is never a partial
computation. If E and F are both partial computations, then LetLx⇐ E inF
can be thought of as the computation F [M/x] provided that the partial com-
putation E is defined and evaluates with result M , and is undefined if E is
undefined. Up to provable equality EvalL(M) is the same as ValL(M); the two
will be distinguished by their operational semantics. Evaluation of the former
forces evaluation of M but evaluation of the latter does not. EvalL will be vital
later on in obtaining precise relationships between operational and denotational
semantics.

We give a type assignment system for M. This will consist of rules for
deriving judgments of the form Γ ` M : σ where the environment Γ is a finite
list of (variable, type) pairs. We shall refer to σ as the type assigned to the raw
term M in the environment Γ. Well formed judgments of the form Γ ` M : σ
are generated by the rules for simply typed lambda-calculus with unit, natural

3

numbers, (co)products, plus the additional rules in Table 1. We write σ ⇀ τ
for σ → τ⊥. We refer to a type σ, where σ 6≡ τ⊥ for any τ , as a total type.

We can use the syntax of M as the basis for a pure equational type theory
[4] in which theorems take the form Γ ` M = M ′:σ; in this abstract we omit
the rules for proving such judgments.

We can give a categorical semantics toM in the usual way. We shall interpret
M in the FIX-category [3, 4] ωCPO of ωcpos and Scott continuous functions,
equipped with the lifting monad, and topped vertical natural numbers with
the successor structure map as FPO. We shall write D⊥

def= {⊥} ∪ {[d] | d ∈
D} for (the underlying set of) the lift of the ωcpo D, with unit ηD

def= λd ∈
D.[d]:D → D⊥. We denote the FPO by (N∞,∞, s) (using an obvious notation).
If f :C ×D⊥ → D is a Scott continuous function, then the mediating morphism
of the (indexed) FPO will be written it(f):C × N∞ → D. We summarise the
semantics of the less well known fragment of M:

• [[σ⊥]] def= [[σ]]⊥, [[fix]] def= N∞,

• [[Γ ` EvalL(M):σ⊥]] = [[Γ ` ValL(M):σ⊥]] def= η[[σ]] ◦ [[Γ `M :σ]],

• [[Γ ` LetLx⇐E inF :τ⊥]] def= [[Γ, x:σ ` F :σ⊥]]⊥ ◦ 〈id [[Γ]], [[Γ ` E:σ⊥]]〉, (where f⊥
is the indexed Kliesli lifting of f in ωCPO),

• [[Γ ` ω:fix⊥]] def= ∞◦!, where we have [[Γ]] !−→ 1 ∗7→∞−→ N∞⊥ , 1 terminal in ωCPO,

• [[Γ ` Inc(E):fix⊥]] def= s ◦ [[Γ ` E:fix⊥]],

• [[Γ ` It(e.F,N):σ]] def= it([[Γ, e:σ⊥ ` F :σ]]) ◦ 〈id [[Γ]], [[Γ ` N :fix]]〉.

3 Computation Types and the Let-Calculus

Moggi [10, 11] introduced a (simple) type theory which is now often referred to
as the computational let-calculus. His calculus captures the following intuitions
about (many) programming languages. First, it is sensible to separate out
the notions of computations of values from values themselves; second that any
value may be regarded as a “trivial” computation yielding itself as its value; and
third, that computations may be composed sequentially. In fact this type theory
corresponds with the notion of a category (with finite products) equipped with
a strong monad. For these reasons an instance of the computional let-calculus
is often referred to as a computational monad. More precisely, a computational
monad is specified by a triple (T,Val, Let) where T is a type constructor and Val
and Let are term constructors, that satisfy the following type assignment rules,

Γ `M : σ

Γ ` Val(M) : Tσ

Γ `M : Tσ Γ, x:σ ` N : Tσ′

Γ ` Letx⇐M inN : Tσ′

4

and the following rules for deducing equational theorems.

Γ `M : σ Γ, x:σ ` N : Tτ

Γ ` Letx⇐ Val(M) inN = N [M/x] : Tσ′
Γ `M : Tσ

Γ ` Letx⇐M in Val(x) = M : Tσ

Γ `M : Tσ Γ, x:σ ` N : Tσ′ Γ, y:σ′ ` P : Tσ′′

Γ ` Letx⇐M in (Let y⇐N inP) = Let y⇐ (Letx⇐M inN) inP : Tσ′′

As expected, the triple ((−)⊥,ValL, LetL) is a computational monad, usually
known as the lifting monad. The equational logic of M must be omitted here
for the sake of brevity, but (the appropriate instance of) the three (equational)
rules above are indeed present in M [3, 4]. We include a small example at the
end of the paper in Section 8 to illustrate the use of a monad other than the
lifting monad.

