
Lecture 1 — Functional Programming

Roy Crole

Department of Computer Science

University of Leicester

October 6, 2005

1

Overview of Lecture 1

• From Imperative to Functional Programming:

– What is imperative programming?

– What is functional programming?

• Key Ideas in Functional Programming:

– Types: Provide the data for our programs

– Functions: These are our programs!

• Advantages:

– Haskell code is typically short

– Haskell code is close to the algorithms used

Roy Crole Leicester, October 6, 2005

2

What is Imperative Program — Adding up square numbers

• Problem: Add up the first n square numbers

ssquares n = 02 + 12 + ... + + (n-1)2 + n2

• Program: We could write the following in Java

public int ssquares(int n){
private int s,i;

s=0; i=0;

while (i<n) {i:=i+1;s:=s+i*i;}
}

• Execution: We may visualize running the program as follows

(Stack) Memory
s = ?? −→
i = ?? −→

ssquares 4
(Stack) Memory

−→ s = 30

−→ i = 4

• Key Idea: Imperative programs transform the memory

Roy Crole Leicester, October 6, 2005

3

The Two Aspects of Imperative Programs

• Functional Content: What the program achieves

– Programs take some input values and return an output value

– ssquares takes a number and returns the sum of the squares

up to and including that number

• Implementational Content: How the program does it

– Imperative programs transform the memory using variable

declarations and assignment statements

– ssquares uses variables i and s to represent locations in mem-

ory. The program transforms the memory until s contains

the correct number.

Roy Crole Leicester, October 6, 2005

4

What is Functional Programming?

• Motivation: Problems arise as programs contain two aspects:

– High-level algorithms and low-level implementational features

– Humans are good at the former but not the latter

• Idea: The idea of functional programming is to

– Concentrate on the functional (I/O) behaviour of programs

– Leave memory management to the language implementation

• Summary: Functional languages are more abstract and avoid

low level detail.

Roy Crole Leicester, October 6, 2005

5

A Functional Program — Summing squares in Haskell

• Types: First we give the type of summing-squares

hssquares :: Int -> Int

• Functions: Our program is a function

hssquares 0 = 0

hssquares n = n*n + hssquares(n-1)

• Evaluation: Run the program by expanding definitions

hssquares 2 ⇒ 2*2 + hssquares 1

⇒ 4 + (1*1 + hssquares 0)

⇒ 4 + (1 + 0) ⇒ 5

• Comment: No mention of memory in the code.

Roy Crole Leicester, October 6, 2005

6

Key Ideas in Functional Programming I — Types

• Motivation: Recall from CO1003/4 that types model data.

• Integers: Int is the Haskell type {. . . ,−2,−1,0,1,2, . . .}

• String: String is the Haskell type of lists of characters.

• Complex Datatypes: Can be made from the basic types, eg

lists of integers.

• Built in Operations (“Functions on types”):

– Arithmetic Operations: + * - div mod abs

– Ordering Operations: > >= == /= <= <

Roy Crole Leicester, October 6, 2005

7

Key Ideas in Functional Programming II — Functions

• Intuition: Recall from CO1011, a function f : a → b between

sets associates to every input-value a unique output-value

x ∈ a −→ Function f ?
−→ y ∈ b

• Example: The square and cube functions are written

square :: Int -> Int cube :: Int -> Int

square x = x * x cube x = x * square x

• In General: In Haskell, functions are defined as follows

〈function-name〉 :: 〈input type〉->〈output type〉

〈function-name〉 〈variable〉 = 〈expression〉

Roy Crole Leicester, October 6, 2005

8

Functions with Multiple Arguments

• Intuition: A function f with n inputs is written f::a1->...-> an-> a

x1 ∈ a1 −→
x2 ∈ a2 −→

... ...
xn ∈ an −→

Function f ?
−→ y ∈ a

• Example: The “distance” between two integers

diff :: Int -> Int -> Int

diff x y = abs (x - y)

• In General:

〈function-name〉 :: 〈type 1〉-> . . . ->〈type n〉->〈output-type〉

〈function-name〉 〈variable 1〉 . . . 〈variable n〉 = 〈expression〉

Roy Crole Leicester, October 6, 2005

9

Key Idea III — Expressions

• Motivation: Get the result/output of a function by applying it
to an argument/input

– Write the function name followed by the input

• In General: Application is governed by the typing rule

– If f is a function of type a->b, and e is an expression of type
a,

– then f e is the result of applying f to e and has type b

• Key Idea: Expressions are fragments of code built by applying
functions to arguments.

square 4 square (3 + 1) square 3 + 1

cube (square 2) diff 6 7 square 2.2

Roy Crole Leicester, October 6, 2005

10

Key Ideas in Functional Programming IV — Evaluating Expressions

• More Expressions: Use quotes to turn functions into infix operations and
brackets to turn infix operations into functions

5 * 4 (*) 5 4 mod 13 4 13 ‘mod‘ 4

5-(3*4) (5-3)*4 7 >= (3*3) 5 * (-1)

• Precedence: Usual rules of precedence and bracketing apply

• Example of Evaluation:

cube(square3) ⇒ (square 3) * square (square 3)

⇒ (3*3) * ((square 3) * (square 3))

⇒ 9 * ((3*3) * (3*3))

⇒ (9 * (9*9)

⇒ 729

• The final outcome of an evalution is called a value

Roy Crole Leicester, October 6, 2005

11

Summary — Comparing Functional and Imperative Programs

• Difference 1: Level of Abstraction

– Imperative Programs include low level memory details

– Functional Programs describe only high-level algorithms

• Difference 2: How execution works

– Imperative Programming based upon memory transformation

– Functional Programming based upon expression evaluation

• Difference 3: Type systems

– Type systems play a key role in functional programming

Roy Crole Leicester, October 6, 2005

12

Today You Should Have Learned ...

• Types: A type is a collection of data values

• Functions: Transform inputs to outputs

– We build complex expressions by defining functions and ap-

plying them to other expressions

– The simplest (evaluated) expressions are (data) values

• Evaluation: Calculates the result of applying a function to an

input

– Expressions can be evaluated by hand or by HUGS to values

• Now: Go and look at the first practical!

