Overview of Lecture 1

• From Imperative to Functional Programming:
 – What is imperative programming?
 – What is functional programming?

• Key Ideas in Functional Programming:
 – Types: Provide the data for our programs
 – Functions: These are our programs!

• Advantages:
 – Haskell code is typically short
 – Haskell code is close to the algorithms used

Roy Crole
Leicester, October 6, 2005
What is Imperative Program — Adding up square numbers

- **Problem:** Add up the first \(n \) square numbers

\[
\text{ssquares } n = 0^2 + 1^2 + \ldots + (n-1)^2 + n^2
\]

- **Program:** We could write the following in Java

```java
public int ssquares(int n) {
    private int s, i;
    s = 0; i = 0;
    while (i < n) { i = i + 1; s = s + i * i; }
}
```

- **Execution:** We may visualize running the program as follows

<table>
<thead>
<tr>
<th>(Stack) Memory</th>
<th>ssquares 4</th>
<th>(Stack) Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s = ??)</td>
<td></td>
<td>(s = 30)</td>
</tr>
<tr>
<td>(i = ??)</td>
<td></td>
<td>(i = 4)</td>
</tr>
</tbody>
</table>

- **Key Idea:** Imperative programs transform the memory
The Two Aspects of Imperative Programs

- **Functional Content:** What the program achieves
 - Programs take some input values and return an output value
 - `ssquares` takes a number and returns the sum of the squares up to and including that number

- **Implementational Content:** How the program does it
 - Imperative programs transform the memory using variable declarations and assignment statements
 - `ssquares` uses variables `i` and `s` to represent locations in memory. The program transforms the memory until `s` contains the correct number.
What is Functional Programming?

• **Motivation:** Problems arise as programs contain two aspects:
 – High-level algorithms and low-level implementational features
 – Humans are good at the former but not the latter

• **Idea:** The idea of functional programming is to
 – Concentrate on the functional (I/O) behaviour of programs
 – Leave memory management to the language implementation

• **Summary:** Functional languages are more abstract and avoid low level detail.
A Functional Program — Summing squares in Haskell

• Types: First we give the type of summing-squares

```haskell
types :: Int -> Int
```

• Functions: Our program is a function

```haskell
hssquares 0 = 0
hssquares n = n*n + hssquares(n-1)
```

• Evaluation: Run the program by expanding definitions

```haskell
hssquares 2  \Rightarrow  2*2 + hssquares 1
hssquares 2  \Rightarrow  4 + hssquares 1
hssquares 2  \Rightarrow  4 + (1*1 + hssquares 0)
```

```
⇒ 4 + (1 + 0)
⇒ 4 + 1
⇒ 5
```

• Comment: No mention of memory in the code.
Key Ideas in Functional Programming I — Types

• **Motivation**: Recall from CO1003/4 that types model data.

• **Integers**: Int is the Haskell type \{\ldots, -2, -1, 0, 1, 2, \ldots\}

• **String**: String is the Haskell type of lists of characters.

• **Complex Datatypes**: Can be made from the basic types, eg lists of integers.

• **Built in Operations ("Functions on types")**:
 - Arithmetic Operations: + * - div mod abs
 - Ordering Operations: > >= == /= <= <
Key Ideas in Functional Programming II — Functions

- **Intuition:** Recall from CO1011, a function $f: a \rightarrow b$ between sets associates to every input-value a unique output-value

 \[x \in a \rightarrow \text{Function } f \rightarrow y \in b \]

- **Example:** The *square* and *cube* functions are written

 \[
 \begin{align*}
 \text{square :: Int -> Int} & \quad \text{cube :: Int -> Int} \\
 \text{square } x &= x \times x & \text{cube } x &= x \times \text{square } x
 \end{align*}
 \]

- **In General:** In Haskell, functions are defined as follows

 \[
 \langle \text{function-name} \rangle :: \langle \text{input type} \rangle \rightarrow \langle \text{output type} \rangle \\
 \langle \text{function-name} \rangle \langle \text{variable} \rangle = \langle \text{expression} \rangle
 \]
Functions with Multiple Arguments

- **Intuition:** A function f with n inputs is written $f::a_1->...->a_n->a$

 $x_1 \in a_1 \rightarrow$ Function f $\rightarrow y \in a$

 $x_2 \in a_2 \rightarrow$

 \vdots

 $x_n \in a_n \rightarrow$

- **Example:** The “distance” between two integers

 $\text{diff} :: \text{Int} -> \text{Int} -> \text{Int}$

 $\text{diff} \ x \ y = \text{abs} \ (x - y)$

- **In General:**

 $(\text{function-name}) :: (\text{type 1})->...->(\text{type n})->(\text{output-type})$

 $(\text{function-name}) (\text{variable 1})... (\text{variable n}) = (\text{expression})$

Roy Crole
Leicester, October 6, 2005
Key Idea III — Expressions

• Motivation: Get the result/output of a function by applying it to an argument/input

 – Write the function name followed by the input

• In General: Application is governed by the typing rule

 – If f is a function of type $a \rightarrow b$, and e is an expression of type a,

 – then $f \ e$ is the result of applying f to e and has type b

• Key Idea: Expressions are fragments of code built by applying functions to arguments.

 square 4 square (3 + 1) square 3 + 1
 cube (square 2) diff 6 7 square 2.2
More Expressions: Use quotes to turn functions into infix operations and brackets to turn infix operations into functions

\[
\begin{align*}
5 \times 4 & \quad (\times) \ 5 \ 4 \\
5 \ -(3 \times 4) & \quad (5-3) \times 4 \\
\text{mod} & \ 13 \ 4 \\
7 \text{ } \geq (3 \times 3) & \quad 5 \times (-1)
\end{align*}
\]

Precedence: Usual rules of precedence and bracketing apply

Example of Evaluation:

\[
\begin{align*}
cube(square3) & \Rightarrow (square 3) \times square (square 3) \\
& \Rightarrow (3\times3) \times ((square 3) \times (square 3)) \\
& \Rightarrow 9 \times ((3\times3) \times (3\times3)) \\
& \Rightarrow (9 \times (9 \times 9)) \\
& \Rightarrow 729
\end{align*}
\]

The final outcome of an evaluation is called a value
Summary — Comparing Functional and Imperative Programs

• **Difference 1: Level of Abstraction**
 - Imperative Programs include low level memory details
 - Functional Programs describe only high-level algorithms

• **Difference 2: How execution works**
 - Imperative Programming based upon memory transformation
 - Functional Programming based upon expression evaluation

• **Difference 3: Type systems**
 - Type systems play a key role in functional programming
Today You Should Have Learned ...

