Category Theory

Roy L. Crole

University of Leicester, UK

April 2018

Introductory Remarks

- A theory of abstraction (of algebraic structure).
- It had its origins in Algebraic Topology with the work of Eilenberg and Mac Lane (1942-45).
- It provides tools and techniques which allow the formulation and analysis of common features amongst apparently different mathematical/computational theories.
- We can discover new relationships between things that are seemingly unconnected.
- Category theory concentrates on how things behave and not on internal details (e.g. on properties of sets but not expressed in terms of their elements).
- As such, category theory can clarify and simplify our ideas-and indeed lead to new ideas and new results.

Introductory Remarks

- Connections with Computer Science were first made in the 1980s, and the subject has played a central role ever since.
- Some contributions (chosen by me ... there are many many more) are
- Categories for Types by Roy L. Crole. CUP.
- Cartesian closed categories as models of pure functional languages.
- The use of strong monads to model notions of computation (well incorporated into Haskell).
- Precise correspondences between categorical structures and type theories.
- The categorical solution of domain equations as models of recursive types.
- Nominal categories as models of variable binding.

Introductory Remarks

A set of hand-written slides accompanies these typed slides. Their purpose is to elaborate the definitions, concepts and examples presented here. Hopefully they will aid digestion of the material; see the онр flags.

Note that the material in the hand-written slides is informal; the lectures provide clarifications of the informality:

Examples of informality include omitting some or all identity morphisms from pictures of categories; omitting subscripts from natural transformations; omitting formal insertions when calculating with coproducts; and others

There is also a collection of exercises. To learn the subject well it is very important to tackle these.

Course Outline

Categories

Functors
Natural Transformations
Products, Coproducts
Adjunctions
Algebras
Case Study: The Mini Yoneda Lemma for Type Theorists
Case Study: CCCs via Adjunctions
Case Study: Modelling (Haskell) Algebraic Datatypes via Algebras
Case Study: Colimits-Building Initial Algebras

Definition of A Category

онр A category \mathcal{C} is specified by the following data:

- A collection ob \mathcal{C} of entities called objects. An object will often be denoted by a capital letter such as $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \ldots$
- For any two objects A and B, a collection $\mathcal{C}(A, B)$ of entities called morphisms. A morphism in $\mathcal{C}(A, B)$ will often be denoted by a small letter such as $f, g, h \ldots$
- If $f \in \mathcal{C}(A, B)$ then A is called the source of f, and B is the target of f and we write (equivalently) $f: A \rightarrow B$.

Definition of A Category

A category \mathcal{C} is specified by the following data (continued):

- There is an operation assigning to each object A of \mathcal{C} an identity morphism $i d_{A}: A \rightarrow A$.
- There is an operation

$$
\mathcal{C}(B, C) \times \mathcal{C}(A, B) \longrightarrow \mathcal{C}(A, C)
$$

assigning to each pair of morphisms $f: A \rightarrow B$ and $g: B \rightarrow C$ their composition which is a morphism denoted by $g \circ f: A \rightarrow C$ or just $g f: A \rightarrow C$.

- Such morphisms f and g, with a common source and target B, are said to be composable.

Definition of A Category

A category \mathcal{C} is specified by the following data (continued):

- These operations are unitary

$$
\begin{aligned}
& i d_{B} \circ f=f: A \rightarrow B \\
& f \circ i d_{A}=f: A \rightarrow B
\end{aligned}
$$

- and associative, that is given morphisms $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow D$ then

$$
(h \circ g) \circ f=h \circ(g \circ f) .
$$

If we say " f is a morphism" we implicitly assume that the source and target are recoverable, that is, we can work out $f \in \mathcal{C}(A, B)$ for some A and B.

Outline Examples of Categories

- The collection of all sets and all functions
- Each set has an identity function; functions compose; composition is associative.
- The collection of all elements of a preorder and all instances of the order relation (relationships) \leq
- Each element has an identity relationship (reflexivity); relationships compose (transitivity); composition is associative.
- The collection of all elements of a singleton $\{*\}$ (!) and any collection of algebraic terms with just one variable x_{0}
- * has an identity term x_{0}; terms compose (substitution); composition is associative.

More Examples

- The category Part with ob Part all sets and morphisms $\operatorname{Part}(A, B)$ the partial functions $\boldsymbol{A} \rightarrow \boldsymbol{B}$.
- The identity function $i d_{A}$ is a partial function!
- Given $f: A \rightarrow B, g: B \rightarrow C$, then for each element a of A, $(g \circ f)(a)$ is defined with value $g(f(a))$ if and only if both $f(a)$ and $g(f(a))$ are defined.
- онр Given a category \mathcal{C}, the opposite category $\mathcal{C}^{o p}$ has
- $o b \mathcal{C}^{o p} \stackrel{\text { def }}{=} o b \mathcal{C}$ and $\mathcal{C}^{o p}(A, B)=\left\{f^{o p} \mid f \in \mathcal{C}(B, A)\right\}$.
- The identity on an object A in $\mathcal{C}^{o p}$ is defined to be $i d_{A}^{o p}$.
- If $f^{o p}: A \rightarrow B$ and $g^{o p}: B \rightarrow C$ are morphisms in $\mathcal{C}^{o p}$, then $f: B \rightarrow A$ and $g: C \rightarrow B$ are composable morphisms in \mathcal{C}. We define $g^{o p} \circ f^{o p} \stackrel{\text { def }}{=}(f \circ g)^{o p}: A \rightarrow C$.
- * Opposite categories can have surprising structure. The category $\mathcal{S e t}^{\boldsymbol{o p}}$ is equivalent to the category of complete atomic Boolean algebras. *

More Examples

- A discrete category is one for which the only morphisms are identities.
- A semigroup (S, b) is a set S together with an associative binary operation $b: S \times S \rightarrow S,\left(s, s^{\prime}\right) \mapsto s \cdot s^{\prime}$. An identity element for a semigroup S is some (necessarily unique) element e of S such that for all $s \in S$ we have $e \cdot s=s \cdot e=s$. A monoid (M, b, e) is a semigroup (M, b) with identity element e. Any monoid is a single object category \mathcal{C} with $\mathcal{C}(*, *) \stackrel{\text { def }}{=} \boldsymbol{M}$; identities and composition are given by e and b.
- Concrete examples are
- Addition on the natural numbers, $(\mathbb{N},+, 0)$.
- онр Concatenation of finite lists over a set $A,(\operatorname{list}(A),++,[])$.

More Examples

- онр Mon has objects monoids and morphisms monoid homomorphisms: $\boldsymbol{h}: \boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime}$ is a homomorphism if $h(e)=e$ and $h\left(m_{1} \cdot m_{2}\right)=h\left(m_{1}\right) \cdot h\left(m_{2}\right)$ for all $m_{i} \in M$.
- PreSet has objects preorders and morphisms the monotone functions; and ParSet has objects partially ordered sets and morphisms the monotone functions.
- The category of relations $\mathcal{R e l}$ has objects sets and morphisms binary relations on sets; composition is relation-composition.
- The category of lattices $\mathcal{L} a t$ has objects lattices and morphisms the lattice homomorphisms.
- The category $\mathcal{C L}$ at has objects the complete lattices and morphisms the complete lattice homomorphisms.
- The category Grp of groups and homomorphisms.

Isomorphisms and Equivalences

- A morphism $f: A \rightarrow B$ is an isomorphism if there is some $g: B \rightarrow A$ for which $f \circ g=i d_{B}$ and $g \circ f=i d_{A}$.
- g is an inverse for f and vise versa.
- A is isomorphic to $B, A \cong B$, if such a mutually inverse pair of morphisms exists.
- Bijections in Set are isomorphisms. There are typically many isomorphisms witnessing that two sets are bijective.
- In the category determined by a partially ordered set, the only isomorphisms are the identities, and in a preorder \boldsymbol{X} with $x, y \in X$ we have $x \cong y$ iff $x \leq y$ and $y \leq x$. Note that in this case there can be only one pair of mutually inverse morphisms witnessing the fact that $x \cong y$.

Definition of a Functor

OHP
A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is specified by

- an operation taking objects A in \mathcal{C} to objects $F A$ in \mathcal{D}, and
- an operation sending morphisms $f: A \rightarrow B$ in \mathcal{C} to morphisms $F f: F A \rightarrow F B$ in \mathcal{D}, such that
- $F\left(i d_{A}\right)=i d_{F A}$, and
- $F(g \circ f)=F g \circ F f$ provided $g \circ f$ is defined.

Examples of Functors

- Let \mathcal{C} be a category. The identity functor $i d_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C}$ is defined by $i d_{\mathcal{C}}(A) \stackrel{\text { def }}{=} A$ on objects and $i d_{\mathcal{C}}(f) \stackrel{\text { def }}{=} f$ on morphisms; so $f: A \rightarrow B \Longrightarrow$ id $_{\mathcal{C}}(f):$ id $_{\mathcal{C}}(A) \rightarrow$ id $_{\mathcal{C}}(B)$.
- Let $\left(X, \leq_{X}\right)$ and $\left(Y, \leq_{Y}\right)$ be categories and $m: X \rightarrow Y$ a monotone function. Then m gives rise to a functor

$$
M:\left(X, \leq_{X}\right) \rightarrow\left(Y, \leq_{Y}\right)
$$

defined by $M(x) \stackrel{\text { def }}{=} m(x)$ on objects $x \in X$ and by $M\left(\leq_{X}\right)=\leq_{Y}$ on morphisms; since m is monotone,

$$
\leq_{X}: x \rightarrow x^{\prime} \Longrightarrow M\left(\leq_{X}\right): M(x) \rightarrow M\left(x^{\prime}\right)
$$

Examples of Functors

- We may define a functor $F: \mathcal{S e t} \rightarrow \mathcal{M}$ on by $F A \stackrel{\text { def }}{=} \operatorname{list}(A)$ and if $f: A \rightarrow B$ then $F f \stackrel{\text { def }}{=} \operatorname{map}(f)$, where $\operatorname{map}(f): \operatorname{list}(A) \rightarrow \operatorname{list}(B)$ is defined by

$$
\begin{aligned}
\operatorname{map}(f)([]) & \stackrel{\text { def }}{=}[] \\
\operatorname{map}(f)\left(\left[a_{1}, \ldots, a_{n}\right]\right) & \stackrel{\text { def }}{=}\left[f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right]
\end{aligned}
$$

It is easy to see that $\operatorname{map}(f)$ is a homomorphism of monoids.