Roy Crole Leicester, October 6, 2005

13

Lecture 2 — More Types and Functions

Roy Crole

Department of Computer Science

University of Leicester

October 6, 2005

14

Overview of Lecture 2

• New Types: Today we shall learn about the following types

– The type of booleans: Bool

– The type of characters: Char

– The type of strings: String

– The type of fractions: Float

• New Functions and Expressions: And also about the follow-

ing functions

– Conditional expressions and guarded functions

– Error handling and local declarations

Roy Crole Leicester, October 6, 2005

15

Booleans and Logical Operators

• Values of Bool : Contains two values — True, False

• Logical Operations: Various built in functions

&& :: Bool -> Bool -> Bool

|| :: Bool -> Bool -> Bool

not :: Bool -> Bool

• Example: Define the exclusive-OR function which takes as in-

put two booleans and returns True just in case they are different

exOr :: Bool -> Bool -> Bool

Roy Crole Leicester, October 6, 2005

16

Conditionals — If statements

• Example: Maximum of two numbers

maxi :: Int -> Int -> Int

maxi n m = if n>=m then n else m

• Example: Testing if an integer is 0

isZero :: Int -> Bool

isZero x = if (x == 0) then True else False

• Conditionals: A conditional expression has the form

if b then e1 else e2

where

– b is an expression of type Bool

– e1 and e2 are expressions with the same type

Roy Crole Leicester, October 6, 2005

17

Guarded functions — An alternative to if-statements

• Example: doubleMax returns double the maximum of its inputs

doubleMax :: Int -> Int -> Int

doubleMax x y

| x >= y = 2*x

| x < y = 2*y

• Definition: A guarded function is of the form

〈function-name〉 :: 〈type 1〉 ->〈type n〉 ->〈output type〉

〈function-name〉 〈var 1〉 . . . 〈var n〉
| 〈guard 1〉 = 〈expression 1〉
| . . . = . . .

| 〈guard m〉 = 〈expression m〉

where 〈guard 1〉, ..., 〈guard m〉 :: Bool

Roy Crole Leicester, October 6, 2005

18

The Char type

• Elements of Char : Letters, digits and special characters

• Forming elements of Char : Single quotes form characters:

’d’ :: Char ’3’ :: Char

• Functions: Characters have codes and conversion functions

chr :: Int -> Char ord :: Char -> Int

• Examples: Try them out!

offset :: Int

offset = ord ’A’ - ord ’a’

capitalize :: Char -> Char
capitalize ch = chr (ord ch + offset)

isLower :: Char -> Bool

isLower x = (’a’ <= x) && (x <= ’z’)

Roy Crole Leicester, October 6, 2005

19

The String type

• Elements of String: Lists of characters

• Forming elements of String: Double quotes form strings

‘‘Newcastle Utd’’ ‘‘1a’’

• Special Strings: Newline and Tab characters

‘‘Super \n Alan’’ ‘‘1\t2\t3’’ putStr(‘‘Super \n Alan’’)

• Combining Strings: Strings can be combined by ++

‘‘Super ’’ ++ ‘‘Alan ’’ ++ ‘‘Shearer’’ = ‘‘Super Alan Shearer’’

• Example: duplicate gives two copies of a string

Roy Crole Leicester, October 6, 2005

20

The type of Fractions Float

• Elements of Float : Contains decimals, eg -21.3, 23.1e-2

• Built in Functions: Arithmetic, Ordering, Trigonometric

• Conversions: Functions between Int and String

ceiling, floor, round :: Float -> Int

fromIntegral :: Int -> Float

show :: Float -> String

read :: String -> Float

• Overloading: Overloading is when values/functions belong to

several types

2 :: Int show :: Int -> String

2 :: Float show :: Float -> String

Roy Crole Leicester, October 6, 2005

21

Error-Handling

• Motivation: Informative error messages for run-time errors

• Example: Dividing by zero will cause a run-time error

myDiv :: Float -> Float -> Float

myDiv x y = x/y

• Solution: Use an error message in a guarded definition

myDiv :: Float -> Float -> Float

myDiv x y

| y /= 0 = x/y

| otherwise = error ‘‘Attempt to divide by 0’’

• Execution: If we try to divide by 0 we get

Prelude> mydiv 5 0

Program error: Attempt to divide by 0

Roy Crole Leicester, October 6, 2005

22

Local Declarations — where

• Motivation: Functions will often depend on other functions

• Example : Summing the squares of two numbers

sq :: Int -> Int

sq x = x * x

sumSquares :: Int -> Int -> Int

sumSquares x y = sq x + sq y

• Problem: Such definitions clutter the top-level environment

• Answer: Local definitions allow auxiliary functions

sumSquares2 :: Int -> Int -> Int

sumSquares2 x y = sq x + sq y

where sq z = z * z

Roy Crole Leicester, October 6, 2005

23

Extended Example OP

• Quadratic Equations: The solutions of ax2 + bx + c = 0 are

−b ±
√

b2 − 4ac

2a

• Types: Our program will have type

roots :: Float -> Float -> Float -> String

• Guards: There are 3 cases to check so use a guarded definition

roots a b c

| a == 0 =

| b*b-4*a*c == 0 =

| otherwise =

Roy Crole Leicester, October 6, 2005

24

The function roots — Stage II OP

• Code: Now we can add in the answers

roots a b c

| a == 0 = error ‘‘Not a quadratic eqn’’

| b*b-4*a*c == 0 = ‘‘One root: ’’ ++ show (-b/2*a)

| otherwise = ‘‘Two roots: ’’ ++

show ((-b + sqrt (b*b-4*a*c))/2*a) ++

‘‘and’’ ++

show ((-b - sqrt (b*b-4*a*c))/2*a)

• Problem: This program uses several expressions repeatedly

– Being cluttered, the program is hard to read

– Similarly the program is hard to understand

– Repeated evaluation of the same expression is inefficient

Roy Crole Leicester, October 6, 2005

25

The final version of roots OP

• Local decs: Expressions used repeatedly are made local

roots a b c

| a == 0 = error ‘‘Not a quadratic eqn’’

| disc == 0 = ‘‘One root: ’’ ++ show centre

| otherwise = ‘‘Two roots: ’’ ++

show (centre + offset) ++

‘‘and’’ ++

show (centre - offset)

where

disc = b*b-4*a*c

offset = (sqrt disc) / 2*a

centre = -b/2*a

Roy Crole Leicester, October 6, 2005

26

Today You Should Have Learned

• Types: We have learned about Haskell’s basic types. For each

type we learned

– Its basic values (elements)

