
Implementing Operational Semantics
(Preliminary Report)

Roy L. Crole

email: R.Crole@mcs.le.ac.uk

http://www.mcs.le.ac.uk/~rcrole

December 1997

Abstract

This paper describes a high level operational semantics for a simple programming
language, called KOREL , together with a parser, interpreter and pretty printer
which are implemented in the (pure) functional programming language Haskell. The
syntax of KOREL is presented via BNF grammars, and the operational semantics is
specified via structured, inductive rules. The paper outlines the broad ideas behind
the Haskell implementation, with a more detailed explication of the key techniques.
A code listing can be found in [Cro97].

1

1 Introduction

This paper presents a high level operational semantics for a simple programming language,
together with a parser, interpreter and pretty printer which are implemented in the (pure)
functional programming language Haskell. Our programming language is called KOREL ,
so called because it can be considered to represent the core programming features of a
language combining imperative and functional constructs, and has both an eager and a
lazy operational semantics. This paper proceeds as follows:

• in Section 2 we give the KOREL program syntax, together with brief explanations
of some non-standard constructs;

• in Section 3 we outline an operational semantics;

• in Section 4 and Section 5 we give a broad specification of KOREL , plus implemen-
tation details; and

• in Section 6 we give a full listing of the KOREL typing and operational semantics
rules.

2 The Syntax Of KOREL

We specify the syntax of KOREL using the BNF grammar given in Figure 1. Most
of the constructs will be familiar to anyone who has programmed in imperative and
functional languages; indeed, KOREL closely resembles ML [MTH90, MT91]. A few of
the constructs may appear unfamiliar at first sight, but the intended interpretations are
indicated in the BNF grammar. We make the following additional comments:

• skip is the command which “does nothing” when executed;

• sequencing terms t1 ; t2 execute t1 and then t2, and the terms can be of any
type;

• references [MTH90, Pit97b] are at all types;

• functions, lists and pairs have both lazy and eager versions;

• pairs can be accessed through standard projections, or through the use of a splitting
term.

For further details about lazy and eager program semantics, please see any of [Cro95a,
Cro95b, Pit97a]. The paper [Plo75] contains one of the original accounts of notions of
eagerness and laziness.

A few explanatory comments are in order. Notice that KOREL is a mixture of traditional
imperative and functional constructs; in particular, the grammar defining the syntax of
the language does not distinguish between syntactic classes of (for example) Boolean
expressions, commands, and so on. The language as it stands is untyped, in the sense

2

alphachar ::= A | a | B | b | ... | Z | z

var ::= alphachar+ variables

loc ::= L1 | L2 | L3 ... locations

b ::= true | false Booleans

z ::= ... -2 | -1 | 0 | 1 | 2 ... integers

iop ::= + | - | * integer operator

bop ::= = | <= | >= | < | > Boolean operator

op ::= iop | bop

t ::= var | loc | b | z atomic datatype terms
| t iop t integer arithmetic
| t bop t Boolean arithmetic
| if t then t else t conditional
| skip null command
| t ; t sequencing
| while t do t while loop
| ref t reference
| !t reference lookup
| t:=t assignment
| local var := t in t local assignment
| %var -> t eager function
| #var -> t lazy function
| t t .. t function application
| [] empty list
| t:t eager cons
| [t, .. ,t] non-empty eager list
| t::t lazy cons
| {t, .. ,t} non-empty lazy list
| hd t | tl t head and tail
| el t test for empty list
| () unit element
| <t,t> eager pair
| <<t,t>> lazy pair
| split t as var,var in t pair splitting
| fst t | snd t first and second projections
| inl t | inr t left and right inclusions
| case t of var.t or var.t case expression
| rec var.t recursion
| let var = t in t let expression

Figure 1: The Syntax of KOREL Terms

3

that no type checker is actually implemented. However, it is quite simple to describe a
type assignment system for KOREL , in which the primary form of judgement would be

var1 :: σ1 . . . var2 :: σn
︸ ︷︷ ︸

E

` t::σ typing judgement

asserting that the term t has type σ in the given typing environment E. For more
information about type assignment systems in general, see [HS88], [Pit97a], [Sch94].

In fact we give this type assignment system in Section 6, where for KOREL , the BNF
grammar of types would be

σ ::= Cmd commands
| Bool Booleans
| Int integers
| Ref (σ) references
| σ × σ products
| σ + σ (disjoint) sums
| Lists(σ) lists
| σ → σ functions

Note also that the usual variable binding operations hold for KOREL terms; for example,
occurrences of the variables var1 and var2 in the term t2 are bound in the term

split t1 as var1,var2 in t2.

We will refer to the occurrences immediately after the “as” and before the “in” as bind-
ing occurrences. Occurrences of variables which are not bound are free. Note that the
type assignment system given in Section 6 implicitly indicates the formation of bound
variables in terms. We shall use the notation t[t’/var] to denote the term t with all
free ocurrences of var replaced by t’, renaming bound variables to avoid capture. We
shall not say any more about free and bound variables, and substitution, as we assume
familiarity. For a detailed account please see [HS88] or [Cro95a].