- **Types**: A type is a collection of data values

- **Functions**: Transform inputs to outputs
 - We build complex expressions by defining functions and applying them to other expressions
 - The simplest (evaluated) expressions are (data) values

- **Evaluation**: Calculates the result of applying a function to an input
 - Expressions can be evaluated by hand or by HUGS to values

- **Now**: Go and look at the first practical!
Overview of Lecture 2

- **New Types:** Today we shall learn about the following types
 - The type of booleans: `Bool`
 - The type of characters: `Char`
 - The type of strings: `String`
 - The type of fractions: `Float`

- **New Functions and Expressions:** And also about the following functions
 - Conditional expressions and guarded functions
 - Error handling and local declarations
Booleans and Logical Operators

- **Values of Bool**: Contains two values — True, False

- **Logical Operations**: Various built-in functions
 - `&&` :: Bool -> Bool -> Bool
 - `||` :: Bool -> Bool -> Bool
 - `not` :: Bool -> Bool

- **Example**: Define the exclusive-OR function which takes as input two booleans and returns True just in case they are different.
 - `exOr` :: Bool -> Bool -> Bool
Conditionals — If statements

- **Example:** Maximum of two numbers

  ```haskell
  maxi :: Int -> Int -> Int
  maxi n m = if n >= m then n else m
  ```

- **Example:** Testing if an integer is 0

  ```haskell
  isZero :: Int -> Bool
  isZero x = if (x == 0) then True else False
  ```

- **Conditionals:** A *conditional expression* has the form

  ```haskell
  if b then e1 else e2
  ```

 where

 - `b` is an expression of type `Bool`

 - `e1` and `e2` are expressions with the **same** type
Guarded functions — An alternative to if-statements

- **Example:** `doubleMax` returns double the maximum of its inputs

  ```haskell
  doubleMax :: Int -> Int -> Int
  doubleMax x y
    | x >= y = 2*x
    | x < y = 2*y
  ```

- **Definition:** A guarded function is of the form

  ```haskell
  ⟨function-name⟩ :: ⟨type 1⟩ -⟩⟨type n⟩ -⟩⟨output type⟩
  ⟨function-name⟩ ⟨var 1⟩...⟨var n⟩
    | ⟨guard 1⟩ = ⟨expression 1⟩
    | ... = ...
    | ⟨guard m⟩ = ⟨expression m⟩
  where ⟨guard 1⟩,...,⟨guard m⟩ :: Bool
  ```
The Char type

- **Elements of Char**: Letters, digits and special characters

- **Forming elements of Char**: Single quotes form characters:

 \['d' \text{ :: Char} \]

 \['3' \text{ :: Char} \]

- **Functions**: Characters have codes and conversion functions

 \[\text{chr} :: \text{Int} \to \text{Char} \]

 \[\text{ord} :: \text{Char} \to \text{Int} \]

- **Examples**: Try them out!

 \[
 \text{offset :: Int}
 \]

 \[
 \text{offset = ord 'A' - ord 'a'}
 \]

 \[
 \text{capitalize :: Char} \to \text{Char}
 \]

 \[
 \text{capitalize ch = chr (ord ch + offset)}
 \]

 \[
 \text{isLower :: Char} \to \text{Bool}
 \]

 \[
 \text{isLower x = ('a' <= x) \&\& (x <= 'z')}\]

Roy Crole
Leicester, October 6, 2005

19
The String type

- **Elements of String**: Lists of characters

- **Forming elements of String**: Double quotes form strings

  ```
  "Newcastle Utd" "1a"
  ```

- **Special Strings**: Newline and Tab characters

  ```
  "Super \n Alan" "1\t2\t3" putStrLn("Super \n Alan")
  ```

- **Combining Strings**: Strings can be combined by `++`

  ```
  "Super " ++ "Alan " ++ "Shearer" = "Super Alan Shearer"
  ```

- **Example**: `duplicate` gives two copies of a string
The type of Fractions Float

- **Elements of Float**: Contains decimals, eg -21.3, 23.1e-2

- **Built in Functions**: Arithmetic, Ordering, Trigonometric

- **Conversions**: Functions between Int and String

 ceiling, floor, round :: Float -> Int
 fromIntegral :: Int -> Float
 show :: Float -> String
 read :: String -> Float

- **Overloading**: Overloading is when values/functions belong to several types

 2 :: Int show :: Int -> String
 2 :: Float show :: Float -> String

Roy Crole

Leicester, October 6, 2005
Error-Handling

- **Motivation:** Informative error messages for run-time errors

- **Example:** Dividing by zero will cause a run-time error

  ```haskell
  myDiv :: Float -> Float -> Float
  myDiv x y = x/y
  ```

- **Solution:** Use an error message in a guarded definition

  ```haskell
  myDiv :: Float -> Float -> Float
  myDiv x y |
  y /= 0 = x/y
  otherwise = error "Attempt to divide by 0"
  ```

- **Execution:** If we try to divide by 0 we get

  ```haskell
  Prelude> myDiv 5 0
  Program error: Attempt to divide by 0
  ```
Local Declarations — where

- **Motivation**: Functions will often depend on other functions

- **Example**: Summing the squares of two numbers

  ```haskell
  sq :: Int -> Int
  sq x = x * x

  sumSquares :: Int -> Int -> Int
  sumSquares x y = sq x + sq y
  ```

- **Problem**: Such definitions clutter the top-level environment

- **Answer**: Local definitions allow auxiliary functions

  ```haskell
  sumSquares2 :: Int -> Int -> Int
  sumSquares2 x y = sq x + sq y
  where sq z = z * z
  ```
• **Quadratic Equations:** The solutions of $ax^2 + bx + c = 0$ are

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• **Types:** Our program will have type

```haskell
roots :: Float -> Float -> Float -> String
```

• **Guards:** There are 3 cases to check so use a guarded definition

```haskell
roots a b c
| a == 0 = ....
| b*b-4*a*c == 0 = ....
| otherwise = ....
```
The function \textit{roots} — \textit{Stage II}

- **Code:** Now we can add in the answers

\begin{verbatim}
roots a b c
 | a == 0 = error "Not a quadratic eqn"
 | b*b-4*a*c == 0 = "One root: " ++ show (-b/2*a)
 | otherwise = "Two roots: " ++
 show ((-b + sqrt (b*b-4*a*c))/2*a) ++
 "and" ++
 show ((-b - sqrt (b*b-4*a*c))/2*a)
\end{verbatim}

- **Problem:** This program uses several expressions repeatedly

 – Being cluttered, the program is hard to read

 – Similarly the program is hard to understand

 – Repeated evaluation of the same expression is inefficient
The final version of roots

- **Local decs:** Expressions used repeatedly are made local

 roots a b c
 | a == 0 = error "Not a quadratic eqn"
 | disc == 0 = "One root: " ++ show centre
 | otherwise = "Two roots: " ++
 show (centre + offset) ++
 "and" ++
 show (centre - offset)

 where
disc = b*b-4*a*c
offset = (sqrt disc) / 2*a
centre = -b/2*a

Roy Crole
Leicester, October 6, 2005
Today You Should Have Learned

• **Types:** We have learned about Haskell’s basic types. For each type we learned
 – Its basic values (elements)
 – Its built in functions

• **Expressions:** How to write expressions involving
 – Conditional expressions and Guarded functions
 – Error Handling and Local Declarations

Roy Crole
Leicester, October 6, 2005
Lecture 3 — New Types from Old

Roy Crole

Department of Computer Science
University of Leicester

October 6, 2005
Overview of Lecture 3

- **Building New Types:** Today we will learn about the following compound types
 - Pairs
 - Tuples
 - Type Synonyms

- **Describing Types:** As with basic types, for each type we want to know
 - What are the values of the type
 - What expressions can we write and how to evaluate them
From simple data values to complex data values

- **Motivation:** Data for programs modelled by values of a type

- **Problem:** Single values in basic types too simple for real data

- **Example:** A point on a plane can be specified by
 - A number for the x-coordinate and another for the y-coordinate

- **Example:** A person's complete name could be specified by
 - A string for the first name and another for the second name

- **Example:** The performance of a football team could be
 - A string for the team and a number for the points
Examples: For instance

- The expression (5,3) has type (Int, Int)
- The name (‘‘Alan’’, ‘‘Shearer’’) has type (String, String)
- The performance (‘‘Newcastle’’, 22) has type (String, Int)

Question: What are the values of a pair type?