– Its built in functions

• Expressions: How to write expressions involving

– Conditional expressions and Guarded functions

– Error Handling and Local Declarations

Roy Crole Leicester, October 6, 2005

27

Lecture 3 — New Types from Old

Roy Crole

Department of Computer Science

University of Leicester

October 6, 2005

28

Overview of Lecture 3

• Building New Types: Today we will learn about the following

compound types

– Pairs

– Tuples

– Type Synonyms

• Describing Types: As with basic types, for each type we want

to know

– What are the values of the type

– What expressions can we write and how to evaluate them

Roy Crole Leicester, October 6, 2005

29

From simple data values to complex data values

• Motivation: Data for programs modelled by values of a type

• Problem: Single values in basic types too simple for real data

• Example: A point on a plane can be specified by

– A number for the x-coordinate and another for the y-coordinate

• Example: A person’s complete name could be specified by

– A string for the first name and another for the second name

• Example: The performance of a football team could be

– A string for the team and a number for the points

Roy Crole Leicester, October 6, 2005

30

New Types from Old I — Pair Types and Expressions

• Examples: For instance

– The expression (5,3) has type (Int, Int)

– The name (‘‘Alan’’,‘‘Shearer’’) has type (String, String)

– The performance (‘‘Newcastle’’, 22) has type (String,Int)

• Question: What are the values of a pair type?

• Answer: A pair type contains pairs of values, ie

– If e1 has type a and e2 has type b

– Then (e1,e2) has type (a,b)

Roy Crole Leicester, October 6, 2005

31

Functions using Pairs

• Types: Pair types can be used as input and/or output types

• Examples: The built in functions fst and snd are vital

fst :: (a,b) -> a

fst (x,y) = x

winUpdate :: (String,Int) -> (String,Int)

winUpdate (x,y) = (x,y+3)

movePoint :: Int -> Int -> (Int,Int) -> (Int,Int)

movePoint m n (x,y) = (x+m,y+n)

• Key Idea: If input is a pair-type, use (〈var1〉, 〈var2〉) in definition

• Key Idea: If output is a pair-type, result is often (〈exp1〉, 〈exp2〉)

Roy Crole Leicester, October 6, 2005

32

New Types from Old II — Tuple Types and Expressions

• Motivation: Some data consists of more than two parts

• Example: Person on a mailing list

– Specified by name, telephone number, and age

– A person p on the list can have type (String, Int, Int)

• Idea: Generalise pairs of types to collections of types

• Type Rule: Given types a1,...,an, then (a1,...,an) is a type

• Expression Formation: Given expressions e1::a1, ..., en::an,

then

(e1,...,en) :: (a1,...,an)

Roy Crole Leicester, October 6, 2005

33

Functions using Tuples

• Example 1: Write a function to test if a customer is an adult

isAdult :: (String,Int,Int) -> Bool

isAdult (name, tel, age) = (age >= 18)

• Example 2: Write a function to update the telephone number

updateMove :: (String,Int,Int) -> Int -> (String,Int,Int)

• Example 3: Write a function to update age after a birthday

updateAge :: (String,Int,Int) -> (String,Int,Int)

Roy Crole Leicester, October 6, 2005

34

General Definition of a Function: Patterns with Tuples

• Definition: Functions now have the form

<function-name> :: <type 1> -> ... -> <type n> -> <out-type>

<function-name> <pat 1> ... <pat n> = <exp n>

• Patterns: Patterns are

– Variables x: Use for any type

– Constants 0, True, ‘‘cherry’’: Definition by cases

– Tuples (x,..,z): If the argument has a tuple-type

– Wildcards : If the output doesn’t use the input

• In general: Use several lines and mix patterns.

Roy Crole Leicester, October 6, 2005

35

More Examples

• Example: Using values and wildcards

isZero :: Int -> Bool

isZero 0 = True

isZero = False

• Example: Using tuples and multiple arguments

expand :: Int -> (Int,Int) -> (Int,Int,Int)

expand n (x,y) = (n, n*x, n*y)

• Example: Days in the month

days :: String -> Int -> Int

days ‘‘January’’ x = 31

days ‘‘February’’ x = if isLeap x then 29 else 28

days ‘‘March’’ x = 31

.....

Roy Crole Leicester, October 6, 2005

36

New Types from Old III — Type Synonyms

• Motivation: More descriptive names for particular types.

• Definition: Type synonyms are declared with the keyword type.

type Team = String

type Goals = Int

type Match = ((Team,Goals), (Team,Goals))

numu :: Match

numu = ((‘‘Newcastle", 4), (‘‘Manchester Utd’’, 3))

• Functions: Types of functions are more descriptive, same code

homeTeam :: Match -> Team

totalGoals :: Match -> Goals

Roy Crole Leicester, October 6, 2005

37

Today You Should Have Learned

• Tuples: Collections of data from other types

• Pairs: Pairs, triples etc are examples of tuples

• Type synonyms: Make programs easier to understand

• Pattern Matching: General description of functions covering
definition by cases, tuples etc.

• Pitfall! What is the difference between

addPair :: (Int,Int) -> Int

addPair (x,y) = x + y

addTwo :: Int -> Int -> Int

addTwo x y = x + y

Roy Crole Leicester, October 6, 2005

38

Lecture 4 — List Types

Roy Crole

Department of Computer Science

University of Leicester

October 6, 2005

39

Overview of Lecture 4 — List Types

• Lists: What are lists?

– Forming list types

– Forming elements of list types

• Functions over lists: Some old friends, some new friends

– Functions from CO1003/4: cons, append, head, tail

– Some new functions: map, filter

• Clarity: Unlike Java, Haskell treatment of lists is clear

– No list iterators!

Roy Crole Leicester, October 6, 2005

40

List Types and Expressions

• Example 1: [3, 5, 14] :: [Int] and [3, 4+1, double 7] :: [Int]

• Example 3: [’d’,’t’,’g’] :: [Char]

• Example 4: [[’d’], [’d’,’t’], [’d’,’t’,’g’]] :: [[Char]]

• Example 5: [double, square, cube] :: [Int -> Int]

• Empty List: The empty list is [] and belongs to all list types

• List Expressions: Lists are written using square brackets [...]