We aim to give an operational semantics to KOREL in both transition and evaluation
styles. We assume the reader is familiar with structured operational semantics as in-
troduced by Plotkin in [Plo81]. Evaluation (or natural) semantics was introduced by
Kahn [Kah88]. For general accounts of such semantics, see for example [Win93], [Gun92].
For material which matches closely the presentation in loc cit, see [Cro95a], [Cro95b] or
[Pit97a]. In order to give such a semantics to KOREL , we shall need to define the val-
ues of the language; and in order to do this, we first need to define a notion of function
declaraton. An example of a function declaration is

f g x y = (g x) + (g y) | g z = z + 1 | k = 3

which declares the definitions of the three functions f, g and k. Thus a function declaration
acts like a simple Haskell [Tho19] script which gives the definitions of various functions.
Note that k would usually be considered as “a constant”. We shall regard k as a function
with constant output 3, which will help to keep the exposition in loc cit uniform. In
general, a KOREL function declaration is a finite list of function definitions, given in the
form

4

Given a function declaration d, the corresponding values are

v ::= loc | b | z | skip

| %var -> t | #var -> t | var var∗

| [] | v:v | t::t | [v, .. ,v] | {t, .. ,t}
| () | <v,v> | <<t,t>>

| inl v | inr v

where 0 ≤ length(var var∗) ≤ arity var, and the (function) variable var is defined in d.

Figure 2: The Syntax of KOREL Values

d = fundef1 | fundef2 | ... | fundefm function declaration

where each function definition takes the form

var var∗ = t function definition

where var∗ indicates a finite (possibly zero) number of variables, and t is a term. We
define the arity of the first var to be the length of var∗, and refer to it as a function
variable (so for example the arity of f above is 3, with var being f and var∗ being
g x y). We say that the function variables are defined in the declaration.

Given a particular declaration (say d), then the values of KOREL are given by the
grammar in Figure 2. Note that in the example above, each of f, f g, f g x and g are
values. The basic idea is that a function variable without its full quota of arguments
is a value because there is insufficient data to actually evaluate the function. Once the
number of arguments is equal to the arity of the function variable, then the term is no
longer a value—we can use the function definition to compute the term: f g 2 3 = (g

2) + (g 3) =

Note that a consequence of the definition of values is that a variable var is a value if it is
not defined in the given d. Unlike most standard programming languages, we will define
and implement a semantics over general terms [Pit90], and not just closed ones (that is,
those with no free variables).

Finally, we need to define a notion of state. This will be a finite list of pairs of locations
and terms:

s = [(L1,v1),(L2,v2),...,(Ln,vn)] state

for example

s = [(L1, 3), (L2, <5,6>)] or s = [].

For the first example, we say that the second location L2 has a look-up value of <5,6>,
and we write s(L1) = <5,6> to indicate this. In general s(Li) is the look-up value of

5

location Li, which is undefined if Li does not appear in s. (As a passing remark, note
that in KOREL syntax the term !l yields the look-up of the location l. Thus !L2 will
evaluate to the value <5,6>.) For a state s, and location Lk, we write s{Lk -> t} for the
state which is identical to s, except that the look-up of Lk is updated to be t:

s{Lk -> t} (Li) =

{
t if i = k
s(Li) otherwise

We also write s{Lk}−1 for the state which is identical to s, except that the look-up of Lk
is always undefined (and thus if Lk is defined in s, the location has been deallocated):

s{Lk}−1 (Li) =

{
undefined if i = k
s(Li) otherwise

We shall refer to a pair (s,t) consisting of a state and a term as a configuration, and a
pair of the form (d,(s,t)) where d is a declaration as a program.

3 The Semantics of KOREL

The meaning of the language is given by defining both a transition style and evaluation
style operational semantics. The semantics is specified by giving inductive definitions of
judgements [MTH90] of the forms given below

(1) d |- <s, t> --> <s’, t’> transition semantics

(2) d |- <s, t> ==> <s’, v> evaluation semantics

Thus, formally, --> is a ternary relation between function declarations, configurations
and configurations, and if the triple

(d, <s, t>, <s’, t’>)

is an element of -->, then we write (1) above to indicate this. The inductive definitions
of --> and ==> are quite standard, but we do give the derivation rules in Section 6. Note
that as usual, the two semantics are connected by the fact that ==> is “essentially” the
transitive closure of -->:

d |- <s, t> = <s1, t1> --> <s2, t2> ... --> <sn, vn>

iff

d |- <s, t> ==> <s’, v> where <s’,v> = <sn, vn>

We call the family of configurations (<si, vi> | 1 ≤ i ≤ n) the full transition sequence
of the program d |- <s, t>, and <s’, v> the final configuration.

6

4 The Specification of KOREL

The programming language KOREL provides an implementation of the transition and
evaluation semantics. The key point is that both of these relations are deterministic, that
is, they determine partial functions:

∀ d |- <s, t> --> <s’, t’>. ∀ <s’’,t’’>.

d |- <s, t> --> <s’’, t’’> =⇒ <s’,t’> = <s’’,t’’>

The function trans implements --> with a corresponding function eval implementing
==>. KOREL provides a user interface into which the user may type either the transition
function or evaluation function, together with a program, and KOREL responds with
either the resulting full sequence of transitions, or the final configuration. The user input
is given in the form of a string of characters. However, this input must be represented
internally in an appropriate fashion; this is achieved through the implementation of lexing
and parsing functions, and pretty printing functions, which map KOREL programs (given
as strings) into an internal representation, and vice versa:

KOREL
read

- H

KOREL

eval, trans

................
�

pp
H

pevfn, ptrfn

?