4 An Operational Semantics for M
Let us specify an operational semantics for (the term language of) M, as done
for a similar metalogic by Gordon [5]. We shall need a few auxiliary definitions.
The canonical raw terms are given by the grammar

V ::= 〈〉 | Z | S(V) | 〈M,M〉 | Inl(M) | Inr(M) | λx.M | ValL(M) | Inc(M).

We writeMσ for the set ofM-programs, that is, raw terms M for which `M :σ
is provable, and Mcan

σ ⊆ Mσ for the subset of canonical terms. We specify an
operational semantics in two equivalent ways: as a ‘big step’ evaluation relation,
M ⇓ V , and a ‘small step’ reduction relation, M → N , where M , N and V are
programs and V is canonical. The two relations are generated in the usual way,
except for the syntax involving lifted types and the fixpoint type; the rules for
the evaluation and reduction relations appear in Table 2. It is straightforward to
prove that M ⇓ V if and only if M →∗ V (where →∗ means reflexive, transitive
closure of →). The semantics is deterministic and call-by-name. If M ∈ Mσ

and M → N then N ∈ Mσ too. It is easy to prove the following result by rule
induction.

Proposition 1 If M ∈Mσ and also M ⇓ V , then V ∈Mcan
σ and `M = V :σ,

where the latter judgment holds in the equational metalogic.

Our principal aim here is to prove the following (generic) adequacy theorem.

Theorem 2 (Generic Adequacy) The equational metalogic is computation-
ally adequate for the operational semantics in the following sense. If E ∈Mσ⊥

and M ∈ Mσ are such that ` E = ValL(M) : σ⊥ is provable, then there is
V ∈Mcan

σ⊥
for which E ⇓ V .

We also prove a normalisation result at total types.

Theorem 3 (Normalisation) If M ∈Mσ with σ total, then evaluation of M
converges, that is, ∃V. M ⇓ V .

5

V ⇓ V

M ⇓ V

S(M) ⇓ S(V)

N ⇓ Z M ⇓ V

(x. F)N (M) ⇓ V

N ⇓ S(U) F [(x. F)U (M)/x] ⇓ V

(x. F)N (M) ⇓ V

P ⇓ 〈M,N〉 F [M,N/x, y] ⇓ V

Split(P, x. y. F) ⇓ V

C ⇓ Inl(M) F [M/x] ⇓ V

Case(C, x. F, x.G) ⇓ V

C ⇓ Inr(M) G[M/x] ⇓ V

Case(C, x. F, x.G) ⇓ V

F ⇓ λx.N N [M/x] ⇓ V

F M ⇓ V

M ⇓ V

EvalL(M) ⇓ ValL(V)

E ⇓ ValL(M) F [M/x] ⇓ V

LetLx⇐ E inF ⇓ V

N ⇓ Inc(E) M [LetL y⇐ E in ValL(It(e.M, y))/e] ⇓ V

It(e.M,N) ⇓ V ω ⇓ ValL(Inc(ω))

(x.F)Z(M)→M

(x.F)S(V)(M)→ F [(x.F)V (M)/x]

Split(〈M,N〉, x. y. F)→ F [M,N/x, y]

Case(Inl(M), x. F, x.G)→ F [M/x]

Case(Inr(M), x. F, x.G)→ G[M/x]

(λx.N)M → N [M/x]

LetLx⇐ ValL(M) inF → F [M/x]

It(e.M, Inc(E))→M [LetL y⇐ E in ValL(It(e.M, y))/e]

ω → ValL(Inc(ω))

EvalL(V)→ ValL(V)

M → N

E [M]→ E [N]

where E [−] ::= S(−) | (x.F)−(M) | Split(−, x. y. F) | Case(−, x. F, x.G) |
(−M) | LetLx⇐− inE | It(e.M,−) | EvalL(−)

Table 2: Operational semantics for M
6

To prove this we need some technical machinery. Let [[−]]:M→ ωCPO refer
to the semantics of M in the FIX-category ωCPO. We now define a logical
relation which takes the form Cσ⊆ [[σ]] ×Mσ for all types σ, and is defined
through certain inductive clauses of which we give just a few examples:
• e Cσ⊥ E iff whenever e = [d] for d ∈ [[σ]] then ∃M. E ⇓ValL(M) and d Cσ M .

• ∞ Cfix N iff ∀n ∈ N∞ \ {∞} we have n Cfix N .

• n+ 1 Cfix N iff ∃En. N ⇓ Inc(En), ∃Nn. En ⇓ValL(Nn) and also for 1 ≤ i ≤ n
we have ∃Ei−1. Ni ⇓ Inc(Ei−1), ∃Ni−1. Ei−1 ⇓ValL(Ni−1) and ∃E. N0 ⇓ Inc(E).