– If e1, . . . , en are expressions of type a

– Then [e1, ..., en] is an expression of type [a]

Roy Crole Leicester, October 6, 2005

41

Some built in functions - Two infix operators

• Cons: The cons function : adds an element to a list

: :: a -> [a] -> [a]

1 : [2,3,4] = [1,2,3,4]

addone : [square] = [addone, square]

’a’ : [’b’, ’z’] = [’a’, ’b’, ’z’]

• Append: Append joins two lists together

++ :: [a] -> [a] -> [a]

[True, True] ++ [False] = [True, True, False]

[1,2] ++ ([3] ++ [4,5]) = [1,2,3,4,5]

([1,2] ++ [3]) ++ [4,5] = [1,2,3,4,5]

[] ++ [54.6, 67.5] = [54.6, 67.5]

[6,5] ++ (4 : [7,3]) = [6,5,4,7,3]

Roy Crole Leicester, October 6, 2005

42

More Built In Functions

• Head and Tail: Head gives the first element of a list, tail the

remainder

head [double, square] = double

head ([5,6]++[6,7]) = 5

tail [double, square] = [square]

tail ([5,6]++[6,7]) = [6,6,7]

• Length and Sum: The length of a list and the sum of a list

of integers

length (tail [1,2,3]) = 2

sum [1+4,8,45] = 58

• Sequences: The list of integers from 1 to n is written

[1 .. n]

Roy Crole Leicester, October 6, 2005

43

Two New Functions — Map And Filter

• Map: Map is a function which has two inputs.

– The first input is a function eg f

– The second is a list eg [e1,e1,e3]

The output is the list obtained by applying the function to every

element of the input list eg [f e1, f e2, f e3]

• Filter: Filter is a function which has two inputs.

– The first is a test, ie a function returning a Bool.

– The second is a list

The output is the list of elements of the input list which the

function maps to True, ie those elements which pass the test.

Roy Crole Leicester, October 6, 2005

44

Using Map and Filter

• Even Numbers: The even numbers less than or equal to n

– evens::Int->[Int]

• Solution 1 — Using filter.

evens2 :: Int -> [Int]

evens2 n = filter isEven [1 .. n]

where isEven x = (x ‘mod‘ 2 == 0)

• Solution 2 — Using map

Roy Crole Leicester, October 6, 2005

45

Today You Should Have Learned

• Types: We have looked at list types

– What list types and list expressions looks like

– What built in functions are available

• New Functions:

– Map: Apply a function to every member of a list

– Filter: Delete those that don’t satisfy a property or test

• Algorithms: Develop an algorithm by asking

– Can I solve this problem by applying a function to every

member of a list or by deleting certain elements.

Roy Crole Leicester, October 6, 2005

46

Lecture 5 — List Comprehensions

Roy Crole

Department of Computer Science

University of Leicester

October 6, 2005

47

Overview of Lecture 5

• Recall Map: Map is a function which has two inputs.

map add2 [2, 5, 6] = [4, 7, 8]

• Recall Filter: Filter is a function which has two inputs.

filter isEven [2, 3, 4, 5, 6, 7] = [2, 4, 6]

• List comprehension: An alternative way of writing lists

– Definition of list comprehension

– Comparison with map and filter

Roy Crole Leicester, October 6, 2005

48

List Comprehension — An alternative to map and filter

• Example 1: If ex = [2,4,7] then

[2*e | e <- xs] = [4,8,14]

• Example 2: If isEven :: Int->Bool tests for even-ness

[isEven e | e <- xs] = [True,True,False]

• In General: (Simple) list comprehensions are of the form

[〈exp〉 | 〈variable〉 <- 〈list-exp〉]

• Evaluation: The meaning of a list comprehension is

– Take each element of list-exp, evaluate the expression exp

for each element and return the results in a list.

Roy Crole Leicester, October 6, 2005

49

Using List Comprehensions Instead of map

• Example 1: A function which doubles a list’s elements

double :: [Int] -> [Int]

• Example 2: A function which tags an integer with its evenness

isEvenList :: [Int] -> [(Int,Bool)]

• Example 3: A function to add pairs of numbers

addpairs :: [(Int,Int)] -> [Int]

• In general: map f l = [f x | x <- l]

Roy Crole Leicester, October 6, 2005

50

Using List Comprehensions Instead of Filter

• Intuition: List Comprehension can also select elements from a

list

• Example: We can select the even numbers in a list

[e | e <- l, isEven e]

• Example: Selecting names beginning with A

names :: [String] -> [String]

names l :: [e | e <- l , head e == ’A’]

• Example: Combining selection and applying functions

doubleEven :: [Int] -> [Int]

doubleEven l :: [2*e | e <- l , isEven e]

Roy Crole Leicester, October 6, 2005

51

General Form of List Comprehension

• In General: These list comprehensions are of the form

[〈exp〉 | 〈variable〉 <- 〈list-exp〉 , 〈test〉]

• Example: Infact, we can use several tests — if l = [2,5,8,10]

[2*e | e <- l , isEven e , e>3] = [16,20]

• Key Example: Cartesian product of two lists is a list of all

pairs, such that for each pair, the first component comes from

the first list and the second component from the second list.

[(x,y) | x<-[1,2,3], y<-[’a’,’b’,’c’]]

= [(1,’a’), (1,’b’) ...]

league :: [Team]

games = [(t1,t2) | t1 <- league, t2 <- league, t1 /= t2]

Roy Crole Leicester, October 6, 2005

52

Removing Duplicates

• Problem: Given a list remove all duplicate entries

• Algorithm: Given a list,

– Keep first element

– Delete all occurrences of the first element

– Repeat the process on the tail

• Code:

Roy Crole Leicester, October 6, 2005

53

Today You Should Have Learned

• List Types: We have looked at list types

– What list types and list expressions looks like

– What built in functions are available

• List comprehensions: Like filter and map. They allow us to

– Select elements of a list

– Delete those that dont satisfy certain properties

– Apply a function to each element of the remainder

Roy Crole Leicester, October 6, 2005

54

Lecture 6 — Recursion over Natural Numbers

Roy Crole

Department of Computer Science

University of Leicester

October 6, 2005

55

Overview of Lecture 6

• Recursion: General features of recursion

– What is a recursive function?

– How do we write recursive functions?

– How do we evaluate recursive functions?

• Recursion over Natural Numbers: Special features

– How can we guarantee evaluation works?

– Recursion using patterns.

– Avoiding negative input.

Roy Crole Leicester, October 6, 2005

56

What is recursion?

