
Bitmap (Raster) Images

CO2016

Multimedia and Computer Graphics

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 1



Overview of Lectures on Images

Part I: Image Transformations
Examples of images; key attributes/properties.
The standard computer representations of color.
Coordinate Geometry: transforming positions.
Position Transformation in Java.
And/Or Bit Logic: transforming Color.
Color Transformation in Java.

Part II: Image Dithering
Basic Dithering.
Expansive Dithering.
Ordered Dithering.
Example Programs.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 2



Examples of Images

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 3



Examples of Images

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 3



Examples of Images

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 3



Attributes of Images

An image is a (finite, 2-dimensional) array of colors c.

The (x, y) position, an image coordinate, along with its
color, is a pixel (eg p = ((x, y), c)).

xmax + 1 is the width and ymax + 1 is the height.

We study these types of images:
1-bit
21 colors: black and white; c ∈ {0, 1}

8-bit grayscale
28 colors: grays; c ∈ {0, 1, 2, . . . , 255}

24-bit color (RGB)
224 colors: see later on . . .

others . . .

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 4



1-Bit Images

A pixel in a 1-bit image has a color selected from one of
21, that is, two “colors”, c ∈ {0, 1}. Typically 0 indicates
black and 1 white.

The (idealised !) memory size of a 1-bit image is

(height ∗ width)/8 bytes

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 5



8-Bit Grayscale Images

A pixel in an 8-bit (grayscale) image has a color
selected from one of 28 = 256 colors (which denote
shades of gray). Each color c is a computer
representation of an integer 0 ≤ c ≤ 255. The (minimal)
memory required is a byte.

color 20

color 125

color 232
Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 6



(Recall) Hexadecimal

Integers are represented as (finite) sequences of digits;
each digit selected from the set {0, . . . , 9, a, b, c, d, e, f}.
For example 0x : 2b1f , where 0x : indicates Hex.

The symbol s in position i denotes s ∗ 16i where
a = 10, b = 11, c = 12, d = 13, e = 14, f = 15.

The sequence of digits dn−1 . . . d0 denotes the integer

Σfor i=n−1

downto i=0
di ∗ 16i = dn−1 ∗ 16n−1 + . . . + d1 ∗ 161 + d0

0x : 2b1f denotes 2∗ 163+11∗ 162+1∗ 161+15∗ 160 = . . .

IMPORTANT FACT: 8-digit binary numbers correspond
exactly to 2-digit hex numbers—they represent the
same integers.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 7



24-bit Color Images

A pixel in a 24-bit color image has a color selected from
224 = 16777216 colors. Each color c is a computer
representation of an integer 0 ≤ c ≤ 16777215. The
(minimal) memory required is 24 bits, that is, 3 bytes.

The representation is composed out of a Red, Green
and Blue component, each component represented as
one of the three bytes—hence this is often called RGB
color.

An example: 00011101
︸ ︷︷ ︸

0..255

11010101
︸ ︷︷ ︸

0..255

11111101
︸ ︷︷ ︸

0..255

White is 0xffffff ; pure red is 0xff0000; pure green is
0x00ff00; pure blue is 0x0000ff ; black is 0x000000.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 8



24-bit Color Images

The uncompressed size of a 24-bit color image is

width ∗ height ∗ 3 bytes

So a 512× 512 24-bit image requires (at least)
768kilobytes of storage without any compression.

Many 24-bit color images are actually stored as 32-bit
images, with the extra byte of data for storing an α value
representing special information. This α component is
(sometimes) used to encode “transparency” information
of the pixel.

The complete pixel data, 8 bits for α and 24 bits for
colour, is often stored as a 32-bit integer.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 9



8-bit Color Images - Briefly

Each pixel has one of 28 colors. Each integer from 0 to 255,
denoted by one of the 256 possible 8-bit binary numbers, is
used to pick one of 256 different RGB colors from a color
lookup table.

Each 8-bit color image is composed from these 256
different colors.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 10



The RGB Model of Color in Java

In the RGB model, colors are stored as 32-bit integers and
we have

for 8-bit grayscale:

int ~1
︸︷︷︸

∈B8

. gray
︸︷︷︸

∈B8

. gray
︸︷︷︸

∈B8

. gray
︸︷︷︸

∈B8

similarly for 24-bit color and 32-bit color:

int alpha.red.green.blue

and these values can be obtained with the following
methods (try checking this in the dither examples):

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 11



Color Methods in Java

Key methods are

img.getRGB(int x, int y)
get color of pixel at (x, y)

img.setRGB(int x, int y, int col)
set color of pixel at (x, y) to col

img.getWidth()
NB width is xMax + 1

img.getHeight()
NB width is yMax + 1

for an image img.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 12



Coordinate Geometry

To perform transformations of images, we change from
image coordinates to cartesian coordinates.

Java 2D and 3D use cartesian coordinates.

The image coordinates (i, j) correspond to (i,−j) in
cartesian coordinates.

Transformations are often specified by continuous
functions f(x) where x might be a color or a
coordinate(s).

( In the coursework we use linear functions f . Such
functions take the form f(x) = mx+ k. CW1 works with
m = (P −D)/(O −D) and k = D ∗ (O − P )/(O −D) and
f is called linTrans (or similar). )

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 13



Coordinate Geometry

We will also use some basic trigonometry:

sinθ = o/h with inverse arcsin

cosθ = a/h with inverse arccos

tanθ = o/a with inverse arctan

The distance of (I, J) from origin (0, 0) is
√
I2 + J2

theta

h o

a

(I , J)

origin

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 14



Pixel Position Transformations in Java

Suppose a transformation “moves” a pixel ((I,J),c)
in img to position (mI,mJ): the pixel at (mI,mJ) in
img is up-dated with color c.

