Category Theory

Roy L. Crole

University of Leicester, UK

April 2018

MGS 2018, 9-13 April, University of Nottingham, UK

Introductory Remarks

- ► A theory of abstraction (of algebraic structure).
- It had its origins in Algebraic Topology with the work of Eilenberg and Mac Lane (1942-45).
- It provides tools and techniques which allow the formulation and analysis of common features amongst apparently different mathematical/computational theories.
- We can discover new relationships between things that are seemingly unconnected.
- Category theory concentrates on how things behave and not on internal details (e.g. on properties of sets but not expressed in terms of their elements).
- As such, category theory can clarify and simplify our ideas—and indeed lead to new ideas and new results.

Introductory Remarks

- Connections with Computer Science were first made in the 1980s, and the subject has played a central role ever since.
- Some contributions (chosen by me ... there are many many more) are
 - Categories for Types by Roy L. Crole. CUP.
 - Cartesian closed categories as models of pure functional languages.
 - The use of strong monads to model notions of computation (well incorporated into Haskell).
 - Precise correspondences between categorical structures and type theories.
 - The categorical solution of domain equations as models of recursive types.
 - Nominal categories as models of variable binding.

A set of hand-written slides accompanies these typed slides. Their purpose is to elaborate the definitions, concepts and examples presented here. Hopefully they will aid digestion of the material; see the OHP flags.

Note that the material in the hand-written slides is informal; the lectures provide clarifications of the informality:

Examples of informality include omitting some or all identity morphisms from pictures of categories; omitting subscripts from natural transformations; omitting formal insertions when calculating with coproducts; and others

There is also a collection of exercises. To learn the subject well it is very important to tackle these.

Course Outline

Categories

Functors

- Natural Transformations
- Products, Coproducts
- Adjunctions
- Algebras
- Case Study: The Mini Yoneda Lemma for Type Theorists
- Case Study: CCCs via Adjunctions
- Case Study: Modelling (Haskell) Algebraic Datatypes via Algebras
- Case Study: Colimits-Building Initial Algebras

OHP A category C is specified by the following data:

- ► A collection ob C of entities called objects. An object will often be denoted by a capital letter such as A, B, C...
- For any two objects A and B, a collection C(A, B) of entities called morphisms. A morphism in C(A, B) will often be denoted by a small letter such as f, g, h....
- ▶ If $f \in C(A, B)$ then A is called the **source** of f, and B is the **target** of f and we write (equivalently) $f: A \rightarrow B$.

Definition of A Category

A category C is specified by the following data (continued):

- ► There is an operation assigning to each object A of C an identity morphism $id_A: A \to A$.
- There is an operation

 $\mathcal{C}(B,C) \times \mathcal{C}(A,B) \longrightarrow \mathcal{C}(A,C)$

assigning to each pair of morphisms $f: A \to B$ and $g: B \to C$ their **composition** which is a morphism denoted by $g \circ f: A \to C$ or just $gf: A \to C$.

► Such morphisms *f* and *g*, with a common source and target *B*, are said to be composable.

Definition of A Category

A category C is specified by the following data (continued):

These operations are unitary

$$id_B \circ f = f: A \to B$$

 $f \circ id_A = f: A \to B$

▶ and **associative**, that is given morphisms $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow D$ then

$$(h \circ g) \circ f = h \circ (g \circ f).$$

If we say "f is a morphism" we implicitly assume that the source and target are recoverable, that is, we can work out $f \in \mathcal{C}(A, B)$ for some A and B.

Outline Examples of Categories

The collection of all sets and all functions

- Each set has an identity function; functions compose; composition is associative.
- ► The collection of all elements of a preorder and all instances of the order relation (relationships) ≤
 - Each element has an identity relationship (reflexivity); relationships compose (transitivity); composition is associative.
- The collection of all elements of a singleton { * } (!) and any collection of algebraic terms with just one variable x₀
 - * has an identity term x₀; terms compose (substitution); composition is associative.

More Examples

- ► The category $\mathcal{P}art$ with $ob \mathcal{P}art$ all sets and morphisms $\mathcal{P}art(A, B)$ the partial functions $A \to B$.
 - ► The identity function *id*_A is a partial function!
 - Given f: A → B, g: B → C, then for each element a of A, (g ∘ f)(a) is defined with value g(f(a)) if and only if both f(a) and g(f(a)) are defined.
- OHP Given a category C, the opposite category C^{op} has
 - ► $ob \ \mathcal{C}^{op} \stackrel{\text{def}}{=} ob \ \mathcal{C}$ and $\mathcal{C}^{op}(A, B) = \{ f^{op} \mid f \in \mathcal{C}(B, A) \}.$
 - The identity on an object A in \mathcal{C}^{op} is defined to be id_A^{op} .
 - If f^{op}: A → B and g^{op}: B → C are morphisms in C^{op}, then
 f: B → A and g: C → B are composable morphisms in C.
 We define g^{op} ∘ f^{op} def (f ∘ g)^{op}: A → C.
- * Opposite categories can have surprising structure. The category Set^{op} is equivalent to the category of complete atomic Boolean algebras. *

More Examples

- A discrete category is one for which the only morphisms are identities.
- A semigroup (S, b) is a set S together with an associative binary operation b: S × S → S, (s, s') → s s'. An identity element for a semigroup S is some (necessarily unique) element e of S such that for all s ∈ S we have
 e s = s e = s. A monoid (M, b, e) is a semigroup (M, b) with identity element e. Any monoid is a single object category C with C(*, *) ^{def} M; identities and composition are given by e and b.
- Concrete examples are
 - Addition on the natural numbers, $(\mathbb{N}, +, 0)$.
 - ▶ OHP Concatenation of finite lists over a set A, (*list*(A), ++, []).

More Examples

- ▶ OHP $\mathcal{M}on$ has objects monoids and morphisms monoid homomorphisms: $h: M \to M'$ is a homomorphism if h(e) = e and $h(m_1 \cdot m_2) = h(m_1) \cdot h(m_2)$ for all $m_i \in M$.
- PreSet has objects preorders and morphisms the monotone functions; and *ParSet* has objects partially ordered sets and morphisms the monotone functions.
- The category of relations *Rel* has objects sets and morphisms binary relations on sets; composition is relation-composition.
- The category of lattices *Lat* has objects lattices and morphisms the lattice homomorphisms.
- The category *CLat* has objects the complete lattices and morphisms the complete lattice homomorphisms.
- ► The category *Grp* of groups and homomorphisms.

Isomorphisms and Equivalences

- A morphism $f: A \to B$ is an **isomorphism** if there is some $g: B \to A$ for which $f \circ g = id_B$ and $g \circ f = id_A$.
- ► g is an **inverse** for f and vise versa.
- A is **isomorphic** to B, $A \cong B$, if such a mutually inverse pair of morphisms exists.
- Bijections in Set are isomorphisms. There are typically many isomorphisms witnessing that two sets are bijective.
- In the category determined by a partially ordered set, the only isomorphisms are the identities, and in a preorder X with x, y ∈ X we have x ≅ y iff x ≤ y and y ≤ x. Note that in this case there can be only one pair of mutually inverse morphisms witnessing the fact that x ≅ y.

Definition of a Functor

OHP

A functor $F: \mathcal{C} \to \mathcal{D}$ is specified by

- an operation taking objects A in C to objects FA in D, and
- ▶ an operation sending morphisms $f: A \to B$ in C to morphisms $Ff: FA \to FB$ in D, such that

•
$$F(id_A) = id_{FA}$$
, and

• $F(g \circ f) = Fg \circ Ff$ provided $g \circ f$ is defined.