For a general reference to functional lexing, parsing and pretty printing, see [Pau97].
Here, H denotes Haskell code which provides the internal machine representation. The
functions read and pp are mutual inverses, which provide an interface for I/O between
KOREL input and H.

KOREL consists of the following components:

lexer -

lambda expressions

parser
︸ ︷︷ ︸

read

-

lambda expressions

transition function

evaluation function
︸ ︷︷ ︸

ptrfn, pevfn

- pretty printer
︸ ︷︷ ︸

pp

︸ ︷︷ ︸

help functions I/O functions
︸ ︷︷ ︸

trans, eval

The lexer, parser (and lambda expressions) implement the read function; the lambda ex-
pressions, transition and evaluation functions implement ptrfn and pevfn; and the pretty

7

printer implements pp. These components are coded through the following modules:
Basic.hs; Lambda.hs; Parse.hs; Scanner.hs; Pare.hs; Transem.hs; Evsem.hs; Pretty.hs;
Help.hs; and Main.hs. We shall now describe, in outline, the implementation of KOREL

via these modules.

5 Implementation

5.1 Main.hs and Help.hs

The file Help.hs provides basic help to the user; here we print out the help pages:

K K OOOOOO RRRR EEEEEEE L

K K O O R R E L

K K O O R R E L

K K O O R R E L

K K O O R R E L

Welcome to the world of KK O O RRRR EEEEEEE L

K K O O R R E L

K K O O R R E L

K K O O R R E L

K K O O R R E L

K K OOOOOO R R EEEEEEE LLLLLLL

Copyright (c) Leicester University, 1997

Please type help for help ... recursion is everywhere ...

>>help

help

please type ’help 1’ for a description of KOREL

please type ’help 2’ for the BNF grammars constituting KOREL programs

please type ’help 3’ to see some example programs

please type ’help 4’ to see how to use KOREL

That’s it folks! You’re on yer own now

>>help1

help1

This Haskell program parses and interprets a language KOREL.

The parser is combinatory. The interpreter is a coding of both evaluation

and transition style operational semantics of the form:

(eval) function declarations |- <state, program> ==> <state’, value>

(trans) function declarations |- <state, program> --> <state’, program’>

where ==> is -->^*

8

A KOREL program is input as a string which can take the form:

(i) progexpn

(ii) declaration (| declaration)^* |- progexpn

(iii) < state , progexpn >

(iv) declaration (| declaration)^* |- < state , progexpn >

see ’help 2’ for BNF grammars for declarations, states and programs

>>help2

help2

The KOREL grammar for progexpn t is

t ::= var | loc | true | false | z

| t+t | t-t | t*t | t=t | t<=t | t>=t | t<t | t>t

| %var -> t | #var -> t | t t^*

| [] | t:t | t::t | [t, .. ,t] | {t, .. ,t} | hd t | tl t | el t

| () | <t,t> | <<t,t>> | split t as var,var in t | fst t | snd t

| inl t | inr t | case t of var.t or var.t

| rec var.t

| let var = t in t

| if t then t else t

| local var := t in t

| skip | t ; t | while t do t | ref t | !t | t:=t

where var :: AlphaString; loc=Li for i>=1; z :: int -- what a lot of choices!!

The KOREL grammar for declaration d is

d ::= var var^* = t

The KOREL grammar for states s is

s ::= [(Li, t)^*] where i is a positive integer

>>help3

help3

type (i): [(% x -> x*3) (5*(6+9)) , (# x -> x*3) (5*(6+9))]

type (ii): f x = if (x=1) then 1 else x*(f(x-1)) | g z = (z+8) |- (f4)*(g1)

type (iii): < [(L1,2),(L3,<2,3>)] , ((L1:=(!L3)) ; (L3:= 7)) >

type (iv): swap x y = (block L3:=(!x) in ((x:=(!y)) ; (y:=(!L3)))) |-

<[(L1,2),(L2,4)],swap L1 L2>

>>help4

help4

9

PLEASE TYPE IN EITHER

’eval progam’ OR ’trans program’

FOLLOWED BY ’return’, where ’program’ is your choice of (i) --> (iv) from help 2

>>

Let us consider Main.hs. As described above, this module provides a function called
trans for which given a declaration, state and term, say d, s, t, (that is, a program d

|- <s, t>), will produce each of the transition steps which result from the evaluation of
the term to a value. The data are entered onto the command line in the form

trans d |- <s, t>

and the machine will print up the intermediate states and terms. The following example
illustrates this:

trans f x y = x+y |- <[(L1,4)],(%z -> z+1)((f 1 2)+(!L1))>

[("L1","4")] ((% z -> (z+1)) (((f 1) 2)+(!L1)))

[("L1","4")] ((% z -> (z+1)) ((1+2)+(!L1)))

[("L1","4")] ((% z -> (z+1)) (3+(!L1)))

[("L1","4")] ((% z -> (z+1)) (3+4))

[("L1","4")] ((% z -> (z+1)) 7)

[("L1","4")] (7+1)

[("L1","4")] 8

eval is used in the same way as trans, except that it will simply return the final state
and value, which are computed according to the rules defining the evaluation relation ==>.