• Example: Adding up the first n squares

hssquares n = 02 + 12 + ... + (n-1)2 + n2

• Types: First we give the type of summing-squares

hssquares :: Int -> Int

• Definitions: Our program is a function

hssquares 0 = 0

hssquares n = n*n + hssquares(n-1)

• Key Idea: hssquares is recursive as its definition contains hssquares

in a right-hand side – the function name “recurs”.

Roy Crole Leicester, October 6, 2005

57

General Definitions

• Definition: A function is recursive if the name recurs in its

definition.

• Intuition: You will have seen recursion in action before

– Imperative procedures which call themselves

– Divide-and-conquer algorithms

• Why Recursion: Recursive definitions tend to be

– Shorter, more understandable and easier to prove correct

– Compare with a non-recursive solution

nrssquares n = n * (n+0.5) * (n+1)/3

Roy Crole Leicester, October 6, 2005

58

Examples of evaluation

• Example 1: Let’s calculate hssquares 4

hssquares 4 ⇒ 4*4 + hssquares 3

⇒ 16 + (3*3 + hssquares 2)

. . .

⇒ 16 + (9 + .. (1 + hssquares 0))

⇒ 16 + (9 + ... (1 + 0)) ⇒ 30

• Example 2: Here is a non-terminating function

mydouble n = n + mydouble (n/2)

mydouble 4 ⇒ 4 + mydouble 2

⇒ 4 + 2 + mydouble 1

⇒ 4 + 2 + 1 + mydouble 0.5 ⇒

• Question: Will evaluation stop?

Roy Crole Leicester, October 6, 2005

59

Problems with Recursion

• Questions: There are some outstanding problems

1. Is hssquares defined for every number?

2. Does an evaluation of a recursive function always terminate?

3. What happens if hssquares is applied to a negative number?

4. Are these recursive definitions sensible: f n = f n, g n = g (n+1)

• Answers: Here are the answers

1. Yes: The variable pattern matches every input.

2. Not always: See examples.

3. Trouble: Evaluation doesn’t terminate.

4. No: Why not?

Roy Crole Leicester, October 6, 2005

60

Primitive Recursion over Natural Numbers

• Motivation: Restrict definitions to get better behaviour

• Idea: Many functions defined by three cases

– A non-recursive call selected by the pattern 0

– A recursive call selected by the pattern n+1 (matches numbers

≥ 1)

– The error case deals with negative input

• Example Our program now looks like

hssquares2 0 = 0

hssquares2 (n+1) = (n+1)*(n+1) + hssquares n

hssquares2 x = error ‘‘Negative input’’

Roy Crole Leicester, October 6, 2005

61

Examples of recursive functions

• Example 1: star uses recursion over Int to return a string

star :: Int -> String

star 0 = []

star (n+1) = ’*’ : star n

star n = error ‘‘Negative input’’

• Example 2: power is recursive in its second argument

power :: Float -> Int -> Float

power x 0 = 1

power x (n+1) = x * power x n

power x n = error ‘‘Negative input’’

Roy Crole Leicester, October 6, 2005

62

Primitive Recursion

• In General: Use the following style of definition

〈function-name〉 0 = 〈exp 1〉
〈function-name〉 (n+1) = 〈exp 2〉
〈function-name〉 x = error〈message〉

where

〈exp 1〉 does not contain 〈function-name〉
〈exp 2〉 may contain 〈function-name〉 applied to n

• Evaluation: Termination guaranteed!

– If the input evaluates to 0, evaluate 〈exp 1〉

– If not, if the input is greater than 0, evaluate 〈exp 2〉

– If neither, return the error message

Roy Crole Leicester, October 6, 2005

63

Larger Example

• Problem: Produce a table for perf :: Int -> (String, Int)

where perf 1 = ("Arsenal",4) etc.

• Stage 1: We need some headings and then the actual table

printTable :: Int -> IO()

printTable numberTeams = putStr(header ++ rows numberTeams)

where

header = "Team\t Points\n"

• Stage 2: Convert each “row” to a string, recursively.

rows :: Int -> String

rows 0 =

rows (n+1) =

rows =

Roy Crole Leicester, October 6, 2005

64

The Function rows

• Base Case: If we want no entries, then just return []

rows 0 = []

• Recursive Case: Convert (n + 1)-rows by

– recursively converting the first n-rows, and

– adding on the (n+1)-th row

• Code: Code for the recursive call

Roy Crole Leicester, October 6, 2005

65

The Final Version

perf :: Int -> (String,Int)

perf 1 = ("Arsenal",4)

perf 2 = ("Notts",5)

perf 3 = ("Chelsea",7)

perf n = error "perf out of range"

rows :: Int -> String

rows 0 = []

rows (n+1) = rows n ++

fst(perf(n+1)) ++ "\t\t " ++

show(snd(perf(n+1))) ++ "\n"

rows _ = error"rows out of range"

printTable :: Int -> IO()

printTable numberTeams = putStr(header ++ rows numberTeams)

where

header = "Team\t\t Points\n"

Roy Crole Leicester, October 6, 2005

66

Today You Should Have Learned

• Recursion: Allows new functions to be written.

– Advantages: Clarity, brevity, tractability

– Disadvantages: Evaluation may not stop

• Primitive Recursion: Avoids bad behaviour of some recursive

functions

– The value at 0 is non-recursive

– Each recursive call uses a smaller input

– An error-clause catches negative inputs

• Algorithm: Ask yourself, what needs to be done to the recur-

sive call to get the answer.

Roy Crole Leicester, October 6, 2005

67

Lecture 7 — Recursion over Lists

Roy Crole

Department of Computer Science

University of Leicester

October 6, 2005

68

Overview of Lecture 7

• Lists: Another look at lists

– Lists are a recursive structure

– Every list can be formed by [] and :

• List Recursion: Primitive recursion for Lists

– How do we write primitive recursive functions

– Examples — ++, length, head, tail, take, drop, zip

• Avoiding Recursion?: List comprehensions revisited

Roy Crole Leicester, October 6, 2005

69

Recursion over lists

• Question: This lecture is about the following question

– We know what a recursive function over Int is

– What is a recursive function over lists?

