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Overview of Lecture 1

• From Imperative to Functional Programming:

– What is imperative programming?

– What is functional programming?

• Key Ideas in Functional Programming:

– Types: Provide the data for our programs

– Functions: These are our programs!

• Advantages:

– Haskell code is typically short

– Haskell code is close to the algorithms used
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What is Imperative Program — Adding up square numbers

• Problem: Add up the first n square numbers

ssquares n = 02 + 12 + ... + + (n-1)2 + n2

• Program: We could write the following in Java

public int ssquares(int n){
private int s,i;

s=0; i=0;

while (i<n) {i:=i+1;s:=s+i*i;}
}

• Execution: We may visualize running the program as follows

(Stack) Memory
s = ?? −→
i = ?? −→

ssquares 4
(Stack) Memory

−→ s = 30

−→ i = 4

• Key Idea: Imperative programs transform the memory
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The Two Aspects of Imperative Programs

• Functional Content: What the program achieves

– Programs take some input values and return an output value

– ssquares takes a number and returns the sum of the squares

up to and including that number

• Implementational Content: How the program does it

– Imperative programs transform the memory using variable

declarations and assignment statements

– ssquares uses variables i and s to represent locations in mem-

ory. The program transforms the memory until s contains

the correct number.
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What is Functional Programming?

• Motivation: Problems arise as programs contain two aspects:

– High-level algorithms and low-level implementational features

– Humans are good at the former but not the latter

• Idea: The idea of functional programming is to

– Concentrate on the functional (I/O) behaviour of programs

– Leave memory management to the language implementation

• Summary: Functional languages are more abstract and avoid

low level detail.
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A Functional Program — Summing squares in Haskell

• Types: First we give the type of summing-squares

hssquares :: Int -> Int

• Functions: Our program is a function

hssquares 0 = 0

hssquares n = n*n + hssquares(n-1)

• Evaluation: Run the program by expanding definitions

hssquares 2 ⇒ 2*2 + hssquares 1

⇒ 4 + (1*1 + hssquares 0)

⇒ 4 + (1 + 0) ⇒ 5

• Comment: No mention of memory in the code.
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Key Ideas in Functional Programming I — Types

• Motivation: Recall from CO1003/4 that types model data.

• Integers: Int is the Haskell type {. . . ,−2,−1,0,1,2, . . .}

• String: String is the Haskell type of lists of characters.

• Complex Datatypes: Can be made from the basic types, eg

lists of integers.

• Built in Operations (“Functions on types”):

– Arithmetic Operations: + * - div mod abs

– Ordering Operations: > >= == /= <= <
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Key Ideas in Functional Programming II — Functions

• Intuition: Recall from CO1011, a function f : a → b between

sets associates to every input-value a unique output-value

x ∈ a −→ Function f ?
−→ y ∈ b

• Example: The square and cube functions are written

square :: Int -> Int cube :: Int -> Int

square x = x * x cube x = x * square x

• In General: In Haskell, functions are defined as follows

〈function-name〉 :: 〈input type〉->〈output type〉

〈function-name〉 〈variable〉 = 〈expression〉
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Functions with Multiple Arguments

• Intuition: A function f with n inputs is written f::a1->...-> an-> a

x1 ∈ a1 −→
x2 ∈ a2 −→

... ...
xn ∈ an −→

Function f ?
−→ y ∈ a

• Example: The “distance” between two integers

diff :: Int -> Int -> Int

diff x y = abs (x - y)

• In General:

〈function-name〉 :: 〈type 1〉-> . . . ->〈type n〉->〈output-type〉

〈function-name〉 〈variable 1〉 . . . 〈variable n〉 = 〈expression〉
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Key Idea III — Expressions

• Motivation: Get the result/output of a function by applying it
to an argument/input

– Write the function name followed by the input

• In General: Application is governed by the typing rule

– If f is a function of type a->b, and e is an expression of type
a,

– then f e is the result of applying f to e and has type b

• Key Idea: Expressions are fragments of code built by applying
functions to arguments.

square 4 square (3 + 1) square 3 + 1

cube (square 2) diff 6 7 square 2.2
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Key Ideas in Functional Programming IV — Evaluating Expressions

• More Expressions: Use quotes to turn functions into infix operations and
brackets to turn infix operations into functions

5 * 4 (*) 5 4 mod 13 4 13 ‘mod‘ 4

5-(3*4) (5-3)*4 7 >= (3*3) 5 * (-1)

• Precedence: Usual rules of precedence and bracketing apply

• Example of Evaluation:

cube(square3) ⇒ (square 3) * square (square 3)

⇒ (3*3) * ((square 3) * (square 3))

⇒ 9 * ((3*3) * (3*3))

⇒ (9 * (9*9)

⇒ 729

• The final outcome of an evalution is called a value
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Summary — Comparing Functional and Imperative Programs

• Difference 1: Level of Abstraction

– Imperative Programs include low level memory details

– Functional Programs describe only high-level algorithms

• Difference 2: How execution works

– Imperative Programming based upon memory transformation

– Functional Programming based upon expression evaluation

• Difference 3: Type systems

– Type systems play a key role in functional programming
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Today You Should Have Learned ...