Answer: A pair type contains pairs of values, ie

- If e1 has type a and e2 has type b
- Then (e1, e2) has type (a, b)
Functions using Pairs

- **Types:** Pair types can be used as input and/or output types

- **Examples:** The built-in functions `fst` and `snd` are vital

 \[
 \text{fst :: } (a, b) \rightarrow a \\
 \text{fst } (x, y) = x \\
 \]

 \[
 \text{winUpdate :: } (\text{String, Int}) \rightarrow (\text{String, Int}) \\
 \text{winUpdate } (x, y) = (x, y+3) \\
 \]

 \[
 \text{movePoint :: } \text{Int } \rightarrow \text{Int } \rightarrow (\text{Int, Int}) \rightarrow (\text{Int, Int}) \\
 \text{movePoint } m \ n \ (x, y) = (x+m, y+n) \\
 \]

- **Key Idea:** If input is a pair-type, use \((\langle \text{var1} \rangle, \langle \text{var2} \rangle)\) in definition

- **Key Idea:** If output is a pair-type, result is often \((\langle \text{exp1} \rangle, \langle \text{exp2} \rangle)\)
New Types from Old II — Tuple Types and Expressions

- **Motivation:** Some data consists of more than two parts

- **Example:** Person on a mailing list
 - Specified by name, telephone number, and age
 - A person \(p \) on the list can have type \((\text{String}, \text{Int}, \text{Int})\)

- **Idea:** Generalise pairs of types to collections of types

- **Type Rule:** Given types \(a_1, \ldots, a_n \), then \((a_1, \ldots, a_n)\) is a type

- **Expression Formation:** Given expressions \(e_1::a_1, \ldots, e_n::a_n \), then

\[(e_1, \ldots, e_n)::(a_1, \ldots, a_n)\]

Roy Crole
Leicester, October 6, 2005
Example 1: Write a function to test if a customer is an adult

```haskell
isAdult :: (String, Int, Int) -> Bool
isAdult (name, tel, age) = (age >= 18)
```

Example 2: Write a function to update the telephone number

```haskell
updateMove :: (String, Int, Int) -> Int -> (String, Int, Int)
```

Example 3: Write a function to update age after a birthday

```haskell
updateAge :: (String, Int, Int) -> (String, Int, Int)
```
General Definition of a Function: Patterns with Tuples

- **Definition:** Functions now have the form
 \[\text{<function-name>} :: \text{<type 1>} \to \ldots \to \text{<type n>} \to \text{<out-type>}\]

 \[\text{<function-name>} \ <\text{pat 1}> \ldots \ <\text{pat n}> = \ <\text{exp n}>\]

- **Patterns:** Patterns are
 - Variables \(x \): Use for any type
 - Constants 0, True, ‘‘cherry’’: Definition by cases
 - Tuples \((x,..,z)\): If the argument has a tuple-type
 - Wildcards _: If the output doesn't use the input

- **In general:** Use several lines and mix patterns.
More Examples

- **Example:** Using values and wildcards

  ```haskell
  isZero :: Int -> Bool
  isZero 0 = True
  isZero _ = False
  ```

- **Example:** Using tuples and multiple arguments

  ```haskell
  expand :: Int -> (Int,Int) -> (Int,Int,Int)
  expand n (x,y) = (n, n*x, n*y)
  ```

- **Example:** Days in the month

  ```haskell
  days :: String -> Int -> Int
  days "January" x = 31
  days "February" x = if isLeap x then 29 else 28
  days "March" x = 31
  ```
New Types from Old III — Type Synonyms

• Motivation: More descriptive names for particular types.

• Definition: Type synonyms are declared with the keyword type.

```haskell
type Team = String
type Goals = Int
type Match = ((Team,Goals), (Team,Goals))

numu :: Match
numu = (('Newcastle', 4), ('Manchester Utd', 3))
```

• Functions: Types of functions are more descriptive, same code

```haskell
homeTeam :: Match -> Team
totalGoals :: Match -> Goals
Roy Cole
Leicester, October 6, 2005
```
Today You Should Have Learned

- **Tuples**: Collections of data from other types
- **Pairs**: Pairs, triples etc are examples of tuples
- **Type synonyms**: Make programs easier to understand
- **Pattern Matching**: General description of functions covering definition by cases, tuples etc.

- **Pitfall!** What is the difference between

 \[
 \text{addPair :: (Int,Int) -> Int} \\
 \text{addPair (x,y) = x + y}
 \]

 \[
 \text{addTwo :: Int -> Int -> Int} \\
 \text{addTwo x y = x + y}
 \]
Lecture 4 — List Types

Roy Crole

Department of Computer Science
University of Leicester

October 6, 2005
Overview of Lecture 4 — List Types

• **Lists:** What are lists?
 – Forming list types
 – Forming elements of list types

• **Functions over lists:** Some old friends, some new friends
 – Functions from CO1003/4: cons, append, head, tail
 – Some new functions: map, filter

• **Clarity:** Unlike Java, Haskell treatment of lists is clear
 – No list iterators!
List Types and Expressions

- **Example 1:** \([3, 5, 14] :: [\text{Int}]\) and \([3, 4+1, \text{double 7}] :: [\text{Int}]\)

- **Example 3:** \(['d', 't', 'g'] :: [\text{Char}]\)

- **Example 4:** \([['d'], ['d', 't'], ['d', 't', 'g']] :: [[\text{Char}]]\)

- **Example 5:** \([\text{double, square, cube}] :: [\text{Int} \rightarrow \text{Int}]\)

- **Empty List:** The empty list is [] and belongs to all list types

- **List Expressions:** Lists are written using square brackets [...]
 - If \(e_1, \ldots, e_n\) are expressions of type \(a\)
 - Then \([e_1, \ldots, e_n]\) is an expression of type \([a]\)
Some built in functions - Two infix operators

- **Cons**: The cons function: adds an element to a list

 : :: a -> [a] -> [a]

 1 : [2,3,4] = [1,2,3,4]
 addone : [square] = [addone, square]
 'a' : ['b', 'z'] = ['a', 'b', 'z']

- **Append**: Append joins two lists together

 ++ :: [a] -> [a] -> [a]

 [True, True] ++ [False] = [True, True, False]
 [1,2] ++ ([3] ++ [4,5]) = [1,2,3,4,5]
 ([1,2] ++ [3]) ++ [4,5] = [1,2,3,4,5]
 [] ++ [54.6, 67.5] = [54.6, 67.5]
 [6,5] ++ (4 : [7,3]) = [6,5,4,7,3]
More Built In Functions

- **Head and Tail:** Head gives the first element of a list, tail the remainder

 \[
 \begin{align*}
 \text{head} \ [\text{double, square}] &= \text{double} \\
 \text{head} \ [5,6]+[6,7] &= 5 \\
 \text{tail} \ [\text{double, square}] &= [\text{square}] \\
 \text{tail} \ [5,6]+[6,7] &= [6,6,7]
 \end{align*}
 \]

- **Length and Sum:** The length of a list and the sum of a list of integers

 \[
 \begin{align*}
 \text{length} \ (\text{tail} \ [1,2,3]) &= 2 \\
 \text{sum} \ [1+4,8,45] &= 58
 \end{align*}
 \]

- **Sequences:** The list of integers from 1 to \(n\) is written

 \[
 [1..n]
 \]
Two New Functions — Map And Filter

- **Map**: Map is a function which has two inputs.
 - The first input is a function eg f
 - The second is a list eg $[e_1, e_1, e_3]$

 The output is the list obtained by applying the function to every element of the input list eg $[f(e_1), f(e_2), f(e_3)]$

