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Please note that these Exercises sometimes refer to the accompanying MGS 2018 slides
on Category Theory.

If X is a set, then a preorder on X is a binary relation ≤ on X which is reflexive and
transitive. If the relation ≤ is also anti-symmetric, that is for any x,y ∈ X we have x≤ y
and y≤ x implies x = y, then we call ≤ a partial order. We will often simply refer to a
preorder X or partial order (poset) X , though sometimes refer to (X ,≤) or (X ,≤X) if we
wish to make the (name of) the set and order clear.

1 Categories

(1) For the category of sets and functions, Set, check in detail that the axioms of a cate-
gory hold. In the case of Set, what exactly are the morphisms? What are the identities?
What is morphism composition? Verify the equations for identities and associativity.

(2) If X is a set, check that P (X) is a preorder by inclusions ⊆ and is hence a category,
checking all of the details. (Of course P (X) also happens to be a partial order . . . )

(3) Verify that there is a category C with one object ∗ and the set of morphisms C (∗,∗)
consists of the algebraic terms t ::= x0 | K | F(t) |G(t, t) where x0 is one given variable, K
is a constant and F and G are two given function symbols. Composition is substitution
t[t ′/x0] (where “t ′ replaces x0 in t is defined recursively).

(4) Verify that any monoid (M,b,e) is a single object category C with one object ∗ and

C (∗,∗) def
= M.

(5) Verify that Mon, all monoids and all monoid homomorphisms, is a category. Make
sure you are clear that this, and the last example, are related but entirely different.

(6) Choose some other examples of categories of your choice and verify the axioms.

(7) If X and Y are preorders check that so is the cartesian product X ×Y (of underlying
sets) ordered coordinate-wize.

(8) Given categories C and D, the objects of the category C ×D are pairs (A,B) of
objects from C and D respectively. Convince yourself that there is an obvious category
C ×D. Compare to the previous question by regarding X and Y as categories. Show
that (C ×D)op = C op×Dop.

(9) If f : X → Y and g : Y → Z are both monotone functions between preorders, then so
too is the composition f ◦g : X → Z defined by (g◦ f )(x) def

= g( f (x)) for any x ∈ X . Verify
this fact, and hence that preorders and monotone functions form a category.

(10) Show that any morphism in a category can have at most one inverse.
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2 Functors

(1) Check that there is an identity functor on any category C .

(2) Let (X ,≤X) and (Y,≤Y ) be categories and m : X → Y a monotone function. Then m
gives rise to a functor

M : (X ,≤X)→ (Y,≤Y )

defined by M(x) def
= m(x) on objects x ∈ X and by M(≤X) =≤Y on morphisms; since m is

monotone,

≤X : x→ x′ implies M(≤X) : M(x)→M(x′). Verify!

(3) Check that there is a functor F : Set→Mon defined by FA def
= list(A) and F f def

= map( f )
(either see the notes, or go straight ahead if you know Haskell!)

(4) The diagonal functor ∆ : C → C ×C maps f : A→ B to ( f , f ) : (A,A)→ (B,B). Check
that it is indeed a functor.

(5) Check that the covariant powerset functor P : Set→ Set which is given by

f : A→ B 7→ P ( f )≡ f∗ : P (A)→ P (B),

where f : A→ B is a function and f∗ is defined by f∗(A′)
def
= { f (a′) | a′ ∈ A′}where A′ ∈ P (A)

actually is a functor.

(6) Do the same for the contravariant powerset functor P : Setop→ Set by setting

f op : B→ A 7→ f−1 : P (B)→ P (A),

where f : A→ B is a function in Set, and the function f−1 is defined by

f−1(B′) def
= {a ∈ A | f (a) ∈ B′}

where B′ ∈ P (B).

(7) Define G : Set→Mon by GA def
= lists(A) and G f def

= mapsq( f ), where

mapsq( f ) : lists(A)→ lists(B)

is defined by

mapsq( f )([a1, . . . ,an]) = [ f 2(a1), . . . , f 2(an)], mapsq( f )([ ]) = [ ]

with [a1, . . . ,an] any element of lists(A) and f : A→ B a function. Show that G is a not a
functor.

