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Abstract. We give a short description of Hybrid, a new tool for automated
theorem proving, which was introduced in [4]. It provides a form of Higher
Order Abstract Syntax (HOAS) combined consistently with induction and
coinduction. We present a case study illustrating the use of Hybrid for rea-
soning about the lazy A-calculus. In particular, we prove that the standard
notion of simulation is a precongruence. Although such a proof is not new [5],
the development is non-trivial, and we attempt to illustrate the advantages of
using Hybrid, as well as some issues which will be addressed as further work.

1 Introduction and Background

This paper describes a case study in which we prove results about the meta-theory
of a trivial (object level) programming language using a new mechanized tool. The
programming language is very well known—it is just the untyped lazy A-calculus.
However, this language is ideal for the purposes of our case study, as we shall explain
shortly. The mechanized tool, coded within Isabelle HOL, is called Hybrid; it was
introduced in [4]. The key features of Hybrid are

— Hybrid provides a form of logical framework within which the syntax of an object
level logic can be adequately represented by higher order abstract syntaz (HOAS).

— Hybrid is compatible with tactical theorem proving in general, and principles of
induction and coinduction in particular.

— It is definitional which guarantees consistency within a classical type theory [12].

The system provides a form of HOAS for the user to represent object logics. The user
level is separated from the infrastructure, in which HOAS is implemented via a de
Bruijn style encoding—see Section 2.

The lazy A-calculus, introduced by Abramsky [2], is of course extremely well known,
and forms part of the theoretical foundations for lazy functional languages. In partic-
ular, in [5], Ambler and Crole described a simple functional programming language
based on the lazy A-calculus. In that paper, a standard operational semantics, contex-
tual equivalence, and bisimilarity, were all encoded in Isabelle HOL. The key result



was a fully mechanized proof that bisimilarity is indeed a congruence, and moreover
that it coincides with contextual equivalence, following Howe’s proof technique [15].
The proof required the development of a considerable number of technical Isabelle
HOL lemmas, since the encoding was strictly first-order, i.e. via de Bruijn notation.

In this paper, we replay (some of) the work described in [5], and attempt to show
the utility of the Hybrid approach. This paper is very much an applied case study,
and does not present any new theory. However, the code and proofs we describe
are substantial and this is our first large scale application of Hybrid. Thus we hope
our development will be of use to other practitioners interested in proving proper-
ties of programming languages, and who might want to experiment with Hybrid as
a higher order metalanguage. Due to space restrictions, we shall assume that readers
are familiar with program equivalences such as bisimilarity; see for example [22]. We
refer to [4] for a full account of Hybrid and more examples. We proceed as follows.
In Section 2 we give a brief introduction to Hybrid. In Section 3 we show how the
lazy A-calculus is coded in Hybrid, giving a definition of bisimilarity. In Section 4
we give explanatory notes and comments on our main proof, which establishes that
bisimilarity is a congruence. We finish the paper with comments on related work and
concluding remarks. Note that from now on, we talk about simulations and precon-
gruences, rather than bisimulations and congruences. Results about the latter can be
obtained by symmetrizing our proofs.

In this paper we use a pretty-printed version of Isabelle HOL concrete syntax; a rule
with conclusion C and premises Hj ... H, will be represented as [ Hy;...; H, | = C.
A Isabelle HOL type declaration has the form s :: [#1,...¢,] = t. Isabelle HOL
connectives are represented via the usual logical notation. Free variables are implicitly
universally quantified. The sign = (Isabelle meta-equality) is used for equality by
definition.

2 Introducing Hybrid

Hybrid has its underpinnings in the work [1] of Andrew Gordon. Gordon defines (in
HOL) a de Bruijn notation in which expressions have named free variables given by
strings. He can write! T = dLAMBDA vt (where v is a string) which corresponds to an
abstraction in which v is bound in ¢. The function dLAMBDA has a definition which
converts T to the corresponding de Bruijn term; this has an outer abstraction, and a
sub-term which is ¢ in de Bruijn form, in which (free) occurrences of v are converted to
bound de Bruijn indices. Gordon demonstrates the utility of this approach. It provides
a good mechanism through which one may work with named bound variables, but he
does not exploit the built in HOAS which HOL itself uses to represent syntax. The
novelty of our approach is that we do exploit the HOAS at the meta (machine) level
of Isabelle HOL.