• Types: A type is a collection of data values

• Functions: Transform inputs to outputs

– We build complex expressions by defining functions and ap-

plying them to other expressions

– The simplest (evaluated) expressions are (data) values

• Evaluation: Calculates the result of applying a function to an

input

– Expressions can be evaluated by hand or by HUGS to values

• Now: Go and look at the first practical!
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Overview of Lecture 2

• New Types: Today we shall learn about the following types

– The type of booleans: Bool

– The type of characters: Char

– The type of strings: String

– The type of fractions: Float

• New Functions and Expressions: And also about the follow-

ing functions

– Conditional expressions and guarded functions

– Error handling and local declarations
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Booleans and Logical Operators

• Values of Bool : Contains two values — True, False

• Logical Operations: Various built in functions

&& :: Bool -> Bool -> Bool

|| :: Bool -> Bool -> Bool

not :: Bool -> Bool

• Example: Define the exclusive-OR function which takes as in-

put two booleans and returns True just in case they are different

exOr :: Bool -> Bool -> Bool
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Conditionals — If statements

• Example: Maximum of two numbers

maxi :: Int -> Int -> Int

maxi n m = if n>=m then n else m

• Example: Testing if an integer is 0

isZero :: Int -> Bool

isZero x = if (x == 0) then True else False

• Conditionals: A conditional expression has the form

if b then e1 else e2

where

– b is an expression of type Bool

– e1 and e2 are expressions with the same type
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Guarded functions — An alternative to if-statements

• Example: doubleMax returns double the maximum of its inputs

doubleMax :: Int -> Int -> Int

doubleMax x y

| x >= y = 2*x

| x < y = 2*y

• Definition: A guarded function is of the form

〈function-name〉 :: 〈type 1〉 ->〈type n〉 ->〈output type〉

〈function-name〉 〈var 1〉 . . . 〈var n〉
| 〈guard 1〉 = 〈expression 1〉
| . . . = . . .

| 〈guard m〉 = 〈expression m〉

where 〈guard 1〉, ..., 〈guard m〉 :: Bool
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The Char type

• Elements of Char : Letters, digits and special characters

• Forming elements of Char : Single quotes form characters:

’d’ :: Char ’3’ :: Char

• Functions: Characters have codes and conversion functions

chr :: Int -> Char ord :: Char -> Int

• Examples: Try them out!

offset :: Int

offset = ord ’A’ - ord ’a’

capitalize :: Char -> Char
capitalize ch = chr (ord ch + offset)

isLower :: Char -> Bool

isLower x = (’a’ <= x) && (x <= ’z’)
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The String type

• Elements of String: Lists of characters

• Forming elements of String: Double quotes form strings

‘‘Newcastle Utd’’ ‘‘1a’’

• Special Strings: Newline and Tab characters

‘‘Super \n Alan’’ ‘‘1\t2\t3’’ putStr(‘‘Super \n Alan’’)

• Combining Strings: Strings can be combined by ++

‘‘Super ’’ ++ ‘‘Alan ’’ ++ ‘‘Shearer’’ = ‘‘Super Alan Shearer’’

• Example: duplicate gives two copies of a string
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The type of Fractions Float

• Elements of Float : Contains decimals, eg -21.3, 23.1e-2

• Built in Functions: Arithmetic, Ordering, Trigonometric

• Conversions: Functions between Int and String

ceiling, floor, round :: Float -> Int

fromIntegral :: Int -> Float

show :: Float -> String

read :: String -> Float

• Overloading: Overloading is when values/functions belong to

several types

2 :: Int show :: Int -> String

2 :: Float show :: Float -> String
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Error-Handling

• Motivation: Informative error messages for run-time errors

• Example: Dividing by zero will cause a run-time error

myDiv :: Float -> Float -> Float

myDiv x y = x/y

• Solution: Use an error message in a guarded definition

myDiv :: Float -> Float -> Float

myDiv x y

| y /= 0 = x/y

| otherwise = error ‘‘Attempt to divide by 0’’

• Execution: If we try to divide by 0 we get

Prelude> mydiv 5 0

Program error: Attempt to divide by 0
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Local Declarations — where

• Motivation: Functions will often depend on other functions

• Example : Summing the squares of two numbers

sq :: Int -> Int

sq x = x * x

sumSquares :: Int -> Int -> Int

sumSquares x y = sq x + sq y

• Problem: Such definitions clutter the top-level environment

• Answer: Local definitions allow auxiliary functions

sumSquares2 :: Int -> Int -> Int

sumSquares2 x y = sq x + sq y

where sq z = z * z

Roy Crole Leicester, October 6, 2005

23

Extended Example OP

• Quadratic Equations: The solutions of ax2 + bx + c = 0 are

−b ±
√

b2 − 4ac

2a

• Types: Our program will have type

roots :: Float -> Float -> Float -> String

• Guards: There are 3 cases to check so use a guarded definition

roots a b c

| a == 0 = ....

| b*b-4*a*c == 0 = ....

| otherwise = ....

Roy Crole Leicester, October 6, 2005

24



The function roots — Stage II OP

• Code: Now we can add in the answers

roots a b c

| a == 0 = error ‘‘Not a quadratic eqn’’

| b*b-4*a*c == 0 = ‘‘One root: ’’ ++ show (-b/2*a)

| otherwise = ‘‘Two roots: ’’ ++

show ((-b + sqrt (b*b-4*a*c))/2*a) ++

‘‘and’’ ++

show ((-b - sqrt (b*b-4*a*c))/2*a)

• Problem: This program uses several expressions repeatedly

– Being cluttered, the program is hard to read

– Similarly the program is hard to understand

– Repeated evaluation of the same expression is inefficient

Roy Crole Leicester, October 6, 2005

25

The final version of roots OP

• Local decs: Expressions used repeatedly are made local

roots a b c

| a == 0 = error ‘‘Not a quadratic eqn’’

| disc == 0 = ‘‘One root: ’’ ++ show centre

| otherwise = ‘‘Two roots: ’’ ++

show (centre + offset) ++

‘‘and’’ ++

show (centre - offset)

where

disc = b*b-4*a*c

offset = (sqrt disc) / 2*a

centre = -b/2*a

Roy Crole Leicester, October 6, 2005
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Today You Should Have Learned