3



(8) ∗ A functor F : C → D is faithful if for any objects A and B of C , the induced
map C (A,B)→ D(FA,FB) is an injection. Exhibit such a faithful F where there are
morphisms f 6= g and F f = Fg.

(9) ∗ Let us say that a category C is tiny if the collection of objects forms a set and C
is discrete, that is, the only morphisms are identities; prove that a category C is tiny iff
given any category D with a set of objects obD and any set function f : obC → obD,
then f extends uniquely to a functor F : C →D. (Extends means that if A is an object of
C , then FA = f (A) ∈ obD.)

3 Natural Transformations

(1) Verify that there is an identity natural transformation for any functor F : C → C .

(2) For the functor F : Set→Mon above, verify in detail that there is a natural transfor-
mation rev : F → F whose components at a set A reverse lists in list(A).

(3) Verify in detail that there is a category DC with objects functors from C to D, mor-
phisms natural transformations between such functors. We can define a natural trans-
formation β◦α : F → H by setting the components to be

(β◦α)A
def
= βA ◦αA.

and this is the composition of DC . Note: this category is often denoted by [C ,D].

4 Isomorphisms

(1) Suppose that a bijection f in Set is specified as a one-to-one and onto function
(injection and surjection). Check that f is an isomorphism.

(2) Check that the relation ∼= of isomorphism is an equivalence relation.

(3) Show that functors preserve isomorphisms.

(4) Show that in PreSet a bijection b : X → Y of sets that is monotone is not necessarily
an isomorphism.

(5) Show that for a morphism α in DC , α is an isomorphism just in case each αA is an
isomorphism in D.
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5 Products and Coproducts

(1) Verify in detail that binary products and coproducts exist in Set (see the notes if
required).

(2) Let X and Y be preorders and X ×Y the cartesian product of the underlying sets
ordered coordinate-wize. Check that there are monotone functions πX : X ×Y → X ,
(x,y) 7→ x and πY : X×Y →Y , (x,y) 7→ y where (x,y) ∈ X×Y . Verify that given monotone
functions f : Z → X and g : Z → Y where Z is any given preorder, there is a unique
monotone function m : Z → X ×Y for which f = πX ◦m and g = πY ◦m. Conclude that
ParSet has binary products.

(3) Suppose that F1 and F2 are objects (that is, functors) of DC and that D has finite
(co)products. Then both F1×F2 and F1 +F2 exist and are defined pointwize. Using the
notes if need be, verify this in detail; this is an important example and we will use the
notation a lot in the final lecture or so.

(4) Check that there are functors B× (−), B+(−) : C → C for any B so long as C has
binary coproducts (see the notes if required).

(5) In (P (X),⊆), binary meets (products) and joins (coproducts) are given by the oper-
ations of intersection and union. Verify this. What are the top and bottom elements?

(6) Think of some simple finite posets in which meets and joins do not exist.

(7) Suppose that X is a poset. Show that meets in a poset are unique if they exist. Hint:
Suppose that, in each case, there are at least two possibilities m and m′ and prove that m
and m′ are equal.

(8) Show that a category C has all finite products just in case it has binary products and
a terminal object.

(9) Define the partial order | on N by ∀d,n ∈ N.d | n to mean that (∃k ∈ N)(n = k ∗d).
With this order, binary meets and joins are given simply by highest common factor and
lowest common multiple respectively. Give some informal arguments to show that this is
correct (a complete answer requires some simple - undergraduate level - properties of
the natural numbers, such as prime factorisation).

(10) Investigate the notion of a binary product in a category C op.

(11) Prove the coproduct of any set-indexed family of objects is unique up to isomor-
phism if it exists.