- Note that $F\left(i d_{A}\right)=i d_{F A}$

$$
\begin{aligned}
F\left(i d_{A}\right)\left(\left[a_{1}, \ldots, a_{n}\right]\right) & \stackrel{\text { def }}{=} \operatorname{map}\left(i d_{A}\right)\left(\left[a_{1}, \ldots, a_{n}\right]\right) \\
& =\operatorname{id}_{\operatorname{list}(A)}\left(\left[a_{1}, \ldots, a_{n}\right]\right) \\
& \stackrel{\text { def }}{=} \operatorname{id}_{F A}\left(\left[a_{1}, \ldots, a_{n}\right]\right)
\end{aligned}
$$

Examples of Functors

- ... and note that $F(g \circ f)=F g \circ F f$

$$
\begin{aligned}
F(g \circ f)\left(\left[a_{1}, \ldots, a_{n}\right]\right) & \stackrel{\text { def }}{=} \operatorname{map}(g \circ f)\left(\left[a_{1}, \ldots, a_{n}\right]\right) \\
& =\left[(g \circ f)\left(a_{1}\right), \ldots,(g \circ f)\left(a_{n}\right)\right] \\
& =\left[g\left(f\left(a_{1}\right)\right), \ldots, g\left(f\left(a_{n}\right)\right)\right] \\
& =\operatorname{map}(g)\left(\left[f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right]\right) \\
& =\operatorname{map}(g)\left(\operatorname{map}(f)\left(\left[a_{1}, \ldots, a_{n}\right]\right)\right) \\
& =(F g \circ F f)\left(\left[a_{1}, \ldots, a_{n}\right]\right) .
\end{aligned}
$$

* More Functor Examples *

- Given a set A, recall that the powerset $\mathcal{P}(A)$ is the set of subsets of A. We can define the covariant powerset functor $\mathcal{P}: \operatorname{Set} \rightarrow \mathcal{S e} t$ which is given by

$$
f: A \rightarrow B \quad \mapsto \quad \mathcal{P}(f) \equiv f_{*}: \mathcal{P}(A) \rightarrow \mathcal{P}(B),
$$

where $f: A \rightarrow B$ is a function and f_{*} is defined by
$f_{*}\left(A^{\prime}\right) \stackrel{\text { def }}{=}\left\{f\left(a^{\prime}\right) \mid a^{\prime} \in A^{\prime}\right\}$ where $A^{\prime} \in \mathcal{P}(A)$.

- f_{*} is sometimes called the direct image of f.

* More Functor Examples *

- We can define a contravariant powerset functor $\mathcal{P}: \mathcal{S e t}^{o p} \rightarrow$ Set by setting

$$
f^{o p}: B \rightarrow A \quad \mapsto \quad f^{-1}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)
$$

where $f: A \rightarrow B$ is a function in $\mathcal{S e t}$, and the function f^{-1} is defined by $f^{-1}\left(B^{\prime}\right) \stackrel{\text { def }}{=}\left\{a \in A \mid f(a) \in B^{\prime}\right\}$ where $B^{\prime} \in \mathcal{P}(B)$.

- f^{-1} is sometimes called the inverse image of f (and sometimes written $\left.f^{*}\right)$.

Definition of a Natural Transformation

Let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be functors. Then a natural transformation α from F to G, written $\alpha: F \rightarrow G$, is specified by giving a morphism $\alpha_{A}: F A \rightarrow G A$ in \mathcal{D} for each object A in \mathcal{C}, such that for any $f: A \rightarrow B$ in \mathcal{C}, we have a commutative diagram

The α_{A} are the components of the natural transformation.

Examples of Natural Transformations

- Recall $F:$ Set \rightarrow Mon where $F A \stackrel{\text { def }}{=} \operatorname{list}(A)$ and $F(f: A \rightarrow B) \stackrel{\text { def }}{=} \operatorname{map}(f): \operatorname{list}(A) \rightarrow \operatorname{list}(B)$. Define a natural transformation rev: $F \rightarrow F$, by specifying functions $\operatorname{rev}_{A}: \operatorname{list}(A) \rightarrow \operatorname{list}(A)$ where

$$
\operatorname{rev}_{A}([]) \stackrel{\text { def }}{=}[] \quad \operatorname{rev}_{A}\left(\left[a_{1}, \ldots, a_{n}\right]\right) \stackrel{\text { def }}{=}\left[a_{n}, \ldots, a_{1}\right]
$$

We check naturality онр

$$
\begin{aligned}
\left(F f \circ \operatorname{rev}_{A}\right)\left(\left[a_{1}, \ldots, a_{n}\right]\right) & =\left[f\left(a_{n}\right), \ldots, f\left(a_{1}\right)\right] \\
& =\left(\operatorname{rev}_{B} \circ F f\right)\left(\left[a_{1}, \ldots, a_{n}\right]\right) .
\end{aligned}
$$

Examples of Natural Transformations

- Let \mathcal{C} and \mathcal{D} be categories and let F, G, H be functors from \mathcal{C} to \mathcal{D}. Also let $\alpha: F \rightarrow G$ and $\beta: G \rightarrow H$ be natural transformations. We can define a natural transformation $\beta \circ \alpha: F \rightarrow H$ by setting the components to be

$$
(\beta \circ \alpha)_{A} \stackrel{\text { def }}{=} \beta_{A} \circ \alpha_{A}
$$

- онр This yields a category $\mathcal{D}^{\mathcal{C}}$ with objects functors from \mathcal{C} to \mathcal{D}, morphisms natural transformations between such functors, and composition as given above.
- Exercise: $\boldsymbol{\alpha}$ is an isomorphism in $\mathcal{D}^{\mathcal{C}}$ just in case each α_{A} is an isomorphism in \mathcal{D}.
- We will use $\mathcal{S e} t^{\mathcal{S} e t}$ when we model the Haskell datatype.

* Examples of Natural Transformations *

- See slide 22 and онр on CCCs.
- Define a functor $F_{X}:$ Set \rightarrow Set by
- (! Products) $F_{X}(A) \stackrel{\text { def }}{=}(X \Rightarrow A) \times X$ on objects
- (! Products) $F_{X}(f) \stackrel{\text { def }}{=}(f \circ-) \times i d_{X}$ on morphisms

Then define a natural transformation $e v: F_{X} \rightarrow i d_{\mathcal{S} e t}$ with components $\mathrm{ev}_{A}:(X \Rightarrow A) \times X \rightarrow A$ by $e v_{A}(g, x) \stackrel{\text { def }}{=} g(x)$ where $(g, x) \in(X \Rightarrow A) \times X$. To see that we have defined a natural transformation let $f: A \rightarrow B$ and note that

$$
\begin{aligned}
\left(i d_{\mathcal{S}_{e t}}(f) \circ e v_{A}\right)(g, x) & =f\left(e v_{A}(g, x)\right) \\
& =\ldots\left(e v_{B} \circ F_{X}(f)\right)(g, x) .
\end{aligned}
$$

Universal Properties

Consider Set. Let $T \stackrel{\text { def }}{=}\{*\}$. For any set X there exists a function $f_{X}: X \rightarrow T$. This function is unique; it can only map $x \in X$ to $*$:

$$
\forall X . \quad \exists!f_{X} . \quad f_{X}: X \rightarrow T . \quad \Phi(T)
$$

Also, any set T^{\prime} with this property $\Phi\left(T^{\prime}\right)$ is unique up to isomorphism (that is, bijection): $T \cong T^{\prime}$. Indeed any T is a one element set. We often write $\mathbf{1}$ for it.
This is a simple example of a universal property. These are properties that define a particular structure up to isomorphism in terms of how the structure interacts uniquely with all other similar structures in the category.

Definition of Binary Products

онр A binary product of objects A and B in \mathcal{C} is specified by

- an object $A \times B$ of \mathcal{C}, together with
- two projection morphisms $\pi_{A}: A \times B \rightarrow A$ and $\pi_{B}: A \times B \rightarrow B$,
for which given any object C and morphisms $f: C \rightarrow A$, $g: C \rightarrow B$, there exists a unique morphism $\langle f, g\rangle: C \rightarrow A \times B$ for which

$\langle f, g\rangle: C \rightarrow A \times B$ is the mediating morphism for f and g.

Examples of Binary Products

- Let (X, \leq) be a preorder. $l \in X$ is a lower bound of $x, y \in X$ just in case $l \leq x, y . u \in X$ is a upper bound of $x, y \in X$ just in case $x, y \leq u$.
- $x \in S \subseteq X$ is greatest in S if $(\forall s \in S)(s \leq x)$ and is least in S if $(\forall s \in S)(x \leq s)$.
- In a preorder a greatest lower bound $x \wedge y$ of x and y (if it exists) is a binary product $x \times y$ of the category determined by (X, \leq) with projections $x \wedge y \leq x$ and $x \wedge y \leq y . x \wedge y$ is also called the meet of x and y.

Examples of Binary Products

- The binary product of A and B in Set has

$$
A \times B \stackrel{\text { def }}{=}\{(a, b) \mid A \in A, b \in B\}
$$

with projection functions $\pi_{A}(a, b) \stackrel{\text { def }}{=} a$ and $\pi_{B}(a, b) \stackrel{\text { def }}{=} b$. The mediating function for any $f: C \rightarrow A$ and $g: C \rightarrow B$ is

$$
\langle f, g\rangle(c) \stackrel{\text { def }}{=}(f(c), g(c))
$$

- In any \mathcal{C}, if $p_{i}: P \rightarrow A_{i}$ is any product of A_{1} and A_{2} then $A_{1} \times A_{2} \cong P$. All binary products are determined up to isomorphism: Existence yields mediating morphisms $\phi: A_{1} \times A_{2} \rightarrow P$ and $\psi: P \rightarrow A_{1} \times A_{2}$; uniqueness means that ϕ and ψ witness an isomorphism (e.g. $\phi \circ \psi=i d_{P}$).

* Definition of Finite Products *

A product of a non-empty finite family of objects $\left(A_{i} \mid i \in I\right)$ in \mathcal{C}, where $I \stackrel{\text { def }}{=}\{1, \ldots, n\}$, is specified by

- an object $A_{1} \times \ldots \times A_{n}\left(\right.$ or $\left.\Pi_{i \in I} A_{i}\right)$ in \mathcal{C}, and
- for every $j \in I$, a morphism $\pi_{j}: A_{1} \times \ldots \times A_{n} \rightarrow A_{j}$ in \mathcal{C} called the j th product projection
such that for any object C and family of morphisms $\left(f_{i}: C \rightarrow A_{i} \mid i \in I\right)$ there is a unique morphism

$$
\left\langle f_{1}, \ldots, f_{n}\right\rangle: C \rightarrow A_{1} \times \ldots \times A_{n}
$$

for which given any $j \in I$, we have $\pi_{j} \circ\left\langle f_{1}, \ldots, f_{n}\right\rangle=f_{j}$.
Note: We get binary products when $I \stackrel{\text { def }}{=}\{1,2\}$!