• Types: We have learned about Haskell’s basic types. For each

type we learned

– Its basic values (elements)

– Its built in functions

• Expressions: How to write expressions involving

– Conditional expressions and Guarded functions

– Error Handling and Local Declarations
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Overview of Lecture 3

• Building New Types: Today we will learn about the following

compound types

– Pairs

– Tuples

– Type Synonyms

• Describing Types: As with basic types, for each type we want

to know

– What are the values of the type

– What expressions can we write and how to evaluate them
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From simple data values to complex data values

• Motivation: Data for programs modelled by values of a type

• Problem: Single values in basic types too simple for real data

• Example: A point on a plane can be specified by

– A number for the x-coordinate and another for the y-coordinate

• Example: A person’s complete name could be specified by

– A string for the first name and another for the second name

• Example: The performance of a football team could be

– A string for the team and a number for the points

Roy Crole Leicester, October 6, 2005

30

New Types from Old I — Pair Types and Expressions

• Examples: For instance

– The expression (5,3) has type (Int, Int)

– The name (‘‘Alan’’,‘‘Shearer’’) has type (String, String)

– The performance (‘‘Newcastle’’, 22) has type (String,Int)

• Question: What are the values of a pair type?

• Answer: A pair type contains pairs of values, ie

– If e1 has type a and e2 has type b

– Then (e1,e2) has type (a,b)

Roy Crole Leicester, October 6, 2005

31

Functions using Pairs

• Types: Pair types can be used as input and/or output types

• Examples: The built in functions fst and snd are vital

fst :: (a,b) -> a

fst (x,y) = x

winUpdate :: (String,Int) -> (String,Int)

winUpdate (x,y) = (x,y+3)

movePoint :: Int -> Int -> (Int,Int) -> (Int,Int)

movePoint m n (x,y) = (x+m,y+n)

• Key Idea: If input is a pair-type, use (〈var1〉, 〈var2〉) in definition

• Key Idea: If output is a pair-type, result is often (〈exp1〉, 〈exp2〉)
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New Types from Old II — Tuple Types and Expressions

• Motivation: Some data consists of more than two parts

• Example: Person on a mailing list

– Specified by name, telephone number, and age

– A person p on the list can have type (String, Int, Int)

• Idea: Generalise pairs of types to collections of types

• Type Rule: Given types a1,...,an, then (a1,...,an) is a type

• Expression Formation: Given expressions e1::a1, ..., en::an,

then

(e1,...,en) :: (a1,...,an)
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Functions using Tuples

• Example 1: Write a function to test if a customer is an adult

isAdult :: (String,Int,Int) -> Bool

isAdult (name, tel, age) = (age >= 18)

• Example 2: Write a function to update the telephone number

updateMove :: (String,Int,Int) -> Int -> (String,Int,Int)

• Example 3: Write a function to update age after a birthday

updateAge :: (String,Int,Int) -> (String,Int,Int)
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General Definition of a Function: Patterns with Tuples

• Definition: Functions now have the form

<function-name> :: <type 1> -> ... -> <type n> -> <out-type>

<function-name> <pat 1> ... <pat n> = <exp n>

• Patterns: Patterns are

– Variables x: Use for any type

– Constants 0, True, ‘‘cherry’’: Definition by cases

– Tuples (x,..,z): If the argument has a tuple-type

– Wildcards : If the output doesn’t use the input

• In general: Use several lines and mix patterns.
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More Examples

• Example: Using values and wildcards

isZero :: Int -> Bool

isZero 0 = True

isZero = False

• Example: Using tuples and multiple arguments

expand :: Int -> (Int,Int) -> (Int,Int,Int)

expand n (x,y) = (n, n*x, n*y)

• Example: Days in the month

days :: String -> Int -> Int

days ‘‘January’’ x = 31

days ‘‘February’’ x = if isLeap x then 29 else 28

days ‘‘March’’ x = 31

.....
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New Types from Old III — Type Synonyms

• Motivation: More descriptive names for particular types.

• Definition: Type synonyms are declared with the keyword type.

type Team = String

type Goals = Int

type Match = ((Team,Goals), (Team,Goals))

numu :: Match

numu = ((‘‘Newcastle", 4), (‘‘Manchester Utd’’, 3))

• Functions: Types of functions are more descriptive, same code

homeTeam :: Match -> Team

totalGoals :: Match -> Goals
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Today You Should Have Learned

• Tuples: Collections of data from other types

• Pairs: Pairs, triples etc are examples of tuples

• Type synonyms: Make programs easier to understand

• Pattern Matching: General description of functions covering
definition by cases, tuples etc.

• Pitfall! What is the difference between

addPair :: (Int,Int) -> Int

addPair (x,y) = x + y

addTwo :: Int -> Int -> Int

addTwo x y = x + y
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Overview of Lecture 4 — List Types

• Lists: What are lists?

– Forming list types

– Forming elements of list types

• Functions over lists: Some old friends, some new friends

– Functions from CO1003/4: cons, append, head, tail

– Some new functions: map, filter

• Clarity: Unlike Java, Haskell treatment of lists is clear

– No list iterators!
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List Types and Expressions

• Example 1: [3, 5, 14] :: [Int] and [3, 4+1, double 7] :: [Int]

• Example 3: [’d’,’t’,’g’] :: [Char]

• Example 4: [[’d’], [’d’,’t’], [’d’,’t’,’g’]] :: [[Char]]

• Example 5: [double, square, cube] :: [Int -> Int]

• Empty List: The empty list is [] and belongs to all list types

• List Expressions: Lists are written using square brackets [...]