• 0 Cfix N iff ∃E. N ⇓ Inc(E).
We shall also need the following lemmas and proposition, for which we sketch
the proof of the latter:

Lemma 4 Suppose that d Cσ M and also M ′ →∗ M ; then d Cσ M ′.

Lemma 5 Let (di | i ∈ ω) be an ω-chain in [[σ]] for any σ. If di Cσ M for
some M and each i ∈ ω, then

∨
i∈ω di Cσ M .

Proposition 6 Let x1:σ1, . . . , xn:σn ` M : σ be provable, let Mi ∈ Mσi for
1 ≤ i ≤ n, and let di ∈ [[σi]] for 1 ≤ i ≤ n with di Cσi

Mi. Then it is the case
that

[[x1:σ1, . . . , xn:σn `M : σ]](~d) Cσ M [M1, . . . ,Mn/x1, . . . , xn]

where ~d
def= (d1, . . . , dn) ∈ Πn

1 [[σi]].

Proof
The proof proceeds by induction on the structure of M , and uses Lemma 4

and Lemma 5. We just give some example cases. We shall adopt the following
convention: if (for example) Γ ` M :σ is provable, we write m:[[Γ]] → [[σ]] for
the morphism (here continuous function) [[Γ ` M :σ]]. We shall also write (for
example) M̃ for M [M1, . . . ,Mn/x1, . . . , xn]. We give two inductive cases:

(Case M is It(e.F,N)): We need to prove that

[[x1:σ1, . . . , xn:σn ` It(e.F,N):σ]] = it(f)(~d, n(~d)) Cσ It(e.F̃ , Ñ),

where f :Πn
1 [[σi]]× [[σ]]⊥ → [[σ]] and thus it(f):Πn

1 [[σi]]×N∞ → [[σ]]. By induction
we know that n(~d) Cfix Ñ (1) and

e Cσ⊥ E implies f(~d, e) Cσ F̃ [E/e]. (2)

We consider the case when n(~d) is ň + 1 ∈ N∞ \ {∞}. We have ň + 1 Cfix Ñ

from (1), and so Ñ ⇓ Inc(Eň), Eň ⇓ ValL(Nň) and so on to N0 ⇓ Inc(E). It can
be shown that

it(f)(~d, 0) Cσ It(e.F̃ ,N0).

Now let 0 ≤ r ≤ ň. Write Nň+1
def= Ñ ; we prove that if

it(f)(~d, r) Cσ It(e.F̃ ,Nr) (3)

7

then it(f)(~d, r + 1) Cσ It(e.F̃ ,Nr+1). From (3) and that Er ⇓ ValL(Nr) we may
deduce

it(f)(~d, r + 1) Cσ F̃ [LetL y⇐ Er in ValL(It(e.F̃ , y))/e].

But certainlyNr+1 →∗ Inc(Er) and hence It(e.F̃ ,Nr+1)→∗ F̃ [LetLEr in ValL(It(e.F̃ , y))/e],
so we are done by appeal to Lemma 4.

(Case M is EvalL(M)): We wish to prove that

[[x1:σ1, . . . , xn:σn ` EvalL(M):σ⊥]](~d) = [m(~d)] Cσ⊥ EvalL(M̃)

and so we need to show that there is V ∈ Mcan
σ for which EvalL(M̃) ⇓ ValL(V)

with m(~d) Cσ V . By the induction hypothesis we have m(~d) Cσ M̃ , and by
inspecting the clauses of the logical relation one can deduce that M̃ ⇓V for some
V with m(~d) Cσ V and so we are done. �

Proof [of Theorem 2] Follows because the categorical semantics of M is
sound, together with the application of Proposition 6 with i = 1 and d1 ≡
∗ Cunit 〈〉 ≡M1. More precisely, we may deduce

[[x:unit ` E:σ⊥]](∗) = [[[x:unit `M :σ]](∗)] Cσ⊥ E[〈〉/x] ≡ E

and so ∃V.E ⇓ V by inspecting the clause defining the logical relation at lifted
types. �

Proof [of Theorem 3] Just as in the last proof, apply Proposition 6 to deduce
that the relation [[` M :σ]](∗) Cσ M . By inspection of the clauses defining
relation Cσ it will follow that evaluation of M converges. �

5 The Object Language O
The object language O is essentially a call-by-value form of PCF. Syntactically
it is a tiny fragment of Standard ML. The O-types, denoted by σ or τ , are gen-
erated from ground types bool of Booleans, int of numbers, by forming function
types σ -> τ . Let metavariable ` range over a set, N ∪ {tt,ff}, of literals, and
metavariable ⊕ over a set of operators, {+,−,×,=, <}. The O-terms, e, are
generated by the following BNF grammar, which also defines canonical O-terms,
c.

e ::= c | e⊕e | if e then e else e | e e
c ::= x | () | ` | fnx => e | let fun f x = e in f end

The last canonical term is a form of SML notation for a recursively defined
function, named f and with argument x, which are both bound in e.

