
Canonical HybridLF:

Extending Hybrid with Dependent Types

Roy L. Crole & Amy Furniss

University of Leicester, UK

1 September 2015

LSFA 2015, Natal, Brazil 1/15

Background and Motivation

▶ Our work concerns reasoning about logics, programming
languages . . . and other object logics by

▶ translating into a metalogic: OL 7→ ML;
▶ reasoning about OL in ML;

▶ The Hybrid metalogic was developed at Leicester, UK, by
Ambler, Crole and Momigliano.

▶ Hybrid is an implementation of HOAS in Isabelle-HOL:
▶ Users write syntax with “human friendly” named binders.
▶ Hybrid converts such syntax to “machine friendly” nameless

de Bruijn notation;
▶ Special conversion functions are at the heart of Hybrid.

LSFA 2015, Natal, Brazil 2/15

Background and Motivation

▶ Hybrid is based upon the untyped lambda-calculus. Our
contribution is to show that:

▶ The conceptual ideas behind the conversion functions extend to
(simply typed and) dependently typed settings.

▶ One may reason with the judgements-as-types methodology
(within Isabelle).

▶ The concept of Hybrid unary abstraction extends to finitary
abstraction.

▶ Types eliminate the need for well-formedness Hybrid
predicates.

▶ To introduce Canonical HybridLF we first recall the
Hybrid metalogic in a little more detail . . .

LSFA 2015, Natal, Brazil 2/15

The Hybrid System

▶ Central to Hybrid is a Core Datatype . . .
▶ . . . the untyped lambda calculus in nameless de Bruijn form

′a expr ::= BND nat | VAR nat | CON ′a

| ABS expr | APP expr expr︸ ︷︷ ︸
expr $$ expr

| ERR

eg ′a = cForAll | cExists: object level ∀ rendered as CON cforAll.

LSFA 2015, Natal, Brazil 3/15

The Hybrid System

▶ . . . the untyped lambda calculus in nameless de Bruijn form
′a expr ::= BND nat | VAR nat | CON ′a

| ABS expr | APP expr expr︸ ︷︷ ︸
expr $$ expr

| ERR

.

......
together with user syntax LAM v.e that is converted to an
ABS-expression of the Core Datatype

▶ Hybrid provides HOAS: Object level ∀v.ϕ is encoded as

(CON cforAll) $$(LAM v.ϕ)

LSFA 2015, Natal, Brazil 3/15

The Hybrid System

▶ . . . the untyped lambda calculus in nameless de Bruijn form

′a expr ::= BND nat | VAR nat | CON ′a

| ABS expr | APP expr expr︸ ︷︷ ︸
expr $$ expr

| ERR

.

......
together with user syntax LAM v.e that is converted to an
ABS-expression of the Core Datatype

▶ LAM v.e is an abbreviation for ABS (lbind 0 (Λv.e)) where
Λv.e is an Isabelle function and lbind converts it to a de Bruijn
expression, provided that . . .

▶ . . . Λv.e is a (unary) Hybrid abstraction.
LSFA 2015, Natal, Brazil 3/15

Book-Keeping: HYBRID Abstractions
▶ Roughly, abstractions are formed from level 1 expressions such

as ABS (VAR 0 $$ BND 1) in which the dangling variable is
“Isabelle-function-abstracted”

Λv. ABS (VAR 0 $$ v) :: expr ⇒ expr

▶ . . . and lbind reverses this
lbind 0 (Λv. ABS (VAR 0 $$ v)) = ABS (VAR 0 $$ BND 1)

▶ An abstraction is any e :: expr ⇒ expr for which LAM v. e v
is level 0, ie proper, de Bruijn. (“lambda-calculus expression”)

▶ We have a predicate abstr
abstr e =⇒ proper (LAM v. e v)

LSFA 2015, Natal, Brazil 4/15

LF and Canonical LF

▶ LF is the (well known!) Edinburgh Logical Framework of
Harper, Honsell and Plotkin.

▶ It is a dependently-typed lambda calculus, intended as a
metalogic for reasoning about object logics.

▶ ▶ For each judgement J of the object logic an LF type j is
created; and

▶ a proof that J holds is given by an LF expression e such that
e :: j.

▶ This is often called the judgements-as-types approach.