– If e1, . . . , en are expressions of type a

– Then [e1, ..., en] is an expression of type [a]
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Some built in functions - Two infix operators

• Cons: The cons function : adds an element to a list

: :: a -> [a] -> [a]

1 : [2,3,4] = [1,2,3,4]

addone : [square] = [addone, square]

’a’ : [’b’, ’z’] = [’a’, ’b’, ’z’]

• Append: Append joins two lists together

++ :: [a] -> [a] -> [a]

[True, True] ++ [False] = [True, True, False]

[1,2] ++ ([3] ++ [4,5]) = [1,2,3,4,5]

([1,2] ++ [3]) ++ [4,5] = [1,2,3,4,5]

[] ++ [54.6, 67.5] = [54.6, 67.5]

[6,5] ++ (4 : [7,3]) = [6,5,4,7,3]
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More Built In Functions

• Head and Tail: Head gives the first element of a list, tail the

remainder

head [double, square] = double

head ([5,6]++[6,7]) = 5

tail [double, square] = [square]

tail ([5,6]++[6,7]) = [6,6,7]

• Length and Sum: The length of a list and the sum of a list

of integers

length (tail [1,2,3]) = 2

sum [1+4,8,45] = 58

• Sequences: The list of integers from 1 to n is written

[1 .. n]
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Two New Functions — Map And Filter

• Map: Map is a function which has two inputs.

– The first input is a function eg f

– The second is a list eg [e1,e1,e3]

The output is the list obtained by applying the function to every

element of the input list eg [f e1, f e2, f e3]

• Filter: Filter is a function which has two inputs.

– The first is a test, ie a function returning a Bool.

– The second is a list

The output is the list of elements of the input list which the

function maps to True, ie those elements which pass the test.
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Using Map and Filter

• Even Numbers: The even numbers less than or equal to n

– evens::Int->[Int]

• Solution 1 — Using filter.

evens2 :: Int -> [Int]

evens2 n = filter isEven [1 .. n]

where isEven x = (x ‘mod‘ 2 == 0)

• Solution 2 — Using map
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Today You Should Have Learned

• Types: We have looked at list types

– What list types and list expressions looks like

– What built in functions are available

• New Functions:

– Map: Apply a function to every member of a list

– Filter: Delete those that don’t satisfy a property or test

• Algorithms: Develop an algorithm by asking

– Can I solve this problem by applying a function to every

member of a list or by deleting certain elements.
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Overview of Lecture 5

• Recall Map: Map is a function which has two inputs.

map add2 [2, 5, 6] = [4, 7, 8]

• Recall Filter: Filter is a function which has two inputs.

filter isEven [2, 3, 4, 5, 6, 7] = [2, 4, 6]

• List comprehension: An alternative way of writing lists

– Definition of list comprehension

– Comparison with map and filter
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List Comprehension — An alternative to map and filter

• Example 1: If ex = [2,4,7] then

[ 2*e | e <- xs ] = [4,8,14]

• Example 2: If isEven :: Int->Bool tests for even-ness

[ isEven e | e <- xs ] = [True,True,False]

• In General: (Simple) list comprehensions are of the form

[ 〈exp〉 | 〈variable〉 <- 〈list-exp〉 ]

• Evaluation: The meaning of a list comprehension is

– Take each element of list-exp, evaluate the expression exp

for each element and return the results in a list.
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Using List Comprehensions Instead of map

• Example 1: A function which doubles a list’s elements

double :: [Int] -> [Int]

• Example 2: A function which tags an integer with its evenness

isEvenList :: [Int] -> [(Int,Bool)]

• Example 3: A function to add pairs of numbers

addpairs :: [(Int,Int)] -> [Int]

• In general: map f l = [f x | x <- l]
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Using List Comprehensions Instead of Filter

• Intuition: List Comprehension can also select elements from a

list

• Example: We can select the even numbers in a list

[ e | e <- l, isEven e]

• Example: Selecting names beginning with A

names :: [String] -> [String]

names l :: [ e | e <- l , head e == ’A’ ]

• Example: Combining selection and applying functions

doubleEven :: [Int] -> [Int]

doubleEven l :: [ 2*e | e <- l , isEven e ]
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General Form of List Comprehension

• In General: These list comprehensions are of the form

[ 〈exp〉 | 〈variable〉 <- 〈list-exp〉 , 〈test〉 ]

• Example: Infact, we can use several tests — if l = [2,5,8,10]

[ 2*e | e <- l , isEven e , e>3 ] = [16,20]

• Key Example: Cartesian product of two lists is a list of all

pairs, such that for each pair, the first component comes from

the first list and the second component from the second list.

[ (x,y) | x<-[1,2,3], y<-[’a’,’b’,’c’] ]

= [(1,’a’), (1,’b’) ... ]

league :: [Team]

games = [ (t1,t2) | t1 <- league, t2 <- league, t1 /= t2]
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Removing Duplicates

• Problem: Given a list remove all duplicate entries

• Algorithm: Given a list,

– Keep first element

– Delete all occurrences of the first element

– Repeat the process on the tail

• Code:
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Today You Should Have Learned

• List Types: We have looked at list types

– What list types and list expressions looks like

– What built in functions are available

• List comprehensions: Like filter and map. They allow us to

– Select elements of a list

– Delete those that dont satisfy certain properties

– Apply a function to each element of the remainder
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Overview of Lecture 6

• Recursion: General features of recursion

– What is a recursive function?

– How do we write recursive functions?

– How do we evaluate recursive functions?

• Recursion over Natural Numbers: Special features

– How can we guarantee evaluation works?

– Recursion using patterns.

– Avoiding negative input.
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What is recursion?