Examples of Functors

- ► Let C be a category. The **identity** functor $id_C: C \to C$ is defined by $id_C(A) \stackrel{\text{def}}{=} A$ on objects and $id_C(f) \stackrel{\text{def}}{=} f$ on morphisms; so $f: A \to B \Longrightarrow id_C(f): id_C(A) \to id_C(B)$.
- ▶ Let (X, \leq_X) and (Y, \leq_Y) be categories and $m: X \to Y$ a monotone function. Then m gives rise to a functor

 $M\colon (X,\leq_X)\to (Y,\leq_Y)$

defined by $M(x) \stackrel{\text{def}}{=} m(x)$ on objects $x \in X$ and by $M(\leq_X) = \leq_Y$ on morphisms; since m is monotone, $\leq_X : x \to x' \Longrightarrow M(\leq_X) : M(x) \to M(x').$

Examples of Functors

▶ We may define a functor $F: Set \to Mon$ by $FA \stackrel{\text{def}}{=} list(A)$ and if $f: A \to B$ then $Ff \stackrel{\text{def}}{=} map(f)$, where $map(f): list(A) \to list(B)$ is defined by $map(f)([]) \stackrel{\text{def}}{=} []$ $map(f)([a_1, ..., a_n]) \stackrel{\text{def}}{=} [f(a_1), ..., f(a_n)]$

It is easy to see that map(f) is a homomorphism of monoids. • Note that $F(id_A) = id_{FA}$

$$F(id_A)([a_1,\ldots,a_n]) \stackrel{\text{def}}{=} map(id_A)([a_1,\ldots,a_n])$$
$$= id_{list(A)}([a_1,\ldots,a_n])$$
$$\stackrel{\text{def}}{=} id_{FA}([a_1,\ldots,a_n])$$

• ... and note that $F(g \circ f) = Fg \circ Ff$

 $F(g \circ f)([a_1,\ldots,a_n]) \stackrel{\text{def}}{=} map(g \circ f)([a_1,\ldots,a_n])$

- $= [(g \circ f)(a_1), \ldots, (g \circ f)(a_n)]$
- $= [g(f(a_1)), \ldots, g(f(a_n))]$
- $= map(g)([f(a_1),\ldots,f(a_n)])$
- $= map(g)(map(f)([a_1,\ldots,a_n]))$
- $= (Fg \circ Ff)([a_1,\ldots,a_n]).$

▶ Given a set A, recall that the powerset P(A) is the set of subsets of A. We can define the covariant powerset functor
 P: Set → Set which is given by

 $f: A \to B \quad \mapsto \quad \mathcal{P}(f) \equiv f_*: \mathcal{P}(A) \to \mathcal{P}(B),$

where $f: A \to B$ is a function and f_* is defined by $f_*(A') \stackrel{\text{def}}{=} \{f(a') \mid a' \in A'\}$ where $A' \in \mathcal{P}(A)$.

• f_* is sometimes called the **direct image** of f.

* More Functor Examples *

We can define a contravariant powerset functor
 P: Set^{op} → Set by setting

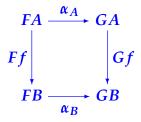
$f^{op}: B \to A \quad \mapsto \quad f^{-1}: \mathcal{P}(B) \to \mathcal{P}(A),$

where $f: A \to B$ is a function in *Set*, and the function f^{-1} is defined by $f^{-1}(B') \stackrel{\text{def}}{=} \{a \in A \mid f(a) \in B'\}$ where $B' \in \mathcal{P}(B)$.

► f⁻¹ is sometimes called the inverse image of f (and sometimes written f*).

Definition of a Natural Transformation

Let $F, G: \mathcal{C} \to \mathcal{D}$ be functors. Then a **natural transformation** α from F to G, written $\alpha: F \to G$, is specified by giving a morphism $\alpha_A: FA \to GA$ in \mathcal{D} for each object A in \mathcal{C} , such that for any $f: A \to B$ in \mathcal{C} , we have a commutative diagram



The α_A are the **components** of the natural transformation.

Examples of Natural Transformations

▶ Recall $F: Set \to Mon$ where $FA \stackrel{\text{def}}{=} list(A)$ and $F(f: A \to B) \stackrel{\text{def}}{=} map(f): list(A) \to list(B)$. Define a natural transformation $rev: F \to F$, by specifying functions $rev_A: list(A) \to list(A)$ where

 $rev_A([]) \stackrel{\text{def}}{=} [] \qquad rev_A([a_1,\ldots,a_n]) \stackrel{\text{def}}{=} [a_n,\ldots,a_1]$

We check naturality OHP

$$(Ff \circ rev_A)([a_1,\ldots,a_n]) = [f(a_n),\ldots,f(a_1)] = (rev_B \circ Ff)([a_1,\ldots,a_n]).$$

Examples of Natural Transformations

Let C and D be categories and let F, G, H be functors from
 C to D. Also let α: F → G and β: G → H be natural transformations. We can define a natural transformation
 β ∘ α: F → H by setting the components to be

 $(\beta \circ \alpha)_A \stackrel{\mathrm{def}}{=} \beta_A \circ \alpha_A.$

- OHP This yields a category D^C with objects functors from C to D, morphisms natural transformations between such functors, and composition as given above.
- Exercise: α is an isomorphism in $\mathcal{D}^{\mathcal{C}}$ just in case each α_A is an isomorphism in \mathcal{D} .
- ► We will use *Set*^{Set} when we model the Haskell datatype.

* Examples of Natural Transformations *

- ► See slide 22 and OHP on CCCs.
- Define a functor $F_X: Set \to Set$ by
 - (! Products) $F_X(A) \stackrel{\text{def}}{=} (X \Rightarrow A) \times X$ on objects

• (! Products) $F_X(f) \stackrel{\text{def}}{=} (f \circ -) \times id_X$ on morphisms Then define a natural transformation $ev \colon F_X \to id_{\mathcal{S}et}$ with components $ev_A \colon (X \Rightarrow A) \times X \to A$ by $ev_A(g, x) \stackrel{\text{def}}{=} g(x)$ where $(g, x) \in (X \Rightarrow A) \times X$. To see that we have defined a natural transformation let $f \colon A \to B$ and note that

$$(id_{Set}(f) \circ ev_A)(g, x) = f(ev_A(g, x))$$

= ...(ev_B \circ F_X(f))(g, x).

Universal Properties

Consider Set. Let $T \stackrel{\text{def}}{=} \{ * \}$. For any set X there exists a function $f_X \colon X \to T$. This function is unique; it can only map $x \in X$ to *:

 $\forall X. \exists ! f_X. f_X \colon X \to T. \Phi(T)$

Also, any set T' with this property $\Phi(T')$ is unique up to isomorphism (that is, bijection): $T \cong T'$. Indeed any T is a one element set. We often write 1 for it.

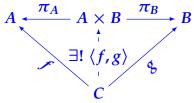
This is a simple example of a universal property. These are properties that define a particular structure up to isomorphism in terms of how the structure interacts uniquely with all other similar structures in the category.

Definition of Binary Products

OHP A binary product of objects A and B in C is specified by

- an object $A \times B$ of C, together with
- ► two projection morphisms $\pi_A : A \times B \to A$ and $\pi_B : A \times B \to B$,

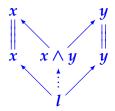
for which given any object C and morphisms $f: C \to A$, $g: C \to B$, there exists a unique morphism $\langle f, g \rangle : C \to A \times B$ for which



 $\langle f,g \rangle \colon C \to A \times B$ is the **mediating** morphism for f and g.

Examples of Binary Products

- Let (X, ≤) be a preorder. l ∈ X is a lower bound of x, y ∈ X just in case l ≤ x, y. u ∈ X is a upper bound of x, y ∈ X just in case x, y ≤ u.
- ▶ $x \in S \subseteq X$ is greatest in S if $(\forall s \in S)(s \leq x)$ and is least in S if $(\forall s \in S)(x \leq s)$.
- In a preorder a greatest lower bound x ∧ y of x and y (if it exists) is a binary product x × y of the category determined by (X, ≤) with projections x ∧ y ≤ x and x ∧ y ≤ y. x ∧ y is also called the meet of x and y.



Examples of Binary Products

The binary product of A and B in Set has

$$A \times B \stackrel{\text{def}}{=} \{ (a,b) \mid A \in A, b \in B \}$$

with projection functions $\pi_A(a,b) \stackrel{\text{def}}{=} a$ and $\pi_B(a,b) \stackrel{\text{def}}{=} b$. The mediating function for any $f: C \to A$ and $g: C \to B$ is

$$\langle f,g\rangle(c) \stackrel{\mathrm{def}}{=} (f(c),g(c)).$$

 In any C, if p_i: P → A_i is any product of A₁ and A₂ then A₁ × A₂ ≅ P. All binary products are determined up to isomorphism: Existence yields mediating morphisms
 φ: A₁ × A₂ → P and ψ: P → A₁ × A₂; uniqueness means that φ and ψ witness an isomorphism (e.g. φ ∘ ψ = id_P).

* Definition of Finite Products *

A product of a non-empty finite family of objects $(A_i \mid i \in I)$ in C, where $I \stackrel{\text{def}}{=} \{1, \dots, n\}$, is specified by

- an object $A_1 \times \ldots \times A_n$ (or $\prod_{i \in I} A_i$) in \mathcal{C} , and
- ► for every $j \in I$, a morphism $\pi_j: A_1 \times \ldots \times A_n \to A_j$ in \mathcal{C} called the *j*th product projection

such that for any object C and family of morphisms $(f_i: C \rightarrow A_i \mid i \in I)$ there is a unique morphism

$$\langle f_1,\ldots,f_n\rangle\colon C\to A_1\times\ldots\times A_n$$

for which given any $j \in I$, we have $\pi_j \circ \langle f_1, \ldots, f_n \rangle = f_j$.