• Answer: In general, the answer is the same as before

– A recursive function mentions itself in its definition

– Evaluating the function may reintroduce the function

– Hopefully this will stop at the answer

Roy Crole Leicester, October 6, 2005

70

Another Look at Lists

• Recall: The two basic operations concerning lists

– The empty list []

– The cons operator (:) :: a -> [a] -> [a]

• Key Idea: Every list is either empty, or of the form x:xs

[2,3,7] = 2:3:7:[] [True, False] = True:False:[]

• Recursion: Define recursive functions using the scheme

– Non-recursive call: Define the function on the empty list []

– Recursive call: Define the function on (x:xs) by using the

function only on xs

Roy Crole Leicester, October 6, 2005

71

Examples of Recursive Functions

• Example 1: Doubling every element of an integer list

double :: [Int] -> [Int]

double [] = []

double (x:xs) = (2*x) : double xs

• Example 2: Selecting the even members of a list

onlyEvens :: [Int] -> [Int]

onlyEvens [] = []

onlyEvens (x:xs) = if isEven x then x:rest else rest

where rest = onlyEvens xs

• Example 3: Flattening some lists

flatten :: [[a]] -> [a]

flatten [] = []

flatten (x:xs) = x ++ flatten xs

Roy Crole Leicester, October 6, 2005

72

The General Pattern

• Definition: Primitive Recursive List Functions are given by

〈function-name〉 [] = 〈expression 1〉
〈function-name〉 (x:xs) = 〈expression 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain expressions 〈function-name〉 xs

• Compare: Very similar to recursion over Int

〈function-name〉 0 = 〈expression 1〉
〈function-name〉 (n+1) = 〈expression 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain expressions 〈function-name〉 n

Roy Crole Leicester, October 6, 2005

73

More Examples:

• Example 4: Append is defined recursively

append :: [a] -> [a] -> [a]

• Example 5: Testing if an integer is an element of a list

member :: Int -> [Int] -> Bool

• Example 6: Reversing a list

reverse :: [a] -> [a]

Roy Crole Leicester, October 6, 2005

74

What can we do with a list?

• Mapping: Applying a function to every member of the list

double [2,3,72,1] = [2*2, 2*3, 2*72, 2*1]

isEven [2,3,72,1] = [True, False, True, False]

• Filtering: Selecting particular elements

onlyEvens [2,3,72,1] = [2,72]

• Taking Lists Apart: head, tail, take, drop

• Combining Lists: zip

• Folding: Combining the elements of the list

sumList [2,3,7,2,1] = 2 + 3 + 7 + 2 + 1

Roy Crole Leicester, October 6, 2005

75

List Comprehension Revisited OP

• Recall: List comprehensions look like

[〈exp〉 | 〈variable〉 <- 〈list-exp〉 , 〈test〉]

• Intuition: Roughly speaking this means

– Take each element of the list 〈list-exp〉

– Check they satisfy 〈test〉

– Form a list by applying 〈exp〉 to those that do

• Idea: Equivalent to filtering and then mapping. As these are

recursive, so are list comprehensions although the recursion is

hidden

Roy Crole Leicester, October 6, 2005

76

Today You Should Have Learned

• List Recursion: Lists are recursive data structures

– Hence, functions over lists tend to be recursive

– But, as before, general recursion is badly behaved

• Primitive List Recursion: Similar to natural numbers

– A non-recursive call using the pattern []

– A recursive call using the pattern (x:xs)

• List comprehension: An alternative way of doing some recur-

sion

Roy Crole Leicester, October 6, 2005

77

Lecture 8 — More Complex Recursion

Roy Crole

Department of Computer Science

University of Leicester

October 6, 2005

78

Overview of Lecture 8

• Problem: Our restrictions on recursive functions are too severe

• Solution: New definitional formats which keep termination

– Using new patterns

– Generalising the recursion scheme

• Examples: Applications to integers and lists

• Sorting Algorithms: What is a sorting algorithm?

– Insertion Sort, Quicksort and Mergesort

Roy Crole Leicester, October 6, 2005

79

More general forms of primitive recursion

• Recall: Our primitive recursive functions follow the scheme

– Base Case: Define the function non-recursively at 0

– Inductive Case: Define the function at (n+1) in terms of

the function at n

〈function-name〉 0 = 〈exp 1〉
〈function-name〉 (n+1) = 〈exp 2〉
〈function-name〉 x = error〈message〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain 〈function-name〉 applied to n

• Motivation: But some functions do not fit this scheme, requir-

ing more complex patterns

Roy Crole Leicester, October 6, 2005

80

Fibonacci Numbers – More Complex Patterns

• Example: The first Fibonacci numbers are 0,1. For each sub-

sequent Fibonacci number, add the previous two together

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

• Problem: The following does not terminate on input 1

fib 0 = 0

fib (n+1) = fib n + fib (n-1)

• Solution: The new pattern (n+2) matches inputs ≥ 2

fib 0 = 0

fib 1 = 1

fib (n+2) = fib (n+1) + fib n

• In General: There are patterns (n+1), (n+2), (n+3)

Roy Crole Leicester, October 6, 2005

81

More general recursion on lists

• Recall: Our primitive recursive functions follow the pattern

– Base Case: Defines the function at [] non-recursively

– Inductive Case: Defines the function at (x:xs) in terms of

the function at xs

〈function-name〉 [] = 〈exp 1〉
〈function-name〉 (x:xs) = 〈exp 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain 〈function-name〉 applied to xs

• Motivation: As with integers, some functions don’t fit this

shape

Roy Crole Leicester, October 6, 2005

82

More General Patterns for Lists

• Recall: With integers, we used more general patterns.

• Idea: Use (x:(y:xs)) pattern to access first two elements

• Example: We want a function to delete every second element

delete [2,3,5,7,9,5,7] = [2,5,9,7]

• Solution: Here is the code

delete :: [a] -> [a]

delete [] = []

delete [x] = [x]

delete (x:(y:xs)) = x : delete xs

• Example: To delete every third element use pattern (x:(y:(z:xs)))

Roy Crole Leicester, October 6, 2005

83

Examples of Recursion and patterns — See how the typing helps

• Example 1: Summing pairs in a list of pairs

sumPairs :: [(Int,Int)] -> Int

• Example 2: Unzipping lists unZip :: [(a,b)] -> ([a],[b])

Roy Crole Leicester, October 6, 2005

84

Sorting Algorithms 1: Insertsort

• Problem: A sorting algorithm rearranges a list in order

sort [2,7,13,5,0,4] = [0,2,4,5,7,13]