• Example: Adding up the first n squares

hssquares n = 02 + 12 + ... + (n-1)2 + n2

• Types: First we give the type of summing-squares

hssquares :: Int -> Int

• Definitions: Our program is a function

hssquares 0 = 0

hssquares n = n*n + hssquares(n-1)

• Key Idea: hssquares is recursive as its definition contains hssquares

in a right-hand side – the function name “recurs”.
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General Definitions

• Definition: A function is recursive if the name recurs in its

definition.

• Intuition: You will have seen recursion in action before

– Imperative procedures which call themselves

– Divide-and-conquer algorithms

• Why Recursion: Recursive definitions tend to be

– Shorter, more understandable and easier to prove correct

– Compare with a non-recursive solution

nrssquares n = n * (n+0.5) * (n+1)/3
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Examples of evaluation

• Example 1: Let’s calculate hssquares 4

hssquares 4 ⇒ 4*4 + hssquares 3

⇒ 16 + (3*3 + hssquares 2)

. . .

⇒ 16 + (9 + .. (1 + hssquares 0))

⇒ 16 + (9 + ... (1 + 0)) ⇒ 30

• Example 2: Here is a non-terminating function

mydouble n = n + mydouble (n/2)

mydouble 4 ⇒ 4 + mydouble 2

⇒ 4 + 2 + mydouble 1

⇒ 4 + 2 + 1 + mydouble 0.5 ⇒ ......

• Question: Will evaluation stop?
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Problems with Recursion

• Questions: There are some outstanding problems

1. Is hssquares defined for every number?

2. Does an evaluation of a recursive function always terminate?

3. What happens if hssquares is applied to a negative number?

4. Are these recursive definitions sensible: f n = f n, g n = g (n+1)

• Answers: Here are the answers

1. Yes: The variable pattern matches every input.

2. Not always: See examples.

3. Trouble: Evaluation doesn’t terminate.

4. No: Why not?
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Primitive Recursion over Natural Numbers

• Motivation: Restrict definitions to get better behaviour

• Idea: Many functions defined by three cases

– A non-recursive call selected by the pattern 0

– A recursive call selected by the pattern n+1 (matches numbers

≥ 1)

– The error case deals with negative input

• Example Our program now looks like

hssquares2 0 = 0

hssquares2 (n+1) = (n+1)*(n+1) + hssquares n

hssquares2 x = error ‘‘Negative input’’
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Examples of recursive functions

• Example 1: star uses recursion over Int to return a string

star :: Int -> String

star 0 = []

star (n+1) = ’*’ : star n

star n = error ‘‘Negative input’’

• Example 2: power is recursive in its second argument

power :: Float -> Int -> Float

power x 0 = 1

power x (n+1) = x * power x n

power x n = error ‘‘Negative input’’
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Primitive Recursion

• In General: Use the following style of definition

〈function-name〉 0 = 〈exp 1〉
〈function-name〉 (n+1) = 〈exp 2〉
〈function-name〉 x = error〈message〉

where

〈exp 1〉 does not contain 〈function-name〉
〈exp 2〉 may contain 〈function-name〉 applied to n

• Evaluation: Termination guaranteed!

– If the input evaluates to 0, evaluate 〈exp 1〉

– If not, if the input is greater than 0, evaluate 〈exp 2〉

– If neither, return the error message
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Larger Example

• Problem: Produce a table for perf :: Int -> (String, Int)

where perf 1 = ("Arsenal",4) etc.

• Stage 1: We need some headings and then the actual table

printTable :: Int -> IO()

printTable numberTeams = putStr(header ++ rows numberTeams)

where

header = "Team\t Points\n"

• Stage 2: Convert each “row” to a string, recursively.

rows :: Int -> String

rows 0 = .....

rows (n+1) = .....

rows = .....
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The Function rows

• Base Case: If we want no entries, then just return []

rows 0 = []

• Recursive Case: Convert (n + 1)-rows by

– recursively converting the first n-rows, and

– adding on the (n+1)-th row

• Code: Code for the recursive call
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The Final Version

perf :: Int -> (String,Int)

perf 1 = ("Arsenal",4)

perf 2 = ("Notts",5)

perf 3 = ("Chelsea",7)

perf n = error "perf out of range"

rows :: Int -> String

rows 0 = []

rows (n+1) = rows n ++

fst(perf(n+1)) ++ "\t\t " ++

show(snd(perf(n+1))) ++ "\n"

rows _ = error"rows out of range"

printTable :: Int -> IO()

printTable numberTeams = putStr(header ++ rows numberTeams)

where

header = "Team\t\t Points\n"
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Today You Should Have Learned

• Recursion: Allows new functions to be written.

– Advantages: Clarity, brevity, tractability

– Disadvantages: Evaluation may not stop

• Primitive Recursion: Avoids bad behaviour of some recursive

functions

– The value at 0 is non-recursive

– Each recursive call uses a smaller input

– An error-clause catches negative inputs

• Algorithm: Ask yourself, what needs to be done to the recur-

sive call to get the answer.
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Overview of Lecture 7

• Lists: Another look at lists

– Lists are a recursive structure

– Every list can be formed by [] and :

• List Recursion: Primitive recursion for Lists

– How do we write primitive recursive functions

– Examples — ++, length, head, tail, take, drop, zip

• Avoiding Recursion?: List comprehensions revisited
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Recursion over lists

• Question: This lecture is about the following question

– We know what a recursive function over Int is

– What is a recursive function over lists?