We introduce Hybrid by example. First, some basics. Of central importance is a
Isabelle HOL datatype of de Bruijn expressions, where bnd and var are the natural
numbers, and con provides names for constants

! The notation dLAMBDA comes from [1]; the small “d” signifies de Bruijn notation.



expr ::= CON con | VAR var | BND bnd | expr $$ expr | ABS expr

Let To = AV;.AV,.Vy V3 be a genuine, honest to goodness (object level) syntax?
tree. Gordon would represent this by

T = dLAMBDA v1 (dLAMBDA v2 (dAPP (dVAR v1) (dVAR v3)))

which equals dABS (dABS (dAPP (dBND 1) (dVAR v3))). Hybrid provides a binding
mechanism with similarities to dLAMBDA. Gordon’s 7" would be written as LAMv. ¢
in Hybrid. This is simply a definition for a de Bruijn term. A crucial difference in
our approach is that bound variables in the object logic are bound variables in Isabelle
HOL. Thus the v in LAMwv.t is a metavariable (and not a string as in Gordon’s
approach). In Hybrid we also choose to denote object level free variables by terms
of the form VAR i; however, this has essentially no impact on the technical details—
the important thing is the countability of free variables. In Hybrid the To above is
rendered as Ty = LAMw;. (LAMvs. (1 $$ VAR 3)). The LAM is an Isabelle HOL
binder, and this expression is by definition

lambda (A v;. (lambda (Avs. (v1 $8 VAR 3))))

where \v; is meta abstraction and one can see that the object level term is rendered in
the usual HOAS format, where lambda : : (ezpr = ezpr) = exzpr is a defined function,
which transforms an abstraction into the “corresponding” proper de Bruijn expression.
Then Hybrid will reduce Ty to the de Bruijn term ABS (ABS (BND 1 $$ VAR 3)), as
in Gordon’s approach. In summary, Hybrid provides a form of HOAS where object
level

— free variables correspond to Hybrid expressions of the form VAR i;

— bound variables correspond to (bound) meta variables;

— abstractions A V. E correspond to expressions LAMv.e = lambda (A v.e);
— applications E; E5 correspond to expressions e; $$ es.

Furthermore, we wish to be able to perform meta-reasoning over Hybrid expressions.
In order to do this, we want to view the functions CON, VAR, $$, and LAM. as
data-type constructors, that is, they should be injective, with disjoint images. In fact,
we identify subsets of expr and expr = expr for which these properties hold. The
subset of expr consists of those expressions which are proper, that is a de Bruijn ex-
pression which corresponds to a A-calculus expression. The subset of expr = expr
consists of all those e for which LAMwv.ew is proper. This is coded by the predi-
cate abstr :: (expr = expr) = bool. Suppose that ABS e is proper; for example
let e = ABS (BND 0 $$ BND 1). Then e is of level 1, and in particular there may be
some bound indices which now dangle; for example BND 1 in ABS (BND 0 $$ BND 1).
An abstraction is produced by replacing each occurrence of a dangling index with a
metavariable and then abstracting the meta variable. Our example yields the abstrac-
tion Av.ABS (BND 0 $$ v).

2 We use a capital A and capital V to avoid confusion with meta variables v and meta
abstraction A.



In Hybrid distinctness of constructors is immediate, while one can prove injectivity
of abstractions:

[ abstr e; abstr f ] = (Lamz. ez = Lamy. fy) = (e = f)
Moreover, extensionality of abstractions is also provable:

[ abstr e;abstr f;Vi.e (VAR3) = f (VARi) ] = e=f

3 Coding The Lazy Lambda Calculus in Hybrid

We begin by showing how to represent the lazy A-calculus in Hybrid. Our primary
concern will be with programs in this calculus, that is, closed expressions. These form
(as usual) a subset of the expressions given by

ex=uv|Funv.e| e Qey T

In order to render t in HOAS format, using a simply typed A-calculus with con-
stants as metalanguage, we need constants for abstraction and application, say cAPP
and cABS. Recall that in the metalanguage, application is denoted by infix $$, and
abstraction by LAM. Then { would correspond to the grammar

e:=v| cABS 8% (LAMuv.ev) | cAPP $$ e; $8 e

in the metalanguage. This grammar is coded in Hybrid verbatim, provided that (see
Section 2) we declare con to consist of exactly (the names of) the two constants. We
can then regard the Isabelle HOL theory Hybrid as a metalanguage which provides
a form of HOAS; in particular, capture avoiding substitution is represented by meta-
level B-reduction.