* Examples of Finite Products *

- A finite product of $\left(A_{1}, \ldots, A_{n}\right) \equiv\left(A_{i} \mid i \in I\right)$ in $\mathcal{S} e t$ is given by the cartesian product $A_{1} \times \ldots \times A_{n}$ with the obvious projection functions. Given functions $\left(f: C \rightarrow A_{i} \mid i \in I\right)$ then

$$
\left\langle f_{1}, \ldots, f_{n}\right\rangle(c) \stackrel{\text { def }}{=}\left(f_{1}(c), \ldots, f_{n}(c)\right)
$$

- In a preorder (X, \leq), a finite product $x_{1} \times \ldots \times x_{n}$, if it exists, is a meet (greatest lower bound) of $\left(x_{1}, \ldots, x_{n}\right)$.
- A terminal object $\mathbf{1}$ in a category \mathcal{C} has the property that there is a unique morphism $!_{A}: A \rightarrow \mathbf{1}$ for every $A \in o b \mathcal{C}$. It is the finite product of an empty family of morphisms (check this!). Such a 1 may not exist, but is unique up to isomorphism if it does.

Definition of Finite Coproducts

онр A coproduct of a non-empty family of objects $\left(A_{i} \mid i \in I\right)$ in \mathcal{C}, where $I=\{1, \ldots, n\}$, is specified by

- an object $A_{1}+\ldots+A_{n}\left(\Sigma_{i \in I} A_{i}\right)$, together with
- insertion morphisms $\iota_{j}: A_{j} \rightarrow A_{1}+\ldots+A_{n}$,
such that for any C and any family of morphisms $\left(f_{i}: A_{i} \rightarrow C \mid i \in I\right)$ there is a unique morphism

$$
\left[f_{1}, \ldots, f_{n}\right]: A_{1}+\ldots+A_{n} \rightarrow C
$$

for which given any $j \in I$, we have $\left[f_{1}, \ldots, f_{n}\right] \circ \iota_{j}=f_{j}$.

Definition of Finite Coproducts

In the case that $I \stackrel{\text { def }}{=}\{1,2\}$ we have

(Compare to the diagrams for colimits later on.)

Examples of (Co)Products

- In Set the binary coproduct of sets A_{1} and $A_{\mathbf{2}}$ is given by their disjoint union $\boldsymbol{A}_{\mathbf{1}} \uplus \boldsymbol{A}_{\mathbf{2}}$, defined as the union $\left(A_{1} \times\{1\}\right) \cup\left(A_{2} \times\{2\}\right)$ with the insertion functions

$$
\iota_{A_{1}}: A_{1} \rightarrow A_{1} \uplus A_{2} \leftarrow A_{2}: \iota_{A_{2}}
$$

where $\iota_{A_{1}}$ is defined by $\boldsymbol{a}_{1} \mapsto\left(a_{1}, \mathbf{1}\right)$ for all $\boldsymbol{a}_{1} \in A_{1}$, and $\boldsymbol{\iota}_{A_{2}}$ by $a_{2} \mapsto\left(a_{2}, 2\right)$ for all $a_{2} \in A_{2}$.

- Let preorder (\boldsymbol{X}, \leq) have top and bottom elements and all finite meets and joins (least upper bounds). Then the top of \boldsymbol{X} is terminal, the bottom of \boldsymbol{X} initial, and finite meets and joins are finite products and coproducts respectively.

Examples of (Co)Products

- онр Given (X, \leq) and (Y, \leq) in $\mathcal{P r e}$ Set, the binary product is the cartesian product $X \times Y$ in Set, with the pointwize order $(x, y) \leq\left(x^{\prime}, y^{\prime}\right)$ iff $x \leq x^{\prime}$ and $y \leq y^{\prime}$, together with the (monotone) set-theoretic projection functions. The binary coproduct is $X \uplus Y$, with $(z, \delta) \leq\left(z^{\prime}, \delta^{\prime}\right)$ iff $\delta=\delta^{\prime}$ $\left(\delta, \delta^{\prime} \in\{1,2\}\right)$, and $z \leq z^{\prime}$ (either in X or in Y).
- An initial object $\mathbf{0}$ in a category \mathcal{C} has the property that there is a unique morphism $!_{A}: 0 \rightarrow A$ for every $A \in o b \mathcal{C}$. It is the finite coproduct of an empty family of morphisms (check this!). Such a $\mathbf{0}$ may not exist, but is unique if it does.

* Useful "Fact" for (Co)Products *

- Suppose that we have ($f_{i}: C \rightarrow A_{i} \mid i \in\{1,2\}$) and $\theta: C \rightarrow A_{1} \times A_{2}$. In order to prove that $\theta=\left\langle f_{1}, f_{2}\right\rangle$ it is sufficient to show that $\pi_{A_{i}} \circ \theta=f_{i}$ for each i.
- Suppose that we have ($\left.f_{i}: A_{i} \rightarrow C \mid i \in\{1,2\}\right)$ and $\theta: A_{1}+A_{2} \rightarrow C$. In order to prove that $\theta=\left[f_{1}, f_{2}\right]$ it is sufficient to show that $\theta \circ \iota_{A_{i}}=f_{i}$ for each i.

Note: this "fact" is simply a consequence of uniqueness of mediating morphisms. It is crucial to the proof that (co)products are unique up to isomorphism, where both $\phi \circ \psi$ and $i d$ (from an earlier slide) are shown to be mediating, and hence equal.

Further Notation for (Co)Products

- Suppose that $f_{1}: A_{1} \rightarrow B_{1}$ and $f_{2}: A_{2} \rightarrow B_{2}$. Then

$$
\begin{aligned}
& f_{1} \times f_{2} \stackrel{\text { def }}{=}\left\langle f_{1} \circ \pi_{A_{1}}, f_{2} \circ \pi_{A_{2}}\right\rangle: A_{1} \times A_{2} \rightarrow B_{1} \times B_{2} \\
& f_{1}+f_{2} \stackrel{\text { def }}{=}\left[\iota_{B_{1}} \circ f_{1}, \iota_{B_{2}} \circ f_{2}\right]: A_{1}+A_{2} \rightarrow B_{1}+B_{2}
\end{aligned}
$$

and hence it is immediate that (useful in calculations)

$$
\begin{aligned}
\pi_{B_{i}} \circ\left(f_{1} \times f_{2}\right) & =f_{i} \circ \pi_{A_{i}} \\
\left(f_{1}+f_{2}\right) \circ \iota_{A_{i}} & =\iota_{B_{i}} \circ f_{i}
\end{aligned}
$$

- This notation is easily extended to finite families $\left(A_{i} \mid i \in\{1, \ldots, n\}\right)$ and ($\left.B_{i} \mid i \in\{1, \ldots, n\}\right) \ldots$ or indeed infinite families $\left(A_{i} \mid i \in I\right)$ and ($B_{i} \mid i \in I$) where I is any set.

A Useful Functor in Adjunctions

The category $\mathcal{C A T}$ which has objects categories and morphisms functors. This category has products.

Let \mathcal{C} and \mathcal{D} be categories. The product category $\mathcal{C} \times \mathcal{D}$ has objects and morphisms of the form

$$
(f, g):(C, D) \longrightarrow\left(C^{\prime}, D^{\prime}\right)
$$

with composition defined coordinatewise. Check this is a product!
Given functors $F: \mathcal{C} \rightarrow \mathcal{E}$ and $G: \mathcal{D} \rightarrow \mathcal{F}$ the functor

$$
F \times G: \mathcal{C} \times \mathcal{D} \longrightarrow \mathcal{E} \times \mathcal{F}
$$

takes (f, g) to $(F f, G g):(F C, G D) \rightarrow\left(F C^{\prime}, G D^{\prime}\right)$.
Again, check this using the definitions on slide 22.

A Useful Functor in Adjunctions

There is a functor

$$
\mathcal{C}(-,+): \mathcal{C}^{o p} \times \mathcal{C} \longrightarrow \mathcal{S e t}
$$

defined by
$\left(f^{o p}, g\right):\left(A, A^{\prime}\right) \rightarrow\left(B, B^{\prime}\right) \mapsto \mathcal{C}\left(f^{o p}, g\right): \mathcal{C}\left(A, A^{\prime}\right) \rightarrow \mathcal{C}\left(B, B^{\prime}\right)$
where $\mathcal{C}\left(f^{o p}, g\right)(\theta)=g \circ \theta \circ f: B \rightarrow A \rightarrow A^{\prime} \rightarrow B^{\prime}$ for $\theta: A \rightarrow A^{\prime}$.

If $R: \mathcal{D} \rightarrow \mathcal{C}$ then $\mathcal{C}(-, R+): \mathcal{C}^{o p} \times \mathcal{D} \longrightarrow \mathcal{S} e t$ is defined to be

$$
\mathcal{C}(-,+) \circ\left(i d_{\mathcal{C}^{o p}} \times R\right):(C, D) \mapsto \mathcal{C}(C, R D)
$$

Adjunctions (between Preorders)

- A pair of monotone functions

$$
\left(X, \leq_{X}\right) \stackrel{l}{r}\left(Y, \leq_{Y}\right)
$$

is said to be an adjunction if for all $x \in X$ and $y \in Y$,

$$
l(x) \leq_{Y} y \Longleftrightarrow x \leq_{X} r(y)
$$

- We say that l is left adjoint to r and that r is right adjoint to l. We write $l \dashv r$.

Examples

- Let $1 \stackrel{\text { def }}{=}\{*\}$ be the one element preorder. Then there are adjunctions $(\perp \dashv!\dashv \top)$

provided that \boldsymbol{X} has both top and bottom elements. For example, for any $x \in X$,

$$
!(x) \stackrel{\text { def }}{=} * \leq * \Longleftrightarrow x \leq \top(*) \stackrel{\text { def }}{=} \top
$$

Examples

- Define $\Delta: X \rightarrow X \times X$ by $\Delta(x) \stackrel{\text { def }}{=}(x, x)$. Then there are adjoints $(\vee \dashv \Delta \dashv \wedge)$

$$
X \underset{\vee}{\stackrel{\Delta}{\rightleftarrows}} X \times X \quad X \underset{\wedge}{\stackrel{\Delta}{\rightleftarrows}} X \times X
$$

just in case X has all binary meets and joins: for any $l \in X$,

$$
\Delta(l) \stackrel{\text { def }}{=}(l, l) \leq\left(x, x^{\prime}\right) \Longleftrightarrow l \leq \wedge\left(x, x^{\prime}\right) \stackrel{\text { def }}{=} x \wedge x^{\prime}
$$

- This structure corresponds to \boldsymbol{X} having binary products and coproducts.