Note: We get binary products when $I \stackrel{\text{def}}{=} \{1, 2\}!$

* Examples of Finite Products *

▶ A finite product of $(A_1, ..., A_n) \equiv (A_i | i \in I)$ in *Set* is given by the cartesian product $A_1 \times ... \times A_n$ with the obvious projection functions. Given functions $(f: C \rightarrow A_i | i \in I)$ then

$$\langle f_1,\ldots,f_n\rangle(c) \stackrel{\text{def}}{=} (f_1(c),\ldots,f_n(c))$$

- In a preorder (X, ≤), a finite product x₁ × ... × x_n, if it exists, is a meet (greatest lower bound) of (x₁, ..., x_n).
- A terminal object 1 in a category C has the property that there is a unique morphism !_A: A → 1 for every A ∈ ob C. It is the finite product of an empty family of morphisms (check this!). Such a 1 may not exist, but is unique up to isomorphism if it does.

Definition of Finite Coproducts

OHP A coproduct of a non-empty family of objects $(A_i \mid i \in I)$ in C, where $I = \{1, ..., n\}$, is specified by

- an object $A_1 + \ldots + A_n (\Sigma_{i \in I} A_i)$, together with
- insertion morphisms $\iota_i: A_i \to A_1 + \ldots + A_n$,

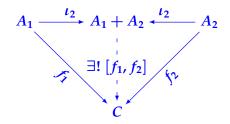
such that for any C and any family of morphisms $(f_i: A_i \to C \mid i \in I)$ there is a unique morphism

$$[f_1,\ldots,f_n]:A_1+\ldots+A_n\to C$$

for which given any $j \in I$, we have $[f_1, \ldots, f_n] \circ \iota_j = f_j$.

Definition of Finite Coproducts

In the case that $I \stackrel{\text{def}}{=} \{1, 2\}$ we have



(Compare to the diagrams for colimits later on.)

MGS 2018, 9-13 April, University of Nottingham, UK

Examples of (Co)Products

In Set the binary coproduct of sets A₁ and A₂ is given by their disjoint union A₁ ⊎ A₂, defined as the union (A₁ × {1}) ∪(A₂ × {2}) with the insertion functions

 $\iota_{A_1}: A_1 \to A_1 \uplus A_2 \leftarrow A_2: \iota_{A_2}$

where ι_{A_1} is defined by $a_1 \mapsto (a_1, 1)$ for all $a_1 \in A_1$, and ι_{A_2} by $a_2 \mapsto (a_2, 2)$ for all $a_2 \in A_2$.

► Let preorder (X, ≤) have top and bottom elements and all finite meets and joins (least upper bounds). Then the top of X is terminal, the bottom of X initial, and finite meets and joins are finite products and coproducts respectively.

Examples of (Co)Products

- OHP Given (X, ≤) and (Y, ≤) in *PreSet*, the binary product is the cartesian product X × Y in *Set*, with the pointwize order (x, y) ≤ (x', y') iff x ≤ x' and y ≤ y', together with the (monotone) set-theoretic projection functions. The binary coproduct is X ⊎ Y, with (z, δ) ≤ (z', δ') iff δ = δ' (δ, δ' ∈ {1,2}), and z ≤ z' (either in X or in Y).
- An initial object 0 in a category C has the property that there is a unique morphism !_A: 0 → A for every A ∈ ob C. It is the finite coproduct of an empty family of morphisms (check this!). Such a 0 may not exist, but is unique if it does.

* Useful "Fact" for (Co)Products *

- ▶ Suppose that we have $(f_i: C \to A_i \mid i \in \{1, 2\})$ and $\theta: C \to A_1 \times A_2$. In order to prove that $\theta = \langle f_1, f_2 \rangle$ it is sufficient to show that $\pi_{A_i} \circ \theta = f_i$ for each *i*.
- ► Suppose that we have $(f_i: A_i \to C \mid i \in \{1, 2\})$ and $\theta: A_1 + A_2 \to C$. In order to prove that $\theta = [f_1, f_2]$ it is sufficient to show that $\theta \circ \iota_{A_i} = f_i$ for each *i*.

Note: this "fact" is simply a consequence of uniqueness of mediating morphisms. It is crucial to the proof that (co)products are unique up to isomorphism, where both $\phi \circ \psi$ and *id* (from an earlier slide) are shown to be mediating, and hence equal.

Further Notation for (Co)Products

- ▶ Suppose that $f_1: A_1 \rightarrow B_1$ and $f_2: A_2 \rightarrow B_2$. Then
 - $f_1 \times f_2 \stackrel{\text{def}}{=} \langle f_1 \circ \pi_{A_1}, f_2 \circ \pi_{A_2} \rangle \colon A_1 \times A_2 \to B_1 \times B_2$ $f_1 + f_2 \stackrel{\text{def}}{=} [\iota_{B_1} \circ f_1, \iota_{B_2} \circ f_2] \colon A_1 + A_2 \to B_1 + B_2$

and hence it is immediate that (useful in calculations)

$$\begin{array}{rcl} \pi_{B_i} \circ (f_1 \times f_2) &=& f_i \circ \pi_{A_i} \\ (f_1 + f_2) \circ \iota_{A_i} &=& \iota_{B_i} \circ f_i \end{array}$$

► This notation is easily extended to finite families (A_i | i ∈ {1,...,n}) and (B_i | i ∈ {1,...,n}) ... or indeed infinite families (A_i | i ∈ I) and (B_i | i ∈ I) where I is any set.

A Useful Functor in Adjunctions

The category CAT which has objects categories and morphisms functors. This category has products.

Let ${\cal C}$ and ${\cal D}$ be categories. The product category ${\cal C}\times {\cal D}$ has objects and morphisms of the form

 $(f,g)\colon (C,D)\longrightarrow (C',D')$

with composition defined coordinatewise. Check this is a product! Given functors $F: \mathcal{C} \to \mathcal{E}$ and $G: \mathcal{D} \to \mathcal{F}$ the functor

 $F \times G \colon \mathcal{C} \times \mathcal{D} \longrightarrow \mathcal{E} \times \mathcal{F}$

takes (f,g) to $(Ff,Gg): (FC,GD) \rightarrow (FC',GD')$.

Again, check this using the definitions on slide 22.

A Useful Functor in Adjunctions

There is a functor

$$\mathcal{C}(-,+): \mathcal{C}^{op} \times \mathcal{C} \longrightarrow \mathcal{S}et$$

defined by

 $(f^{op},g): (A,A') \to (B,B') \mapsto \mathcal{C}(f^{op},g): \mathcal{C}(A,A') \to \mathcal{C}(B,B')$ where $\mathcal{C}(f^{op},g)(\theta) = g \circ \theta \circ f: B \to A \to A' \to B'$ for $\theta: A \to A'.$

If $R: \mathcal{D} \to \mathcal{C}$ then $\mathcal{C}(-, R+): \mathcal{C}^{op} \times \mathcal{D} \longrightarrow \mathcal{S}et$ is defined to be

$$\mathcal{C}(-,+)\circ(id_{\mathcal{C}^{op}}\times \mathbf{R})\colon (C,D)\mapsto \mathcal{C}(C,\mathbf{R}D)$$

Adjunctions (between Preorders)

A pair of monotone functions

$$(X,\leq_X) \xrightarrow[r]{l} (Y,\leq_Y)$$

is said to be an **adjunction** if for all $x \in X$ and $y \in Y$,

$$l(x) \leq_Y y \Longleftrightarrow x \leq_X r(y)$$

We say that *l* is left adjoint to *r* and that *r* is right adjoint to *l*. We write *l* ⊢ *r*.

Examples

Let 1 ^{def} { * } be the one element preorder. Then there are adjunctions (⊥ ⊣! ⊣ ⊤)

provided that X has both top and bottom elements. For example, for any $x \in X$,

$$!(x) \stackrel{\text{def}}{=} * \le * \Longleftrightarrow x \le \top(*) \stackrel{\text{def}}{=} \top$$

Examples

► Define $\Delta: X \to X \times X$ by $\Delta(x) \stackrel{\text{def}}{=} (x, x)$. Then there are adjoints $(\lor \dashv \Delta \dashv \land)$

$$X \xrightarrow{\Delta} X \times X \qquad X \xrightarrow{\Delta} X \times X$$

just in case X has all binary meets and joins: for any $l \in X$, $\Delta(l) \stackrel{\text{def}}{=} (l, l) \leq (x, x') \iff l \leq \wedge (x, x') \stackrel{\text{def}}{=} x \wedge x'$

This structure corresponds to X having binary products and coproducts.