In order to be able to directly encode the grammar t in Hybrid, we define uexrp —
con ezpr and then make the following definitions

Q@ :: [uezp,uexp] = uexp Fun. :: (uexp = uexp) = uexp
e; @ey = CON cAPP $$ e; $% ey Funz.e x = CON cABS $$ LAMz.e z

where Fun. is indeed an Isabelle HOL binder. For example, the (object level -
calculus) term AV;. AV5. V3 Vs will be represented by Funwv;.Funvs.v; $$ vo, al-
though the “real” underlying form is

CON cABS $$ (LAMv;.CON cABS $$ LAM v,. (CON cAPP $$ v; $$ vs)

We introduce informally some general predicates. These will be used throughout our
mechanization.

— isExp e holds when the Hybrid expression e is equal to an expression of the gram-
mar f. This is introduced because uezp is only a type abbreviation and would not
rule out exotic terms.



— cloExp p holds when isExp p holds and the Hybrid expression p has no free vari-
ables. We call such expressions programs, and often use the meta-variables p
and ¢ to denote programs.

— cloAbstr E holds when cloExp (Funz. E z) and moreover abstr E holds. (We shall
use the informal convention of writing capital letters for meta-variables which are
intended to denote abstractions.)

The benefits of obtaining object-level substitution via meta-level B-conversion are
exemplified in the encoding of lazy evaluation (on closed terms) via the inductive
definition of {}:: [ uexp, uezp ] = bool. This definition is given by the clauses

cloAbstr E —=> Funz.E z || Funz. E z
[p1 U Funz. E z; cloAbstr E; cloExp p2; (E p2) yv] = (p1 @ pa) Y v

Standard properties such as uniqueness of evaluation and value soundness have direct
proofs based only on structural induction and the introduction and elimination rules.

Our central task is to prove that applicative simulation =< :: [uezp,uezp] = bool
is a precongruence (Corollary 1). Simulation has the single coinductive introduction
rule

[ cloExp r; cloExp s; VT.r || Funz.T © — (cloAbstr T —
(FU.s Y Funz.U z AcloAbstr U A (Vp. cloExpp— (T'p)x Up))]= r=< s

The HOAS style here greatly simplifies the presentation and correspondingly the
meta-theory. Indeed, with the appropriate instantiation of the coinductive relation,
the proof that (closed) simulation is a pre-order (and indeed bisimulation is an equiv-
alence relation) is immediate.

4 A Commentary on the Theorem and Proofs

Recall that a precongruence is a binary relation over syntax which is a partial or-
der that is preserved by the syntactic constructors. The definition [22] is standard
and omitted. Our case study shows that Howe’s proof that simulation is a precongru-
ence [15] can be conducted within Hybrid. Although the mathematics of the proof is
essentially similar to the proof in [5], the proof itself is of fair length. We feel that
it provides some evidence that our Hybrid system implements a metalanguage for
HOAS over which it is possible to drive tactical reasoning involving induction and
coinduction.

Howe’s technique consists of introducing another relation, the so-called Howe relation
I' F s X* t, which is easily shown to be a precongruence, and then proving that it
coincides with similarity. Since Hybrid is based on a traditional (co)inductive setting,
the definition of the Howe relation (Table 1) involves the introduction of open terms.
However, in a framework such as LF, the same could be attained using a hypothetical
judgment on closed terms, where the clauses for variables and functions are merged
in the following;:

Vy.m.yx m — y<x* m) — Ny=<x®* Ny Funv.N'v < ¢
Funv.Nv g°* ¢




Alas, such an introduction rule yields a non-monotone operator and it is therefore
disallowed. Thus, we are lead to defining open similarity on open expressions, which is
the obvious extension of similarity where two open terms are related if their A-closures
are similar. One then proves that open similarity is a precongruence. Although this
corresponds to the informal mathematical development, it involves the duplication of
some work.

One way to encode definitions on open terms is via judgments that relate environments
(lists) of free variables to expressions, such that the free variables of the term ¢ all
occur in I'. In particular, open simulation is inductively defined by the rules

[ cloExp s; cloExpt; s t]=[F s<x° t
[ isExp s; isExp t; Vp. cloExp p —
I' substsnp<°® substtnp] = I nk s=x°t

Notice that in the definition the replacement in s of VAR n with p is implemented
with a primitive notion of substitution, at the de Bruijn level. Clearly, it would be
highly desirable to utilize HOAS to express this clause, making use of the notion of
abstraction, but the above formulation has shown to be more amenable to mecha-
nization.

The key theorem which we have verified using Hybrid is
Theorem 1. The relation of open similarity, I' s X° t, is a precongruence.
An immediate corollary is

Corollary 1. The relation of similarity, s X t, is a precongruence. (That bisimi-
larity is a congruence follows simply from this.)