Adjunctions (between Categories)

- Let $L: \mathcal{C} \rightarrow \mathcal{D}$ and $R: \mathcal{D} \rightarrow \mathcal{C}$ be functors. L is left adjoint to R, written $L \dashv R$, if given any objects A of \mathcal{C} and B of \mathcal{D} we have
- a bijection between morphisms $L A \rightarrow B$ in \mathcal{D} and $A \rightarrow R B$ in \mathcal{C}, that is, between $\mathcal{D}(L A, B)$ and $\mathcal{C}(A, R B)$,

$$
\frac{f: L A \rightarrow B}{\bar{f}: A \rightarrow R B}
$$

$$
\frac{g: A \rightarrow R B}{\hat{g}: L A \rightarrow B}
$$

- онр this bijection is natural in \boldsymbol{A} and \boldsymbol{B} : given morphisms $\phi: A^{\prime} \rightarrow A$ in \mathcal{C} and $\psi: B \rightarrow B^{\prime}$ in \mathcal{D} we have
$\overline{\psi \circ f \circ L \phi}=R \psi \circ \bar{f} \circ \phi$ and/or $(R \psi \circ g \circ \phi)^{\wedge}=\psi \circ \widehat{g} \circ L \phi$.
(Recall slide 12.)

Examples of Adjunctions

- The forgetful functor $\boldsymbol{U}: \mathcal{M}$ on \rightarrow Set taking a monoid to its underlying set, and the functor $\operatorname{list}(-):$ Set $\rightarrow \mathcal{M}$ on taking a set to finite lists over the set, are adjoints:

$$
\operatorname{list}(-) \dashv U
$$

So there is a natural bijection between $\mathcal{M} \operatorname{Mon}(\operatorname{list}(A), M)$ and $\operatorname{Set}(A, U M)$

$$
\frac{f: \operatorname{list}(A) \rightarrow M}{\bar{f}: A \rightarrow U M}
$$

$$
\frac{g: A \rightarrow U M}{\widehat{g}: \operatorname{list}(A) \rightarrow M}
$$

OHP

Examples of Adjunctions

- This is given by

$$
\begin{aligned}
g: A \longrightarrow U M & \\
& \left.\widehat{g}: \operatorname{list}(A) \xrightarrow\left[{\left[a_{1}, \ldots, a_{n}\right] \mapsto g\left(a_{1}\right) \ldots g\left(a_{n}\right.}\right)\right]{[] \mapsto e} M,
\end{aligned}
$$

and

$$
f: \operatorname{list}(A) \longrightarrow M \quad \bar{f}: A \xrightarrow{a \mapsto f([a])} \text { UM. }
$$

- Note that

$$
\begin{aligned}
\widehat{\bar{f}}\left[a_{1}, \ldots, a_{n}\right] & =\bar{f}\left(a_{1}\right) \ldots \bar{f}\left(a_{n}\right) \\
& =f\left(\left[a_{1}\right]\right) \ldots f\left(\left[a_{n}\right]\right)=f\left(\left[a_{1}\right]++\ldots++\left[a_{n}\right]\right)
\end{aligned}
$$

It is an exercise to verify that $\overline{\hat{g}}=g$ and that this bijection is natural.

Examples of Adjunctions

- онр The diagonal functor $\Delta: \mathcal{C} \rightarrow \mathcal{C} \times \mathcal{C}$ taking a function $f: A \rightarrow B$ to $(f, f):(A, A) \rightarrow(B, B)$ has right and left adjoints Π and Σ taking any morphism $\left(f_{1}, f_{2}\right):\left(A_{1}, A_{2}\right) \rightarrow\left(B_{1}, B_{2}\right)$ of $\mathcal{C} \times \mathcal{C}$ to

$$
\begin{aligned}
& f_{1} \times f_{2}: A_{1} \times A_{2} \rightarrow B_{1} \times B_{2} \\
& f_{1}+f_{2}: A_{1}+A_{2} \rightarrow B_{1}+B_{2}
\end{aligned}
$$

respectively,

- where the bijection for Π is

$$
\frac{(f, g) \quad \widehat{m} \stackrel{\text { def }}{=}\left(\pi_{A} \circ m, \pi_{B} \circ m\right) \quad: \Delta C \longrightarrow(A, B)}{\overline{(f, g)} \stackrel{\text { def }}{=}\langle f, g\rangle \quad m: C \longrightarrow \Pi(A, B)}
$$

Algebras for $F: \mathcal{C} \rightarrow \mathcal{C}$

- An algebra for F is a morphism $\sigma: F A \rightarrow A$ in \mathcal{C}. The algebra is sometimes written (A, σ). онр
- Given any other algebra $f: F X \rightarrow X$ and $h: A \rightarrow X$, then h is a homomorphism if

- There is a category \mathcal{C}^{F} of algebras and algebra homomorphisms.
- An initial object $\sigma: F I \rightarrow I$ is called an initial algebra. If $f: F X \rightarrow X$ the unique mediating homomorphism is denoted by \bar{f}.

Useful Functors in Algebras

- Suppose that \mathcal{C} has binary (co)products. The functors $B \times(-), B+(-): \mathcal{C} \rightarrow \mathcal{C}$ are defined by

$$
\begin{aligned}
& f: A \longrightarrow A^{\prime} \mapsto i d_{B} \times f: B \times A \longrightarrow B \times A^{\prime} \\
& f: A \longrightarrow A^{\prime} \mapsto i d_{B}+f: B+A \longrightarrow B+A^{\prime}
\end{aligned}
$$

Note that it is common to write $f \times B$ instead of $f \times i d_{B}$; ditto + .

- One can also define functors $(-) \times(-)$ and $(-)+(-) \ldots$

Examples of Algebras

- онр $\mathbf{1}+(-): \mathcal{S e t} \rightarrow \mathcal{S e} \boldsymbol{t}$ has an initial algebra

$$
[z, s]: 1+\mathbb{N} \rightarrow \mathbb{N}
$$

where $z: \mathbf{1} \rightarrow \mathbb{N}$ maps $*$ to $\mathbf{0}$ and $s: \mathbb{N} \rightarrow \mathbb{N}$ adds 1 . If

$$
f: 1+X \rightarrow X
$$

letting

$$
\begin{aligned}
& \widehat{x} \stackrel{\text { def }}{=} f \circ \iota_{1}: 1 \rightarrow 1+X \\
& \phi \\
& \stackrel{\text { def }}{=} \stackrel{\text { def }}{=} f \circ \iota_{X}: X \rightarrow 1+X
\end{aligned}
$$

we have $f=[\widehat{x}, \phi]$. Then the function $\bar{f}: \mathbb{N} \rightarrow X$ is uniquely defined by

$$
\begin{aligned}
\bar{f}(0) & \stackrel{\text { def }}{=} \widehat{x}(*) \stackrel{\text { def }}{=} x \\
\bar{f}(n+1) & \stackrel{\text { def }}{=} \phi^{n+1}(x)=\phi(\bar{f}(n))
\end{aligned}
$$

Examples of Algebras

- The function $(+n): \mathbb{N} \rightarrow \mathbb{N}$ which adds n, for any $n \in \mathbb{N}$, is definable as $\overline{[\widehat{n}, s]}$ where

$$
1+\mathbb{N} \xrightarrow{[\widehat{n}, s]} \mathbb{N}
$$

and also

$$
(* n) \stackrel{\text { def }}{=} \overline{[z,(+n)]}: \mathbb{N} \rightarrow \mathbb{N}
$$

- A monoid (M, b, e) is an algebra

$$
1+(M \times M) \xrightarrow{[\widehat{e}, b]} M
$$

plus the relevant equations.

Case Study: The Mini Yoneda Lemma for Type Theorists

Consider a typical constructor \mathbf{R}

$$
\frac{x: \gamma \vdash M: \alpha}{x: \gamma \vdash \mathbf{R}(M): \beta}
$$

Suppose $m \stackrel{\text { def }}{=} \llbracket x: \gamma \vdash M: \alpha \rrbracket \in \mathcal{C}(G, A)$; in the case $M \equiv x$ and $\alpha \equiv \gamma$ we'd expect this to be $i d_{G}$. So what is

$$
r \stackrel{\text { def }}{=} \llbracket x: \gamma \vdash \mathbf{R}(M): \beta \rrbracket \in \mathcal{C}(G, B) ?
$$

We could define a family of functions

$$
\rho_{G}: \mathcal{C}(G, A) \longrightarrow \mathcal{C}(G, B) \quad \text { and set } \quad r \stackrel{\text { def }}{=} \rho_{G}(m)
$$

Case Study: The Mini Yoneda Lemma for Type Theorists

Let $x: \gamma \vdash M: \alpha$ and $y: \gamma^{\prime} \vdash N: \gamma$ be modelled by $m \in \mathcal{C}(G, A)$ and $n \in \mathcal{C}\left(G^{\prime}, G\right)$.

Principle of Categorical Type Theory: Model substitution by composition.
We assert that $\left[y: \gamma^{\prime} \vdash M[N / x]: \alpha\right]=m \circ n$. Now notice that we have two syntactically identical typed expressions

$$
y: \gamma^{\prime} \vdash \mathbf{R}(M)[N / x]: \beta \quad \text { and } \quad y: \gamma^{\prime} \vdash \mathbf{R}(M[N / x]): \beta .
$$

Hence we should also have

$$
\rho_{G}(m) \circ n=\rho_{G^{\prime}}(m \circ n)
$$

We have seen this kind of thing before . . . онр

Case Study: The Mini Yoneda Lemma for Type Theorists

The categorical interpretation of expression formation (by unary rules), in \mathcal{C}, requires the existence of certain natural transfomations in $\mathcal{S e t}{ }^{\mathcal{C}^{o p}}$.

- For every object \boldsymbol{A} and \boldsymbol{B} of \mathcal{C} there is a natural transformation

$$
\rho: \mathcal{C}(-, A) \longrightarrow \mathcal{C}(-, B): \mathcal{C}^{o p} \longrightarrow \text { Set. }
$$

- ρ determines a morphism in $\theta \in \mathcal{C}(A, B)$ such that

$$
r=\rho_{G}(m)=\theta \circ m \quad(=\mathcal{C}(G, \theta)(m) \quad)
$$

- In fact any $\theta \in \mathcal{C}(A, B)$ determines a natural transformation $\rho \stackrel{\text { def }}{=} \mathcal{C}(-, \theta)$.
- These processes are inverses: This is the (Mini) Yoneda Lemma.