Adjunctions (between Categories)

- Let L: C → D and R: D → C be functors. L is left adjoint to R, written L ⊢ R, if given any objects A of C and B of D we have
 - ▶ a bijection between morphisms $LA \rightarrow B$ in \mathcal{D} and $A \rightarrow RB$ in \mathcal{C} , that is, between $\mathcal{D}(LA, B)$ and $\mathcal{C}(A, RB)$,

$f: \mathbf{L}A \to B$	$g: A \to \mathbf{R}B$
$\overline{\overline{f}:A\to RB}$	$\overline{\widehat{g}\colon \mathbf{L}A\to B}$

• OHP this bijection is *natural in* A and B: given morphisms $\phi: A' \to A$ in \mathcal{C} and $\psi: B \to B'$ in \mathcal{D} we have

 $\overline{\psi \circ f \circ L\phi} = R\psi \circ \overline{f} \circ \phi \quad \text{and/or} \quad (R\psi \circ g \circ \phi)^{\wedge} = \psi \circ \widehat{g} \circ L\phi.$ (Recall slide 12.)

Examples of Adjunctions

► The forgetful functor U: Mon → Set taking a monoid to its underlying set, and the functor list(-): Set → Mon taking a set to finite lists over the set, are adjoints:

$list(-) \dashv U$

So there is a natural bijection between $\mathcal{M}on(list(A), M)$ and $\mathcal{S}et(A, UM)$

$f: list(A) \to M$	$g: A \to UM$
$\overline{f: A \to UM}$	$\overline{\widehat{g}\colon list(A)\to M}$

OHP

Examples of Adjunctions

This is given by $g: A \longrightarrow UM \mapsto$ $\widehat{g}: list(A) \xrightarrow{[a_1, \ldots, a_n] \mapsto g(a_1) \ldots g(a_n)} M_r$ and $f: list(A) \longrightarrow M \quad \mapsto \quad \overline{f}: A \xrightarrow{a \mapsto f([a])} UM.$ Note that $\widehat{\overline{f}}[a_1,\ldots,a_n] = \overline{f}(a_1)\ldots\overline{f}(a_n)$ $= f([a_1]) \dots f([a_n]) = f([a_1] + \dots + [a_n])$ It is an exercise to verify that $\overline{\hat{g}} = g$ and that this bijection is natural.

MGS 2018, 9-13 April, University of Nottingham, UK

Examples of Adjunctions

► OHP The diagonal functor $\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}$ taking a function $f: A \to B$ to $(f, f): (A, A) \to (B, B)$ has right and left adjoints II and Σ taking any morphism $(f_1, f_2): (A_1, A_2) \to (B_1, B_2)$ of $\mathcal{C} \times \mathcal{C}$ to

 $f_1 \times f_2 \colon A_1 \times A_2 \to B_1 \times B_2$ $f_1 + f_2 \colon A_1 + A_2 \to B_1 + B_2$

respectively,

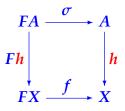
▶ where the bijection for **Π** is

$$(f,g) \qquad \widehat{m} \stackrel{\text{def}}{=} (\pi_A \circ m, \pi_B \circ m) \quad : \Delta C \longrightarrow (A,B)$$

$$\overline{(f,g)} \stackrel{\text{def}}{=} \langle f,g \rangle \qquad m \quad : C \longrightarrow \Pi(A,B)$$

Algebras for $F: \mathcal{C} \to \mathcal{C}$

- ► An algebra for *F* is a morphism $\sigma: FA \to A$ in *C*. The algebra is sometimes written (A, σ) . OHP
- Given any other algebra $f: FX \to X$ and $h: A \to X$, then h is a **homomorphism** if



 There is a category C^F of algebras and algebra homomorphisms.
 An initial object σ: FI → I is called an initial algebra. If f: FX → X the unique mediating homomorphism is denoted by f.

Useful Functors in Algebras

▶ Suppose that C has binary (co)products. The functors $B \times (-)$, B + (-): $C \rightarrow C$ are defined by

 $f: A \longrightarrow A' \mapsto id_B \times f: B \times A \longrightarrow B \times A'$

 $f: A \longrightarrow A' \mapsto id_B + f: B + A \longrightarrow B + A'$

Note that it is common to write $f \times B$ instead of $f \times id_B$; ditto +.

• One can also define functors $(-) \times (-)$ and $(-) + (-) \dots$

Examples of Algebras

▶ OHP 1 + (-): Set \rightarrow Set has an initial algebra $[z,s]: 1 + \mathbb{N} \rightarrow \mathbb{N}$ where $z: 1 \rightarrow \mathbb{N}$ maps * to 0 and $s: \mathbb{N} \rightarrow \mathbb{N}$ adds 1. If $f: 1 + X \rightarrow X$

letting

$$\widehat{x} \stackrel{\text{def}}{=} f \circ \iota_1 \colon 1 \to 1 + X \phi \stackrel{\text{def}}{=} \frac{\text{def}}{=} f \circ \iota_X \colon X \to 1 + X$$

we have $f = [\hat{x}, \phi]$. Then the function $\overline{f} \colon \mathbb{N} \to X$ is uniquely defined by

$$\overline{f}(0) \stackrel{\text{def}}{=} \widehat{x}(*) \stackrel{\text{def}}{=} x$$
$$\overline{f}(n+1) \stackrel{\text{def}}{=} \phi^{n+1}(x) = \phi(\overline{f}(n))$$

Examples of Algebras

▶ The function $(+n): \mathbb{N} \to \mathbb{N}$ which adds *n*, for any $n \in \mathbb{N}$, is definable as $[\hat{n}, s]$ where

$$1 + \mathbb{N} \xrightarrow{[\widehat{n}, s]} \mathbb{N}$$

and also

$$(*n) \stackrel{\mathrm{def}}{=} \overline{[z, (+n)]} \colon \mathbb{N} \to \mathbb{N}$$

• A monoid (M, b, e) is an algebra

$$1 + (M \times M) \xrightarrow{[\widehat{e}, b]} M$$

plus the relevant equations.

MGS 2018, 9-13 April, University of Nottingham, UK

Case Study: The Mini Yoneda Lemma for Type Theorists

Consider a typical constructor R

$$\frac{x: \gamma \vdash M: \alpha}{x: \gamma \vdash \mathsf{R}(M): \beta} \quad (\mathsf{R})$$

Suppose $m \stackrel{\text{def}}{=} [x: \gamma \vdash M: \alpha] \in \mathcal{C}(G, A)$; in the case $M \equiv x$ and $\alpha \equiv \gamma$ we'd expect this to be id_G . So what is

 $r \stackrel{\text{def}}{=} \llbracket x \colon \gamma \vdash \mathsf{R}(M) \colon \beta \rrbracket \in \mathcal{C}(G,B) ?$

We could define a family of functions

$$\rho_G: \mathcal{C}(G, A) \longrightarrow \mathcal{C}(G, B)$$
 and set $r \stackrel{\text{def}}{=} \rho_G(m)$

Let $x: \gamma \vdash M: \alpha$ and $y: \gamma' \vdash N: \gamma$ be modelled by $m \in \mathcal{C}(G, A)$ and $n \in \mathcal{C}(G', G)$.

Principle of Categorical Type Theory: Model substitution by composition.

We assert that $[[y: \gamma' \vdash M[N/x]: \alpha]] = m \circ n$. Now notice that we have two syntactically identical typed expressions

 $y: \gamma' \vdash \mathsf{R}(M)[N/x]: \beta$ and $y: \gamma' \vdash \mathsf{R}(M[N/x]): \beta$.

Hence we should also have

$$\rho_G(m) \circ n = \rho_{G'}(m \circ n) \tag{2}$$

We have seen this kind of thing before ... OHP

Case Study: The Mini Yoneda Lemma for Type Theorists

The categorical interpretation of expression formation (by unary rules), in C, requires the existence of certain natural transfomations in $Set^{C^{op}}$.