The type assignment system for O consists of a collection of rules for proving
judgments of the form Γ ` e : σ where Γ is a finite list of (variable, type) pairs; we
shall write x1:σ1, . . . , xn:σn for Γ. The typing rules for O are a straightforward

8

c ⇓ c

e1 ⇓ `1 e2 ⇓ `2

e1⊕e2 ⇓ `1 ⊕ `2

e1 ⇓ tt e2 ⇓ c

if e1 then e2 else e3 ⇓ c

e1 ⇓ ff e3 ⇓ c

if e1 then e2 else e3 ⇓ c

e1 ⇓ fnx => e e2 ⇓ c2 e[c2/x] ⇓ c

e1 e2 ⇓ c

e1 ⇓ let fun f x = e in f end e2 ⇓ c2 e[let fun f x = e in f end, c2/f, x] ⇓ c

e1 e2 ⇓ c

Table 3: Operational semantics for O

extension of those for simply typed lambda-calculus; we omit them all apart
from the rule for recursively defined functions.

Γ, f :σ -> τ, x:σ ` e : τ

Γ ` let fun f x = e in f end : σ -> τ

For each O-type σ, let Oσ be the set of O-terms e for which ` e : σ is provable;
such a term is known as a program. Let Ocan

σ be the set of all programs from
Oσ that are canonical.

The operational semantics of O is specified as an evaluation relation, con-
sisting of ‘big step’ judgments of the form e ⇓ c, where e and c are programs,
the latter canonical. One should think of the canonical terms as values which
are returned by (non-divergent) programs. The relation is given inductively by
the rules in Table 3. One can deduce from the rules for forming such judgments
that evaluation is deterministic and that if e ∈ Oσ and e ⇓ c, then c ∈ Ocan

σ . If
e is a program, write e⇓ to mean ∃c. e⇓c, in which case we say that program c
converges.

The evaluation relation induces a Morris-style contextual equivalence be-
tween O-terms: two terms are equivalent if each can replace the other in any
program without changing its convergence behaviour. Informally, let a context,
C[−], be a term some of whose subterms have been replaced by a hole, −, and
let C[e] be the term obtained by filling each hole with the term e. Suppose that
e1 and e2 are both members of one of the sets Oσ. Write e1 ≈ e2 to mean that
C[e1]⇓ iff C[e2]⇓ whenever C[e1], C[e2] are both members of Oτ for some type τ .
In this case we say the two terms are observationally equivalent.

6 Translation of O into M
In this section we give a denotational semantics for O using M. The intention
is that via this semantics, the metalogic can be applied to prove observational
equivalences between O-terms. This intention is vindicated by Theorem 12, the
main result of the paper, which says that if the denotations of two O-terms are
provably equal in the metalogic, then in fact the two terms are observationally
equivalent.

9

We adopt the usual inductive definition of numerals, b0c def= Z and bn+1c def=
S(bnc). Booleans are represented by terms of type unit + unit ; let bttc def= Inl(〈〉)
and bffc def= Inr(〈〉). For each arithmetic or relational operator, ⊕ ∈ {+,−,×,=
, <}, we need an encoding (Mb+cN) inM such that suitably typed (b`cb⊕cb`′c)
evaluates to b` ⊕ `′c. Given the iteration on nat in M, it is routine to do so;
for instance, (Mb+cN) is (x.S(x))N (M).

Using iterations on the fix type we can define an operation Fix(−), that we
will need for recursively defining partial functions of the form σ ⇀ τ .

Lemma 7 There is a term-former Fix(−) that satisfies the typing rule

Γ `M : (σ ⇀ τ)→ (σ ⇀ τ)

Γ ` Fix(M) : σ ⇀ τ

and for any M and N , Fix(M)N →∗ M (Fix(M))N .

Proof Let Fix′(M,N) def= It(e. λx. LetL y⇐e inM y x,N) and then set Fix(M) def=
Fix′(M, Inc(ω)). It is straightforward to check that Fix(M) has the expected
type. From the calculation,

Fix(M)N ≡ It(e. λx. LetL y⇐ e inM y x, Inc(ω))N
→ (λx. LetL y⇐ (LetL z⇐ ω in ValL(Fix′(M, z))) inM y x)N
→ LetL y⇐ (LetL z⇐ ω in ValL(Fix′(M, z))) inM yN
→ LetL y⇐ (LetL z⇐ ValL(Inc(ω)) in ValL(Fix′(M, z))) inM yN
→ LetL y⇐ ValL(Fix′(M, Inc(ω))) inM yN
≡ LetL y⇐ ValL(Fix(M)) inM yN
→ M (Fix(M))N

one sees that Fix(M) has the expected reduction behaviour too. �

We give the translation of O intoM in terms of an arbitrary computational
monad (T,Val, Let). In this section and the next this computational monad will
be an instance of the lifting monad, ((−)⊥,ValL, LetL). In Section 8 we will use
a different monad to admit the possibility of an exception being raised.