(12) In a category with binary (co)products,suppose that f1 : A1→ B1 and f2 : A2→ B2.
Then

f1× f2
def
= 〈 f1 ◦πA1, f2 ◦πA2〉 : A1×A2→ B1×B2

f1 + f2
def
= [ιB1 ◦ f1, ιB2 ◦ f2] : A1 +A2→ B1 +B2
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Convince yourself that
πBi ◦ ( f1× f2) = fi ◦πAi

( f1 + f2)◦ ιAi = ιBi ◦ fi

(13) Let C be a category with finite products and let

l : X → A f : A→ B g : A→C
h : B→ D k : C→ E

be morphisms of C . Show that (h× k)◦ 〈 f ,g〉= 〈h◦ f ,k ◦g〉 and 〈 f ,g〉 ◦ l = 〈 f ◦ l,g◦ l〉.

(14) Formulate an analogue of the previous question in terms of coproducts, and prove
your conjecture.

(15) ∗ Find an example of a functor F : C →D for which

F(A×B)∼= FA×FB

in D for all pairs of objects A and B in C , but such that F does not preserve binary
products. Hint: think about countably infinite sets.

6 More Natural Transformations and Equivalences

(1) Verify that FX : Set→ Set is a functor and that ev : FX → idSet is a natural transforma-
tion (see slides).

(2) Show that any category SetC has finite products and coproducts.

(3) Given a diagram of categories and functors

C
I

- D
F,G,H

- E
J

- F

and natural transformations α : F → G and β : G→ H, we can define J∗ : ED → F D by
J∗(F)

def
= J ◦F on any object F and (J∗(α))D

def
= J(αD) where D is an object of D. Show

that J∗(β◦α) = J∗(β)◦ J∗(α). There is also a functor I∗ : ED → EC . Try to define I∗ and
show that I∗(β◦α) = I∗(β)◦ I∗(α).

Note: make sure you understand in which categories the compositions are defined.

(4) Let S be the category of non-empty sets and set functions. Define a functor P : S→ S
by sending f : X → Y in S to the function

P ( f ) : P (X)→ P (Y ) A 7→ f (A) def
= { f (a) | a ∈ A}.

Show that there is no natural transformation α : P → idS . (P ( f ) is sometimes written
f∗.)
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(5) ∗ Two categories are said to be equivalent, if, roughly speaking, we can write down
a one to one correspondence between isomorphism classes of objects obtained from the
categories. More precisely, two categories C and D are equivalent if there are functors
F : C → D and G : D → C together with natural isomorphisms ε : F ◦G ∼= idD and η :
idC ∼= G ◦F . We say that F is an equivalence with an inverse equivalence G and denote
the equivalence by F : C 'D : G.

Let Part be the category of sets and partial functions. Write 1 for a singleton set. An
object of the category 1/Set is a function f : 1→ A where A is a set (and hence in
particular A is non-empty). A morphism m : f → f ′ (where f ′ : 1→ A′) is a function
m : A→ A′ for which m ◦ f = f ′. Prove that Part ' 1/Set. Hint: Note that an object
f : 1→ A amounts to specifying an element a ∈ A.

(6) ∗ The slice category Set/B is often referred to as the category of B-indexed families
of sets with functions preserving the indexing. It is defined analogously to the category
1/Set. First try to work out the definition of this category.

Then to understand the description of the category, note that a function f : X → B gives
rise to the family of sets ( f−1(b) | b ∈ B), and the family of sets (Xb | b ∈ B) gives rise to
the function

f : {(x,b) | x ∈ Xb,b ∈ B}→ B

where f (x,b) def
= b.

Note that we can regard the set B as a discrete category; then there is an equivalence
between the functor category SetB and the slice Set/B. Formulate this equivalence care-
fully and prove that your definitions really do give an equivalence.

7 Algebras

(1) There is a category C F of algebras and algebra homomorphisms (details omitted) in
which initial algebras are initial objects. Verify!

(2) Show that the functor 1+(−) : Set→ Set has an initial algebra

[z,s] : 1+N→ N

where z : 1→N maps ∗ to 0 and s : N→N adds 1. This example illustrates the paradigm
of “datatypes as initial algebras”.
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8 Adjunctions

(1) Let X be a preorder. If ∆ : X → X×X is given by ∆(x) def
= (x,x), verify that there are

adjoints (∨ a ∆ a ∧).

(2) Verify that the functions

(−)A,M : Mon(lists(A),M)∼= Set(A,UM) : (̂−)A,M

given in the slides do indeed yield a natural bijection.