- **Filter**: Filter is a function which has two inputs.
 - The first is a test, ie a function returning a Bool.
 - The second is a list

 The output is the list of elements of the input list which the function maps to True, ie those elements which pass the test.
Using Map and Filter

- **Even Numbers:** The even numbers less than or equal to \(n \)

 \[
 \text{evens} :: \text{Int} \to [\text{Int}]
 \]

- **Solution 1** — Using filter.

 \[
 \text{evens2} :: \text{Int} \to [\text{Int}]
 \text{evens2} \ n = \text{filter} \ \text{isEven} \ [1 \ldots n]
 \quad \text{where} \ \text{isEven} \ x = (x \mod 2 == 0)
 \]

- **Solution 2** — Using map
Today You Should Have Learned

- **Types:** We have looked at list types
 - What list types and list expressions looks like
 - What built in functions are available

- **New Functions:**
 - Map: Apply a function to every member of a list
 - Filter: Delete those that don’t satisfy a property or test

- **Algorithms:** Develop an algorithm by asking
 - Can I solve this problem by applying a function to every member of a list or by deleting certain elements.
Lecture 5 — List Comprehensions

Roy Crole

Department of Computer Science
University of Leicester

October 6, 2005
Overview of Lecture 5

- **Recall Map:** Map is a function which has two inputs.
 \[\text{map add2 } [2, 5, 6] = [4, 7, 8] \]

- **Recall Filter:** Filter is a function which has two inputs.
 \[\text{filter isEven } [2, 3, 4, 5, 6, 7] = [2, 4, 6] \]

- **List comprehension:** An alternative way of writing lists
 - Definition of list comprehension
 - Comparison with map and filter
List Comprehension — An alternative to map and filter

- **Example 1:** If \(\text{ex} = [2,4,7] \) then
 \[
 [2\times e \mid e \leftarrow \text{xs}] = [4,8,14]
 \]

- **Example 2:** If \(\text{isEven} :: \text{Int} \rightarrow \text{Bool} \) tests for even-ness
 \[
 [\text{isEven} e \mid e \leftarrow \text{xs}] = [\text{True}, \text{True}, \text{False}]
 \]

- **In General:** (Simple) list comprehensions are of the form
 \[
 [\langle \text{exp} \rangle \mid \langle \text{variable} \rangle \leftarrow \langle \text{list-exp} \rangle]
 \]

- **Evaluation:** The meaning of a list comprehension is

 - Take each element of \(\text{list-exp} \), evaluate the expression \(\text{exp} \)
 for each element and return the results in a list.
Using List Comprehensions Instead of map

- **Example 1:** A function which doubles a list's elements

 \[
 \text{double} :: [\text{Int}] \rightarrow [\text{Int}]
 \]

- **Example 2:** A function which tags an integer with its evenness

 \[
 \text{isEvenList} :: [\text{Int}] \rightarrow [(\text{Int},\text{Bool})]
 \]

- **Example 3:** A function to add pairs of numbers

 \[
 \text{addpairs} :: [(\text{Int},\text{Int})] \rightarrow [\text{Int}]
 \]

- **In general:** \(\text{map } f \ l = [f \ x \mid x \leftarrow l]\)
Using List Comprehensions Instead of Filter

- **Intuition:** List Comprehension can also select elements from a list.

- **Example:** We can select the even numbers in a list
 \[e \mid e \leftarrow l, \text{isEven} \ e \]

- **Example:** Selecting names beginning with A

  ```
  names :: [String] -> [String]
  names l :: [ e \mid e \leftarrow l, \text{head} \ e == 'A' ]
  ```

- **Example:** Combining selection and applying functions

  ```
  doubleEven :: [Int] -> [Int]
  doubleEven l :: [ 2*e \mid e \leftarrow l, \text{isEven} \ e ]
  ```
General Form of List Comprehension

- **In General:** These list comprehensions are of the form
 \[\langle \exp \rangle \mid \langle \text{variable} \rangle \leftarrow \langle \text{list-exp} \rangle, \langle \text{test} \rangle \]

- **Example:** Infact, we can use several tests — if \(l = \{2,5,8,10\} \)
 \[2*e \mid e \leftarrow l, \text{isEven } e, e > 3 \] = \([16,20]\)

- **Key Example:** Cartesian product of two lists is a list of all pairs, such that for each pair, the first component comes from the first list and the second component from the second list.
 \[(x,y) \mid x \leftarrow [1,2,3], y \leftarrow ['a','b','c'] \]
 \[= [(1,'a'), (1,'b') \ldots] \]

league :: [Team]
games = [(t1,t2) \mid t1 \leftarrow league, t2 \leftarrow league, t1 /= t2]
Removing Duplicates

- **Problem**: Given a list remove all duplicate entries

- **Algorithm**: Given a list,
 - Keep first element
 - Delete all occurrences of the first element
 - Repeat the process on the tail

- **Code**:
Today You Should Have Learned

- **List Types:** We have looked at list types
 - What list types and list expressions looks like
 - What built in functions are available

- **List comprehensions:** Like `filter` and `map`. They allow us to
 - Select elements of a list
 - Delete those that dont satisfy certain properties
 - Apply a function to each element of the remainder
Lecture 6 — Recursion over Natural Numbers

Roy Crole

Department of Computer Science
University of Leicester

October 6, 2005
Overview of Lecture 6

- **Recursion**: General features of recursion
 - What is a recursive function?
 - How do we write recursive functions?
 - How do we evaluate recursive functions?

- **Recursion over Natural Numbers**: Special features
 - How can we guarantee evaluation works?
 - Recursion using patterns.
 - Avoiding negative input.
What is recursion?

• Example: Adding up the first n squares

\[\text{hssquares } n = 0^2 + 1^2 + \ldots + (n-1)^2 + n^2 \]

• Types: First we give the type of summing-squares

\[\text{hssquares :: Int -> Int} \]

• Definitions: Our program is a function

\[\text{hssquares } 0 = 0 \]
\[\text{hssquares } n = n^2 + \text{hssquares } (n-1) \]

• Key Idea: hssquares is recursive as its definition contains hssquares in a right-hand side – the function name “recurs”.

Roy Cole
Leicester, October 6, 2005
General Definitions

• Definition: A function is recursive if the name recurs in its definition.

• Intuition: You will have seen recursion in action before
 – Imperative procedures which call themselves
 – Divide-and-conquer algorithms

• Why Recursion: Recursive definitions tend to be
 – Shorter, more understandable and easier to prove correct
 – Compare with a non-recursive solution
def sqares \(n = n \cdot (n+0.5) \cdot (n+1)/3 \)

Roy Crole
Leicester, October 6, 2005
Examples of evaluation

- **Example 1**: Let’s calculate hssquares 4

 \[\text{hssquares 4 } \Rightarrow 4 \times 4 + \text{hssquares 3} \]

 \[\Rightarrow 16 + (3 \times 3 + \text{hssquares 2}) \]

 \[\ldots \]

 \[\Rightarrow 16 + (9 + \ldots (1 + \text{hssquares 0})) \]

 \[\Rightarrow 16 + (9 + \ldots (1 + 0)) \Rightarrow 30 \]

- **Example 2**: Here is a non-terminating function

 \[
 \text{mydouble } n = n + \text{mydouble } (n/2)
 \]

 \[
 \text{mydouble } 4 \Rightarrow 4 + \text{mydouble } 2 \]

 \[\Rightarrow 4 + 2 + \text{mydouble } 1 \]

 \[\Rightarrow 4 + 2 + 1 + \text{mydouble } 0.5 \Rightarrow \ldots .\]