For every object A and B of C there is a natural transformation

 $\rho: \mathcal{C}(-, A) \longrightarrow \mathcal{C}(-, B): \mathcal{C}^{op} \longrightarrow \mathcal{S}et.$

• ρ determines a morphism in $\theta \in \mathcal{C}(A, B)$ such that

 $r = \rho_G(m) = \theta \circ m$ ($= \mathcal{C}(G, \theta)(m)$)

- ▶ In fact any $\theta \in C(A, B)$ determines a natural transformation $\rho \stackrel{\text{def}}{=} C(-, \theta)$.
- These processes are inverses: This is the (Mini) Yoneda Lemma.

So given **R** we can take simply choose any $\theta \colon A \to B$ and set

$$\frac{[[x: \gamma \vdash M: \alpha]] = m: G \to A}{[[x: \gamma \vdash \mathsf{R}(M): \beta]] \stackrel{\text{def}}{=} \theta \circ m: G \to B}$$

Moreover we know that, assuming we model substitution by composition, all possible models of the rule R arise in this way.

Note that if there are equations that **R** satisfies then these will impose conditions on θ , and may determine θ completely. For example if we have a pair type $M: \alpha \times \alpha'$ and **R** is **Fst** (with other rules for **Snd** and pairing of terms), then θ is forced to be π_A .

Case Study: The Mini Yoneda Lemma for Type Theorists

Mini Yoneda Lemma: There is a (canonical) bijection

$$\Phi: \mathcal{C}(A,B) \cong \mathcal{S}et^{\mathcal{C}^{op}}(\mathcal{C}(-,A),\mathcal{C}(-,B)): \Psi$$

With $\Psi(\rho) \stackrel{\text{def}}{=} \rho_A(id_A) \in \mathcal{C}(A, B)$, Ψ is injective since

 $\rho_G(m) = \rho_A(id_A) \circ m$

With $\Phi(\theta) \stackrel{\text{def}}{=} \mathcal{C}(-, \theta)$ (well defined!), Ψ is injective since $\forall \xi. \quad \mathcal{C}(A, \xi)(id_A) = \xi$

Further, there is a natural isomorphism

$$\mathcal{C}(\boxplus, \boxminus) \cong \mathcal{S}et^{\mathcal{C}^{op}}(\mathcal{C}(-, \boxplus), \mathcal{C}(-, \boxminus))$$

in the category $Set^{C^{op} \times C}$.

Case Study: CCCs via Adjunctions

- ► We define a Cartesian Closed Category (CCC) OHP
- Show that Set is a CCC. OHP
- Show that Set CCC structure has the properties of an adjunction.
- Show that any CCC can be defined equivalently in terms of an adjunction.

We first introduce some new notation for finite (co)products ...

The CCC *Set* has an Adjunction Structure

For a fixed set A, the functor $(-) \times B: Set \to Set$ has a right adjoint $B \Rightarrow (-): Set \to Set$. On an object C the right adjoint returns $B \Rightarrow C$. There is a bijection

 $f: A \times B \to C$ $\overline{f} \stackrel{\text{def}}{=} \lambda a.\lambda b.f(a,b): A \to B \Rightarrow C$ $g: A \to B \Rightarrow C$

 $\widehat{g} \stackrel{\text{def}}{=} \lambda(a,b).g(a)(b): A \times B \to C$

In *Set* it is immediate that we have a bijection; naturality is an exercise.

Let \mathcal{C} be a category with finite products. Existence of a right adjoint R_B to the functor $(-) \times B: \mathcal{C} \to \mathcal{C}$ for each object B of \mathcal{C} , is equivalent to \mathcal{C} being cartesian closed.

Let \mathcal{C} be a category with finite products. Existence of a right adjoint R_B to the functor $(-) \times B: \mathcal{C} \to \mathcal{C}$ for each object B of \mathcal{C} , is equivalent to \mathcal{C} being cartesian closed.

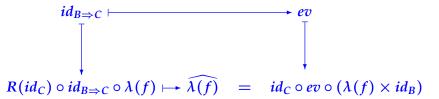
(⇒) Given an object *B* of *C* set $B \Rightarrow C \stackrel{\text{def}}{=} R(C)$ for any object *C* of *C*. Given a morphism $f: A \times B \to C$ we define $\lambda(f): A \to (B \Rightarrow C)$ to be the mate of *f* across the given adjunction. The morphism

 $ev: (B \Rightarrow C) \times B \rightarrow C$

is the mate $(id_{B\Rightarrow C})$ of the identity $id_{B\Rightarrow C}: (B\Rightarrow C) \rightarrow (B\Rightarrow C)$.

Let \mathcal{C} be a category with finite products. Existence of a right adjoint R_B to the functor $(-) \times B: \mathcal{C} \to \mathcal{C}$ for each object B of \mathcal{C} , is equivalent to \mathcal{C} being cartesian closed.

Next, we need to show that $ev \circ (\lambda(f) \times id_B) = f$. This follows directly from the naturality of the adjunction; we consider naturality in A and C at the morphisms $\lambda(f): A \to (B \Rightarrow C)$ and $id_C: C \to C$:



We let the reader show that $\lambda(f)$ is the unique morphism satisfying the latter equation.

(\Leftarrow) Conversely, let *B* be an object of *C*. We define a right adjoint to $(-) \times B$ denoted by $B \Rightarrow (-)$, by setting

$$c: C \longrightarrow C' \quad \mapsto \quad B \Rightarrow c \stackrel{\text{def}}{=} \lambda(c \circ ev) \colon (B \Rightarrow C) \to (B \Rightarrow C')$$

for each morphism $c: C \to C'$ of C (this matches our earlier definition – check). We define a bijection by declaring the mate of $f: A \times B \to C$ to be $\lambda(f): A \to (B \Rightarrow C)$ and the mate of $g: A \to (B \Rightarrow C)$ to be

$$\widehat{g} \stackrel{\text{def}}{=} ev \circ (g \times id_B) \colon A \times B \to C.$$

It remains to verify that we have defined a bijection which is natural in the required sense. We only check one part of naturality. Let $a: A' \to A$ and $c: C \to C'$ be morphisms of C. Then

 $ev \circ ((\lambda(c \circ ev) \circ \lambda(f) \circ a) \times id) =$ $ev \circ (\lambda(c \circ ev) \times id) \circ (\lambda(f) \times id) \circ (a \times id) =$ $c \circ ev \circ (\lambda(f) \times id) \circ (a \times id) =$ $c \circ f \circ (a \times id)$

implying that $\lambda(c \circ f \circ (a \times id)) = (B \Rightarrow c) \circ \lambda(f) \circ a$ since C is a CCC.

It remains to verify that we have defined a bijection which is natural in the required sense. We only check one part of naturality. Let $a: A' \to A$ and $c: C \to C'$ be morphisms of C. Then

$$ev \circ ((\lambda(c \circ ev) \circ \lambda(f) \circ a) \times id) =$$

$$ev \circ (\lambda(c \circ ev) \times id) \circ (\lambda(f) \times id) \circ (a \times id) =$$

$$c \circ ev \circ (\lambda(f) \times id) \circ (a \times id) =$$

$$c \circ f \circ (a \times id)$$

implying that $\lambda(c \circ f \circ (a \times id)) = (B \Rightarrow c) \circ \lambda(f) \circ a$ since C is a CCC.

It remains to verify that we have defined a bijection which is natural in the required sense. We only check one part of naturality. Let $a: A' \to A$ and $c: C \to C'$ be morphisms of C. Then

$$ev \circ ((\lambda(c \circ ev) \circ \lambda(f) \circ a) \times id) =$$

$$ev \circ (\lambda(c \circ ev) \times id) \circ (\lambda(f) \times id) \circ (a \times id) =$$

$$c \circ ev \circ (\lambda(f) \times id) \circ (a \times id) =$$

$$c \circ f \circ (a \times id)$$

implying that $\lambda(c \circ f \circ (a \times id)) = (B \Rightarrow c) \circ \lambda(f) \circ a$ since C is a CCC.

It remains to verify that we have defined a bijection which is natural in the required sense. We only check one part of naturality. Let $a: A' \to A$ and $c: C \to C'$ be morphisms of C. Then

 $ev \circ ((\lambda(c \circ ev) \circ \lambda(f) \circ a) \times id) =$ $ev \circ (\lambda(c \circ ev) \times id) \circ (\lambda(f) \times id) \circ (a \times id) =$ $c \circ ev \circ (\lambda(f) \times id) \circ (a \times id) =$ $c \circ f \circ (a \times id)$

implying that $\lambda(c \circ f \circ (a \times id)) = (B \Rightarrow c) \circ \lambda(f) \circ a$ since C is a CCC.