5.2 Lambda.hs and Syntax.hs

These modules contains the following type declarations:

-- ground types

type C = String -- constants

type V = String -- variables

type B = Bool -- Booleans

type Z = Int -- Integers

10

-- Terms (represented as expressions of an untyped meta-lambda calculus

-- with bound variables represented through de-Bruijn notation)

data Term = Const C | Free V | Bound Int | Abs (V,Term) | Apply (Term,Term)

type Loc = String -- locations

type State = [(Loc,Term)] -- state maps locations to terms

type Dec = [(V,[V],Term)] -- declaration is d = (var, [var1 .. vara], t)

type Conf = (State,Term) -- configuration is (s, t)

type Prog = (Dec,Conf) -- program is (d, (s, t))

The types given above constitute the types of the language H into which KOREL is
translated via the read function. Notice that H consists of some ground types, a datatype
Term, and some further types which are essentially either pair or list types built from the
ground types and Term. In fact there are a variety of read functions, each of which will
map a particular feature (e.g. states, declarations etc) of KOREL into H, and these are
represented below, where ξ denotes an arbitrary fragment of KOREL .

KOREL
read

- H

ξ - ξr

s :: String
readstate

- sr :: State

t :: String
readterm

- tr :: Term

d :: String
readdec

- dr :: Dec

d |- <s, t> :: String
readprog

- (dr,(sr,tr)) :: Prog

Before we give some concrete examples, the key feature to understand is how KOREL

terms are translated into H terms. Once this is understood, the other translations are
routine.

The type Term consists of terms of an un-typed lambda calculus into which KOREL terms
are translated via readterm. In fact the translation is exactly that of the theory of arities
and expressions, and we shall assume that the reader is familiar with this technique. If
not, please see [NPS90], which provides a detailed explanation. However, we recall the
salient points. In order to clarify the exposition, we shall define a small untyped lambda
calculus L which provides a model of the datatype Term. The expressions of L are given
by the grammar

t ::= c | u | (u.t) | (t t) |

where c and u ranges over fixed sets of constants and variables. We shall use brackets
in an informal fashion to delineate expression struture, and we shall write t1 t2 . . . tk
to denote multiple application (which of course associates to the left). The theory of
arities and expressions uses such an untyped lambda calculus to represent the term trees
corresponding to program syntax. Any particular term has a key name (for example the

11

term while b do c could be given the key name “while”) which becomes a constant
in L (eg while). We call while a term constructor constant. There are two sub terms,
and so while has arity two. Then if b and c are represented by the L terms b and c,
the while loop is represented by ((while b) c) = while b c. Variable binding in program
syntax is represented uniformly by binding in L. For example, rec var.t is represented
by rec (x.t) where x represents var. Before giving some more examples, we comment that
the datatype Term in H represents lambda expressions using de-Bruijn notation [Pau97].
Let us write the following abbreviations for certain term constructor constants:

plus for addition
split for splitting of pairs
pair for pairing
ap for function application
lam for lambda abstraction

The KOREL term 2+x would be denoted by the L expression plus 2x, that is, ((plus 2)x),
which in H would be represented by

Apply (Apply (Const "plus",Const "2"),Free "x")

The term (%z -> z+1)3 would be denoted by the expression ap (lam (z.plus z 1)) 3
which in H would be represented by

Apply (Apply (Const "ap",

Apply (Const "lam",Abs ("z",Apply (Apply (Const "plus",Bound 0),Const "1")))),

Const "3")

Note the occurrence of Bound 0 giving the de-Bruijn representation of the bound z.
The KOREL term split <2,3> as x,y in x would be denoted by the L expression
split (pair 2 3) (x.y.x) which in H would be represented by

Apply (Apply (Const "split", Apply (Apply (Const "pair",Const "2"),Const "3")),

Abs ("x",Abs ("y",Bound 1)))

Now that the translation of KOREL terms has been explained, it is quite easy to under-
stand the translation of states, function declarations, and programs; here are some simple
examples:

"[(L1,2)]"
readstate

- [("L1",Const "2")] :: State

"8"
readterm

- Const "8" :: Term

"f x y = 1"
readdec

- ("f",["x", "y"],Const "1") :: Dec

"f x y = 1 |- <[(L1,2)],8>"
readprog

-
([("f",["x", "y"],Const "1")],

([("L1",Const "2")],Const "8"))

We give one final larger example. The KOREL program

12

f x y = x+y | g z = 1 |- <[(L1,4)],(%z -> z+1)((f 1 2)+(!L1))>

would be represented in H by (d,(s,t)) :: Prog where

d = [("f",["x", "y"],Apply (Apply (Const "plus",Free "x"),Free "y")), ("g",["z"],Const "1")]

s = [("L1",Const "4")]

t = Apply (Apply (Const "ap",

Apply (Const "lam",Abs ("z",Apply (Apply (Const "plus",Bound 0),Const "1")))),

Apply (Apply (Const "plus",

Apply (Apply (Const "ap",Apply (Apply (Const "ap",Free "f"),Const "1")),Const "2")),