- **Question**: Will evaluation stop?
Problems with Recursion

- **Questions:** There are some outstanding problems

 1. Is \texttt{hssquares} defined for every number?
 2. Does an evaluation of a recursive function always terminate?
 3. What happens if \texttt{hssquares} is applied to a negative number?
 4. Are these recursive definitions sensible: \(f \ n = f \ n \), \(g \ n = g \ (n+1) \)

- **Answers:** Here are the answers

 1. Yes: The variable pattern matches every input.
 3. Trouble: Evaluation doesn’t terminate.
 4. No: Why not?
Motivation: Restrict definitions to get better behaviour

Idea: Many functions defined by three cases

- A non-recursive call selected by the pattern \(0\)

- A recursive call selected by the pattern \(n+1\) (*matches numbers \(\geq 1\)*)

- The error case deals with negative input

Example Our program now looks like

\[
\begin{align*}
\text{hssquares2 } 0 &= 0 \\
\text{hssquares2 } (n+1) &= (n+1)\times(n+1) + \text{hssquares } n \\
\text{hssquares2 } x &= \text{error ‘Negative input’}
\end{align*}
\]
Examples of recursive functions

• **Example 1:** star uses recursion over Int to return a string

 \[
 \text{star} :: \text{Int} \rightarrow \text{String} \\
 \text{star} 0 = [] \\
 \text{star} (n+1) = '*' : \text{star} n \\
 \text{star} n = \text{error} '\text{Negative input}'
 \]

• **Example 2:** power is recursive in its second argument

 \[
 \text{power} :: \text{Float} \rightarrow \text{Int} \rightarrow \text{Float} \\
 \text{power} x 0 = 1 \\
 \text{power} x (n+1) = x \times \text{power} x n \\
 \text{power} x n = \text{error} '\text{Negative input}'
 \]
Primitive Recursion

- **In General:** Use the following style of definition

\[
\begin{align*}
\text{function-name}(0) &= \exp{1} \\
\text{function-name}(n+1) &= \exp{2} \\
\text{function-name}(x) &= \text{error}(\text{message})
\end{align*}
\]

where

\[
\begin{align*}
\exp{1} &\text{ does not contain } \text{function-name} \\
\exp{2} &\text{ may contain } \text{function-name} \text{ applied to } n
\end{align*}
\]

- **Evaluation:** Termination guaranteed!

 - If the input evaluates to 0, evaluate \(\exp{1}\)

 - If not, if the input is greater than 0, evaluate \(\exp{2}\)

 - If neither, return the error message
Larger Example

- **Problem:** Produce a table for \(\text{perf} :: \text{Int} \rightarrow (\text{String}, \text{Int}) \) where \(\text{perf} 1 = ("Arsenal",4) \) etc.

- **Stage 1:** We need some headings and then the actual table.

 \[
 \text{printTable} :: \text{Int} \rightarrow \text{IO()}
 \]

 \[
 \text{printTable numberTeams} = \text{putStrLn(header ++ rows numberTeams)}
 \]

 where

 \[
 \text{header} = \text{"Team\tPoints\n"}
 \]

- **Stage 2:** Convert each "row" to a string, recursively.

 \[
 \text{rows :: Int} \rightarrow \text{IO()}
 \]

 \[
 \text{rows 0} = \ldots \ldots
 \]

 \[
 \text{rows (n+1)} = \ldots \ldots
 \]

 \[
 \text{rows} = \ldots \ldots
 \]

Roy Crole

Leicester, October 6, 2005
The Function rows

- **Base Case:** If we want no entries, then just return $[]$
 \[
 \text{rows } 0 = []
 \]

- **Recursive Case:** Convert $(n + 1)$-rows by
 - recursively converting the first n-rows, and
 - adding on the $(n+1)$-th row

- **Code:** Code for the recursive call
The Final Version

```haskell
perf :: Int -> (String, Int)
perf 1 = ("Arsenal", 4)
perf 2 = ("Notts", 5)
perf 3 = ("Chelsea", 7)
perf n = error "perf out of range"

rows :: Int -> String
rows 0 = []
rows (n+1) = rows n ++
    fst(perf(n+1)) ++ "\t\t " ++
    show(snd(perf(n+1))) ++ "\n"
rows _ = error "rows out of range"

printTable :: Int -> IO()
printTable numberTeams = putStrLn(header ++ rows numberTeams)
    where
    header = "Team\t\t Points\n"
```

Roy Crole
Leicester, October 6, 2005
Today You Should Have Learned

- **Recursion:** Allows new functions to be written.
 - Advantages: Clarity, brevity, tractability
 - Disadvantages: Evaluation may not stop

- **Primitive Recursion:** Avoids bad behaviour of some recursive functions
 - The value at 0 is non-recursive
 - Each recursive call uses a smaller input
 - An error-clause catches negative inputs

- **Algorithm:** Ask yourself, what needs to be done to the recursive call to get the answer.
Lecture 7 — Recursion over Lists

Roy Crole

Department of Computer Science
University of Leicester

October 6, 2005
• Lists: Another look at lists
 – Lists are a recursive structure

• List Recursion: Primitive recursion for lists
 – Examples — ++, length, head, tail, take, drop, zip
 – How do we write primitive recursive functions

• Avoiding Recursion? List comprehensions revisited
 – Every list can be formed by [] and : lists
 – lists are a recursive structure
 – Another look at lists
Recursion over lists

• **Question:** This lecture is about the following question

 – We know what a recursive function over \(\text{Int} \) is

 – What is a recursive function over lists?

• **Answer:** In general, the answer is the same as before

 – A recursive function mentions itself in its definition

 – Evaluating the function may reintroduce the function

 – Hopefully this will stop at the answer
Another Look at Lists

Recall:
- The two basic operations concerning lists
 - The empty list []
 - The cons operator (:): a -> [a] -> [a]

Key Idea:
Every list is either empty, or of the form x:xs
- [2, 3, 7] = 2:3:7:[]
- [True, False] = True:False:[]

Recursion:
Define recursive functions using the scheme
- Non-recursive call: Define the function on the empty list []
- Recursive call: Define the function on (x:xs) by using the function only on xs

Roy Crole
Leicester, October 6, 2005
Examples of Recursive Functions

- **Example 1:** Doubling every element of an integer list
 \[
 \text{double :: } \text{[Int}] \rightarrow \text{[Int]}
 \]
 \[
 \text{double } [] = []
 \]
 \[
 \text{double } (x:xs) = (2 \times x) : \text{double } xs
 \]

- **Example 2:** Selecting the even members of a list
 \[
 \text{onlyEvens :: } \text{[Int]} \rightarrow \text{[Int]}
 \]
 \[
 \text{onlyEvens } [] = []
 \]
 \[
 \text{onlyEvens } (x:xs) = \text{if isEven } x \text{ then } x:\text{rest} \text{ else } \text{rest}
 \text{ where rest = onlyEvens } xs
 \]

- **Example 3:** Flattening some lists
 \[
 \text{flatten :: } \text{[[a]]} \rightarrow \text{[a]}
 \]
 \[
 \text{flatten } [] = []
 \]
 \[
 \text{flatten } (x:xs) = x :: \text{flatten } xs
 \]
The General Pattern

• **Definition:** Primitive Recursive List Functions are given by

\[(\text{function-name}) \ [] = \langle \text{expression 1} \rangle \]
\[(\text{function-name}) \ (x:xs) = \langle \text{expression 2} \rangle \]

where

\[\langle \text{expression 1} \rangle \] does not contain \(\text{function-name} \)
\[\langle \text{expression 2} \rangle \] may contain expressions \(\text{function-name} \) \(xs \)

• **Compare:** Very similar to recursion over \(\text{Int} \)

\[(\text{function-name}) \ 0 = \langle \text{expression 1} \rangle \]
\[(\text{function-name}) \ (n+1) = \langle \text{expression 2} \rangle \]

where

\[\langle \text{expression 1} \rangle \] does not contain \(\text{function-name} \)
\[\langle \text{expression 2} \rangle \] may contain expressions \(\text{function-name} \) \(n \)
More Examples:

• **Example 4:** Append is defined recursively
 \[
 \text{append} :: [a] \rightarrow [a] \rightarrow [a]
 \]

• **Example 5:** Testing if an integer is an element of a list
 \[
 \text{member} :: \text{Int} \rightarrow [\text{Int}] \rightarrow \text{Bool}
 \]

• **Example 6:** Reversing a list
 \[
 \text{reverse} :: [a] \rightarrow [a]
 \]
What can we do with a list?