Case Study: The Mini Yoneda Lemma for Type Theorists

So given R we can take simply choose any $\boldsymbol{\theta}: A \rightarrow B$ and set

$$
\frac{\llbracket x: \gamma \vdash M: \alpha \rrbracket=m: G \rightarrow A}{\llbracket x: \gamma \vdash \mathbf{R}(M): \beta \rrbracket \stackrel{\text { def }}{=} \theta \circ m: G \rightarrow B}
$$

Moreover we know that, assuming we model substitution by composition, all possible models of the rule R arise in this way.
Note that if there are equations that \mathbf{R} satisfies then these will impose conditions on $\boldsymbol{\theta}$, and may determine $\boldsymbol{\theta}$ completely. For example if we have a pair type $M: \alpha \times \boldsymbol{\alpha}^{\prime}$ and \mathbf{R} is Fst (with other rules for Snd and pairing of terms), then θ is forced to be π_{A}.

Case Study: The Mini Yoneda Lemma for Type Theorists
Mini Yoneda Lemma: There is a (canonical) bijection

$$
\Phi: \mathcal{C}(A, B) \cong \mathcal{S e}^{\mathcal{C}^{\mathcal{o} p}}(\mathcal{C}(-, A), \mathcal{C}(-, B)): \Psi
$$

With $\Psi(\rho) \stackrel{\text { def }}{=} \rho_{A}\left(i d_{A}\right) \in \mathcal{C}(A, B), \Psi$ is injective since

$$
\rho_{G}(m)=\rho_{A}\left(i d_{A}\right) \circ m
$$

With $\Phi(\theta) \stackrel{\text { def }}{=} \mathcal{C}(-, \theta)$ (well defined!), Ψ is injective since

$$
\forall \xi . \quad \mathcal{C}(A, \xi)\left(i d_{A}\right)=\xi
$$

Further, there is a natural isomorphism

$$
\mathcal{C}(\boxplus, \boxminus) \cong \mathcal{S} t^{\mathcal{C}^{o p}}(\mathcal{C}(-, \boxplus), \mathcal{C}(-, \boxminus))
$$

in the category $\mathcal{S} e t^{\mathcal{C}^{o p} \times \mathcal{C}}$.

Case Study: CCCs via Adjunctions

- We define a Cartesian Closed Category (CCC) онр
- Show that Set is a CCC. онр
- Show that Set CCC structure has the properties of an adjunction.
- Show that any CCC can be defined equivalently in terms of an adjunction.

We first introduce some new notation for finite (co)products ...

The CCC Set has an Adjunction Structure

For a fixed set A, the functor $(-) \times B: \mathcal{S e t} \rightarrow \mathcal{S e t}$ has a right adjoint $B \Rightarrow(-):$ Set $\rightarrow \mathcal{S e t}$. On an object C the right adjoint returns $B \Rightarrow C$. There is a bijection

$$
\begin{gathered}
\frac{f: A \times B \rightarrow C}{\bar{f} \stackrel{\text { def }}{=} \lambda a \cdot \lambda b \cdot f(a, b): A \rightarrow B \Rightarrow C} \\
g: A \rightarrow B \Rightarrow C \\
\widehat{g} \stackrel{\text { def }}{=} \lambda(a, b) \cdot g(a)(b): A \times B \rightarrow C
\end{gathered}
$$

In Set it is immediate that we have a bijection; naturality is an exercise.

Defining CCCs via Adjunctions

Let \mathcal{C} be a category with finite products. Existence of a right adjoint $\boldsymbol{R}_{\boldsymbol{B}}$ to the functor $(-) \times B: \mathcal{C} \rightarrow \mathcal{C}$ for each object B of \mathcal{C}, is equivalent to \mathcal{C} being cartesian closed.

Defining CCCs via Adjunctions

Let \mathcal{C} be a category with finite products. Existence of a right adjoint R_{B} to the functor $(-) \times B: \mathcal{C} \rightarrow \mathcal{C}$ for each object B of \mathcal{C}, is equivalent to \mathcal{C} being cartesian closed.
(\Rightarrow) Given an object B of \mathcal{C} set $B \Rightarrow C \stackrel{\text { def }}{=} R(C)$ for any object C of \mathcal{C}. Given a morphism $f: A \times B \rightarrow C$ we define $\lambda(f): A \rightarrow(B \Rightarrow C)$ to be the mate of f across the given adjunction. The morphism

$$
e v:(B \Rightarrow C) \times B \rightarrow C
$$

is the mate $\left(\widehat{i d_{B \Rightarrow C}}\right)$ of the identity $i d_{B \Rightarrow C}:(B \Rightarrow C) \rightarrow(B \Rightarrow C)$.

Defining CCCs via Adjunctions

Let \mathcal{C} be a category with finite products. Existence of a right adjoint \boldsymbol{R}_{B} to the functor $(-) \times B: \mathcal{C} \rightarrow \mathcal{C}$ for each object B of \mathcal{C}, is equivalent to \mathcal{C} being cartesian closed.

Next, we need to show that $e v \circ\left(\lambda(f) \times i d_{B}\right)=f$. This follows directly from the naturality of the adjunction; we consider naturality in A and C at the morphisms $\lambda(f): A \rightarrow(B \Rightarrow C)$ and $i d_{C}: C \rightarrow C$:

We let the reader show that $\lambda(f)$ is the unique morphism satisfying the latter equation.

Defining CCCs via Adjunctions

(\Leftarrow) Conversely, let \boldsymbol{B} be an object of \mathcal{C}. We define a right adjoint to $(-) \times B$ denoted by $B \Rightarrow(-)$, by setting

$$
c: C \longrightarrow C^{\prime} \quad \mapsto \quad B \Rightarrow c \stackrel{\text { def }}{=} \lambda(c \circ e v):(B \Rightarrow C) \rightarrow\left(B \Rightarrow C^{\prime}\right)
$$

for each morphism $c: C \rightarrow C^{\prime}$ of \mathcal{C} (this matches our earlier definition check). We define a bijection by declaring the mate of $f: A \times B \rightarrow C$ to be $\lambda(f): A \rightarrow(B \Rightarrow C)$ and the mate of $g: A \rightarrow(B \Rightarrow C)$ to be

$$
\widehat{g} \stackrel{\text { def }}{=} e v \circ\left(g \times i d_{B}\right): A \times B \rightarrow C .
$$

Defining CCCs via Adjunctions

It remains to verify that we have defined a bijection which is natural in the required sense. We only check one part of naturality. Let $a: A^{\prime} \rightarrow A$ and $c: C \rightarrow C^{\prime}$ be morphisms of \mathcal{C}. Then

$$
\begin{aligned}
& e v \circ((\lambda(c \circ e v) \circ \lambda(f) \circ a) \times i d)= \\
& e v \circ(\lambda(c \circ e v) \times i d) \circ(\lambda(f) \times i d) \circ(a \times i d)= \\
& c \circ e v \circ(\lambda(f) \times i d) \circ(a \times i d)= \\
& c \circ f \circ(a \times i d)
\end{aligned}
$$

implying that $\lambda(c \circ f \circ(a \times i d))=(B \Rightarrow c) \circ \lambda(f) \circ a$ since \mathcal{C} is a CCC.

The steps above are: categorical properties of \times; cartesian closure of \mathcal{C}; cartesian closure again.

Defining CCCs via Adjunctions

It remains to verify that we have defined a bijection which is natural in the required sense. We only check one part of naturality. Let $a: A^{\prime} \rightarrow A$ and $c: C \rightarrow C^{\prime}$ be morphisms of \mathcal{C}. Then

$$
\begin{aligned}
& e v \circ((\lambda(c \circ e v) \circ \lambda(f) \circ a) \times i d)= \\
& e v \circ(\lambda(c \circ e v) \times i d) \circ(\lambda(f) \times i d) \circ(a \times i d)= \\
& c \circ e v \circ(\lambda(f) \times i d) \circ(a \times i d)= \\
& c \circ f \circ(a \times i d)
\end{aligned}
$$

implying that $\lambda(c \circ f \circ(a \times i d))=(B \Rightarrow c) \circ \lambda(f) \circ a$ since \mathcal{C} is a CCC.

The steps above are: categorical properties of \times; cartesian closure of \mathcal{C}; cartesian closure again.

Defining CCCs via Adjunctions

It remains to verify that we have defined a bijection which is natural in the required sense. We only check one part of naturality. Let $a: A^{\prime} \rightarrow A$ and $c: C \rightarrow C^{\prime}$ be morphisms of \mathcal{C}. Then

$$
\begin{aligned}
& e v \circ((\lambda(c \circ e v) \circ \lambda(f) \circ a) \times i d)= \\
& e v \circ(\lambda(c \circ e v) \times i d) \circ(\lambda(f) \times i d) \circ(a \times i d)= \\
& c \circ e v \circ(\lambda(f) \times i d) \circ(a \times i d)= \\
& c \circ f \circ(a \times i d)
\end{aligned}
$$

implying that $\lambda(c \circ f \circ(a \times i d))=(B \Rightarrow c) \circ \lambda(f) \circ a$ since \mathcal{C} is a CCC.

The steps above are: categorical properties of \times; cartesian closure of \mathcal{C}; cartesian closure again.

Defining CCCs via Adjunctions

It remains to verify that we have defined a bijection which is natural in the required sense. We only check one part of naturality. Let $a: A^{\prime} \rightarrow A$ and $c: C \rightarrow C^{\prime}$ be morphisms of \mathcal{C}. Then

$$
\begin{aligned}
& e v \circ((\lambda(c \circ e v) \circ \lambda(f) \circ a) \times i d)= \\
& e v \circ(\lambda(c \circ e v) \times i d) \circ(\lambda(f) \times i d) \circ(a \times i d)= \\
& c \circ e v \circ(\lambda(f) \times i d) \circ(a \times i d)= \\
& c \circ f \circ(a \times i d)
\end{aligned}
$$

implying that $\lambda(c \circ f \circ(a \times i d))=(B \Rightarrow c) \circ \lambda(f) \circ a$ since \mathcal{C} is a CCC.

The steps above are: categorical properties of \times; cartesian closure of \mathcal{C}; cartesian closure again.

Case Study: (Haskell) Algebraic Datatypes

We shall

- Define a Haskell (recursive) datatype grammar.
- Show that any datatype declaration \mathbf{D} gives rise to a functor $F \equiv F_{\mathrm{D}}:$ Set \rightarrow Set.
- Demonstrate that \mathbf{D} can be modelled by an initial algebra $\sigma: F I \rightarrow I$, where I is the set $E x p_{\mathrm{D}}$ of expressions of type \mathbf{D} (up to isomorphism).

Later on we will

- Show that the functor \boldsymbol{F} preserves colimits of diagrams of the form $D: \omega \rightarrow$ Set, and such colimits exist ...
- and (hence) that F must have an initial algebra for purely categorical reasons.