The translation of O intoM follows the pattern set by Pitts [15]. Map each
O-type σ to anM-type [[σ]] inductively as follows: ground types bool and int are
mapped to unit + unit and nat respectively, while σ -> τ is mapped inductively
to [[σ]]→ T [[τ]]. Each O-environment Γ = x1:σ1, . . . , xn:σn is mapped to [[Γ]] def=
x1:[[σ1]], . . . , xn:[[σn]]. To begin the translation of O terms into M, to each
canonical O-term c we assign a canonical M-term |c| as follows.

|x| def= x

|`| def= b`c
|fnx => e| def= λx. [[e]]

|let fun f x = e in f end| def= Fix(λf. λx. [[e]])

10

In keeping with the intuition that arbitrary O-terms express computations
rather than simple values, we assign to each O-term e an M-term [[e]] of com-
putation type.

[[c]] def= Val(|c|)
[[e1⊕e2]] def= Letx1⇐ [[e1]] in (Letx2⇐ [[e2]] in EvalL(x1b⊕cx2))

[[if e1 then e2 else e3]] def= Let b⇐ [[e1]] in Case(b, u. [[e1]], u. [[e1]])
[[e1 e2]] def= Let f ⇐ [[e1]] in (Letx⇐ [[e2]] in f x)

The translation respects the type systems of O and M in the following sense,
easily proved by structural induction.

Proposition 8 (Static Adequacy)

(1) Whenever Γ ` e : σ is provable in O, then [[Γ]] ` [[e]] : T [[σ]] is provable in
M.

(2) Furthermore, if e is canonical, then [[e]] is canonical and [[Γ]] ` |e| : [[σ]] is
provable in M.

Since the translation is compositional it is straightforward to prove the con-
gruence and substitution parts of the following lemma by structural induction.

Lemma 9

(1) If Γ ` [[e1]] = [[e2]] : σ, Γ′ ` [[C[e1]]] : τ and Γ′ ` [[C[e2]]] : τ are provable in
M,
then Γ′ ` [[C[e1]]] = [[C[e2]]] : τ is provable in M too.

(2) Furthermore, for any O-term e and canonical O-term c, [[e]][|c|/x] ≡ [[e[c/x]]].

We can establish the following exact correspondence between evaluation of
any configuration and its translation by rule inductions and appeal to Lemmas 7
and 9.

Lemma 10 Suppose e ∈ Oσ.

(1) Whenever e ⇓ c for some c ∈ Ocan
σ , then [[e]] ⇓ [[c]].

(2) Whenever [[e]]⇓ V for some V ∈Mcan
T [[σ]], there is c with e⇓ c and V ≡ [[c]].

Now we can prove adequacy for O. This is the crux of the factorisation,
where adequacy for M—obtained from a domain-theoretic logical relations
argument—is combined with the previous correspondence lemma—obtained by
comparatively routine albeit detailed syntactic calculations.

Proposition 11 (Dynamic Adequacy) Suppose e ∈ Oσ and c ∈ Ocan
σ .

(1) Whenever e ⇓ c then ` [[e]] = [[c]] : T [[σ]] is provable.

(2) Whenever ` [[e]] = [[c]] : T [[σ]] is provable, then e⇓.

11

e1 ⇓ fnx => e e[e2/x] ⇓ c

e1 e2 ⇓ c

e1 ⇓ let fun f x = e in f end e[let fun f x = e in f end, e2/f, x] ⇓ c

e1 e2 ⇓ c

Table 4: Rules for call-by-name function application in O

Proof (1) Suppose e ⇓ c. By Lemma 10(1) we have [[e]] ⇓ [[c]]. Hence we have
` [[e]] = [[c]] : T [[σ]] by Proposition 1. (2) Suppose ` [[e]] = [[c]] : T [[σ]]. From
Proposition 8(2) we know that [[c]] is canonical, so by Theorem 2, there is V
such that [[e]] ⇓ V . Then by Lemma 10(2) there is c such that that e ⇓ c as
required. �

We now obtain soundness from adequacy as usual [8].

Theorem 12 (Soundness) If e1, e2 ∈ Oσ and ` [[e1]] = [[e2]] : T [[σ]] then
e1 ≈ e2.