- **Mapping:** Applying a function to every member of the list

 -\[\text{double } [2,3,72,1] = [2*2, 2*3, 2*72, 2*1]\]

 \[\text{isEven } [2,3,72,1] = [\text{True, False, True, False}]\]

- **Filtering:** Selecting particular elements

 \[\text{onlyEvens } [2,3,72,1] = [2,72]\]

- **Taking Lists Apart:** head, tail, take, drop

- **Combining Lists:** zip

- **Folding:** Combining the elements of the list

 \[\text{sumList } [2,3,7,2,1] = 2 + 3 + 7 + 2 + 1\]
List Comprehension Revisited

- **Recall:** List comprehensions look like
 \[
 \left[\langle \text{exp} \rangle \mid \langle \text{variable} \rangle \leftarrow \langle \text{list-exp} \rangle, \langle \text{test} \rangle \right]
 \]

- **Intuition:** Roughly speaking this means
 - Take each element of the list \(\langle \text{list-exp} \rangle\)
 - Check they satisfy \(\langle \text{test} \rangle\)
 - Form a list by applying \(\langle \text{exp} \rangle\) to those that do

- **Idea:** Equivalent to filtering and then mapping. As these are recursive, so are list comprehensions although the recursion is hidden.
Today You Should Have Learned

- **List Recursion**: Lists are recursive data structures
 - Hence, functions over lists tend to be recursive
 - But, as before, general recursion is badly behaved

- **Primitive List Recursion**: Similar to natural numbers
 - A non-recursive call using the pattern `[]`
 - A recursive call using the pattern `(x:xs)`

- **List comprehension**: An alternative way of doing some recursion
Overview of Lecture 8

• **Problem:** Our restrictions on recursive functions are too severe

• **Solution:** New definitional formats which keep termination
 – Using new patterns
 – Generalising the recursion scheme

• **Examples:** Applications to integers and lists

• **Sorting Algorithms:** What is a sorting algorithm?
 – Insertion Sort, Quicksort and Mergesort
More general forms of primitive recursion

- **Recall:** Our primitive recursive functions follow the scheme

 - **Base Case:** Define the function non-recursively at 0

 - **Inductive Case:** Define the function at \((n+1)\) in terms of the function at \(n\)

\[
\begin{align*}
\langle\text{function-name}\rangle \ 0 &= \langle\text{exp} \ 1\rangle \\
\langle\text{function-name}\rangle \ (n+1) &= \langle\text{exp} \ 2\rangle \\
\langle\text{function-name}\rangle \ x &= \text{error}\langle\text{message}\rangle
\end{align*}
\]

where

\[
\begin{align*}
\langle\text{expression} \ 1\rangle & \text{ does not contain } \langle\text{function-name}\rangle \\
\langle\text{expression} \ 2\rangle & \text{ may contain } \langle\text{function-name}\rangle \text{ applied to } n
\end{align*}
\]

- **Motivation:** But some functions do not fit this scheme, requiring more complex patterns
Fibonacci Numbers – More Complex Patterns

- **Example:** The first Fibonacci numbers are 0, 1. For each subsequent Fibonacci number, add the previous two together

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34

- **Problem:** The following does not terminate on input 1

 fib 0 = 0
 fib (n+1) = fib n + fib (n-1)

- **Solution:** The new pattern \((n+2) \) matches inputs \(\geq 2 \)

 fib 0 = 0
 fib 1 = 1
 fib (n+2) = fib (n+1) + fib n

- **In General:** There are patterns \((n+1), (n+2), (n+3) \)
More general recursion on lists

- **Recall**: Our primitive recursive functions follow the pattern
 - **Base Case**: Defines the function at [] non-recursively
 - **Inductive Case**: Defines the function at (x:xs) in terms of the function at xs

\[
\begin{align*}
\langle \text{function-name} \rangle [] &= \langle \text{exp 1} \rangle \\
\langle \text{function-name} \rangle (x:xs) &= \langle \text{exp 2} \rangle
\end{align*}
\]

where
\[
\langle \text{expression 1} \rangle \text{ does not contain } \langle \text{function-name} \rangle \\
\langle \text{expression 2} \rangle \text{ may contain } \langle \text{function-name} \rangle \text{ applied to } xs
\]

- **Motivation**: As with integers, some functions don’t fit this shape
More General Patterns for Lists

- **Recall:** With integers, we used more general patterns.

- **Idea:** Use \((x):(y:xs))\) pattern to access first two elements

- **Example:** We want a function to delete every second element

 \[
 \text{delete } [2,3,5,7,9,5,7] = [2,5,9,7]
 \]

- **Solution:** Here is the code

  ```haskell
  delete :: [a] -> [a]
  delete [] = []
  delete [x] = [x]
  delete (x:(y:xs)) = x : delete xs
  ```

- **Example:** To delete every third element use pattern \((x):(y:(z:xs)))\)
Examples of Recursion and patterns — See how the typing helps

- **Example 1**: Summing pairs in a list of pairs
 \[
 \text{sumPairs} :: [(\text{Int},\text{Int})] \rightarrow \text{Int}
 \]

- **Example 2**: Unzipping lists
 \[
 \text{unZip} :: [\text{(a,b)}] \rightarrow ([\text{a}],[\text{b}])
 \]
Sorting Algorithms 1: Insertsort

- **Problem:** A sorting algorithm rearranges a list in order
 \[\text{sort } [2,7,13,5,0,4] = [0,2,4,5,7,13] \]

- **Recursion:** Such algorithms usually recursively sort a smaller list

- **Insertsort Alg:** To sort a list, sort the tail recursively, and then insert the head

- **Code:**
  ```haskell
  inssort :: [Int] -> [Int]
  inssort [] = []
  inssort (x:xs) = insert x (inssort xs)
  
  where insert puts the number x in the correct place
  ```
The function insert

- **Patterns:** Insert takes two arguments, number and list

 - The recursion for `insert` doesn't depend on the number

 - The recursion for `insert` does depend on whether the list is empty or not — use the `[]` and `(x:xs)` patterns

- **Code:** Here is the final code

\[
\begin{align*}
\text{insert} & : \text{Int} \rightarrow \text{[Int]} \rightarrow \text{[Int]} \\
\text{insert } n \ \text{[]} & = [n] \\
\text{insert } n \ (x:xs) & \\
| \quad n \leq x & = n:x:xs \\
| \quad \text{otherwise} & = x: (\text{insert } n \ xs)
\end{align*}
\]
QuickSort Alg: Given a list \(l \) and a number \(n \) in the list

\[
\text{sort } l = \begin{cases}
\text{sort those elements less than } n +
\text{number of occurrences of } n +
\text{sort those elements greater than } n \end{cases}
\]