• Recursion: Such algorithms usually recursively sort a smaller

list

• Insertsort Alg: To sort a list, sort the tail recursively, and then

insert the head

• Code:

inssort :: [Int] -> [Int]

inssort [] = []

inssort (x:xs) = insert x (inssort xs)

where insert puts the number x in the correct place

Roy Crole Leicester, October 6, 2005

85

The function insert

• Patterns: Insert takes two arguments, number and list

– The recursion for insert doesn’t depend on the number

– The recursion for insert does depend on whether the list is

empty or not — use the [] and (x:xs) patterns

• Code: Here is the final code

insert :: Int -> [Int] -> [Int]

insert n [] = [n]

insert n (x:xs)

| n <= x = n:x:xs

| otherwise = x:(insert n xs)

Roy Crole Leicester, October 6, 2005

86

Sorting Algorithms 2: Quicksort

• Quicksort Alg: Given a list l and a number n in the list

sort l = sort those elements less than n ++
number of occurrences of n ++
sort those elements greater than n

• Code: The algorithm may be coded

qsort :: [Int] -> [Int]

qsort [] = []

qsort (x:xs) = qsort (less x xs) ++

occs x (x:xs) ++

qsort (more x xs)

where less, occs, more are auxiliary functions

Roy Crole Leicester, October 6, 2005

87

Defining the Auxiliary Functions

• Problem: The auxiliary functions can be specified

– less takes a number and a list and returns those elements

of the list less than the number

– occs takes a number and a list and returns the occurrences

of the number in the list

– more takes a number and a list and returns those elements

of the list more than the number

• Code: Using list comprehensions gives short code

less, occs, more :: Int -> [Int] -> [Int]

less n xs = [x | x <- xs, x < n]

occs n xs = [x | x <- xs, x == n]

more n xs = [x | x <- xs, x > n]

Roy Crole Leicester, October 6, 2005

88

Sorting Algorithm 3: Mergesort

• Mergesort Alg: Split the list in half, recursively sort each half

and merge the results

• Code: Overall function reflects the algorithm

msort [] = []

msort [x] = [x]

msort xs = merge (msort ys) (msort ws)

where (ys,ws) = (take l xs, drop l xs)

l = length xs ‘div‘ 2

where merge combines two sorted lists

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys) = if x<y then x : merge xs (y:ys)

else y : merge (x:xs) ys

Roy Crole Leicester, October 6, 2005

89

Today You Should Have Learned OP

• Recursion Schemes: We’ve generalised the recursion schemes

to allow more functions to be written

– More general patterns

– Recursive calls to ANY smaller value

• Examples: Applied them to recursion over integers and lists

• Sorting Algorithms: We’ve put these ideas into practice by

defining three sorting algorithms

– Insertion Sort

– QuickSort

– MergeSort

Roy Crole Leicester, October 6, 2005

90

Lecture 9 — Higher Order Functions

Roy Crole

Department of Computer Science

University of Leicester

October 6, 2005

91

Overview of Lecture 9

• Motivation: Why do we want higher order functions

• Definition: What is a higher order function

• Examples:

– Mapping: Applying a function to every member of a list

– Filtering: Selecting elements of a list satisfying a property

• Application: Higher order sorting algorithms

Roy Crole Leicester, October 6, 2005

92

Motivation

• Example 1: A function to double the elements of a list

doubleList :: [Int] -> [Int]

doubleList [] = []

doubleList (x:xs) = (2*x) : doubleList xs

• Example 2: A function to square the elements of a list

squareList :: [Int] -> [Int]

squareList [] = []

squareList (x:xs) = (x*x) : squareList xs

• Example 3: A function to increment the elements of a list

incList :: [Int] -> [Int]

incList [] = []

incList (x:xs) = (x+1) : incList xs

Roy Crole Leicester, October 6, 2005

93

The Common Pattern

• Problem: Three separate definitions despite a clear pattern

• Intuition: Examples apply a function to each member of a list

function :: Int -> Int

functionList :: [Int] -> [Int]

functionList [] = []

functionList (x:xs) = (function x) : functionList xs

where in our previous examples function is

double square inc

• Key Idea: Make auxiliary function function an input

Roy Crole Leicester, October 6, 2005

94

A Higher Order Function — map

• The Idea Coded:

map f [] = []

map f (x:xs) = (fx) : map f xs

• Advantages: There are several advantages

– Shortens code as previous examples are given by

doubleList xs = map double xs

squareList xs = map square xs

incList xs = map inc xs

– Captures the algorithmic content and is easier to understand

– Easier code-modification and code re-use

Roy Crole Leicester, October 6, 2005

95

A Definition of Higher Order Functions

• Question: What is the type of map?

– First argument is a function

– Second argument is a list whose elements have the same

type and the input of the function.

– Result is a list whose elements are the output type of the

function.

• Answer: So overall type is map :: (a -> b) -> [a] -> [b]

• Definition: A function is higher-order if an input is a function.

• Another Example: Type of filter is

filterInt :: (a -> Bool) -> [a] -> [a]

Roy Crole Leicester, October 6, 2005

96

Quicksort Revisited

• Idea: Recall our implementation of quicksort

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x:xs) = qsort less ++ occs ++ qsort more

where

less = [e | e<-xs, e<x]

occs = x : [e | e<-xs, e==x]

more = [e | e<-xs, e>x]

• Polymorphism: Quicksort requires an order on the elements:

– The output list depends upon the order on the elements

– This requirement is reflected in type class information Ord a

– Don’t worry about type classes as they are beyond this course

Roy Crole Leicester, October 6, 2005

97

Limitations of Quicksort

• Example: Games tables might have type [(Team,Points)]

• Problem: How can we order the table?

Arsenal 16

AVilla 16

Derby 10

Birm. 4

...

• Solution: Write a new function for this problem

tSort [] = []

tSort (x:xs) = tSort less ++ [x] ++ tSort more

where more = [e| e<-xs, snd e > snd x]

less = [e| e<-xs, snd e < snd x]

• What did we assume here?