Proof Suppose ` [[e1]] = [[e2]] : T [[σ]]. We are to show for all contexts C[−] such
that C[e1] and C[e2] are both O-programs of some type τ , that C[e1]⇓ iff C[e2]⇓.
We show the forwards direction; the reverse follows by symmetry. Suppose
then that each C[ei] ∈ Oτ , and that C[e1] ⇓ c for some canonical c ∈ Oτ . By
Proposition 11(1), we have ` [[C[e1]]] = [[c]] : T [[τ]]. By Lemma 9(1) we have
` [[C[e1]]] = [[C[e2]]] : T [[τ]]. By transitivity and symmetry, ` [[C[e2]]] = [[c]], and
then since c is canonical C[e2]⇓ by Proposition 11(2), as required. �

7 Variant 1: call-by-name O
In this and the following section we show how our modular proof of adequacy
can easily be modified to apply to two variants of the object language O.

The first of these is a form of O in which functions are applied using a call-
by-name instead of a call-by-value strategy. The syntax and type system of O
is unchanged except that variables are no longer included among the canonical
O-terms.

c ::= ` | fnx => e | let fun f x = e in f end.

The evaluation relation, e ⇓ c, is given inductively by the original rules from
Table 3, except that the two rules for the two kinds of function application
are replaced by call-by-name forms in Table 4. One can easily deduce that
evaluation is deterministic and preserves types as before. We adopt the same
notions of program convergence and observational equivalence as before.

We must also modify the translation of O into M. As before, ground types
bool and int are mapped to unit + unit and nat respectively, but this time
each (call-by-name) function type σ -> τ is mapped to T [[σ]] -> T [[τ]] (instead of

12

[[σ]]->T [[τ]] in the call-by-value case). A call-by-name strategy applies functions
to computations rather than values. Each O-environment Γ = x1:σ1, . . . , xn:σn
is mapped to M-environment [[Γ]] def= x1:T [[σ1]], . . . , xn:T [[σn]]. The mapping of
environments reflects a change in denotation of object variables—in the call-by-
value setting they denoted values; here they denote computations. The trans-
lations of terms are the same as before except for the following changes. The
rules for recursive functions and applications are changed, the rule for canonical
variables is dropped, and a new one for non-canonical variables is introduced.

|let fun f x = e in f end| def= Fix(λg. λx. (λf. [[e]])(Val(g)))
[[x]] def= x

[[e1 e2]] def= Let f ⇐ [[e1]] in f [[e2]]

The third of these equations effects the call-by-name strategy, while the re-
maining two reflect the change in denotation of object variables—from values
to computations.

Given the change in translation of environments, the following static ade-
quacy result is easily proved.

Proposition 13 (Static Adequacy)

(1) Whenever Γ ` e : σ is provable in O, then [[Γ]] ` [[e]] : T [[σ]] is provable in
M.

(2) Furthermore, if e is canonical, then [[e]] is canonical and [[Γ]] ` |e| : [[σ]] is
provable in M.

The congruence lemma is stated and proved as before, but the substitution
lemma this time concerns the substitution of arbitrary O-terms, rather than
simply canonical ones.

Lemma 14

(1) If Γ ` [[e1]] = [[e2]] : σ, Γ′ ` [[C[e1]]] : τ and Γ′ ` [[C[e2]]] : τ are provable in
M,
then Γ′ ` [[C[e1]]] = [[C[e2]]] : τ is provable in M too.

(2) Furthermore, for any O-terms e and e′, [[e]][[[e′]]/x] ≡ [[e[e′/x]]].

The correspondence between evaluation of an O-program and its denotation
is proved much as before, by a detailed but routine rule induction and appeal
to the previous lemmas.

Lemma 15 Suppose e ∈ Oσ.

(1) Whenever e ⇓ c for some c ∈ Ocan
σ , then [[e]] ⇓ [[c]].

(2) Whenever [[e]] ⇓ V for some V ∈Mcan
[[σ]] , there is c with e ⇓ c and V ≡ [[c]].

13

e1 ⇓ wrong

e1⊕e2 ⇓ wrong

e1 ⇓ wrong

e1 e2 ⇓ wrong

e1 ⇓ wrong

if e1 then e2 else e3 ⇓ wrong

e1 ⇓ ` e2 ⇓ wrong

e1⊕e2 ⇓ wrong

e1 ⇓ c c 6≡ wrong e2 ⇓ wrong

e1 e2 ⇓ wrong

Table 5: Rules for a single exception in O

Once these detailed calculations are complete the soundness theorem follows
exactly as before.

Theorem 16 (Soundness) If e1, e2 ∈ Oσ and ` [[e1]] = [[e2]] : T [[σ]] then
e1 ≈ e2.