LSFA 2015, Natal, Brazil 5/15

LF and Canonical LF

▶ LF has a notion of canonical form: expressions in β-normal,
η-long—the expressions of Canonical LF.

▶ Watkins, Cervesato, Pfenning and Walker give a canonical
presentation of LF:

▶ only kinds, terms and types in canonical form can be formed;
▶ definitional equality is syntactic equality;
▶ utilises hereditary substitution: ensures that any substitution

yields a canonical expression.
▶ Canonical HybridLF is an implementation (we also have

an implementation of LF).

LSFA 2015, Natal, Brazil 5/15

The Philosophy of CANONICAL HYBRIDLF

▶ In Hybrid the methodology is
▶ encode object logics using “lambda calculus HOAS” terms;
▶ reason directly in Isabelle HOL (after conversion to de Bruijn).

▶ In Canonical HybridLF the user’s methodology is
different: we have a HOAS interface to an implementation of
Canonical LF.

▶ Theorems are defined via a signature: one can use named
bound variables which are converted to de Bruijn form;

LSFA 2015, Natal, Brazil 6/15

Key Ingredients of CANONICAL HYBRIDLF

Analogous to Hybrid:

▶ A Core Datatype for the syntactic expressions of Canonical LF
in a de Bruijn form.

▶ Canonical HybridLF Abstraction predicates.
▶ lbind functions that convert expressions with named variables to

de Bruijn form.

Further

▶ An implementation of the Canonical LF formal system.

LSFA 2015, Natal, Brazil 7/15

The Core Datatype of CANONICAL HYBRIDLF

The raw expressions of Canonical LF . . .

K ::=k Type | Πx:A.K A ::=a P | Πx:A.A M ::=m R | λx:A.M
P ::=p k | P M R ::=r x | c | R M

. . . captured by the Core Datatype:

datatype
...
...

and (’a, ’b) cterm = ATERM "(’a, ’b) aterm"
| ABS "(’a, ’b) ctype" "(’a, ’b) cterm"

and (’a, ’b) aterm = VAR nat | BND nat | CON ’a
| APP "(’a, ’b) aterm" "(’a, ’b) cterm"

LSFA 2015, Natal, Brazil 8/15

The Core Datatype of CANONICAL HYBRIDLF

The raw expressions of Canonical LF . . .

K ::=k Type | Πx:A.K A ::=a P | Πx:A.A M ::=m R | λx:A.M
P ::=p k | P M R ::=r x | c | R M

. . . captured by the Core Datatype:

datatype
...
...

and (’a, ’b) cterm = ATERM "(’a, ’b) aterm"
| ABS "(’a, ’b) ctype" "(’a, ’b) cterm"

and (’a, ’b) aterm = VAR nat | BND nat | CON ’a
| APP "(’a, ’b) aterm" "(’a, ’b) cterm"

LSFA 2015, Natal, Brazil 8/15

The Core Datatype of CANONICAL HYBRIDLF

The raw expressions of Canonical LF . . .

K ::=k Type | Πx:A.K A ::=a P | Πx:A.A M ::=m R | λx:A.M
P ::=p k | P M R ::=r x | c | R M

. . . captured by the Core Datatype:

datatype
...
...

and (’a, ’b) cterm = ATERM "(’a, ’b) aterm"
| ABS "(’a, ’b) ctype" "(’a, ’b) cterm"

and (’a, ’b) aterm = VAR nat | BND nat | CON ’a
| APP "(’a, ’b) aterm" "(’a, ’b) cterm"

LSFA 2015, Natal, Brazil 8/15

CANONICAL HYBRIDLF Abstractions

M ::=m R | λx:A.M R ::=r x | c | R M

cterm_abstr i (Λv. ATERM (VAR n)) = True
cterm_abstr i (Λv. ATERM (BND n)) = (n < i)
cterm_abstr i (Λv. ATERM (CON c)) = True
cterm_abstr i (Λv. ATERM ((f v) $$o (g v))) =

(aterm_abstr i f ∧ cterm_abstr i g)
cterm_abstr i (Λv. ABS (ty v) (f v)) =

(ctype_abstr i ty ∧ cterm_abstr (i + 1) f)