Apply (Const "!",Const "L1"))

5.3 Scanner.hs, Parse.hs and Pare.hs

These three modules provide a lexer, and combinatory parser which implements the read
functions. The methods employed are quite standard, and we make refer the reader to the
literature on combinatory parsing, for example [Pau97]. We give just one example of a
parsing function, to illustrate the general ideas. Consider the general form var var1 ..

vara = t of a function definition, for example f g x y = (g x) + (g y). The parser
code is

dec = idr ‘next‘ many idr ‘next‘ key"=" ‘next‘ term ‘build‘ makeDec

where

makeDec (f,(a,("=",e))) = (f,a,e)

which for the example would give output

("f",

["g", "x", "y"],

Apply (Apply (Const "plus",Apply (Apply (Const "ap",Free "g"),Free "x")),

Apply (Apply (Const "ap",Free "g"),Free "y")))

5.4 Transem.hs and Evalsem.hs

We explain the code in the file Transem.hs; that of Evalsem.hs is similar. The key
function provided by Transem.hs is

ptrfn :: Prog -> Conf

which mirrors the action of the function trans. It satisfies the following condition, that
for all d,s,t,s’,t’, then d |- <s, t> --> <s’, t’> in KOREL if and only if ptrfn
(dr,(sr,tr)) = (s’r,t’r) in H. The function ptrfn is implemented in a structured
fashion, centered around the fact that all KOREL terms are translated into H terms.
In order to simplify our exposition, we shall often represent H terms using L notation,
without explanation. First, we define

13

ptrfn (dec, (state, term)) = trfn (state,term)

where

trfn (s, t) = if isval (dec,t) then (s,t) else trfn’ (s,t)

ptrfn calls trfn which first tests to see if the given term is a value in the declaration
dec. If it is, computation stops. If not, trfn’ is called which then computes the next
configuration arising from the transition relation. Let us see how this is done. In general,
the elements of type Term in which we have most interest will have the form

t
def
= constr t1 t2 . . . tk

where constr is the name of a term constructor. If one examines the definition of the
transition semantics, one sees that for a term t, it specifies that in any transition step,
either

• one of the ti must be computed; or

• the constructor itself should be evaluated.

Which of these applies is determined by which of the ti are values. Thus Transem.hs

provides functions of the form

trfnarityk〈which〉 s cst t1 t2 ... tk z = <code>

which will compute some of the ti to values (<code> determining exactly which, with
〈which〉 naming them) and then, once this is complete, will execute z (which corresponds
to the constructor being evaluated). These details will now be clarified via an example,
when k = 2

t
def
= ap ((lam (x.x)) (lam (z.plus z 1)))

︸ ︷︷ ︸

t1

(plus 3 2)
︸ ︷︷ ︸

t2

For example, consider t under an eager semantics. First, t1 must be computed, yielding

v1
def
= lam (z.plus z 1)

Hence t = ap v1 t2. Next t2 is evaluated yielding v2 = 5, with t = ap v1 v2. Finally, with
both t1 and t2 fully evaluated, we can compute the term constructor ap:

t = ap v1 v2 = (plus z 1)[5/z]
def
= plus 5 1 = 6.

For this example, we have

trfnarity2both s cst t1 t2 z = if not (isval (dec,t1))

then

let (s’,t1 ′) = trfn (s,t1)

in (s’, ap t1 ′ t2)

else

if not (isval (dec,t2))

then

let (s’,t2 ′) = trfn (s,t2)

in (s’, ap t1 t2 ′)

else z

14

which will check whether t1 is a value, evaluating t1 if it is not, then repeat the process
for t2 (thus both terms are evaluated to values), and finally execute z. We then have

trfn’ (s, ap t1 t2) = trfnarity2both s ap t1 t2 z (*)

where

z = case t1 of lam x .t1 ′ -> t2 [t1/x]

where the code z evaluates the constructor ap by performing a substitution. In the case
when the function application is lazy, the above code at (*) would call trfnarity2fst,
instead of trfnarity2both, thus evaluating just t1 before performing the substitution,
where

trfnarity2fst s cst t1 t2 z = if not (isval (dec,t1))

then

let (s’,t1 ′) = trfn (s,t1)

in (s’, cst t1 ′ t2)

else z

6 The Type System and Operational Semantics

The type system, transition and evaluation style operational semantics of KOREL are
presented on the following pages

15

(where var :: σ ∈ E)