A Recursive Datatype

- A set of type patterns T is defined by

$$
T::=\mathrm{D} \mid \text { Unit } \mid \text { Int } \mid T \times T
$$

- A datatype is specified by the statement

$$
\mathrm{D}=\mathrm{K}_{1} \mathrm{~T}_{1}|\ldots| \mathrm{K}_{m} T_{m}
$$

- A collection of type assignments is defined inductively by the following rules

$$
\begin{aligned}
& \overline{():: \text { Unit }} \quad \frac{z \in \mathbb{Z}}{\underline{z}:: \operatorname{Int}} \quad \frac{E:: T_{i}}{\mathrm{~K}_{i} E:: \mathrm{D}} \quad \frac{E_{1}:: T_{1}}{\left(E_{1}, E_{2}\right):: T_{2}} \\
& \text { and } \operatorname{Exp}_{T} \stackrel{\text { def }}{=}\{E \mid E:: T\} .
\end{aligned}
$$

Products and Coproducts of Functors

To define F we need these definitions:
Suppose that G_{1} and G_{2} are objects (that is, functors) of $\mathcal{D}^{\mathcal{C}}$ and that \mathcal{D} has finite (co)products. Then both $G_{1} \times G_{2}$ and $G_{1}+G_{2}$ exist in $\mathcal{D}^{\mathcal{C}}$ and are defined pointwize. For products this means

$$
\left(G_{1} \times G_{2}\right)(\xi) \stackrel{\text { def }}{=} G_{1} \xi \times G_{2} \xi
$$

where ξ is either an object or morphism of \mathcal{C}. The projections $\pi^{i}: G_{1} \times G_{2} \rightarrow G_{i}$ are defined with pointwize components $\pi_{A}^{i}: G_{1} A \times G_{2} A \rightarrow G_{i} A$. These projections π^{i} are indeed natural transformations.

Defining \boldsymbol{F} from \mathbf{D}

OHP

- The functor F is defined (as a coproduct in $\mathcal{S e} t^{\mathcal{S e t}}$) by

$$
F \stackrel{\text { def }}{=} F_{T_{1}}+\ldots+F_{T_{m}}
$$

where each $F_{T_{i}}:$ Set \rightarrow Set.

- Functors $F_{T}: \mathcal{S e t} \rightarrow \mathcal{S e t}$ are defined by recursion on the structure of T by setting
- $F_{\mathrm{D}} \stackrel{\text { def }}{=} i d_{\mathcal{S}^{\prime} t}$
- $F_{\text {Unit }}(g: U \rightarrow V) \stackrel{\text { def }}{=} i d_{1}: 1 \rightarrow 1$ where 1 is terminal in Set
- $F_{\text {Int }}(g: U \rightarrow V) \stackrel{\text { def }}{=} i d_{\mathbb{Z}}: \mathbb{Z} \rightarrow \mathbb{Z}$
- $F_{T_{1} \times T_{2}} \stackrel{\text { def }}{=} F_{T_{1}} \times F_{T_{2}}$

Defining An Initial Algebra $\sigma: \mathcal{F I} \rightarrow \mathbf{I}$

- онр We set I $\stackrel{\text { def }}{=} \operatorname{Exp}_{\mathrm{D}}$ and we define

$$
\sigma \stackrel{\text { def }}{=}\left[\widehat{\mathrm{K}_{1}} \circ \sigma_{T_{1}} \ldots \widehat{\mathrm{~K}_{m}} \circ \sigma_{T_{m}}\right]: F \mathbf{I} \stackrel{\text { def }}{=} F_{T_{1}} \mathbf{I}+\ldots+F_{T_{m}} \mathbf{I} \longrightarrow \mathbf{I}
$$

where the function $\widehat{\mathrm{K}_{i}}: \operatorname{Exp}_{T_{i}} \rightarrow \mathrm{I}$ applies the constructor and we define functions $\sigma_{T}: F_{T} \mathbf{l} \rightarrow \operatorname{Exp}_{T}$ by recursion over T as follows

- $\sigma_{\mathrm{D}}(E \in \mathrm{I}) \stackrel{\text { def }}{=} E \in \operatorname{Exp}_{\mathrm{D}}$
- $\sigma_{\text {Unit }}(* \in \mathbf{1}) \stackrel{\text { def }}{=}() \in \operatorname{Exp}_{\text {Unit }}$.
- $\sigma_{\text {Int }}(z \in \mathbb{Z}) \stackrel{\text { def }}{=} \underline{z} \in \operatorname{Exp}_{\text {Int }}$.
- $\sigma_{T_{1} \times T_{2}}\left(\left(e_{1}, e_{2}\right) \in F_{T_{1}} \mathbf{I} \times F_{T_{2}} \mathbf{I}\right) \stackrel{\text { def }}{=}\left(\sigma_{T_{1}}\left(e_{1}\right), \sigma_{T_{2}}\left(e_{2}\right)\right) \in$ $\operatorname{Exp}_{T_{1} \times T_{2}}$
- It may be useful to note that $\sigma\left(\iota_{i}\left(e_{i} \in F_{T_{i}} \mathbf{I}\right)\right)=\mathrm{K}_{i} \sigma_{T_{i}}\left(e_{i}\right)$.

Verifying Initiality

- онр Suppose that $f: F X \rightarrow X$ in Set. We have to prove that there is a unique \bar{f} such that

$$
\begin{aligned}
& F_{T_{1}} \mathbf{I}+\ldots+F_{T_{m}} \mathbf{I}=F \mathbf{I} \xrightarrow{\sigma} \mathbf{I}
\end{aligned}
$$

Verifying Initiality

- Note $\bar{f}: \operatorname{Exp}_{\mathrm{D}} \rightarrow F_{\mathrm{D}} X$; we will define $\bar{f} \stackrel{\text { def }}{=} \theta_{\mathrm{D}}$ and functions

$$
\theta_{T}: \operatorname{Exp}_{T} \rightarrow F_{T} X
$$

by recursion on T :

- $\theta_{\mathrm{D}}\left(\mathrm{K}_{i} E_{i} \in \operatorname{Exp}_{\mathrm{D}}\right) \stackrel{\text { def }}{=} f\left(\iota_{i}\left(\theta_{T_{i}}\left(E_{i}\right)\right)\right) \in X$.
- $\theta_{\text {Unit }}\left(() \in \operatorname{Exp}_{\text {Unit }}\right) \stackrel{\text { def }}{=} * \in 1$.
- $\theta_{\text {Int }}\left(\underline{z} \in \operatorname{Exp}_{\text {Int }}\right) \stackrel{\text { def }}{=} z \in \mathbb{Z}$.
- $\theta_{T_{1} \times T_{2}}\left(\left(E_{1}, E_{2}\right) \in \operatorname{Exp}_{T_{1} \times T_{2}}\right) \stackrel{\text { def }}{=}\left(\theta_{T_{1}}\left(E_{1}\right), \theta_{T_{2}}\left(E_{2}\right)\right) \in$ $F_{T_{1}} \mathbf{I} \times F_{T_{2}} \mathbf{I}$.

Verifying Initiality

- Observe that for any T we have $\theta_{T} \circ \sigma_{T}=F_{T} \theta_{\mathrm{D}}$, which follows from an easy induction.
Note that by universality of coproducts $\bar{f} \circ \sigma=f \circ \bar{F} \bar{f}$ iff

$$
\bar{f} \circ \sigma \circ \iota_{i}=f \circ \bar{F} \bar{f} \circ \iota_{i}
$$

Then for any $\boldsymbol{e}_{i} \in \boldsymbol{F}_{T_{i}} \mathbf{I}$

$$
\begin{aligned}
& \left(\theta_{\mathrm{D}} \circ \sigma \circ \iota_{i}\right)\left(e_{i}\right)=\theta_{\mathrm{D}}\left(\mathrm{~K}_{i} \sigma_{T_{i}}\left(e_{i}\right)\right) \\
& \stackrel{\text { def }}{=}_{\theta_{\mathrm{D}}} f\left(\iota_{i}\left(\theta_{T_{i}}\left(\sigma_{T_{i}}\left(e_{i}\right)\right)\right)\right. \\
& =f\left(\iota_{i}\left(\left(F_{T_{i}} \theta_{\mathrm{D}}\right)\left(e_{i}\right)\right)\right) \\
& =f\left(\left(F_{T_{1}} \theta_{\mathrm{D}}+\ldots+F_{T_{m}} \theta_{\mathrm{D}}\right)\left(\iota_{i}\left(e_{i}\right)\right)\right) \\
& \stackrel{\text { def }}{=}_{F} \quad\left(f \circ F \theta_{\mathrm{D}} \circ \iota_{i}\right)\left(e_{i}\right)
\end{aligned}
$$

The steps follow by: definition of σ; definition of θ_{D}; the observation; properties of + ; the definition of F.

Verifying Initiality

- Observe that for any T we have $\theta_{T} \circ \sigma_{T}=F_{T} \theta_{\mathrm{D}}$, which follows from an easy induction.
Note that by universality of coproducts $\bar{f} \circ \sigma=f \circ \bar{F} \bar{f}$ iff

$$
\bar{f} \circ \sigma \circ \iota_{i}=f \circ \bar{F} \bar{f} \circ \iota_{i}
$$

Then for any $\boldsymbol{e}_{i} \in \boldsymbol{F}_{T_{i}} \mathbf{I}$

$$
\begin{array}{rll}
\left(\theta_{\mathrm{D}} \circ \sigma \circ \iota_{i}\right)\left(e_{i}\right) & = & \theta_{\mathrm{D}}\left(\mathrm{~K}_{i} \sigma_{T_{i}}\left(e_{i}\right)\right) \\
\stackrel{\text { def }}{=} \theta_{\mathrm{D}} & f\left(\iota_{i}\left(\theta_{T_{i}}\left(\sigma_{T_{i}}\left(e_{i}\right)\right)\right)\right. \\
= & f\left(\iota_{i}\left(\left(F_{T_{i}} \theta_{\mathrm{D}}\right)\left(e_{i}\right)\right)\right) \\
& = & f\left(\left(F_{T_{1}} \theta_{\mathrm{D}}+\ldots+F_{T_{m}} \theta_{\mathrm{D}}\right)\left(\iota_{i}\left(e_{i}\right)\right)\right) \\
& \stackrel{\text { def }}{=} & \left(f \circ F \theta_{\mathrm{D}} \circ \iota_{i}\right)\left(e_{i}\right)
\end{array}
$$

The steps follow by: definition of σ; definition of θ_{D}; the observation; properties of + ; the definition of F.