Case Study: (Haskell) Algebraic Datatypes

We shall

- Define a Haskell (recursive) datatype grammar.
- ► Show that any datatype declaration **D** gives rise to a functor $F \equiv F_D$: Set \rightarrow Set.
- ▶ Demonstrate that D can be modelled by an initial algebra σ: FI → I, where I is the set Exp_D of expressions of type D (up to isomorphism).

Later on we will

- ► Show that the functor F preserves colimits of diagrams of the form $D: \omega \rightarrow Set$, and such colimits exist ...
- ► and (hence) that **F** must have an initial algebra for purely categorical reasons.

MGS 2018, 9-13 April, University of Nottingham, UK

A Recursive Datatype

► A set of **type patterns** *T* is defined by

 $T := \mathbf{D} \mid \text{Unit} \mid \text{Int} \mid T \times T$

• A **datatype** is specified by the statement

 $\mathbf{D} = \mathbf{K}_1 \ T_1 \ | \ \dots \ | \ \mathbf{K}_m \ T_m$

A collection of type assignments is defined inductively by the following rules

 $\overline{() :: \text{Unit}} \quad \frac{z \in \mathbb{Z}}{\underline{z} :: \text{Int}} \quad \frac{E :: T_i}{K_i E :: \mathbf{D}} \quad \frac{E_1 :: T_1 \quad E_2 :: T_2}{(E_1, E_2) :: T_1 \times T_2}$ and $Exp_T \stackrel{\text{def}}{=} \{ E \mid E :: T \}.$ To define *F* we need these definitions:

Suppose that G_1 and G_2 are objects (that is, functors) of $\mathcal{D}^{\mathcal{C}}$ and that \mathcal{D} has finite (co)products. Then both $G_1 \times G_2$ and $G_1 + G_2$ exist in $\mathcal{D}^{\mathcal{C}}$ and are defined pointwize. For products this means

$$(G_1 \times G_2)(\xi) \stackrel{\mathrm{def}}{=} G_1 \xi \times G_2 \xi$$

where ξ is either an object or morphism of C. The projections $\pi^i \colon G_1 \times G_2 \to G_i$ are defined with pointwize components $\pi^i_A \colon G_1A \times G_2A \to G_iA$. These projections π^i are indeed natural transformations.

Defining **F** from **D**

OHP

• The functor **F** is defined (as a coproduct in Set^{Set}) by

$$F \stackrel{\mathrm{def}}{=} F_{T_1} + \ldots + F_{T_m}$$

where each F_{T_i} : $\mathcal{S}et \to \mathcal{S}et$.

- Functors $F_T: Set \rightarrow Set$ are defined by recursion on the structure of T by setting
 - $F_{\rm D} \stackrel{\rm def}{=} id_{Set}$
 - ▶ $F_{\texttt{Unit}}(g \colon U \to V) \stackrel{ ext{def}}{=} id_1 \colon 1 \to 1$ where 1 is terminal in $\mathcal{S}et$
 - $\succ \mathbf{F}_{\operatorname{Int}}(g \colon U \to V) \stackrel{\operatorname{def}}{=} id_{\mathbb{Z}} \colon \mathbb{Z} \to \mathbb{Z}$
 - $\bullet \ \mathbf{F}_{T_1 \times T_2} \stackrel{\text{def}}{=} \mathbf{F}_{T_1} \times \mathbf{F}_{T_2}$

Defining An Initial Algebra $\sigma: FI \rightarrow I$

• OHP We set $I \stackrel{\text{def}}{=} Exp_D$ and we define

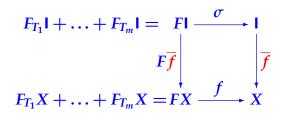
$$\sigma \stackrel{\text{def}}{=} [\widehat{K_1} \circ \sigma_{T_1} \dots \widehat{K_m} \circ \sigma_{T_m}] \colon FI \stackrel{\text{def}}{=} F_{T_1}I + \dots + F_{T_m}I \longrightarrow I$$

where the function $\widehat{\mathbf{K}_i} : Exp_{T_i} \to \mathbf{I}$ applies the constructor and we define functions $\sigma_T : F_T \mathbf{I} \to Exp_T$ by recursion over T as follows

- $\sigma_{\mathsf{D}}(E \in \mathsf{I}) \stackrel{\text{def}}{=} E \in Exp_{\mathsf{D}}$
- $\sigma_{\text{Unit}}(* \in 1) \stackrel{\text{def}}{=} () \in Exp_{\text{Unit}}.$
- $\sigma_{\operatorname{Int}}(z \in \mathbb{Z}) \stackrel{\operatorname{def}}{=} \underline{z} \in Exp_{\operatorname{Int}}.$
- $\overset{\bullet}{\underset{Exp}{}_{T_1 \times T_2}} ((e_1, e_2) \in F_{T_1} \mathsf{I} \times F_{T_2} \mathsf{I}) \stackrel{\text{def}}{=} (\sigma_{T_1}(e_1), \sigma_{T_2}(e_2)) \in$

► It may be useful to note that $\sigma(\iota_i(e_i \in F_{T_i}|I)) = K_i \sigma_{T_i}(e_i)$.

• OHP Suppose that $f: FX \to X$ in *Set*. We have to prove that there is a unique f such that



• Note $\overline{f}: Exp_{D} \to F_{D}X$; we will define $\overline{f} \stackrel{\text{def}}{=} \theta_{D}$ and functions

$$\theta_T \colon Exp_T \to F_T X$$

by recursion on **T**:

- $\bullet \ \theta_{\mathsf{D}}(\mathsf{K}_i \ E_i \in Exp_{\mathsf{D}}) \stackrel{\text{def}}{=} f(\iota_i(\theta_{T_i}(E_i))) \in X.$
- ► $\theta_{\text{Unit}}(() \in Exp_{\text{Unit}}) \stackrel{\text{def}}{=} * \in 1.$
- $\bullet \ \boldsymbol{\theta}_{\mathrm{Int}}(\underline{z} \in Exp_{\mathrm{Int}}) \stackrel{\mathrm{def}}{=} z \in \mathbb{Z}.$
- $\bullet \ \theta_{T_1 \times T_2}((E_1, E_2) \in Exp_{T_1 \times T_2}) \stackrel{\text{def}}{=} (\theta_{T_1}(E_1), \theta_{T_2}(E_2)) \in F_{T_1} I \times F_{T_2} I.$

• Observe that for any *T* we have $\theta_T \circ \sigma_T = F_T \theta_D$, which follows from an easy induction.

Note that by universality of coproducts $\overline{f} \circ \sigma = f \circ F\overline{f}$ iff

$$\overline{f} \circ \sigma \circ \iota_i = f \circ F\overline{f} \circ \iota_i$$

Then for any $e_i \in F_{T_i}$

$$\begin{aligned} (\theta_{\mathsf{D}} \circ \boldsymbol{\sigma} \circ \iota_{i})(e_{i}) &= \theta_{\mathsf{D}}(\mathsf{K}_{i} \, \boldsymbol{\sigma}_{T_{i}}(e_{i})) \\ \stackrel{\text{def}}{=}_{\theta_{\mathsf{D}}} f(\iota_{i}(\theta_{T_{i}}(\sigma_{T_{i}}(e_{i}))) \\ &= f(\iota_{i}((F_{T_{i}}\theta_{\mathsf{D}})(e_{i}))) \\ &= f((F_{T_{1}}\theta_{\mathsf{D}} + \ldots + F_{T_{m}}\theta_{\mathsf{D}})(\iota_{i}(e_{i}))) \\ \stackrel{\text{def}}{=}_{F} (f \circ F\theta_{\mathsf{D}} \circ \iota_{i})(e_{i}) \end{aligned}$$

The steps follow by: definition of σ ; definition of θ_D ; the observation; properties of +; the definition of **F**.

• Observe that for any *T* we have $\theta_T \circ \sigma_T = F_T \theta_D$, which follows from an easy induction.

Note that by universality of coproducts $\overline{f} \circ \sigma = f \circ F\overline{f}$ iff

$$\overline{f} \circ \sigma \circ \iota_i = f \circ F\overline{f} \circ \iota_i$$

Then for any $e_i \in F_{T_i}$

$$\begin{aligned} (\theta_{\mathsf{D}} \circ \sigma \circ \iota_{i})(e_{i}) &= \theta_{\mathsf{D}}(\mathsf{K}_{i} \, \sigma_{T_{i}}(e_{i})) \\ \stackrel{\text{def}}{=}_{\theta_{\mathsf{D}}} f(\iota_{i}(\theta_{T_{i}}(\sigma_{T_{i}}(e_{i}))) \\ &= f(\iota_{i}((F_{T_{i}}\theta_{\mathsf{D}})(e_{i}))) \\ &= f((F_{T_{1}}\theta_{\mathsf{D}} + \ldots + F_{T_{m}}\theta_{\mathsf{D}})(\iota_{i}(e_{i}))) \\ \stackrel{\text{def}}{=}_{F} (f \circ F\theta_{\mathsf{D}} \circ \iota_{i})(e_{i}) \end{aligned}$$

The steps follow by: definition of σ ; definition of θ_D ; the observation; properties of +; the definition of **F**.