Roy Crole Leicester, October 6, 2005

98

Higher Order Sorting

• Motivation: But what if we want other orders, eg

– Sort teams in order of names, not points

– Sort on points, but if two teams have the same points, com-

pare names

• Key Idea: Make the comparison a parameter of quicksort

qsortCp :: (a -> a -> Bool) -> [a] -> [a]

qsortCp ord [] = []

qsortCp ord (x:xs) = qsortCp ord less ++ occs ++ qsortCp ord more

where less = [e | e <- xs, ord e x]

occs = x : [e | e <- xs, e == x]

more = [e | e <- xs, ord x e]

Roy Crole Leicester, October 6, 2005

99

Examples

• Key Idea: To use a higher order sorting algorithm, use the

required order to define the function to sort by

• Example 1: To sort by names

ord (t, p) (t’, p’) = t < t’

• Example 2: To sort by points and then names

ord (t, p) (t’, p’) = (p < p’) || (p == p’ && t < t’)

• What should we assume about ord?

Roy Crole Leicester, October 6, 2005

100

Today You Should Have Learned

• Higher Order Functions: Functions which takes functions as

input

– Facilitates code reuse and more abstract code

– Many list functions are either map, filter or fold

• HO Sorting: An application of higher order functions to sorting

– Produces more powerful sorting

– Order of resulting list determined by a function

– Lexicographic order allows us to try one order and then an-

other

Roy Crole Leicester, October 6, 2005

101

Lecture 10 — (Parametric) Polymorphism

Roy Crole

Department of Computer Science

University of Leicester

October 6, 2005

102

Overview of Lecture 10

• Motivation: Some examples leading to polymorphism

• Definition: What is parametric polymorphism?

– What is a polymorphic type?

– What is a polymorphic function?

– Polymorphism and higher order functions

– Applying polymorphic functions to polymorphic expressions

Roy Crole Leicester, October 6, 2005

103

Monomorphic length

• Example: Let us define the length of a list of integers

mylength :: [Int] -> Int

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

• Problem: We want to evaluate the length of a list of characters

Prelude> mylength [’a’, ’g’]

ERROR: Type error in application

*** expression : mylength [’a’,’g’]

*** term : [’a’,’g’]

*** type : [Char]

*** does not match : [Int]

• Solution: Define a new length function for lists of characters

. . . but this is not very efficient!

Roy Crole Leicester, October 6, 2005

104

Polymorphic length

• Better Solution: The algorithm’s input depends on the list

type, but not on the type of integers.

• Idea: An alternative approach to typing mylength

– There is one input and one output: mylength :: a -> b

– The output is an integer: mylength :: a -> Int

– The input is a list: mylength :: [c] -> Int

– There is nothing more to infer from the code of mylength so

mylength :: [c] -> Int

This is an efficient function - works at all list types!

Roy Crole Leicester, October 6, 2005

105

Haskell’s Polymorphic Type System

• Types: Now we will deal with the following types:

– Basic, built in types: Int, Char, Bool, String, Float

– Type variables representing any type: a, b, c, ...

– Types built with type construc tors: [], ->, (,)

[Int] a->a a->b a->Bool (String,a->a) [a->Bool]

– Type synonyms: type <type-name> = <type-expression>

type Point = (Int,Int)

type Line = (Point,Point)

type Test = a->Bool

Roy Crole Leicester, October 6, 2005

106

Some Definitions

• Polymorphism is the ability to appear in different forms

• Definition: A type is parametric polymorphic iff it contains

type variables (that is, type parameters).

• Definition: A function is parametric polymorphic iff it can be

called on different types of input, and it is implemented by (code

for) a single algorithm

• Definition: A function is overloaded iff it can be called on

different types of input, and for each type of input, the function

is implemented by (code for) a particular algorithm.

• Examples: Of overloading are the arithmetic operators: integer

and floating-point addition.

Roy Crole Leicester, October 6, 2005

107

Polymorphic Expressions

• Key Idea: Expressions have many types

– Amongst these is a principle type

• Example: What is the type of id x = x

– id sends an integer to an integer. So id :: Int -> Int

– id sends a list of type a to a list of type a. So id::[a]->[a]

– id sends an expression of type b to an expression of type b.

So id::b->b

• Principle Type: The last type includes the previous two – why?

– In fact the principal type of id is id::b->b – why?

Roy Crole Leicester, October 6, 2005

108

Examples

• Example 1: What is the type of map

map f [] = []

map f (x:xs) = f x : map f xs

• Example 2: What is the type of filter

filter f [] = []

filter f (x:xs) = if f x then x:filter f xs else filter f xs

• Example 3: What is the type of iterate

iterate f 0 x = x

iterate f (n+1) x = f (iterate f n x)

Roy Crole Leicester, October 6, 2005

109

Applying Polymorphic Expressions to Polymorphic Functions

• Previously: The typing of applications of expressions:

– If exp1 is an expression with type a -> b

– And exp2 is an expression with type a

– Then exp1 exp2 has type b

• Problem: How does this apply to polymorphic functions?

length :: [c] -> Int

[2,4,5] :: [Int]

length [2,4,5] :: Int

• Key Idea: Argument type can be an instance of input type

Roy Crole Leicester, October 6, 2005

110

When is a Type an Instance of Another Type

• Recall: Two facts about expressions containing variables

– Variables stand for arbitrary elements of a particular type

– Instances of the expression are obtained by substituting ex-

pressions for variables

• Key Idea: (Parametric) polymorphic types are defined in the

same way:

– Type-expressions may contain type-variables

– Instances of type-expressions are obtained by substituting

types for type-variables

• Example: [Int] is an instance of [c] – substitute Int for c

Roy Crole Leicester, October 6, 2005

111

More formally - Unification OP

• Monomorphic: Can a function be applied to an argument?

– If the function’s input type is the same type as its argument

f::a->b x::a
f x :: b

• Polymorphically: Can a function be applied to an argument?

– If the function’s input type is unifiable with argument’s type

f::a->b x::c θ unifies a,c
f x ::θb

where θ maps type variables to types

• Example: In the length example, set θc=Int

Roy Crole Leicester, October 6, 2005

112

Example

• Past Paper: Assume f is a function with principle type

f::([a],[b])->Int->[(b,a)]

Do the following expressions type check? State Yes or No with

a brief reason and, if Yes, what is the principal type of the

expression?

1. f (3,3) 2

2. f ([],[]) 5

3. f ([tail,head], []) 3

4. f ([True,False], [’x’])

Roy Crole Leicester, October 6, 2005

113

Today You Should Have Learned

• Polymorphism:

– Saves on code — one function (algorithm) has many types

– This implements our algorithmic intuition

• Type Checking: Expressions and functions have many types

including a principle one

– Polymorphic functions are applied to expressions whose type

is an instance of the type of the input of the function

Roy Crole Leicester, October 6, 2005

114