• Answer: In general, the answer is the same as before

– A recursive function mentions itself in its definition

– Evaluating the function may reintroduce the function

– Hopefully this will stop at the answer
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Another Look at Lists

• Recall: The two basic operations concerning lists

– The empty list []

– The cons operator (:) :: a -> [a] -> [a]

• Key Idea: Every list is either empty, or of the form x:xs

[2,3,7] = 2:3:7:[] [True, False] = True:False:[]

• Recursion: Define recursive functions using the scheme

– Non-recursive call: Define the function on the empty list []

– Recursive call: Define the function on (x:xs) by using the

function only on xs
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Examples of Recursive Functions

• Example 1: Doubling every element of an integer list

double :: [Int] -> [Int]

double [] = []

double (x:xs) = (2*x) : double xs

• Example 2: Selecting the even members of a list

onlyEvens :: [Int] -> [Int]

onlyEvens [] = []

onlyEvens (x:xs) = if isEven x then x:rest else rest

where rest = onlyEvens xs

• Example 3: Flattening some lists

flatten :: [[a]] -> [a]

flatten [] = []

flatten (x:xs) = x ++ flatten xs

Roy Crole Leicester, October 6, 2005

72



The General Pattern

• Definition: Primitive Recursive List Functions are given by

〈function-name〉 [] = 〈expression 1〉
〈function-name〉 (x:xs) = 〈expression 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain expressions 〈function-name〉 xs

• Compare: Very similar to recursion over Int

〈function-name〉 0 = 〈expression 1〉
〈function-name〉 (n+1) = 〈expression 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain expressions 〈function-name〉 n
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More Examples:

• Example 4: Append is defined recursively

append :: [a] -> [a] -> [a]

• Example 5: Testing if an integer is an element of a list

member :: Int -> [Int] -> Bool

• Example 6: Reversing a list

reverse :: [a] -> [a]
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What can we do with a list?

• Mapping: Applying a function to every member of the list

double [2,3,72,1] = [2*2, 2*3, 2*72, 2*1]

isEven [2,3,72,1] = [True, False, True, False]

• Filtering: Selecting particular elements

onlyEvens [2,3,72,1] = [2,72]

• Taking Lists Apart: head, tail, take, drop

• Combining Lists: zip

• Folding: Combining the elements of the list

sumList [2,3,7,2,1] = 2 + 3 + 7 + 2 + 1
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List Comprehension Revisited OP

• Recall: List comprehensions look like

[ 〈exp〉 | 〈variable〉 <- 〈list-exp〉 , 〈test〉 ]

• Intuition: Roughly speaking this means

– Take each element of the list 〈list-exp〉

– Check they satisfy 〈test〉

– Form a list by applying 〈exp〉 to those that do

• Idea: Equivalent to filtering and then mapping. As these are

recursive, so are list comprehensions although the recursion is

hidden
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Today You Should Have Learned

• List Recursion: Lists are recursive data structures

– Hence, functions over lists tend to be recursive

– But, as before, general recursion is badly behaved

• Primitive List Recursion: Similar to natural numbers

– A non-recursive call using the pattern []

– A recursive call using the pattern (x:xs)

• List comprehension: An alternative way of doing some recur-

sion
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Overview of Lecture 8

• Problem: Our restrictions on recursive functions are too severe

• Solution: New definitional formats which keep termination

– Using new patterns

– Generalising the recursion scheme

• Examples: Applications to integers and lists

• Sorting Algorithms: What is a sorting algorithm?

– Insertion Sort, Quicksort and Mergesort
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More general forms of primitive recursion

• Recall: Our primitive recursive functions follow the scheme

– Base Case: Define the function non-recursively at 0

– Inductive Case: Define the function at (n+1) in terms of

the function at n

〈function-name〉 0 = 〈exp 1〉
〈function-name〉 (n+1) = 〈exp 2〉
〈function-name〉 x = error〈message〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain 〈function-name〉 applied to n

• Motivation: But some functions do not fit this scheme, requir-

ing more complex patterns
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Fibonacci Numbers – More Complex Patterns

• Example: The first Fibonacci numbers are 0,1. For each sub-

sequent Fibonacci number, add the previous two together

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

• Problem: The following does not terminate on input 1

fib 0 = 0

fib (n+1) = fib n + fib (n-1)

• Solution: The new pattern (n+2) matches inputs ≥ 2

fib 0 = 0

fib 1 = 1

fib (n+2) = fib (n+1) + fib n

• In General: There are patterns (n+1), (n+2), (n+3)
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More general recursion on lists

• Recall: Our primitive recursive functions follow the pattern

– Base Case: Defines the function at [] non-recursively

– Inductive Case: Defines the function at (x:xs) in terms of

the function at xs

〈function-name〉 [] = 〈exp 1〉
〈function-name〉 (x:xs) = 〈exp 2〉

where

〈expression 1〉 does not contain 〈function-name〉
〈expression 2〉 may contain 〈function-name〉 applied to xs

• Motivation: As with integers, some functions don’t fit this

shape
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More General Patterns for Lists

• Recall: With integers, we used more general patterns.