Recursively define an abstraction test on canonical terms M

LSFA 2015, Natal, Brazil 9/15

CANONICAL HYBRIDLF Abstractions

M ::=m R | λx:A.M R ::=r x | c | R M

cterm_abstr i (Λv. ATERM (VAR n)) = True
cterm_abstr i (Λv. ATERM (BND n)︸ ︷︷ ︸

Canonical HybridLF Abstractions

) = (n < i)

The first two clauses deal with variables

LSFA 2015, Natal, Brazil 9/15

CANONICAL HYBRIDLF Abstractions

M ::=m R | λx:A.M R ::=r x | c | R M

cterm_abstr i (Λv. ATERM (CON c)) = True

The third clause deals with constants

LSFA 2015, Natal, Brazil 9/15

CANONICAL HYBRIDLF Abstractions

M ::=m R | λx:A.M R ::=r x | c | R M

cterm_abstr i (Λv. ATERM ((f v) $$o (g v))) =
(aterm_abstr i f ∧ cterm_abstr i g)

The fourth clause deals with R M (coded f v and g v)

Recursive call for R (f v) Recursive call for M (g v)

LSFA 2015, Natal, Brazil 9/15

CANONICAL HYBRIDLF Abstractions

M ::=m R | λx:A.M R ::=r x | c | R M

cterm_abstr i (Λv. ABS (ty v) (f v)) =
(ctype_abstr i ty ∧ cterm_abstr (i + 1) f)

The fifth clause deals with lambda-expressions

Recursive call for A Recursive call for M

LSFA 2015, Natal, Brazil 9/15

Conversion to de Bruijn: The lbind Functions

▶ Recall the conversion function lbind that converts a (unary)
abstraction Λv. e to a level-1 de Bruijn expression.

▶ We define analogues of lbind, by mutual recursion, over the
canonical and atomic types; and the canonical and atomic
terms.

▶ Here is part of the definition over canonical terms:

cterm_bind i (Λv. ABS (ty v) (f v))︸ ︷︷ ︸
Canonical HybridLF Abstraction

=

(case (ctype_bind i ty) of Some t ⇒
(case (cterm_bind (i + 1) f) of Some m ⇒

Some (ABS t m)

LSFA 2015, Natal, Brazil 10/15

The CANONICAL HYBRIDLF Formal System

..function. d. ctx. sig_t. sig_k. bnd. ξ. =. ξ′.

Context

.

Object
signature

.

Type
signature

.

Binding
environment

.

Recursion
parameter

.

Function
name

▶ Typing judgement of LF Γ ⊢Σ ξ : ξ′ implemented by

function d bnd : (Γ, Σ, ξ) 7→ ξ′

▶ d measures recursion-depth: all functions must terminate.
▶ bnd is a list of canonical types. When typing ABS t m, we

recursively determine the type of the body m with t # bnd.

LSFA 2015, Natal, Brazil 11/15

The CANONICAL HYBRIDLF Formal System

Γ ⊢Σ P : Πx:A.K Γ ⊢Σ M : A [M/x]kAK = K′

atom_kindof
Γ ⊢Σ P M : K′

atom_kindof (d + 1) ctx sig_t sig_k bnd (FAPP p m) =

(case atom_kindof d ctx sig_t sig_k bnd p of Some (KPI a k)
⇒ (case canon_typeof d ctx sig_t sig_k bnd m of Some a
⇒ kind_subst_bv d ctx sig_t sig_k bnd m 0 0 k

LSFA 2015, Natal, Brazil 12/15

The CANONICAL HYBRIDLF Formal System

Γ ⊢Σ P : Πx:A.K Γ ⊢Σ M : A [M/x]kAK = K′

atom_kindof
Γ ⊢Σ P M : K′

atom_kindof (d + 1) ctx sig_t sig_k bnd (FAPP p m) =

(case atom_kindof d ctx sig_t sig_k bnd p of Some (KPI a k)
⇒ (case canon_typeof d ctx sig_t sig_k bnd m of Some a
⇒ kind_subst_bv d ctx sig_t sig_k bnd m 0 0 k