Code: The algorithm may be coded

\[
\begin{align*}
\text{qsort} &:: [\text{Int}] \rightarrow [\text{Int}] \\
\text{qsort} &\emptyset = \emptyset \\
\text{qsort} &\ (x:x:s) = \text{qsort} \ (\text{less} \ x \ x:s) ++ \\
&\text{occs} \ x \ (x:x:s) ++ \\
&\text{qsort} \ (\text{more} \ x \ x:s)
\end{align*}
\]

where \(\text{less} \), \(\text{occs} \), \(\text{more} \) are auxiliary functions
Defining the Auxiliary Functions

• Problem: The auxiliary functions can be specified
 – less takes a number and a list and returns those elements of the list less than the number
 – occs takes a number and a list and returns the occurrences of the number in the list
 – more takes a number and a list and returns those elements of the list more than the number

• Code: Using list comprehensions gives short code

 \[
 \text{less, occs, more :: Int \to [Int] \to [Int]}
 \]

 \[
 \begin{align*}
 \text{less } n \ xs &= [x \mid x \leftarrow xs, x < n] \\
 \text{occs } n \ xs &= [x \mid x \leftarrow xs, x == n] \\
 \text{more } n \ xs &= [x \mid x \leftarrow xs, x > n]
 \end{align*}
 \]
Sorting Algorithm 3: Mergesort

- **Mergesort Alg:** Split the list in half, recursively sort each half and merge the results

- **Code:** Overall function reflects the algorithm

  ```
  msort [] = []
  msort [x] = [x]
  msort xs = merge (msort ys) (msort ws)
  where (ys,ws) = (take l xs, drop l xs)
  l = length xs ‘div‘ 2
  
  where merge combines two sorted lists
  
  merge [] ys = ys
  merge xs [] = xs
  merge (x:xs) (y:ys) = if x<y then x : merge xs (y:ys)
  else y : merge (x:xs) ys
  ```
Today You Should Have Learned

- **Recursion Schemes:** We've generalised the recursion schemes to allow more functions to be written
 - More general patterns
 - Recursive calls to ANY smaller value

- **Examples:** Applied them to recursion over integers and lists

- **Sorting Algorithms:** We've put these ideas into practice by defining three sorting algorithms
 - Insertion Sort
 - QuickSort
 - MergeSort

Roy Crole
Leicester, October 6, 2005

90
Overview of Lecture 9

• **Motivation:** Why do we want higher order functions

• **Definition:** What is a higher order function

• **Examples:**
 – Mapping: Applying a function to every member of a list
 – Filtering: Selecting elements of a list satisfying a property

• **Application:** Higher order sorting algorithms
Motivation

- **Example 1:** A function to double the elements of a list

  ```haskell
  doubleList :: [Int] -> [Int]
  doubleList [] = []
  doubleList (x:xs) = (2*x) : doubleList xs
  ```

- **Example 2:** A function to square the elements of a list

  ```haskell
  squareList :: [Int] -> [Int]
  squareList [] = []
  squareList (x:xs) = (x*x) : squareList xs
  ```

- **Example 3:** A function to increment the elements of a list

  ```haskell
  incList :: [Int] -> [Int]
  incList [] = []
  incList (x:xs) = (x+1) : incList xs
  ```
The Common Pattern

- **Problem:** Three separate definitions despite a clear pattern

- **Intuition:** Examples apply a function to each member of a list

 \[
 \text{function} :: \text{Int} \rightarrow \text{Int}
 \]

 \[
 \text{functionList} :: \text{[Int]} \rightarrow \text{[Int]}
 \]

 \[
 \text{functionList} [] = []
 \]

 \[
 \text{functionList} (x:xs) = (\text{function} x) : \text{functionList} xs
 \]

 where in our previous examples function is

 \[
 \text{double} \quad \text{square} \quad \text{inc}
 \]

- **Key Idea:** Make auxiliary function function an input
A Higher Order Function — map

- **The Idea Coded:**

 \[
 \text{map } f \; [] = [] \\
 \text{map } f \; (x:xs) = (fx) : \text{map } f \; xs
 \]

- **Advantages:** There are several advantages

 - Shortens code as previous examples are given by

 \[
 \text{doubleList } xs = \text{map } \text{double } xs \\
 \text{squareList } xs = \text{map } \text{square } xs \\
 \text{incList } xs = \text{map } \text{inc } xs
 \]

 - Captures the algorithmic content and is easier to understand

 - Easier code-modification and code re-use

Roy Crole

Leicester, October 6, 2005
A Definition of Higher Order Functions

• Question: What is the type of \texttt{map}?

 – First argument is a function
 – Second argument is a list whose elements have the same type and the input of the function.
 – Result is a list whose elements are the output type of the function.

 \textbf{Answer:} So overall type is \texttt{map :: (a -> b) -> [a] -> [b]}

• Definition: A function is higher-order if an input is a function.

• Another Example: Type of \texttt{filterInt} is \texttt{filterInt :: (a -> Bool) -> [a] -> [a]}

 \textbf{Answer:} So overall type is \texttt{map :: (a -> b) -> [a] -> [b]}

\begin{verbatim}
filterInt :: (a -> Bool) -> [a] -> [a]
\end{verbatim}
Quicksort Revisited

- **Idea:** Recall our implementation of *quicksort*

 \[
 \text{qsort :: Ord } a \Rightarrow \mathbb{[}a\mathbb{]} \rightarrow \mathbb{[}a\mathbb{]}
 \]

 \[
 \text{qsort } [] = [] \\
 \text{qsort } (x:xs) = \text{qsort } \text{less} ++ \text{occs} ++ \text{qsort } \text{more}
 \]

 where

 \[
 \text{less } = [e \mid e \leftarrow xs, e < x]
 \]

 \[
 \text{occs } = x : [e \mid e \leftarrow xs, e == x]
 \]

 \[
 \text{more } = [e \mid e \leftarrow xs, e > x]
 \]

- **Polymorphism:** Quicksort requires an order on the elements:

 - The output list depends upon the order on the elements

 - This requirement is reflected in type class information \text{Ord} a

 - Don’t worry about type classes as they are beyond this course
Limitations of Quicksort

- **Example:** Games tables might have type \([(\text{Team}, \text{Points})]\)

- **Problem:** How can we order the table?

 Arsenal 16
 AVilla 16
 Derby 10
 Birm. 4
 ...

- **Solution:** Write a new function for this problem

 \[
 \text{tSort} \; [] = [] \\
 \text{tSort} \; (x:xs) = \text{tSort} \; \text{less} \; ++ \; [x] \; ++ \; \text{tSort} \; \text{more} \\
 \quad \text{where} \; \text{more} = [e | e<-xs, \; \text{snd} \; e > \; \text{snd} \; x] \\
 \quad \text{less} = [e | e<-xs, \; \text{snd} \; e < \; \text{snd} \; x]
 \]

- What did we assume here?
Higher Order Sorting

- **Motivation:** But what if we want other orders, eg

 - Sort teams in order of names, not points

 - Sort on points, but if two teams have the same points, compare names

- **Key Idea:** Make the comparison a parameter of quicksort

  ```haskell
  qsortCp :: (a -> a -> Bool) -> [a] -> [a]
  qsortCp ord [] = []
  qsortCp ord (x:xs) = qsortCp ord less ++ occs ++ qsortCp ord more
      where less = [ e | e <- xs, ord e x]
            occs = x : [ e | e <- xs, e == x]
            more = [ e | e <- xs, ord x e]
  ```
Key Idea: To use a higher order sorting algorithm, use the required order to define the function to sort by.