E ` var :: σ E ` z :: Int E ` b :: Bool

E ` t1 :: Int E ` t2 :: Int

E ` t1 iop t2 :: Int

E ` t1 :: Int E ` t2 :: Int

E ` t1 bop t2 :: Bool

d ` <s, t1> --> <s’, t1’>

d ` <s, t1 op t2> --> <s’, t1’ op t2>

d ` <s, t2> --> <s’, t2’>

d ` <s, z1 op t2> --> <s’, z1 op t2’>

(z is the result of z1 op z2)
d ` <s, z1 op z2> --> <s’, z>

d ` <s, t1> ==> <s’, z1> d ` <s’, t2> ==> <s’’, z2>
(z is the result of z1 op z2)

d ` <s, t1 op t2> ==> <s’’, z>

Table 1: The Semantics of Int and Bool Terms

16

E ` t :: σ1

E ` inl t :: σ1 + σ2

E ` t :: σ2

E ` inr t :: σ1 + σ2

E ` t :: σ1 + σ2 E, var1 :: σ1 ` t1 :: σ E, var2 :: σ2 ` t2 :: σ

E ` case t of var1.t1 or var2.t2 :: σ

d ` <s, t> --> <s’, t’>

d ` <s, inl t> --> <s’, inl t’>

d ` <s, t> --> <s’, t’>

d ` <s, inr t> --> <s’, inr t’>

d ` <s, t> --> <s’, t’>

d ` <s, case t of var1 t1 or var2 t2> --> <s’, case t’ of var1 t1 or var2 t2>

d ` case inl v of var1 t1 or var2 t2 --> t1[v/var]

d ` case inr v of var1 t1 or var2 t2 --> t2[v/var]

d ` <s, t> ==> <s’, v>

d ` <s, inl t> ==> <s’, inl v>

d ` <s, t> ==> <s’, v>

d ` <s, inr t> ==> <s’, inr v>

d ` <s, t> ==> <s’, inl v> d ` <s’, t1[v/var1]> ==> <s’’, v’>

d ` <s, case t of var1 t1 or var2 t2> ==> <s’’, v’>

d ` <s, t> ==> <s’, inr v> d ` <s’, t2[v/var2]> ==> <s’’, v’>

d ` <s, case t of var1 t1 or var2 t2> ==> <s’’, v’>

Table 2: The Semantics of σ + σ′ Terms

17

E ` () :: unit

E ` t1 :: σ1 E ` t2 :: σ2

E ` <t1, t2> :: σ1 × σ2

E ` t1 :: σ1 E ` t2 :: σ2

E ` <<t1, t2>> :: σ1 × σ2

E ` t :: σ1 × σ2 E, var1 :: σ1, var2 :: σ2 ` t’ :: σ

E ` split t as var1,var2 in t’ :: σ

d ` <s, t1> --> <s’, t1’>

d ` <s, <t1,t2>> --> <s’, <t1’,t2>>

d ` <s, t2> --> <s’, t2’>

d ` <s, <v1,t2>> --> <s’, <v1,t2’>>

d ` <s, t1> --> <s’, t1’>

d ` <s, split t1 as var1, var2 in t2> --> <s’, split t1’ as var1, var2 in t2>

d ` <s, split <v, v’> as var1, var2 in t2> --> <s, t2[v/var1,v’/var2]>

d ` <s, split <<t, t’>> as var1, var2 in t2> --> <s, t2[t/var1,t’/var2]>

d ` <s, t1> ==> <s’, v1> d ` <s’, t2> ==> <s’’, v2>

d ` <s, <t1,t2>> ==> <s’’, <v1,v2>>

d ` <s, t1> ==> <s’, <v1,v1’>> d ` <s’, t2[v1/var1, v1’/var2] > ==> <s’’, v>

d ` <s, split t1 as var1, var2 in t2> ==> <s’’, v>

d ` <s, t1> ==> <s’, <<t1’,t1’’>>> d ` <s’, t2[t1’/var1, t1’’/var2] > ==> <s’’, v>

d ` <s, split t1 as var1, var2 in t2> ==> <s’’, v>

Table 3: The Semantics of σ × σ′ Terms

18

E ` [] :: Lists(σ)

E ` t1 :: σ E ` t2 :: Lists(σ)

E ` t1:t2 :: Lists(σ)

E ` t1 :: σ E ` t2 :: Lists(σ)

E ` t1::t2 :: Lists(σ)

E ` ti :: σ (1 ≤ i ≤ n)

E ` [t1,t2, .. ,tn] :: Lists(σ)

E ` ti :: σ (1 ≤ i ≤ n)

E ` {t1,t2, .. ,tn} :: Lists(σ)

E ` t :: Lists(σ)

E ` hd t :: σ

E ` t :: Lists(σ)

E ` tl t :: Lists(σ)

E ` t :: Lists(σ)

E ` el t :: Bool

d ` <s, t1> --> <s’, t1’>

d ` <s, t1:t2> --> <s’, t1’:t2>

d ` <s, t2> --> <s’, t2’>

d ` <s, v1:t2> --> <s’, v1:t2’>

d ` <s, ti> --> <s’, ti’> (j + 1 ≤ i ≤ a)