Proof From Lemma 15 by the same arguments that established Proposi-
tion 11 and Theorem 12 in the call-by-value case. �

8 Variant 2: O plus an exception

Our second variant consists in adding a single exception, wrong, to the orig-
inal call-by-value O. The point of this variant is that our methods work for
computational monads other than the lifting monad.

We introduce a new canonical expression, wrong, and extend the typing
relation so that judgment Γ ` wrong : σ is provable for any type σ and (well-
formed) environment Γ. The evaluation relation is generated from the original
call-by-value rules in Table 3—amended with the side-condition on both rules for
function application that c2 6≡ wrong—together with the new rules in Table 5.
Convergence and observational equivalence are defined as before.

To give the translation of O into M, we shall need a new computational
monad (T,Val, Let). Intuitively, computations may either converge to a value,
diverge, or go wrong, that is, converge to the exceptional value wrong. To model
such computations set Tσ def= (σ + 1)⊥. A computation that goes wrong will
be modelled by Wrong

def= ValL(Inr(〈〉)). The terms of the computational monad
are defined by

Val(M) def= ValL(Inl(M))
Letx⇐M inN

def= LetL y⇐M in Case(y, x.M, u.Wrong).

Given the metalogic’s coproduct rules [3, 4], it is routine to check that this is
indeed a well defined computational monad in the sense given earlier.

Apart from the re-interpretation of the triple (T,Val, Let) there are two other
changes needed to the translation of O into M. First, we need to change the
translation of canonical terms, [[c]], to the following.

14

[[c]] def=
{

Wrong if c ≡ wrong
Val(|c|) otherwise

Note that the interpretation of each canonical term c ∈ Oσ as a value |c| ∈ O[[σ]]

does not need to be extended to wrong—and in fact would not make sense.
Second, we need to change the translation of [[e1⊕e2]] to the following,

[[e1⊕e2]] def= Letx1⇐ [[e1]] in (Letx2⇐ [[e2]] in Eval(x1⊕x2))

where Eval(M) def= LetL y⇐ EvalL(M) in Val(y) for any M . There is no need to
re-interpret the definition of recursive functions using Fix because although the
definition of Tσ is different, the interpretation of an O-function σ -> τ is still a
partial function, this time [[σ]] ⇀ [[τ]] + 1.

Given these modifications to the denotational semantics, the soundness ar-
gument goes through much as before. Static adequacy (Proposition 8) holds
as before, except that the judgment in part (2) holds only when e 6≡ wrong.
Compositionality, Lemma 9(1) holds as before, and so does the second part,
substitution, except again for a side-condition that c 6≡ wrong—but the side-
condition on function applications ensures that wrong is never substituted for
a variable in the operational semantics. The correspondence between the eval-
uation of each O-program and its denotation, Lemma 10, holds as before. The
proof requires the easily verified facts that

Letx⇐ Val(M) inN →+ N [M/x]
Letx⇐Wrong inM →+ Wrong

Eval(b`cb⊕cb`′c) →+ Val(b`⊕ `c)

for suitably-typed terms M , N and literals ` and `′ (where →+ is the tran-
sitive closure of →). Given these lemmas, dynamic adequacy and soundness
(Proposition 11 and Theorem 12) follow exactly as before.

9 Related and Future Work

This paper has shown how adequacy (and hence soundness) for a call-by-value
object language O may be factored into two parts: a (non-routine) adequacy
proof for a metalogic coupled with a comparatively routine proof of correspon-
dence between the evaluation of each object program and its denotation in the
metalogic. The factorisation is of interest because the second part can easily be
adapted to other object languages without needing to repeat the first part. Vari-
ants of O with call-by-name functions and with a simple exception mechanism
illustrated this genericity.

Apart from the unpublished notes [17, Chapter 3] that inspired this rework-
ing, the only previous work to factor an adequacy proof via a metalogic is in
Gordon’s dissertation [5]. There the meaning of the metalogic was given using
Abramsky’s applicative bisimulation rather than domain theoretically. Others
have equipped a metalogic with an operational semantics [1, 6, 7, 8, 9, 14, 20]

15

but none has reworked Plotkin’s original factorisation. Crole presents unfac-
tored adequacy proofs for two PCF style languages mapped into the FIX-logic
[2]. Apart from their application to denotational semantics, monads have been
popularised by Wadler and others as a way to incorporate imperative features
into lazy functional programming [13, 18, 19].

The key feature of this paper is the reworking of Plaotkin’s idea for factoring
adequacy, but within a more structured and foundational framework; nonethe-
less the absence of recursive types from M prohibits modelling of many object
language features. Hence in future work we intend to extend M with recursive
types; Pitts’ recent advances [16] will be highly relevant to extending Theo-
rem 2. A further goal is to mechanise some form of M in a theorem-prover,
and hence take advantage of this paper’s soundness result to prove operational
equivalences of O-programs mechanically. Although space has prevented its full
exposition here, application ofM to verification of functional programs was the
specific motivation for the theory in this paper.