• Idea: Use (x:(y:xs)) pattern to access first two elements

• Example: We want a function to delete every second element

delete [2,3,5,7,9,5,7] = [2,5,9,7]

• Solution: Here is the code

delete :: [a] -> [a]

delete [] = []

delete [x] = [x]

delete (x:(y:xs)) = x : delete xs

• Example: To delete every third element use pattern (x:(y:(z:xs)))
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Examples of Recursion and patterns — See how the typing helps

• Example 1: Summing pairs in a list of pairs

sumPairs :: [(Int,Int)] -> Int

• Example 2: Unzipping lists unZip :: [(a,b)] -> ([a],[b])

Roy Crole Leicester, October 6, 2005

84



Sorting Algorithms 1: Insertsort

• Problem: A sorting algorithm rearranges a list in order

sort [2,7,13,5,0,4] = [0,2,4,5,7,13]

• Recursion: Such algorithms usually recursively sort a smaller

list

• Insertsort Alg: To sort a list, sort the tail recursively, and then

insert the head

• Code:

inssort :: [Int] -> [Int]

inssort [] = []

inssort (x:xs) = insert x (inssort xs)

where insert puts the number x in the correct place
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The function insert

• Patterns: Insert takes two arguments, number and list

– The recursion for insert doesn’t depend on the number

– The recursion for insert does depend on whether the list is

empty or not — use the [] and (x:xs) patterns

• Code: Here is the final code

insert :: Int -> [Int] -> [Int]

insert n [] = [n]

insert n (x:xs)

| n <= x = n:x:xs

| otherwise = x:(insert n xs)
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Sorting Algorithms 2: Quicksort

• Quicksort Alg: Given a list l and a number n in the list

sort l = sort those elements less than n ++
number of occurrences of n ++
sort those elements greater than n

• Code: The algorithm may be coded

qsort :: [Int] -> [Int]

qsort [] = []

qsort (x:xs) = qsort (less x xs) ++

occs x (x:xs) ++

qsort (more x xs)

where less, occs, more are auxiliary functions
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Defining the Auxiliary Functions

• Problem: The auxiliary functions can be specified

– less takes a number and a list and returns those elements

of the list less than the number

– occs takes a number and a list and returns the occurrences

of the number in the list

– more takes a number and a list and returns those elements

of the list more than the number

• Code: Using list comprehensions gives short code

less, occs, more :: Int -> [Int] -> [Int]

less n xs = [x | x <- xs, x < n]

occs n xs = [x | x <- xs, x == n]

more n xs = [x | x <- xs, x > n]
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Sorting Algorithm 3: Mergesort

• Mergesort Alg: Split the list in half, recursively sort each half

and merge the results

• Code: Overall function reflects the algorithm

msort [] = []

msort [x] = [x]

msort xs = merge (msort ys) (msort ws)

where (ys,ws) = (take l xs, drop l xs)

l = length xs ‘div‘ 2

where merge combines two sorted lists

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys) = if x<y then x : merge xs (y:ys)

else y : merge (x:xs) ys
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Today You Should Have Learned OP

• Recursion Schemes: We’ve generalised the recursion schemes

to allow more functions to be written

– More general patterns

– Recursive calls to ANY smaller value

• Examples: Applied them to recursion over integers and lists

• Sorting Algorithms: We’ve put these ideas into practice by

defining three sorting algorithms

– Insertion Sort

– QuickSort

– MergeSort
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Overview of Lecture 9

• Motivation: Why do we want higher order functions

• Definition: What is a higher order function

• Examples:

– Mapping: Applying a function to every member of a list

– Filtering: Selecting elements of a list satisfying a property

• Application: Higher order sorting algorithms
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Motivation

• Example 1: A function to double the elements of a list

doubleList :: [Int] -> [Int]

doubleList [] = []

doubleList (x:xs) = (2*x) : doubleList xs

• Example 2: A function to square the elements of a list

squareList :: [Int] -> [Int]

squareList [] = []

squareList (x:xs) = (x*x) : squareList xs

• Example 3: A function to increment the elements of a list

incList :: [Int] -> [Int]

incList [] = []

incList (x:xs) = (x+1) : incList xs
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The Common Pattern

• Problem: Three separate definitions despite a clear pattern

• Intuition: Examples apply a function to each member of a list

function :: Int -> Int

functionList :: [Int] -> [Int]

functionList [] = []

functionList (x:xs) = (function x) : functionList xs

where in our previous examples function is

double square inc

• Key Idea: Make auxiliary function function an input
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A Higher Order Function — map

• The Idea Coded:

map f [] = []

map f (x:xs) = (fx) : map f xs

• Advantages: There are several advantages

– Shortens code as previous examples are given by

doubleList xs = map double xs

squareList xs = map square xs

incList xs = map inc xs

– Captures the algorithmic content and is easier to understand

– Easier code-modification and code re-use
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A Definition of Higher Order Functions

• Question: What is the type of map?

– First argument is a function

– Second argument is a list whose elements have the same

type and the input of the function.

– Result is a list whose elements are the output type of the

function.

• Answer: So overall type is map :: (a -> b) -> [a] -> [b]

• Definition: A function is higher-order if an input is a function.

• Another Example: Type of filter is

filterInt :: (a -> Bool) -> [a] -> [a]
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Quicksort Revisited

• Idea: Recall our implementation of quicksort

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x:xs) = qsort less ++ occs ++ qsort more

where

less = [e | e<-xs, e<x]

occs = x : [e | e<-xs, e==x]

more = [e | e<-xs, e>x]

• Polymorphism: Quicksort requires an order on the elements:

– The output list depends upon the order on the elements

– This requirement is reflected in type class information Ord a

– Don’t worry about type classes as they are beyond this course
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Limitations of Quicksort

• Example: Games tables might have type [(Team,Points)]

• Problem: How can we order the table?

Arsenal 16

AVilla 16

Derby 10

Birm. 4

...