d ` <s, [v1,v2, .. ,vj, t(j+1), .. ,ta]> -->

<s’, [v1,v2, .. ,vj, t(j+1)’, .. ,ta]>

d ` <s, t> --> <s’, t’>

d ` <s, hd t> --> <s’, hd t’>

d ` <s, hd v:v’> --> <s, v> d ` <s, hd t::t’> --> <s, t>

d ` <s, t> --> <s’, t’>

d ` <s, tl t> --> <s’, tl t’>

d ` <s, tl v:v’> --> <s, v’> d ` <s, tl t::t’> --> <s, t’>

d ` <s, t> --> <s’, t’>

d ` <s, el t> --> <s’, el t’>

d ` <s, el t:t’> --> <s, false> d ` <s, el t::t’> --> <s, false>

d ` <s, el []> --> <s, true>

Table 4: The Semantics of Lists(σ) Terms

19

d ` <s, t> ==> <s’, v> d ` <s’, t’> ==> <s’’, v’>

d ` <s, t:t’> ==> <s’’, v:v’>

d ` <s, t> ==> <s’, v:v’>

d ` <s, hd t> ==> <s’, v>

d ` <s, t> ==> <s’, v:v’>

d ` <s, tl t> ==> <s’, v’>

d ` <s, t> ==> <s’, []>

d ` <s, el t> ==> <s’, true>

d ` <s, t> ==> <s’, v:v’>

d ` <s, el t> ==> <s’, false>

d ` <s, t> ==> <s’, t’::t’’>

d ` <s, el t> ==> <s’, false>

d ` <s, t> ==> <s’, t’::t’’> d ` <s’, t’> ==> <s’’, v>

d ` <s, hd t> ==> <s’’, v>

d ` <s, t> ==> <s’, t’::t’’> d ` <s’, t’’> ==> <s’’, v>

d ` <s, tl t> ==> <s’’, v’>

Table 5: The Semantics of Lists(σ) Terms, Continued

(s(Lk) defined & E ` s(Lk)::σ)
E ` <s,Lk> :: Ref (σ)

E ` t :: σ

E ` ref t :: Ref (σ)

E ` t :: Ref (σ)

E ` !t :: σ

d ` <s, t> --> <s’, t’>

d ` <s, ref t> --> <s’, ref t’>

(where the look-up of Lk is undefined in s)
d ` <s, ref v> --> <s{Lk -> v}, Lk>

d ` <s, t> --> <s’, t’>

d ` <s, !t> --> <s’, !t’> d ` <s, !Lk> --> <s, s(Lk)>

d ` <s, t> ==> <s’, v>
(where the look-up of Lk is undefined in s)

d ` <s, ref t> ==> <s’{Lk -> v}, Lk>

d ` <s, t> ==> <s’, Lk>
(where the look-up of Lk is defined in s’)

d ` <s, !t> ==> <s’, s’(Lk)>

Table 6: The Semantics of Ref (σ) Terms

20

E, var :: σ1 ` t :: σ2

E ` %var -> t :: σ1 → σ2

E, var :: σ1 ` t :: σ2

E ` #var -> t :: σ1 → σ2

E ` t2 :: σ1 → σ2 E ` t1 :: σ1

E ` t1 t2 :: σ2

d ` <s, t1> --> <s’, t1’>

d ` <s, t1 t2> --> <s’, t1’ t2>

d ` <s, t2> --> <s’, t2’>

d ` <s, (%var -> t1) t2> --> <s’, (%var -> t1) t2’>

d ` <s, (%var -> t) v> --> <s’, t[v/var]>

d ` <s, (#var -> t1) t2> --> <s’, t2[t1/var]>

d ` <s, t(j+1)> --> <s’, t(j+1)’> (j + 1 ≤ i ≤ a)

d ` <s, f v1 v2 .. vj t(j+1) .. ta> --> <s’, f v1 v2 vj t(j+1)’ .. ta>

(where f v1 v2 .. va = t in d)
d ` <s, f v1 v2 .. va>

--> <s, t[v1/var1,v2/var2, .. ,va/vara]>

d ` <s, t1> ==> <s’, %var -> t1’> d ` <s’, t2> ==> <s’’, v2>

d ` <s, t1 t2> ==> <s’’, t1’[v2/var]>

d ` <s, t1> ==> <s’, #var -> t1’>

d ` <s, t1 t2> ==> <s’, t1’[t2/var]>

Table 7: The Semantics of σ → σ′ Terms

21

E ` skip :: Cmd

E ` t1 :: Bool E ` t2 :: Cmd

E ` while t1 do t2 :: Cmd

E ` t1 :: Ref (σ1) E ` t2 :: σ1

E ` t1:=t2 :: Cmd

E ` t1 :: σ1 E ` t2 :: Cmd

E ` local var:=t1 in t2 :: Cmd

d ` <s, while t1 do t2> --> <s, if t1 then (t2 ; while t1 do t2) else skip>

d ` <s, t1> --> <s’, t1’>

d ` <s, t1:=t2> --> <s’, t1’:=t2>

d ` <s, t2> --> <s’, t2’>

d ` <s, Lk:=t2> --> <s’, Lk:=t2’>

d ` <s, Lk:=v> --> <s{Lk -> v}, skip>

d ` <s, t1> --> <s’, t1’>

d ` <s, local var:=t1 in t2> --> <s’, local var:=t1’ in t2>

(Lk 6∈ s or t2)
d ` <s, local var:=v1 in t2> -->

<s{Lk->v1}, local* Lk t2[Lk/var]>

d ` <s, t2> --> <s’, t2’>

d ` <s, local* Lk t2> --> <s’, local* Lk t2’>

d ` <s, local* Lk v2> --> <s{Lk}−1, v2>

d ` <s, t1> ==> <s’, true>

d ` <s’, t2> ==> <s’’, skip>

d ` <s’’, while t1 do t2> ==> <s’’’, skip>

d ` <s, while t1 do t2> ==> <s’’’, skip>

d ` <s, t1> ==> <s’, v1>

d ` <s’{Lk -> v1}, t2[Lk/var]> ==> <s’’, skip>
(Lk 6∈ s or t2)