The idea of the corollary is that, once proved, one may reason about similarity of
programs using the usual rules of algebraic reasoning.

Before giving the proof outline, we inductively introduce the Howe relation which has
type [var list, uexp, uezp ] = bool, in Table 1.

' VARz<° m=—TITHF VARzx* m
[Vy.I,y+ N(VARy) x* N'(VARy);
abstr N;abstr N; '+ Funv. N'vx° q] = I'+ Funv.Nv x* ¢
[TF mix®* my T mex® my; I (M @mb)x° n]=TF (M @my)<x" n

Table 1. Definition of '+ s <°* ¢

It is immediate that this relation is a precongruence, since its definition is structural
and (open) similarity is reflexive. Thus we can prove the theorem if we can demon-
strate that the Howe relation and open similarity coincide. Here is the structure of
this proof.



1. We prove some general properties of the Howe relation. These are:

(a) The composition of the Howe relation with open similarity is contained in
Howe. Here we present an illustrative sample of our code in Table 2.

(b) Howe is reflexive, that is I' - s => I' b s * s. This is proven by a simple
induction on the structure of the judgment I' F s using reflexivity of open
similarity.

(c) Open similarity is contained within Howe, which follows immediately from (a)
and (b).

(d) The Howe relation is substitutive: formally

Iyt sx* & r-t=x*t
't sft/y] < s'[t'/y]

Note that this lemma is crucial and would still be needed in a full HOAS
account (cf. the analogous lemma about substitutivity of parallel reduction in
the Twelf proof of the Church-Rosser theorem [23]). The proof is by induction
on the derivation of the first judgment, using substitutivity of (open) similar-
ity. Since the latter is defined via the Hybrid primitive notion of substitution,
namely subst, our mechanization is rather convoluted and uses several Hybrid
infra-structural lemmata concerning the interaction between abstractions and
substitution.

2.If[] v Funz.Ex X* p, then p | Funy. Fy where cloAbstr F' and for every
closed p' we have [| F Ep' * Fp'. This is proven first by inversion on the
Howe relation, open similarity and eventually similarity; note that when using
elimination rules, injectivity of Fun, which follows from its definition in terms of
LAM, is of crucial use. Finally, the result follows from semi-transitivity and (an
instance of) substitutivity of Howe.

33 F p<x® gqand p | v, then [| F v °* ¢. The proof closely follows the
informal one, involving an induction on evaluation, and inversion on Howe and
(open) simulation, with an additional case analysis on v. Nevertheless, due to a
fair amount of forward chaining, the degree of automation is relatively low: the
script consists of about 50 lines.

Once all of these properties have been proved, establishing the main theorem by
showing coincidence of the Howe relation and open similarity is easy.

Proof. (Of Theorem 1) We only need to show that Howe is contained in open simi-
larity, point (c) above establishing the opposite containment. Recall that in order to
prove I' - e; X° ey, we have to prove that the A-closures of e; and es are related

Goal "env |- s <howe> t ==> env |- t <opensim> u --> env |- s <howe> u";
be howe.induct 1;

by (ALLGOALS(best_tac(HOL_cs addIs howe.intrs addDs [opensim_trans])));
qed_spec_mp "howe_trans";

Table 2. Proof script for semi-transitivity of the Howe relation.




by closed simulation. However, having proved that the Howe relation is substitutive,
this will follow if we can prove that

o

IFp<*¢a=[Fp=x°q

Similarity is coinductively defined, and thus we simply have to check that [[ - p <°* ¢
is indeed a simulation. Suppose that p || Funz.T z. By (3) we have [| - Funz.Tz x°
g and by (2) we have ¢ | Funy. Uy where cloAbstr U and for all closed p' we have
[[F Tp x* Up'. We are done.

5 Related Work

Here we only review papers that use some form of HOAS to encode proofs about
(bi)similarity; we refer, for example, to [4] for a review of more general issues related
to HOAS and (co)induction; we just mention [11] as an early case study utilizing a
traditional De Bruijn approach.

The only other comparable mechanized proof about bisimulation in the lazy A-
calculus, to the best of our knowledge is [19]. This follows the Weak HOAS [20]
approach (i.e. object-level substitution is encoded as an inductive relation) supple-
mented with the Theory of Contexts, [13]; the latter consists of a set of axioms, para-
metric to the HOAS signature, including the reification of key properties of names
akin to freshness and, more crucially, higher-order induction and recursion schemata.
The author proves that bisimulation coincides with observational equivalence not via
Howe’s method, but following Stoughton’s adaptation of Milner’s context lemma re-
ported in [3]. As well known, this approach does not scale well to even slightly more
expressive functional languages; moreover, the formalization heavily relies on vectors
of terms, to encode a linearized notion of bisimulation, viz. M; < M iff for every
vector N if My N | then My N |. Although conceptually non-problematic, several
steps have not been fully verified yet (Marino Miculan, personal communication).