- **Example 1:** To sort by names
 \[\text{ord} \ (t, \ p) \ (t', \ p') = t < t'\]

- **Example 2:** To sort by points and then names
 \[\text{ord} \ (t, \ p) \ (t', \ p') = (p < p') \ || \ (p = p' \ \&\ \& \ t < t')\]

- What should we assume about \(\text{ord}\)?
Today You Should Have Learned

- Higher Order Functions: Functions which take functions as input
 - Facilitates code reuse and more abstract code
 - Many list functions are either map, filter or fold

- HO Sorting: An application of higher order functions to sorting
 - Produces more powerful sorting
 - Order of resulting list determined by a function
 - Lexicographic order allows us to try one order and then another

Roy Crole
Leicester, October 6, 2005
Lecture 10 — (Parametric) Polymorphism

Roy Crole

Department of Computer Science
University of Leicester

October 6, 2005
Overview of Lecture 10

- **Motivation:** Some examples leading to polymorphism

- **Definition:** What is *parametric* polymorphism?
 - What is a polymorphic type?
 - What is a polymorphic function?
 - Polymorphism and higher order functions
 - Applying polymorphic functions to polymorphic expressions
Monomorphic length

- **Example:** Let us define the length of a list of integers

  ```haskell
  mylength :: [Int] -> Int
  mylength [] = 0
  mylength (x:xs) = 1 + mylength xs
  ```

- **Problem:** We want to evaluate the length of a list of characters

  ```haskell
  Prelude> mylength ['a', 'g']
  ERROR: Type error in application
  *** expression : mylength ['a', 'g']
  *** term : ['a', 'g']
  *** type : [Char]
  *** does not match : [Int]
  ```

- **Solution:** Define a new length function for lists of characters

 ... but this is not very efficient!
Polymorphic length

- **Better Solution:** The algorithm's input depends on the list type, but not on the type of integers.

- **Idea:** An alternative approach to typing `mylength`
 - There is one input and one output: `mylength :: a -> b`
 - The output is an integer: `mylength :: a -> Int`
 - The input is a list: `mylength :: [c] -> Int`
 - There is nothing more to infer from the code of `mylength` so
    ```
    mylength :: [c] -> Int
    ```
 This is an efficient function - works at all list types!
Haskell's Polymorphic Type System

- **Types**: Now we will deal with the following types:
 - Basic, built in types: Int, Char, Bool, String, Float
 - Type variables representing any type: a, b, c, ...
 - Types built with type constructors: [], ->, (,)
 - [Int] a->a a->b a->Bool (String,a->a) [a->Bool]
 - Type synonyms: type <type-name> = <type-expression>
 - type Point = (Int,Int)
 - type Line = (Point,Point)
 - type Test = a->Bool
Some Definitions

- **Polymorphism** is the ability to appear in different forms

- **Definition:** A type is *parametric polymorphic* iff it contains type variables (that is, type parameters).

- **Definition:** A function is *parametric polymorphic* iff it can be called on different types of input, and it is implemented by (code for) a single algorithm.

- **Definition:** A function is *overloaded* iff it can be called on different types of input, and for each type of input, the function is implemented by (code for) a particular algorithm.

- **Examples:** Of overloading are the arithmetic operators: integer and floating-point addition.
Polymorphic Expressions

- **Key Idea**: Expressions have many types
 - Amongst these is a *principle* type

- **Example**: What is the type of \(\text{id} \ x = x \)
 - \(\text{id} \) sends an integer to an integer. So \(\text{id} :: \; \text{Int} \rightarrow \text{Int} \)
 - \(\text{id} \) sends a list of type \(a \) to a list of type \(a \). So \(\text{id} :: [a] \rightarrow [a] \)
 - \(\text{id} \) sends an expression of type \(b \) to an expression of type \(b \). So \(\text{id} :: b \rightarrow b \)

- **Principle Type**: The last type includes the previous two – why?
 - In fact the principal type of \(\text{id} \) is \(\text{id} :: b \rightarrow b \) – why?
Examples

- **Example 1:** What is the type of `map`

 \[
 \begin{align*}
 \text{map } f \, [] &= [] \\
 \text{map } f \, (x:xs) &= f \, x : \text{map } f \, xs
 \end{align*}
 \]

- **Example 2:** What is the type of `filter`

 \[
 \begin{align*}
 \text{filter } f \, [] &= [] \\
 \text{filter } f \, (x:xs) &= \text{if } f \, x \text{ then } x : \text{filter } f \, xs \text{ else } \text{filter } f \, xs
 \end{align*}
 \]

- **Example 3:** What is the type of `iterate`

 \[
 \begin{align*}
 \text{iterate } f \, 0 \, x &= x \\
 \text{iterate } f \, (n+1) \, x &= f \, (\text{iterate } f \, n \, x)
 \end{align*}
 \]
Applying Polymorphic Expressions to Polymorphic Functions

• **Previously:** The typing of applications of expressions:

 – If \(\text{exp1} \) is an expression with type \(a \to b \)

 – And \(\text{exp2} \) is an expression with type \(a \)

 – Then \(\text{exp1} \text{ exp2} \) has type \(b \)

• **Problem:** How does this apply to polymorphic functions?

 \[
 \begin{align*}
 \text{length} & \quad :: \ [c] \to \text{Int} \\
 [2,4,5] & \quad :: \ [\text{Int}] \\
 \text{length} \ [2,4,5] & \quad :: \ \text{Int}
 \end{align*}
 \]

• **Key Idea:** Argument type can be an *instance* of input type
When is a Type an Instance of Another Type

- **Recall**: Two facts about expressions containing variables
 - Variables stand for arbitrary elements of a particular type
 - *Instances* of the expression are obtained by substituting expressions for variables

- **Key Idea**: (Parametric) polymorphic types are defined in the same way:
 - Type-expressions may contain type-variables
 - *Instances* of type-expressions are obtained by substituting types for type-variables

- **Example**: `[Int]` is an instance of `[c]` – substitute `Int` for `c`
More formally - Unification

- **Monomorphic**: Can a function be applied to an argument?
 - If the function's input type is the same type as its argument
 \[
 \frac{f::a->b \quad x::a}{f \; x :: b}
 \]

- **Polymorphically**: Can a function be applied to an argument?
 - If the function's input type is *unifiable* with argument's type
 \[
 \frac{f::a->b \quad x::c \quad \theta \text{ unifies } a,c}{f \; x :: \theta b}
 \]
 where \(\theta \) maps type variables to types

- **Example**: In the `length` example, set \(\theta c=\text{Int} \)
Example

- **Past Paper:** Assume \(f \) is a function with principle type

\[
f::([a],[b]) \rightarrow \text{Int} \rightarrow [(b,a)]
\]

Do the following expressions type check? State **Yes** or **No** with a brief reason and, if **Yes**, what is the principal type of the expression?

1. \(f \ (3,3) \) 2

2. \(f \ ([],[]) \) 5

3. \(f \ ([\text{tail,head}], []) \) 3

4. \(f \ ([\text{True, False}], ['x']) \)
Today You Should Have Learned

- **Polymorphism:**
 - Saves on code — one function (algorithm) has many types
 - This implements our algorithmic intuition

- **Type Checking:** Expressions and functions have many types including a principle one
 - Polymorphic functions are applied to expressions whose type is an instance of the type of the input of the function