Verifying Initiality

- Observe that for any T we have $\theta_{T} \circ \sigma_{T}=F_{T} \theta_{\mathrm{D}}$, which follows from an easy induction.
Note that by universality of coproducts $\bar{f} \circ \sigma=f \circ \bar{F} \bar{f}$ iff

$$
\bar{f} \circ \sigma \circ \iota_{i}=f \circ \bar{F} \bar{f} \circ \iota_{i}
$$

Then for any $\boldsymbol{e}_{i} \in \boldsymbol{F}_{T_{i}} \mathbf{I}$

$$
\begin{array}{rll}
\left(\theta_{\mathrm{D}} \circ \sigma \circ \iota_{i}\right)\left(e_{i}\right) & = & \theta_{\mathrm{D}}\left(\mathrm{~K}_{i} \sigma_{T_{i}}\left(e_{i}\right)\right) \\
\stackrel{\text { def }}{=} \theta_{\mathrm{D}} & f\left(\iota_{i}\left(\theta_{T_{i}}\left(\sigma_{T_{i}}\left(e_{i}\right)\right)\right)\right. \\
= & f\left(\iota_{i}\left(\left(F_{T_{i}} \theta_{\mathrm{D}}\right)\left(e_{i}\right)\right)\right) \\
& = & f\left(\left(F_{T_{1}} \theta_{\mathrm{D}}+\ldots+F_{T_{m}} \theta_{\mathrm{D}}\right)\left(\iota_{i}\left(e_{i}\right)\right)\right) \\
& \stackrel{\text { def }}{=} & \left(f \circ F \theta_{\mathrm{D}} \circ \iota_{i}\right)\left(e_{i}\right)
\end{array}
$$

The steps follow by: definition of σ; definition of θ_{D}; the observation; properties of + ; the definition of F.

Verifying Initiality

- Observe that for any T we have $\theta_{T} \circ \sigma_{T}=F_{T} \theta_{\mathrm{D}}$, which follows from an easy induction.
Note that by universality of coproducts $\bar{f} \circ \sigma=f \circ \bar{F} \bar{f}$ iff

$$
\bar{f} \circ \sigma \circ \iota_{i}=f \circ \bar{F} \bar{f} \circ \iota_{i}
$$

Then for any $\boldsymbol{e}_{i} \in \boldsymbol{F}_{T_{i}} \mathbf{I}$

$$
\begin{array}{rll}
\left(\theta_{\mathrm{D}} \circ \sigma \circ \iota_{i}\right)\left(e_{i}\right) & = & \theta_{\mathrm{D}}\left(\mathrm{~K}_{i} \sigma_{T_{i}}\left(e_{i}\right)\right) \\
\stackrel{\text { def }}{=} \theta_{\mathrm{D}} & f\left(\iota_{i}\left(\theta_{T_{i}}\left(\sigma_{T_{i}}\left(e_{i}\right)\right)\right)\right. \\
= & f\left(\iota_{i}\left(\left(F_{T_{i}} \theta_{\mathrm{D}}\right)\left(e_{i}\right)\right)\right) \\
& = & f\left(\left(F_{T_{1}} \theta_{\mathrm{D}}+\ldots+F_{T_{m}} \theta_{\mathrm{D}}\right)\left(\iota_{i}\left(e_{i}\right)\right)\right) \\
& \stackrel{\text { def }}{=} & \left(f \circ F \theta_{\mathrm{D}} \circ \iota_{i}\right)\left(e_{i}\right)
\end{array}
$$

The steps follow by: definition of σ; definition of θ_{D}; the observation; properties of + ; the definition of F.

Verifying Initiality

- Observe that for any T we have $\theta_{T} \circ \sigma_{T}=F_{T} \theta_{\mathrm{D}}$, which follows from an easy induction.
Note that by universality of coproducts $\bar{f} \circ \sigma=f \circ \bar{F} \bar{f}$ iff

$$
\bar{f} \circ \sigma \circ \iota_{i}=f \circ \bar{F} \bar{f} \circ \iota_{i}
$$

Then for any $\boldsymbol{e}_{i} \in \boldsymbol{F}_{T_{i}} \mathbf{I}$

$$
\begin{array}{rll}
\left(\theta_{\mathrm{D}} \circ \sigma \circ \iota_{i}\right)\left(e_{i}\right) & = & \theta_{\mathrm{D}}\left(\mathrm{~K}_{i} \sigma_{T_{i}}\left(e_{i}\right)\right) \\
\stackrel{\text { def }}{ }_{=}^{\theta_{\mathrm{D}}} & f\left(\iota_{i}\left(\theta_{T_{i}}\left(\sigma_{T_{i}}\left(e_{i}\right)\right)\right)\right. \\
= & f\left(\iota_{i}\left(\left(F_{T_{i}} \theta_{\mathrm{D}}\right)\left(e_{i}\right)\right)\right) \\
= & f\left(\left(F_{T_{1}} \theta_{\mathrm{D}}+\ldots+F_{T_{m}} \theta_{\mathrm{D}}\right)\left(\iota_{i}\left(e_{i}\right)\right)\right) \\
& { }^{\text {def }}= & \left(f \circ F \theta_{\mathrm{D}} \circ \iota_{i}\right)\left(e_{i}\right)
\end{array}
$$

The steps follow by: definition of σ; definition of θ_{D}; the observation; properties of + ; the definition of \boldsymbol{F}.

Case Study: Colimits-Building Initial Algebras

We shall show that the functor $F: \mathcal{S e} \boldsymbol{\operatorname { s e n }} \rightarrow \mathcal{S e} t$ must have an initial algebra for purely categorical reasons. To do this we shall

- Define the notion of a colimit; examine the special case of chain-colimits including their special properties (such as diagonalization and commutation of dual chains).
- Show that any left adjoint preserves colimits $*$.
- Prove that any functor F that preserves chain-colimits must have an initial algebra.
- Prove that the datatype functor \boldsymbol{F} preserves chain-colimits (part of the proof uses $*$).

Colimits

- Given a diagram $D: \mathbb{I} \rightarrow \mathcal{C}$, a colimit for D is given by an object $\operatorname{col}_{I} D I$ of \mathcal{C} together with a family of morphisms $\left(\iota_{I}: D I \rightarrow \operatorname{col}_{I} D I \mid I \in \mathbb{I}\right)$ such that for any $\alpha: I \rightarrow J$ in \mathbb{I} we have $\iota_{J} \circ D \alpha=\iota_{I}$. This data satisfies: given any family $\left(h_{I}: D I \rightarrow C \mid I \in \mathbb{I}\right)$ such that $h_{J} \circ D \alpha=h_{I}$, there is a unique morphism $\phi: \operatorname{col}_{I} D I \rightarrow C$ satisfying $\phi \circ \iota_{I}=h_{I}$ for each object I of \mathbb{I} (and hence $\left.\phi=\left[h_{I} \mid I \in \mathbb{I}\right]\right)$

- Binary coproducts arise from the discrete category $\mathbb{I} \xlongequal{\text { def }}\{\mathbf{1 , 2}\}$.

Colimits

- Let $D: \omega \rightarrow \mathcal{C}$; suppose that $i \leq i+1$ is a typical morphism in $\boldsymbol{\omega}$. Then a colimit diagram, if it exists, can be taken as

where for any given functions $\boldsymbol{h}_{i}: D(i) \rightarrow C$ commuting with the functions $D\left(\leq_{i+1}^{i}\right)$, a unique such ϕ exists.
This fact follows, since $h_{j} \circ D\left(\leq_{j}^{i}\right)=h_{i}$ for a general morphism \leq_{j}^{i} (where $i \leq j$ in ω) is immediate.

Colimits

- It is a fact that $\mathcal{S e}$ t has all (small) colimits.
- It is a fact that a colimit for $\boldsymbol{\Delta}: \boldsymbol{\omega} \times \boldsymbol{\omega} \rightarrow \mathcal{C}$ exists if and only if a colimit for $\Delta^{\prime}: \omega \rightarrow \mathcal{C}$ where $\Delta^{\prime}(i \in \omega) \stackrel{\text { def }}{=} \Delta(i, i)$ exists, and when they (both) exist they are isomorphic, that is

$$
\operatorname{col}_{k} \Delta^{\prime}(k) \cong \operatorname{col}_{(i, j)} \Delta(i, j)
$$

Further (exercise: define the diagrams that give rise to the colimits below...)

$$
\operatorname{col}_{i}\left(\operatorname{col}_{j} \Delta(i, j)\right) \cong \operatorname{col}_{j}\left(\operatorname{col}_{i} \Delta(j, i)\right)
$$

and all of the above colimits are isomorphic.

Left Adjoints Preserve Colimits

Let $D: \mathbb{I} \rightarrow \mathcal{C}$, and $L: \mathcal{C} \rightarrow \mathcal{D}$ and $L \dashv R$ for some R. Then

$$
L\left(\operatorname{col}_{I} D I\right) \cong \operatorname{col}_{I} L D I
$$

and is witnessed by $\left[L\left(\iota_{D I}\right) \mid I \in \mathbb{I}\right]: \operatorname{col}_{I} L D I \rightarrow L\left(\operatorname{col}_{I} D I\right)$. It suffices to show that $L\left(\operatorname{col}_{I} D I\right)$ is a colimit for $L D: \mathbb{I} \rightarrow \mathcal{D}$.

Left Adjoints Preserve Colimits

Suppose that $h_{I}=h_{J} \circ L D \alpha$. We need to show there is a unique ϕ as above.

Left Adjoints Preserve Colimits

But

$$
h_{I}=h_{J} \circ L D \alpha \Longrightarrow \overline{h_{I}}=\overline{h_{J} \circ L D \alpha}=\overline{h_{J}} \circ D \alpha
$$

where the final equality follows by naturality.

Left Adjoints Preserve Colimits

Therefore there is ρ with $\rho \circ \iota_{D I}=\overline{h_{I}}$. Define

$$
\phi \stackrel{\text { def }}{=} \widehat{\rho}: L\left(\operatorname{col}_{I} D I\right) \rightarrow X
$$

Left Adjoints Preserve Colimits

Hence, again using naturality,

$$
\phi \circ L\left(\iota_{D I}\right) \stackrel{\text { def }}{=} \widehat{\rho} \circ L\left(\iota_{D I}\right)=\widehat{\rho \circ \iota_{D I}}=\widehat{\overline{h_{I}}}=h_{I}
$$

Existence of Initial Algebras

Suppose that F preserves colimits of the form $D: \omega \rightarrow \mathcal{C}$ and that \mathcal{C} has an initial object $\mathbf{0}$. Define $D(i \leq i+1) \stackrel{\text { def }}{=} F^{i}!_{X}: F^{i} 0 \rightarrow F^{i+1} 0$ for $i \in \omega$. Then $\mathbf{I} \stackrel{\text { def }}{=} \operatorname{col}_{i} \boldsymbol{D i}$ (if it exists) is an initial algebra for \boldsymbol{F}.
Since \boldsymbol{F} preserves colimits and $\mathbf{I} \stackrel{\text { def }}{=} \operatorname{col}_{i} D i$ we can define $\sigma: F \mathbf{I} \rightarrow \mathbf{I}$

where $\sigma \circ F \iota_{i}=\boldsymbol{\iota}_{i+1}$.