Verifying Initiality

• Observe that for any T we have $\theta_T \circ \sigma_T = F_T \theta_D$, which follows from an easy induction.

Note that by universality of coproducts $\overline{f} \circ \sigma = f \circ F\overline{f}$ iff

$$\overline{f} \circ \sigma \circ \iota_i = f \circ F\overline{f} \circ \iota_i$$

Then for any $e_i \in F_{T_i}$

$$\begin{aligned} (\theta_{\mathsf{D}} \circ \sigma \circ \iota_{i})(e_{i}) &= \theta_{\mathsf{D}}(\mathsf{K}_{i} \, \sigma_{T_{i}}(e_{i})) \\ \stackrel{\text{def}}{=}_{\theta_{\mathsf{D}}} & f(\iota_{i}(\theta_{T_{i}}(\sigma_{T_{i}}(e_{i}))) \\ &= f(\iota_{i}((F_{T_{i}}\theta_{\mathsf{D}})(e_{i}))) \\ &= f((F_{T_{1}}\theta_{\mathsf{D}} + \ldots + F_{T_{m}}\theta_{\mathsf{D}})(\iota_{i}(e_{i}))) \\ \stackrel{\text{def}}{=}_{F} & (f \circ F\theta_{\mathsf{D}} \circ \iota_{i})(e_{i}) \end{aligned}$$

The steps follow by: definition of σ ; definition of θ_D ; the observation; properties of +; the definition of **F**.

Verifying Initiality

• Observe that for any *T* we have $\theta_T \circ \sigma_T = F_T \theta_D$, which follows from an easy induction.

Note that by universality of coproducts $\overline{f} \circ \sigma = f \circ F\overline{f}$ iff

$$\overline{f} \circ \sigma \circ \iota_i = f \circ F\overline{f} \circ \iota_i$$

Then for any $e_i \in F_{T_i}$

$$\begin{aligned} (\theta_{\mathsf{D}} \circ \sigma \circ \iota_{i})(e_{i}) &= \theta_{\mathsf{D}}(\mathsf{K}_{i} \, \sigma_{T_{i}}(e_{i})) \\ \stackrel{\text{def}}{=}_{\theta_{\mathsf{D}}} f(\iota_{i}(\theta_{T_{i}}(\sigma_{T_{i}}(e_{i}))) \\ &= f(\iota_{i}((F_{T_{i}}\theta_{\mathsf{D}})(e_{i}))) \\ &= f((F_{T_{1}}\theta_{\mathsf{D}} + \ldots + F_{T_{m}}\theta_{\mathsf{D}})(\iota_{i}(e_{i}))) \\ \stackrel{\text{def}}{=}_{F} (f \circ F\theta_{\mathsf{D}} \circ \iota_{i})(e_{i}) \end{aligned}$$

The steps follow by: definition of σ ; definition of θ_D ; the observation; properties of +; the definition of **F**.

Verifying Initiality

• Observe that for any *T* we have $\theta_T \circ \sigma_T = F_T \theta_D$, which follows from an easy induction.

Note that by universality of coproducts $\overline{f} \circ \sigma = f \circ F\overline{f}$ iff

$$\overline{f} \circ \sigma \circ \iota_i = f \circ F\overline{f} \circ \iota_i$$

Then for any $e_i \in F_{T_i}$

$$\begin{aligned} (\theta_{\mathsf{D}} \circ \sigma \circ \iota_{i})(e_{i}) &= \theta_{\mathsf{D}}(\mathsf{K}_{i} \, \sigma_{T_{i}}(e_{i})) \\ \stackrel{\text{def}}{=}_{\theta_{\mathsf{D}}} f(\iota_{i}(\theta_{T_{i}}(\sigma_{T_{i}}(e_{i}))) \\ &= f(\iota_{i}((F_{T_{i}}\theta_{\mathsf{D}})(e_{i}))) \\ &= f((F_{T_{1}}\theta_{\mathsf{D}} + \ldots + F_{T_{m}}\theta_{\mathsf{D}})(\iota_{i}(e_{i}))) \\ \stackrel{\text{def}}{=}_{F} (f \circ F\theta_{\mathsf{D}} \circ \iota_{i})(e_{i}) \end{aligned}$$

The steps follow by: definition of σ ; definition of θ_D ; the observation; properties of +; the definition of **F**.

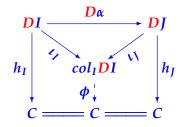
Case Study: Colimits–Building Initial Algebras

We shall show that the functor $F: Set \rightarrow Set$ must have an initial algebra for purely categorical reasons. To do this we shall

- Define the notion of a colimit; examine the special case of chain-colimits including their special properties (such as diagonalization and commutation of dual chains).
- Show that any left adjoint preserves colimits *.
- Prove that any functor F that preserves chain-colimits must have an initial algebra.
- Prove that the datatype functor F preserves chain-colimits (part of the proof uses *).

<u>Colimits</u>

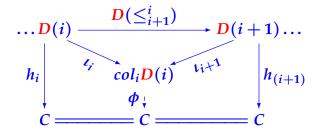
► Given a diagram $D: \mathbb{I} \to C$, a colimit for D is given by an object $col_I DI$ of C together with a family of morphisms $(\iota_I: DI \to col_I DI \mid I \in \mathbb{I})$ such that for any $\alpha: I \to J$ in \mathbb{I} we have $\iota_I \circ D\alpha = \iota_I$. This data satisfies: given any family $(h_I: DI \to C \mid I \in \mathbb{I})$ such that $h_I \circ D\alpha = h_I$, there is a unique morphism $\phi: col_I DI \to C$ satisfying $\phi \circ \iota_I = h_I$ for each object I of \mathbb{I} (and hence $\phi = [h_I \mid I \in \mathbb{I}]$)



• Binary coproducts arise from the discrete category $\mathbb{I} \stackrel{\text{def}}{=} \{1, 2\}$.

<u>Colimits</u>

Let D: ω → C; suppose that i ≤ i + 1 is a typical morphism in ω. Then a colimit diagram, if it exists, can be taken as



where for any given functions $h_i: D(i) \to C$ commuting with the functions $D(\leq_{i+1}^i)$, a unique such ϕ exists. This fact follows, since $h_j \circ D(\leq_j^i) = h_i$ for a general morphism \leq_j^i (where $i \leq j$ in ω) is immediate.

Colimits

- ► It is a fact that *Set* has all (small) colimits.
- ► It is a fact that a colimit for $\Delta: \omega \times \omega \to C$ exists if and only if a colimit for $\Delta': \omega \to C$ where $\Delta'(i \in \omega) \stackrel{\text{def}}{=} \Delta(i, i)$ exists, and when they (both) exist they are isomorphic, that is

 $col_k\Delta'(k) \cong col_{(i,j)}\Delta(i,j)$

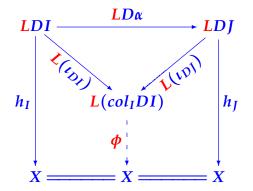
Further (exercise: define the diagrams that give rise to the colimits below \dots)

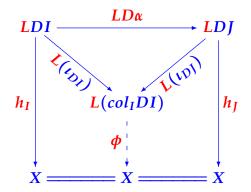
 $col_i(col_j\Delta(i,j)) \cong col_j(col_i\Delta(j,i))$

and *all* of the above colimits are isomorphic.

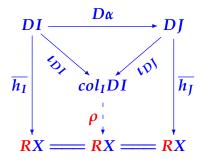
Let $D: \mathbb{I} \to \mathcal{C}$, and $L: \mathcal{C} \to \mathcal{D}$ and $L \dashv R$ for some R. Then $L(col_I DI) \cong col_I LDI$

and is witnessed by $[L(\iota_{DI}) | I \in \mathbb{I}]$: $col_I LDI \rightarrow L(col_I DI)$. It suffices to show that $L(col_I DI)$ is a colimit for $LD: \mathbb{I} \rightarrow \mathcal{D}$.





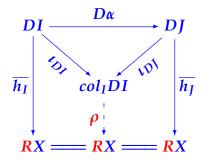
Suppose that $h_I = h_J \circ LD\alpha$. We need to show there is a unique ϕ as above.