• Solution: Write a new function for this problem

tSort [] = []

tSort (x:xs) = tSort less ++ [x] ++ tSort more

where more = [e| e<-xs, snd e > snd x]

less = [e| e<-xs, snd e < snd x]

• What did we assume here?
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Higher Order Sorting

• Motivation: But what if we want other orders, eg

– Sort teams in order of names, not points

– Sort on points, but if two teams have the same points, com-

pare names

• Key Idea: Make the comparison a parameter of quicksort

qsortCp :: (a -> a -> Bool) -> [a] -> [a]

qsortCp ord [] = []

qsortCp ord (x:xs) = qsortCp ord less ++ occs ++ qsortCp ord more

where less = [ e | e <- xs, ord e x]

occs = x : [ e | e <- xs, e == x]

more = [ e | e <- xs, ord x e]
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Examples

• Key Idea: To use a higher order sorting algorithm, use the

required order to define the function to sort by

• Example 1: To sort by names

ord (t, p) (t’, p’) = t < t’

• Example 2: To sort by points and then names

ord (t, p) (t’, p’) = (p < p’) || (p == p’ && t < t’)

• What should we assume about ord?
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Today You Should Have Learned

• Higher Order Functions: Functions which takes functions as

input

– Facilitates code reuse and more abstract code

– Many list functions are either map, filter or fold

• HO Sorting: An application of higher order functions to sorting

– Produces more powerful sorting

– Order of resulting list determined by a function

– Lexicographic order allows us to try one order and then an-

other
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Overview of Lecture 10

• Motivation: Some examples leading to polymorphism

• Definition: What is parametric polymorphism?

– What is a polymorphic type?

– What is a polymorphic function?

– Polymorphism and higher order functions

– Applying polymorphic functions to polymorphic expressions
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Monomorphic length

• Example: Let us define the length of a list of integers

mylength :: [Int] -> Int

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

• Problem: We want to evaluate the length of a list of characters

Prelude> mylength [’a’, ’g’]

ERROR: Type error in application

*** expression : mylength [’a’,’g’]

*** term : [’a’,’g’]

*** type : [Char]

*** does not match : [Int]

• Solution: Define a new length function for lists of characters

. . . but this is not very efficient!
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Polymorphic length

• Better Solution: The algorithm’s input depends on the list

type, but not on the type of integers.

• Idea: An alternative approach to typing mylength

– There is one input and one output: mylength :: a -> b

– The output is an integer: mylength :: a -> Int

– The input is a list: mylength :: [c] -> Int

– There is nothing more to infer from the code of mylength so

mylength :: [c] -> Int

This is an efficient function - works at all list types!
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Haskell’s Polymorphic Type System

• Types: Now we will deal with the following types:

– Basic, built in types: Int, Char, Bool, String, Float

– Type variables representing any type: a, b, c, ...

– Types built with type construc tors: [], ->, (,)

[Int] a->a a->b a->Bool (String,a->a) [a->Bool]

– Type synonyms: type <type-name> = <type-expression>

type Point = (Int,Int)

type Line = (Point,Point)

type Test = a->Bool
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Some Definitions

• Polymorphism is the ability to appear in different forms

• Definition: A type is parametric polymorphic iff it contains

type variables (that is, type parameters).

• Definition: A function is parametric polymorphic iff it can be

called on different types of input, and it is implemented by (code

for) a single algorithm

• Definition: A function is overloaded iff it can be called on

different types of input, and for each type of input, the function

is implemented by (code for) a particular algorithm.

• Examples: Of overloading are the arithmetic operators: integer

and floating-point addition.

Roy Crole Leicester, October 6, 2005

107

Polymorphic Expressions

• Key Idea: Expressions have many types

– Amongst these is a principle type

• Example: What is the type of id x = x

– id sends an integer to an integer. So id :: Int -> Int

– id sends a list of type a to a list of type a. So id::[a]->[a]

– id sends an expression of type b to an expression of type b.

So id::b->b

• Principle Type: The last type includes the previous two – why?

– In fact the principal type of id is id::b->b – why?
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Examples

• Example 1: What is the type of map

map f [] = []

map f (x:xs) = f x : map f xs

• Example 2: What is the type of filter

filter f [] = []

filter f (x:xs) = if f x then x:filter f xs else filter f xs

• Example 3: What is the type of iterate

iterate f 0 x = x

iterate f (n+1) x = f (iterate f n x)
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Applying Polymorphic Expressions to Polymorphic Functions

• Previously: The typing of applications of expressions:

– If exp1 is an expression with type a -> b

– And exp2 is an expression with type a

– Then exp1 exp2 has type b

• Problem: How does this apply to polymorphic functions?

length :: [c] -> Int

[2,4,5] :: [Int]

length [2,4,5] :: Int

• Key Idea: Argument type can be an instance of input type
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When is a Type an Instance of Another Type

• Recall: Two facts about expressions containing variables

– Variables stand for arbitrary elements of a particular type

– Instances of the expression are obtained by substituting ex-

pressions for variables

• Key Idea: (Parametric) polymorphic types are defined in the

same way:

– Type-expressions may contain type-variables

– Instances of type-expressions are obtained by substituting

types for type-variables

• Example: [Int] is an instance of [c] – substitute Int for c
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More formally - Unification OP

• Monomorphic: Can a function be applied to an argument?

– If the function’s input type is the same type as its argument

f::a->b x::a
f x :: b

• Polymorphically: Can a function be applied to an argument?

– If the function’s input type is unifiable with argument’s type

f::a->b x::c θ unifies a,c
f x ::θb

where θ maps type variables to types

• Example: In the length example, set θc=Int
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Example

• Past Paper: Assume f is a function with principle type

f::([a],[b])->Int->[(b,a)]

Do the following expressions type check? State Yes or No with

a brief reason and, if Yes, what is the principal type of the

expression?

1. f (3,3) 2

2. f ([],[]) 5

3. f ([tail,head], []) 3

4. f ([True,False], [’x’])
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Today You Should Have Learned

• Polymorphism:

– Saves on code — one function (algorithm) has many types

– This implements our algorithmic intuition

• Type Checking: Expressions and functions have many types

including a principle one

– Polymorphic functions are applied to expressions whose type

is an instance of the type of the input of the function
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