Existence of Initial Algebras

Let $f: F X \rightarrow X$. Define $f_{0} \stackrel{\text { def }}{=}!_{X}: 0 \rightarrow X$ and $f_{i+1} \stackrel{\text { def }}{=} f \circ F f_{i}$. Certainly $f_{1} \circ F^{0}!_{X} \equiv f_{1} \circ!_{X}=f_{0}$ and for $i \geq 1$ we have inductively $f_{i+1} \circ F^{i}!_{X} \stackrel{\text { def }}{=} f \circ F f_{i} \circ F^{i}!_{X}=f \circ F\left(f_{i} \circ F^{i-1}!_{X}\right)=f \circ F f_{i-1} \stackrel{\text { def }}{=} f_{i}$ and hence \bar{f} exists where $\bar{f} \circ \boldsymbol{\iota}_{i}=f_{i}$.

Existence of Initial Algebras

We now have $\sigma \circ F \iota_{i}=\iota_{i+1}$; and $f_{i+1} \stackrel{\text { def }}{=} f \circ F f_{i}$ (which implied $\left.f_{i+1}=f_{i+2} \circ F^{i+1}!_{X}\right)$ yielding $\bar{f} \circ \iota_{i}=f_{i}$

The equality follows since

$$
\bar{f} \circ \sigma \circ F \iota_{i}=f_{i+1} \quad f \circ F \bar{f} \circ F \iota_{i}=f \circ F\left(\bar{f} \circ \iota_{i}\right)=f \circ F f_{i}=f_{i+1}
$$

Datatype Initial Algebra, Categorically

Suppose that a functor $F: \mathcal{S e t} \rightarrow \mathcal{S e} \boldsymbol{t}$ is defined by a grammar $F::=P|F \times F| F+F$ where P preserves colimits of diagrams $D: \omega \rightarrow$ Set. Then so too does F. This follows by induction. Suppose that F, G preserve such colimits.

$$
\begin{aligned}
(F \times G)\left(\operatorname{col}_{i} D i\right) & \xlongequal{\text { def }}\left(\operatorname{Fcol}_{i} D i\right) \times\left(\operatorname{Gcol}_{i} D i\right) \\
& \cong\left(\operatorname{col}_{j} F D j\right) \times\left(\operatorname{col}_{i} G D i\right) \\
& \cong \operatorname{col}_{i}\left(\left(\operatorname{col}_{j} D F j\right) \times D G i\right) \\
& \cong \operatorname{col}_{i}\left(\operatorname{col}_{j}(D F j \times D G i)\right) \\
& \cong \operatorname{col}_{k}(D F k \times D G k)
\end{aligned}
$$

The steps follow by: induction on F and G; $\left(\operatorname{col}_{j} F D j\right) \times(-)$ has a right adjoint so preserves colimits; $(-) \times D G i$ also has a right adjoint; the earlier fact that a colimit for $\Delta: \omega \times \omega \rightarrow \mathcal{C}$ and $\Delta^{\prime}: \omega \rightarrow \mathcal{C}$ where $\Delta^{\prime}(k) \stackrel{\text { def }}{=} \Delta(k, k)$ are isomorphic.

Datatype Initial Algebra, Categorically

Suppose that a functor $F: \mathcal{S e t} \rightarrow \mathcal{S e t}$ is defined by a grammar $F::=P|F \times F| F+F$ where P preserves colimits of diagrams $D: \omega \rightarrow$ Set. Then so too does F. This follows by induction. Suppose that F, G preserve such colimits.

$$
\begin{aligned}
(F \times G)\left(\operatorname{col}_{i} D i\right) & \xlongequal{\text { def }}\left(\operatorname{Fcol}_{i} D i\right) \times\left(\operatorname{Gcol}_{i} D i\right) \\
& \cong\left(\operatorname{col}_{j} F D j\right) \times\left(\operatorname{col}_{i} G D i\right) \\
& \cong \operatorname{col}_{i}\left(\left(\operatorname{col}_{j} D F j\right) \times D G i\right) \\
& \cong \operatorname{col}_{i}\left(\operatorname{col}_{j}(D F j \times D G i)\right) \\
& \cong \operatorname{col}_{k}(D F k \times D G k)
\end{aligned}
$$

The steps follow by: induction on F and G; $\left(\operatorname{col}_{j} F D j\right) \times(-)$ has a right adjoint so preserves colimits; $(-) \times D G i$ also has a right adjoint; the earlier fact that a colimit for $\Delta: \omega \times \omega \rightarrow \mathcal{C}$ and $\Delta^{\prime}: \omega \rightarrow \mathcal{C}$ where $\Delta^{\prime}(k) \stackrel{\text { def }}{=} \Delta(k, k)$ are isomorphic.

Datatype Initial Algebra, Categorically

Suppose that a functor $F: \mathcal{S e t} \rightarrow \mathcal{S e} \boldsymbol{t}$ is defined by a grammar $F::=P|F \times F| F+F$ where P preserves colimits of diagrams $D: \omega \rightarrow$ Set. Then so too does F. This follows by induction. Suppose that F, G preserve such colimits.

$$
\begin{aligned}
(F \times G)\left(\operatorname{col}_{i} D i\right) & \xlongequal{\text { def }}\left(\operatorname{Fcol}_{i} D i\right) \times\left(\operatorname{Gcol}_{i} D i\right) \\
& \cong\left(\operatorname{col}_{j} F D j\right) \times\left(\operatorname{col}_{i} G D i\right) \\
& \cong \operatorname{col}_{i}\left(\left(\operatorname{col}_{j} D F j\right) \times D G i\right) \\
& \cong \operatorname{col}_{i}\left(\operatorname{col}_{j}(D F j \times D G i)\right) \\
& \cong \operatorname{col}_{k}(D F k \times D G k)
\end{aligned}
$$

The steps follow by: induction on F and $G ;\left(\operatorname{col}_{j} F D j\right) \times(-)$ has a right adjoint so preserves colimits; $(-) \times D G i$ also has a right adjoint; the earlier fact that a colimit for $\Delta: \omega \times \omega \rightarrow \mathcal{C}$ and $\Delta^{\prime}: \omega \rightarrow \mathcal{C}$ where $\Delta^{\prime}(k) \stackrel{\text { def }}{=} \Delta(k, k)$ are isomorphic.

Datatype Initial Algebra, Categorically

Suppose that a functor $F: \mathcal{S e t} \rightarrow \mathcal{S e t}$ is defined by a grammar $F::=P|F \times F| F+F$ where P preserves colimits of diagrams $D: \omega \rightarrow$ Set. Then so too does F. This follows by induction. Suppose that F, G preserve such colimits.

$$
\begin{aligned}
(F \times G)\left(\operatorname{col}_{i} D i\right) & \xlongequal{\text { def }}\left(\operatorname{Fcol}_{i} D i\right) \times\left(\operatorname{Goo}_{i} D i\right) \\
& \cong\left(\operatorname{col}_{j} F D j\right) \times\left(\operatorname{col}_{i} G D i\right) \\
& \cong \operatorname{col}_{i}\left(\left(\operatorname{col}_{j} D F j\right) \times D G i\right) \\
& \cong \operatorname{col}_{i}\left(\operatorname{col}_{j}(D F j \times D G i)\right) \\
& \cong \operatorname{col}_{k}(D F k \times D G k)
\end{aligned}
$$

The steps follow by: induction on F and G; $\left(\operatorname{col}_{j} F D j\right) \times(-)$ has a right adjoint so preserves colimits; $(-) \times D G i$ also has a right adjoint; the earlier fact that a colimit for $\Delta: \omega \times \omega \rightarrow \mathcal{C}$ and $\Delta^{\prime}: \omega \rightarrow \mathcal{C}$ where $\Delta^{\prime}(k) \stackrel{\text { def }}{=} \Delta(k, k)$ are isomorphic.

Datatype Initial Algebra, Categorically

Suppose that a functor $F: \mathcal{S e t} \rightarrow \mathcal{S e t}$ is defined by a grammar $F::=P|F \times F| F+F$ where P preserves colimits of diagrams $D: \omega \rightarrow \mathcal{S e t}$. Then so too does F. This follows by induction. Suppose that F, G preserve such colimits.

$$
\begin{aligned}
(F+G)\left(\operatorname{col}_{i} D i\right) & \stackrel{\text { def }}{=}\left(F_{\operatorname{col}}^{i} \text { Di)}+\left(G \operatorname{col}_{i} D i\right)\right. \\
& \cong\left(\operatorname{col}_{i} F D i\right)+\left(\operatorname{col}_{i} G D i\right) \\
& \cong \operatorname{col}_{i}(D F i+D G i)
\end{aligned}
$$

The first step follows by induction on F and G; the second step can be proven directly from the definition of a colimit (coproduct). Hence any such F preserves $D: \omega \rightarrow \mathcal{S} e t$ colimits.

Datatype Initial Algebra, Categorically

It follows from this, plus the fact that identity functors and constant functors preserve colimits of diagrams $D: \omega \rightarrow \mathcal{C}$ for any \mathcal{C}, that the datatype functor

$$
F \stackrel{\text { def }}{=} F_{T_{1}}+\ldots+F_{T_{m}}: \mathcal{S e} t \longrightarrow \mathcal{S e t}
$$

preserves colimits of shape $D: \omega \longrightarrow \mathcal{S e}$. Since in fact $\mathcal{S e t}$ has all colimits, by purely categorical reasoning it has an initial algebra $\sigma: F I \longrightarrow \mathbf{I}$.

Mini Project

Find out what nominal sets are, and learn the basic properties of the category $\mathcal{N o m}$ (of nominal sets and finitely supported functions) such as finite products and coproducts. Follow this up by learning what a nominal algebraic datatype is. Then see if you can construct an initial algebra model of expressions for such a datatype, proving the relevant properties, and further show that initial algebras exist for purely categorical reasons, much as we did in these slides for (ordinary) algebraic datatypes.

References

- Steve Awodey. Category Theory, Oxford Logic Guides, Oxford University Press, 2006. Second edition 2010.
- Roy L Crole. Categories for Types, Cambridge University Press, 1994.
- P.J. Freyd and A. Scedrov. Categories, Allegories, Elsevier Science Publishers, 1990.
- T. Leinster. Basic Category Theory, CUP, 2014. Available online.
- S. Mac Lane. Categories for the Working Mathematician, Springer Verlag, 1971, vol. 5 of Graduate Texts in Mathematics.
- Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.
- Andrew M. Pitts. Nominal Sets, Cambridge University Press, 2013.
- Harold Simmons. An Introduction to Category Theory,