d ` <s, local var:=t1 in t2> ==> <s’’{Lk}−1, skip>

Table 8: The Semantics of Cmd Terms

22

E ` t1 :: σ1 E ` t2 :: σ2

E ` t1 ; t2 :: σ2

E ` t :: Bool E ` t1 :: σ E ` t2 :: σ

E ` if t then t1 else t2 :: σ

E ` t1 :: σ1 E, var ::σ1 ` t2 :: σ2

E ` let var=t1 in t2 :: σ2

d ` <s, t1> --> <s’, t1’>

d ` <s, t1 ; t2> --> <s’, t1’ ; t2> d ` <s, v1 ; t2> --> <s, t2>

d ` <s, t> --> <s’, t’>

d ` <s, if t then t1 else t2> --> <s’, if t’ then t1 else t2>

d ` <s, if true then t1 else t2> --> <s, t1>

d ` <s, if false then t1 else t2> --> <s, t2>

d ` <s, rec var.t> --> <s, t[rec var.t/var]>

d ` <s, t1> --> <s’, t1’>

d ` <s, let var = t1 in t2> --> <s’, let var = t1’ in t2>

d ` <s, let var = v1 in t2> --> <s, t2[v1/var]>

d ` <s, t1> ==> <s’, v1> d ` <s’, t2> ==> <s’’, v2>

d ` <s, t1 ; t2> ==> <s’’, v2>

d ` <s, t> ==> <s’, true> d ` <s’, t1> ==> <s’’, v>

d ` <s, if t then t1 else t2> ==> <s’’, v>

d ` <s, t> ==> <s’, false> d ` <s’, t2> ==> <s’’, v>

d ` <s, if t then t1 else t2> ==> <s’’, v>

d ` <s, t[rec var.t/var]> ==> <s’, v>

d ` <s, rec var.t> ==> <s’, v>

d ` <s, t1> ==> <s’, v1> d ` <s’, t2[v1/var]> ==> <s’’, v2>

d ` <s, let var = t1 in t2> --> <s’’, v2>

Table 9: The Semantics of Remaining Terms

23

References

[Cro95a] R. L. Crole. Functional Programming Theory, 1995. Department of Mathe-
matics and Computer Science Lecture Notes, LATEX format iv+68 pages with
index.

[Cro95b] R. L. Crole. Semantics of Programming Languages, 1995. Department of Math-
ematics and Computer Science Lecture Notes, LATEX format iii+97 pages with
subject and notation index.

[Cro97] R. L. Crole. The KOREL Programming Language (Preliminary Report). Tech-
nical Report 1997/43, Department of Mathematics and Computer Science, Uni-
versity of Leicester, 1997.

[Gun92] C. A. Gunter. Semantics of Programming Languages: Structures and Tech-
niques. Foundations of Computing. MIT Press, 1992.

[HS88] J.R. Hindley and J.P. Seldin. Introduction to Combinators and the Lambda
Calculus, volume 1 of London Mathematical Society Student Texts. Cambridge
University Press, 1988.

[Kah88] G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Programming
of Future Generation Computers, pages 237–258. Elsevier Science Publishers
B.V. North Holland, 1988.

[MT91] R. Milner and Mads Tofte. Commentary on Standard ML. MIT Press, Cam-
bridge, Mass., 1991.

[MTH90] R. Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, Cambridge, Mass., 1990.

[NPS90] B. Nordström, K. Petersson, and J.M. Smith. Programming in Martin-Löf ’s
Type Theory, volume 7 of Monographs on Computer Science. Oxford University
Press, 1990.

[Pau97] L.C. Paulson. ML for the Working Programmer. Cambridge University Press,
1997. 2nd Edition.

[Pit90] A. M. Pitts. Notes on the translation of simply typed lambda calculus into the
computational lambda calculus. Cambridge Computer Laboratory Notes, 1990.

[Pit97a] A. M. Pitts. Lecture notes on semantics of programming languages. Under-
graduate Lecture Course, Cambridge University Computer Laboratory, 1997.

[Pit97b] A. M. Pitts. Lecture notes on types. Undergraduate Lecture Course, Cambridge
University Computer Laboratory, 1997.

[Plo75] G.D. Plotkin. Call by name, call by value and the λ calculus. Theoretical
Computer Science, 1:125–129, 1975.

24

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Technical Re-
port DAIMI–FN 19, Department of Computer Science, University of Aarhus,
Denmark, 1981.

[Sch94] D. A. Schmidt. The Structure of Typed Programming Languages. Foundations
of Computing Series. MIT Press, Cambridge, Mass., 1994.

[Tho19] S. Thompson. The Craft of Functional Programming. ??, 19??

[Win93] G. Winskel. The Formal Semantics of Programming Languages. Foundations
of Computing. The MIT Press, Cambridge, Massachusetts, 1993.

25