(3) Verify that the diagonal functor ∆ : Set→ Set×Set taking a function f : A→ B to
( f , f ) : (A,A)→ (B,B) has right adjoint Π taking any morphism ( f ,g) : (A,A′)→ (B,B′)

of Set×Set to f ×g def
= 〈 f ◦πA,g◦πB〉 : A×A′→ B×B′.

(4) Do the same for the left adjoint (using coproducts).

(5) If categories C and D are locally small, that is, the collection C (A,B) of morphisms
forms a set (ditto D), then L a R provided that there is an isomorphism

D(−,+)◦ (Lop× id) def
= D(L−,+)∼= C (−,R+)

def
= C (−,+)◦ (id×R)

in the functor category SetC op×D where Lop : C op→Dop is defined by

Lop( f op : A→ A′) def
= (L f )op : LA→ LA′

Verify that this definition is equivalent to the one in the main slides.

9 Case Study: The Mini Yoneda Lemma (and Beyond)

(1) Verify all details of the Mini Yoneda Lemma in the slides.

(2) Consider a typing rule

x : γ `M : α x : γ `M′ : α
′

(∗)
x : γ ` R(M,M′) : β

Assuming that composition models substitution, show that to soundly model term for-
mation we need natural transformations

ρ = ρA,A′,B : C (−,A)×C (−,A′)−→ C (−,B)
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(3) Show that if C has binary products then there is a (canonical) natural isomorphism
in SetC op

given by pairing and projections

δ : C (−,A×A′)∼= C (−,A)×C (−,A′)

(4) Show that any sound model ρ of (∗) arises from a morphism θ : A×A′→ B where

∀m : G→ A, m′ : G→ A′. ρG(m,m′) = θ◦ 〈m,m′〉

and that any such θ gives rise to a sound model by post-composition as above.

Do this by first showing, using Mini Yoneda, that any µ : C (−,A×A′) −→ C (−,B) must
satisfy

∀p : G→ A×A′. µG(p) = µA×A′(idA×A′)◦ p

and that any θ gives rise to such a natural transformation µ by post-composition as
above.

Complete the task by taking µ def
= ρ◦δ.

(5) Let F : C op→ Set be a functor and A be an object of C op. Then there is a bijection

FA∼= SetC op
(C (−,A),F)

By looking over the details in the slides for the case when F is of the form C (−,B), try
to define the bijection maps, and prove that you do indeed have a bijection.

(6) ∗ Read about the Yoneda Lemma in the textbooks and try to understand the full ver-
sion. Here is a crisp version for which the accompanying notes provide all the necessary
definitions for you to unpack the ideas and complete your own proof. Note: we omit
the op from morphisms!!

There is a functor
ev : SetC op

×C op −→ Set

which maps (µ,a) : (F,A)→ (F ′,A′) to

F ′a◦µA = µA′ ◦Fa : FA−→ F ′A′

There is a functor
nat : SetC op

×C op −→ Set

which maps (µ,a) : (F,A)→ (F ′,A′) to (†) below. The Yoneda Lemma states that

ev ∼= nat in Set(SetC
op×C op)
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There is a standard functor

SetC op
(−,+) : (SetC op

)op×SetC op
−→ Set

Notice that
(C (−,a),µ) : (C (−,A),F)→ (C (−,A′),F ′)

is a morphism in (SetC op
)op×SetC op

and so

SetC op
(C (−,a),µ) : SetC op

(C (−,A),F)→ SetC op
(C (−,A′),F ′) (†)

is a function in Set. The definition of the function follows from the definition of the
standard functor!

10 Case Study: CCCs via Adjunctions

(1) Verify in detail that a category C is a cartesian closed category (CCC) if and only if
there is a right adjoint R to the functor (−)×B : C → C for each object B of C . Many of
the details are already in the slides.

11 Case Study: Modelling (Haskell) Algebraic Datatypes

(1) LONG EXERCISE: work through all of the details of the material presented in the
notes. Try to do two things: (i) make a high level architectural picture of the main
ingredients of the datatype model, including the types, expressions, categories, func-
tors and the initial algebra; (ii) after you have a clear picture of the main ingredients,
play/calculate with the finer technical details and make sure you can manipulate the
definitions with some confidence.