Acknowledgements We wish to thank everyone at the Ayr workshop who
discussed this work, and to the referees for their detailed comments. Roy
Crole holds a SERC Research Fellowship at Imperial College. During this work
Andrew Gordon was a member of the Programming Methodology Group in
Chalmers University of Technology, Gothenburg. The work was begun while we
were visitors at the University of Cambridge Computer Laboratory. We thank
Andrew Pitts, our host, and everyone else at the Lab for their hospitality. Roy
Crole thanks the SERC and the CEC CLICS project for providing funding to
visit Cambridge and Gothenburg. Andrew Gordon thanks Mary Sheeran for
arranging his visit to the PMG.

Crole’s address: Imperial College, Department of Computing, Huxley Build-
ing, 180 Queen’s Gate, London SW7 2BZ, United Kingdom. rlc@@doc.ic.ac.uk.
Gordon’s address: University of Cambridge Computer Laboratory, New Muse-
ums Site, Cambridge CB2 3QG, United Kingdom. adg@@cl.cam.ac.uk.

References

[1] Peter Nicholas Benton. Strictness Analysis of Lazy Functional Programs.
PhD thesis, University of Cambridge Computer Laboratory, August 1993.
Available as Technical Report 309.

[2] R. L. Crole. Computational adequacy for the FIX-Logic. Theoretical Com-
puter Science. Accepted. (To appear in 1994.).

[3] R. L. Crole and A. M. Pitts. New foundations for fixpoint computations:
FIX hyperdoctrines and the FIX-logic. Information and Control, 98:171–
210, 1992. Earlier version in LICS’90.

16

[4] Roy L. Crole. Programming Metalogics with a Fixpoint Type. PhD thesis,
University of Cambridge Computer Laboratory, February 1992. Available
as Technical Report 247.

[5] Andrew D. Gordon. Functional Programming and Input/Output. PhD
thesis, University of Cambridge, August 1992. To appear in Cambridge
University Press’ series Distinguished Dissertations in Computer Science.

[6] Carl A. Gunter. Semantics of Programming Languages: Structures and
Techniques. MIT Press, Cambridge, Mass., 1992.

[7] Claire Jones. Probabilistic Non-determinism. PhD thesis, University of
Edinburgh, 1990. Available as Technical Report CST–63–90, Computer
Science Department, University of Edinburgh.

[8] Albert R. Meyer and Stavros S. Cosmadakis. Semantical paradigms: Notes
for an invited lecture. In Proceedings of the 3rd IEEE Symposium on Logic
in Computer Science, pages 236–253, July 1988.

[9] Eugenio Moggi. The Partial Lambda-Calculus. PhD thesis, Department
of Computer Science, University of Edinburgh, August 1988. Available as
Technical report CST–53–88.

[10] Eugenio Moggi. Computational lambda calculus and monads. In Proceed-
ings of the 4th IEEE Symposium on Logic in Computer Science, June 1989.

[11] Eugenio Moggi. Notions of computation and monads. Theoretical Computer
Science, 93:55–92, 1989.

[12] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in
Martin-Löf’s Type Theory, volume 7 of The International Series of Mono-
graphs in Computer Science. Clarendon Press, Oxford, 1990.

[13] Simon L. Peyton Jones and Philip Wadler. Imperative functional program-
ming. In Proceedings 20th ACM Symposium on Principles of Programming
Languages, Charleston, South Carolina, January 1993. ACM Press, 1993.

[14] Andrew M. Pitts. Notes on the call-by-value and call-by-name translation of
the simply typed lambda-calculus into the computational lambda-calculus.
Manuscript, October 1990.

[15] Andrew M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth Higher
Order Workshop, Banff 1990, Workshops in Computing, pages 162–189.
Springer-Verlag, 1991. Available as University of Cambridge Computer
Laboratory Technical Report 198, August 1990.

[16] Andrew M. Pitts. Computational adequacy via ‘mixed’ inductive defini-
tions. In MFPS IX, New Orleans, 1993.

[17] Gordon D. Plotkin. Denotational semantics with partial functions. Unpub-
lished lecture notes, CSLI, Stanford University, July 1985.

17

[18] Philip Wadler. Comprehending monads. Mathematical Structures in Com-
puter Science, 2:461–493, 1992.

[19] Philip Wadler. The essence of functional programming. In Proceedings of
the Nineteenth ACM Symposium on Principles of Programming Languages,
1992.

[20] Glynn Winskel. The Formal Semantics of Programming Languages. MIT
Press, Cambridge, Mass., 1993.

18