This approach has been more successful in the context of the 7-calculus [14]. The latter
paper contains formal verification, among others, of strong late bisimilarity being a
congruence. This can arguably be attributed not only to the possibility to “reflect”
on names which is crucial for the meta-theory of operations such as mismatch, but
also because here hypothetical judgments, which are only partially supported in such
a style [8] are typically not needed. In fact, the constructors for the type of processes
do not give rise to any negative occurrences of the type. Therefore -conversion can
implement object-level substitution, which in this case is simply “name” for bound
variable in a process.

In [18] the authors presents an encoding of CCS in FOA . Co-inductive reasoning
is simulated with a representation of bisimulation via induction on natural numbers;
this exploits the co-continuity of the said notion, which allows one to capture the
greatest fix point via the intersection of all powers n < w starting with the universal
relation. Some congruence properties have been proof-checked with the Pi editor [9].
It is possible to pursue a similar approach in a system such as Twelf [21].



We conclude with a brief comparison with the proof in [5]; as we mentioned the
syntax was represented using a de Bruijn style notation, with the usual loss of human
readability. Bound variable substitution was coded directly within the Isabelle HOL
theory which represents the calculus. To partially alleviate this, closed simulation was
defined via 3 expansion, which, in the notation of this paper, would read

[ cloExp r; cloExp s; Vt.r § t —
(Fu.sJuA(Vp.cloExpp = (tQp)x (w@p))))]= r< s

However, a consequence was a series of lemmas concerning Kleene equivalence which
is avoided in the Hybrid approach. The encoding of open similarity and the Howe
relation were essentially analogous to those of this paper, with the notable exception
that the substitution predicate in the Hybrid encoding belongs to the infrastructure
rather than the object logic.

6 Conclusions and Future Work

In this paper we have reported our experience in using Hybrid to machine-check a
non-trivial result about program equivalence in the lazy A-calculus. While the tool
seems successful in providing a form of HOAS when dealing with closed terms, we had
to resort to a more traditional encoding, i.e. via explicit environments, with respect
to judgments involving open ones such as the Howe relation. As this is due to the fun-
damental incompatibility of non-stratified hypothetical judgments and (co)induction,
this is intrinsically problematic. Nevertheless, some room for improvement is foresee-
able:

— We could work directly on open terms, so that similarity need not be presented
in two flavors. The main difficulty is not just its oddity wrt evaluation in a func-
tional programming setting, but that it seems that such a notion of similarity
is not known in the literature. In fact, the related concept of weak head normal
form simulation [16] coincides with Lévy-Longo tree equivalence—not applicative
bisimulation.

— We could try to formulate the Howe relation on closed term with stratified hy-
pothetical judgments akin to the way provability can be encoded by switching
from natural deduction to sequent calculus, as discussed for example in [17]. The
practicality of this approach needs to be supported experimentally.

— We may choose to embrace the two-level approach of Miller & McDowell [17],
where specification and reasoning on an object logic is done in the same system
but at different levels. In particular, Felty has proposed [10] a realization of the
latter in Coq, where the rule of definitional reflection of FOAY is mimicked by
the elimination rules of inductive types supplemented by a set of axioms stating
the freeness properties of constructors of the given signature.

An intriguing possibility is to use Hybrid in place of a system such as Coq as the
meta-meta-logic for the latter architecture; this would have several advantages:



— Freeness of constructors and more importantly extensionality properties at higher
types are not assumed, but proven via the related properties of the infrastructure.

— Coinductive principles are immediately available, while FOA™  in the current
formulation, allows only the somewhat awkward inductive encoding via greatest
fix points.

— The specification logic does not have to be the classical one provided by HOL,
but can be varied to be, for example, a fragment of linear logic. This would allow
the utilization of the most elegant encodings of the meta-theory of functional
programming with references proposed in [7,17].

Indeed, formal verification of the compiler optimization transformations for Benton
& Kennedy’s MIL-lite language [6] is one of our main objectives.

Source files for the Isabelle HOL code can be found at

http://www.mcs.le.ac.uk/mechsem/Hybrid/Howe.
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