LSFA 2015, Natal, Brazil 12/15

The CANONICAL HYBRIDLF Formal System

Γ ⊢Σ P : Πx:A.K Γ ⊢Σ M : A [M/x]kAK = K′

atom_kindof
Γ ⊢Σ P M : K′

atom_kindof (d + 1) ctx sig_t sig_k bnd (FAPP p m) =

(case atom_kindof d ctx sig_t sig_k bnd p of Some (KPI a k)
⇒ (case canon_typeof d ctx sig_t sig_k bnd m of Some a
⇒ kind_subst_bv d ctx sig_t sig_k bnd m 0 0 k

LSFA 2015, Natal, Brazil 12/15

Case Study: Simply Typed Lambda Calculus

▶ We implemented an analogue of the case study of the simply
typed lambda calculus in Twelf (from 2007):

▶ Simple types generated from a unit type;
▶ a type assignment system;
▶ a single-step operational semantics;
▶ a proof of type preservation.

datatype
type_cons =

tp | tm | var_of_type | pres | val | step
object_cons =

unit | arrow | singleton| app | lam | . . .

LSFA 2015, Natal, Brazil 13/15

Case Study: Simply Typed Lambda Calculus

Object level lam-functions are values:

(i) first order syntax
(∀ E : tm)(∀ T : tp)(val (lam x : T. E))

LSFA 2015, Natal, Brazil 14/15

Case Study: Simply Typed Lambda Calculus

Object level lam-functions are values:

(i) first order syntax
(∀ E : tm)(∀ T : tp)(val (lam x : T. E))
(ii) Canonical HybridLF
PI (tm ⇒ tm) (Λ E. PI tp (Λ T . val $$f (lam $$o T $$o E)))

Types eliminate Hybrid well-formedness predicates

LSFA 2015, Natal, Brazil 14/15

Case Study: Simply Typed Lambda Calculus

Object level lam-functions are values:

(ii) Canonical HybridLF
PI (tm ⇒ tm) (Λ E. PI tp (Λ T . val $$f (lam $$o T $$o E)))
(iii) which equals
ctype_bind2 (tm ⇒ tm)

(Λ E. tp)

(Λ E. ΛT . val $$f (lam $$o T $$o E))

LSFA 2015, Natal, Brazil 14/15

Case Study: Simply Typed Lambda Calculus

Object level lam-functions are values:

(ii) Canonical HybridLF
PI (tm ⇒ tm) (Λ E. PI tp (Λ T . val $$f (lam $$o T $$o E)))
(iii) which equals
ctype_bind2 (tm ⇒ tm)

(Λ E. tp)

(Λ E. ΛT . val $$f (lam $$o T $$o E))

(iv) which evaluates to
PI (tm ⇒ tm) (PI tp (val $$f ((lam $$o (BND 0)) $$o (BND 1))))

LSFA 2015, Natal, Brazil 14/15

Case Study: Simply Typed Lambda Calculus

Object level lam-functions are values:

(ii) Canonical HybridLF
PI (tm ⇒ tm) (Λ E. PI tp (Λ T . val $$f (lam $$o T $$o E)))
(iii) which equals
ctype_bind2 (tm ⇒ tm)

(Λ E. tp)

(Λ E. ΛT . val $$f (lam $$o T $$o E))

(iv) which evaluates to
PI (tm ⇒ tm) (PI tp (val $$f ((lam $$o (BND 0)) $$o (BND 1))))

Hybrid syntax

LSFA 2015, Natal, Brazil 14/15

Conclusions

▶ Can the techniques of Hybrid be migrated to a dependently
typed setting? Yes.

▶ The type system replaces well-formedness predicates of
Hybrid (eg isTerm E and isType T).

▶ In Canonical HybridLF we make a number of advances
over the existing Hybrid systems, such as implementing
finitary abstractions rather than just unary abstractions.

▶ An interesting topic might be formal adequacy proofs like the
one for Hybrid.

▶ A journal paper will outline similar work for (standard) LF.
▶ Canonical HybridLF proof search is often long and

tedious; in Twelf this is automatic. Canonical HybridLF
currently lacks automation of unification and proofs of totality.

LSFA 2015, Natal, Brazil 15/15

	Background and Motivation
	A Review of the Hybrid Formal System
	Recalling LF and Canonical LF
	The Canonical HybridLF Formal System
	The Core Datatype
	Abstractions
	Conversion to de Bruijn: lbind Functions
	Typing Judgements

	A Case Study
	Conclusions