12 Case Study: Colimits–Building Initial Algebras

(1) Show that if I def
= {1,2} is a discrete category, then a colimit for D : I→ C is a binary

coproduct.

(2) In Set show that a colimit object for D : I→ Set, where obI def
= {1,2} and there is a

single (non-identity) morphism 1≤ 2, is given by D2.

(3) What is the colimit when I is (the category generated by) obI def
= {1, . . . ,n} where

i≤ i+1 for each object i.
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(4) Now let I def
= ω. Let U be the disjoint union of the sets D(i) as i runs over the elements

of ω; formally U def
=

⋃
{ {i}×Di | i ∈ ω } and a typical element of U is a pair (i,x) where

x ∈D(i). Define a relation on U by asking that (i,x)∼ ( j,y) just in case there is an object
k of ω where i≤ k, j ≤ k for which D(≤)(x) = D(≤)(y) in D(k).

Prove that ∼ is an equivalence relation.

Set coliD(i) def
= U/∼ and define a function ιi : D(i)→ coliD(i) by x 7→ [x] where x ∈ D(i).

Prove that (ιi : D(i)→ coliD(i) | i ∈ I) is a colimit for D.

(5) In the light of the last question, does a “finite analogue” of the result for n def
=

{0,1, . . . ,n− 1} in place of ω, which you should try to formulate, yield a colimit that
corresponds to the ones of the previous questions?

(6) Verify that if D : I→ C , L : C →D and L a R for some R, then

L(colIDI)∼= colILDI

is witnessed by [L(ιDI) | I ∈ I] : colILDI→ L(colIDI).

(7) In fact Set has all colimits. Let D : I→ Set be a diagram. Again let U be the disjoint
union of the DI and define a relation R on U by asking that (I,x) R (J,y) just in case
there is a morphism α : I→ J in I for which y = Dα(x). Let ∼ be the equivalence relation

generated by R, write colIDI def
= U/ ∼, and let ιI : DI → colIDI map elements to their

equivalence classes. Prove that this gives rise to a colimit for D. Try to tie up this
construction of a general colimit with the previous questions.

(8) Suppose that X is a poset viewed as a category. A colimit for ∆ : ω×ω→ X exists
if and only if a colimit for ∆′ : ω→ X where ∆′(ξ)

def
= ∆(ξ,ξ) exists, and when they exist

they are isomorphic. Such colimits are in fact given by joins, namely∨
i, j

x(i, j) and
∨
k,k

x(k,k) and
∨

i

(
∨

j

x(i, j)) and
∨

j

(
∨

i

x( j,i))

where we write x(i, j) for ∆(i, j). Prove this fact. Hint: Do this simply by making use of the
definition of joins.

(9) Recall from the slides that a colimit for ∆ : ω×ω→ C exists if and only if a colimit
for ∆′ : ω→ C where ∆′(ξ)

def
= ∆(ξ,ξ) exists, and when they exist they are isomorphic,

that is
colk∆

′(k)∼= col(i, j)∆(i, j)

Further (exercise: what does col j∆(i, j) mean . . . )

coli(col j∆(i, j))∼= col j(coli∆( j, i)

Prove this. Hint: Do this simply by making use of the definition of colimit.
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(10) Review the final slides which cover the existence of initial algebra: Suppose that F
preserves colimits of the form D : ω→ C , that C has an initial object 0, and a colimit for
D where D(i ≤ i+ 1) def

= F i!X : F i0→ F i+10 for i ∈ ω exists. Then I
def
= coliDi is an initial

algebra for F .

(11) ∗ Read up on limits and prove that Set has all limits . . . OR can you work out for
yourself what the construction is? Think about D : I→ Set where obI def

= {1,2} and
there is a single (non-identity) morphism α : 1→ 2; in general, the construction is based
around a “form of” cartesian product, and in this special case the product is a certain
subset of D1×D2 which you should try to work out.
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