But

 $h_I = h_I \circ LD\alpha \Longrightarrow \overline{h_I} = \overline{h_I \circ LD\alpha} = \overline{h_I} \circ D\alpha$

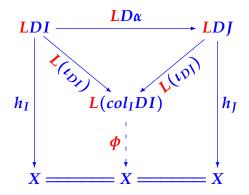
where the final equality follows by naturality.



Therefore there is ρ with $\rho \circ \iota_{DI} = \overline{h_I}$. Define

$$\boldsymbol{\phi} \stackrel{\mathrm{def}}{=} \widehat{\boldsymbol{\rho}} \colon \boldsymbol{L}(col_I DI) \to \boldsymbol{X}$$

MGS 2018, 9-13 April, University of Nottingham, UK



Hence, again using naturality,

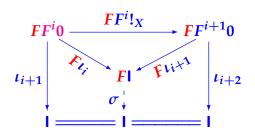
$$\boldsymbol{\phi} \circ \boldsymbol{L}(\iota_{DI}) \stackrel{\text{def}}{=} \widehat{\boldsymbol{\rho}} \circ \boldsymbol{L}(\iota_{DI}) = \widehat{\boldsymbol{\rho} \circ \iota_{DI}} = \widehat{\boldsymbol{h}_I} = \boldsymbol{h}_I$$

Existence of Initial Algebras

Suppose that F preserves colimits of the form $D: \omega \to C$ and that C has an initial object 0. Define

 $D(i \leq i+1) \stackrel{\text{def}}{=} F^i !_X \colon F^i 0 \to F^{i+1} 0 \text{ for } i \in \omega. \text{ Then}$ $I \stackrel{\text{def}}{=} col_i Di \text{ (if it exists) is an initial algebra for } F.$

Since F preserves colimits and $I \stackrel{\text{def}}{=} col_i Di$ we can define $\sigma: FI \rightarrow I$

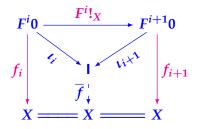


where $\sigma \circ \mathbf{F}\iota_i = \iota_{i+1}$.

Existence of Initial Algebras

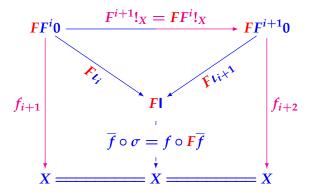
Let $f: FX \to X$. Define $f_0 \stackrel{\text{def}}{=} !_X : 0 \to X$ and $f_{i+1} \stackrel{\text{def}}{=} f \circ Ff_i$. Certainly $f_1 \circ F^0 !_X \equiv f_1 \circ !_X = f_0$ and for $i \ge 1$ we have inductively

 $f_{i+1} \circ F^{i}!_{X} \stackrel{\text{def}}{=} f \circ Ff_{i} \circ F^{i}!_{X} = f \circ F(f_{i} \circ F^{i-1}!_{X}) = f \circ Ff_{i-1} \stackrel{\text{def}}{=} f_{i}$ and hence \overline{f} exists where $\overline{f} \circ \iota_{i} = f_{i}$.



Existence of Initial Algebras

We now have $\sigma \circ F\iota_i = \iota_{i+1}$; and $f_{i+1} \stackrel{\text{def}}{=} f \circ Ff_i$ (which implied $f_{i+1} = f_{i+2} \circ F^{i+1}!_X$) yielding $\overline{f} \circ \iota_i = f_i$



The equality follows since

$$\overline{f} \circ \sigma \circ \mathbf{F}\iota_i = f_{i+1} \quad f \circ \mathbf{F}\overline{f} \circ \mathbf{F}\iota_i = f \circ \mathbf{F}(\overline{f} \circ \iota_i) = f \circ \mathbf{F}f_i = f_{i+1}$$

MGS 2018, 9-13 April, University of Nottingham, UK

Suppose that a functor $F: Set \to Set$ is defined by a grammar $F ::= P | F \times F | F + F$ where P preserves colimits of diagrams $D: \omega \to Set$. Then so too does F. This follows by induction. Suppose that F, G preserve such colimits.

 $(F \times G)(col_iDi) \stackrel{\text{def}}{=} (Fcol_iDi) \times (Gcol_iDi)$ $\cong (col_jFDj) \times (col_iGDi)$ $\cong col_i((col_jDFj) \times DGi)$ $\cong col_i(col_j(DFj \times DGi))$ $\cong col_k(DFk \times DGk)$

Suppose that a functor $F: Set \to Set$ is defined by a grammar $F ::= P | F \times F | F + F$ where P preserves colimits of diagrams $D: \omega \to Set$. Then so too does F. This follows by induction. Suppose that F, G preserve such colimits.

$$(F \times G)(col_iDi) \stackrel{\text{def}}{=} (Fcol_iDi) \times (Gcol_iDi)$$
$$\cong (col_jFDj) \times (col_iGDi)$$
$$\cong col_i((col_jDFj) \times DGi)$$
$$\cong col_i(col_j(DFj \times DGi))$$
$$\cong col_k(DFk \times DGk)$$

Suppose that a functor $F: Set \to Set$ is defined by a grammar $F ::= P | F \times F | F + F$ where P preserves colimits of diagrams $D: \omega \to Set$. Then so too does F. This follows by induction. Suppose that F, G preserve such colimits.

$$(F \times G)(col_iDi) \stackrel{\text{def}}{=} (Fcol_iDi) \times (Gcol_iDi)$$
$$\cong (col_jFDj) \times (col_iGDi)$$
$$\cong col_i((col_jDFj) \times DGi)$$
$$\cong col_i(col_j(DFj \times DGi))$$
$$\cong col_k(DFk \times DGk)$$

Suppose that a functor $F: Set \to Set$ is defined by a grammar $F ::= P | F \times F | F + F$ where P preserves colimits of diagrams $D: \omega \to Set$. Then so too does F. This follows by induction. Suppose that F, G preserve such colimits.

$$(F \times G)(col_iDi) \stackrel{\text{def}}{=} (Fcol_iDi) \times (Gcol_iDi)$$
$$\cong (col_jFDj) \times (col_iGDi)$$
$$\cong col_i((col_jDFj) \times DGi)$$
$$\cong col_i(col_j(DFj \times DGi))$$
$$\cong col_k(DFk \times DGk)$$

Suppose that a functor $F: Set \to Set$ is defined by a grammar $F ::= P | F \times F | F + F$ where P preserves colimits of diagrams $D: \omega \to Set$. Then so too does F. This follows by induction. Suppose that F, G preserve such colimits.

$$(F+G)(col_iDi) \stackrel{\text{def}}{=} (Fcol_iDi) + (Gcol_iDi)$$
$$\cong (col_iFDi) + (col_iGDi)$$
$$\cong col_i(DFi + DGi)$$

The first step follows by induction on F and G; the second step can be proven directly from the definition of a colimit (coproduct).

Hence any such **F** preserves $D: \omega \rightarrow Set$ colimits.

It follows from this, plus the fact that identity functors and constant functors preserve colimits of diagrams $D: \omega \to C$ for any C, that the datatype functor

$$F \stackrel{\text{def}}{=} F_{T_1} + \ldots + F_{T_m} \colon \mathcal{S}et \longrightarrow \mathcal{S}et$$

preserves colimits of shape $D: \omega \longrightarrow Set$. Since in fact Set has all colimits, by purely categorical reasoning it has an initial algebra $\sigma: FI \longrightarrow I$.

Mini Project

Find out what nominal sets are, and learn the basic properties of the category $\mathcal{N}om$ (of nominal sets and finitely supported functions) such as finite products and coproducts. Follow this up by learning what a nominal algebraic datatype is. Then see if you can construct an initial algebra model of expressions for such a datatype, proving the relevant properties, and further show that initial algebras exist for purely categorical reasons, much as we did in these slides for (ordinary) algebraic datatypes.

References

- Steve Awodey. Category Theory, Oxford Logic Guides, Oxford University Press, 2006. Second edition 2010.
- Roy L Crole. Categories for Types, Cambridge University Press, 1994.
- P.J. Freyd and A. Scedrov. Categories, Allegories, Elsevier Science Publishers, 1990.
- ► T. Leinster. Basic Category Theory, CUP, 2014. Available online.
- S. Mac Lane. Categories for the Working Mathematician, Springer Verlag, 1971, vol. 5 of Graduate Texts in Mathematics.
- Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.
- Andrew M. Pitts. Nominal Sets, Cambridge University Press, 2013.
- ► Harold Simmons. An Introduction to Category Theory,