To implement this we might make a copy temp of img
and for each (I,J) in img do

temp.setRGB((mI,mJ), img.getRGB(I,J))

and return temp, where there is a function g such that
(mI,mJ) = g(I,J).

This is problematic. If g is continuous we may get
rounding errors: the (mI,mJ) may not range over every
pixel of temp. These problems are non-examinable!!

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 15



Pixel Position Transformations in Java

In fact for every (I,J) in img we compute
(preI,preJ) such that g “moves” the pixel at
(preI,preJ) to (I,J) and do

img.setRGB((I,J),temp.getRGB(preI,preJ))

We call (preI,preJ) the preimage of (I,J) where
g(preI,preJ) = (I,J).

Since we wish to compute (preI,preJ) from (I,J)
we implement g−1:

(preI,preJ) = g−1 (I,J)

(The linTrans functions in the coursework are examples
of the g−1.)

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 16



Pixel Position Transformations in Java

Note that we visit every pixel (I,J) of img and update
its color.

This is a flexible method; eg if we want a pixel (A,B) to
be blue, as a special case, we can do

img.setRGB((A, B), 0xff)

with 0xff replacing temp.getRGB(preI,preJ).

In a typical image rounding errors are not a problem,
since (preimage) pixels close to each other are likely to
have the same color!

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 17



(JAVA) And and Or

Given binary digits (Booleans) b, b′ ∈ B then logical AND
is written b && b′ ∈ B and logical OR is b || b′ ∈ B.

Given binary numbers ~b, ~b′ then bitwise logical AND is
written ~b & ~b′ and bitwize logical OR is ~b | ~b′.
Given binary numbers ~b and n ∈ N then shiftleft is
written ~b ≪ n, and shiftright is written ~b ≫ n.

E.g. 1111000011110101 ≫ 4 = 0000111100001111.

We can use these logical operations to extract color
components from RGB colors, and to build new RGB
colors.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 18



JAVA And and Or

In Java, inputs typically will be length 32 (for integers) or
length 8 (for bytes).

Warning: We can do bitwize operations on binary
numbers of different length! The shorter number is sign
extended to the length of the longer number. E.g.

Given binary numbers ~b = 10101010 ∈ B8 and
~b′ = 11111111.00000000.11110000.10101101 ∈ B32 then

~b & ~b′ = 11111111.11111111.11111111.10101010 &

11111111.00000000.11110000.10101101

= 11111111.00000000.11110000.10101000

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 19



Manipulating Color in Java

A Java fragment to convert an RGB color into its
components

☛ ✟✞ ☎
i n t red , green , blue , co l
. . .
b lue = ( co l & 0 x f f ) ;
green = ( co l & 0 x f f 0 0 ) >> 8 ;
red = ( co l & 0xf f0000 ) >> 16;

✡ ✠✝ ✆

And vice versa from the components to an RGB color
☛ ✟✞ ☎

co l = red << 16 | green << 8 | blue ;
/ / or a l t e r n a t i v e l y
co l = red ∗ 16^4 + green ∗ 16^2 + blue ;

✡ ✠✝ ✆

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 20



Reading Images in Java

In practice, often read in an image file to a variable img
of type BufferedImage (a subclass of Image): Java
gives us a “standardised model” of image data. For the
“color” image data this is the RGB model.

We should specify the correct imageType (for the
image to be input), such as TYPE_BYTE_BINARY (say
for inputting an 8-bit grayscale) or TYPE_INT_RGB (for
inputting an 24-bit RGB color image).

Try reading about buffered images and image types in
the Java API documentation. You do not need to know
the details for coursework or examination, but some
reading will give you a better overall understanding.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 21



Pixel Color Transformations in Java: Split RGB Program

☛ ✟✞ ☎
pr ivate BufferedImage f i l t e r ( BufferedImage img , i n t choice ) {

BufferedImage ans = new BufferedImage (
img . getWidth ( ) , img . getHeight ( ) ,
BufferedImage . TYPE_INT_RGB ) ;

i n t g r a y l v l ;
for ( i n t x =0; x<img . getWidth ( ) ; x++) {

for ( i n t y =0;y<img . getHeight ( ) ; y++) {
switch ( choice ) {
case BLUE : g r a y l v l = ( img . getRGB( x , y ) & 0 x f f ) ;
ans . setRGB ( x , y , g r a y l v l ) ;

break ;
case GREEN : g r a y l v l =( img . getRGB( x , y ) & 0 x f f 0 0 ) ;
ans . setRGB ( x , y , g r a y l v l ) ;

break ;
case RED : g r a y l v l = ( img . getRGB( x , y ) & 0xf f0000 ) ;
ans . setRGB ( x , y , g r a y l v l ) ;
} } }

return ans ; }
✡ ✠✝ ✆

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 22



Pixel Color Transformations in Java: Split Into Color Components

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 23



Pixel Color Transformations in Java: Split Into Grays

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 24



Image Compression and Dithering

Compression is the process of transforming an image
into a new image that is smaller but whose quality is
the same, or only slightly poorer, than the original.

Dithering is the process of transforming an image into a
new image that has fewer colors but whose quality is
representative of, but typically rather worse than, the
original.

Exercise: think about exactly what smaller and quality
might mean. Note: this is more subtle than you might at
first think.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 25



Basic Dithering from 8 to 1-bit

How do we dither an 8-bit grayscale image to a 1-bit
image?

A very simple idea:
A dark gray pixel color in the original image is mapped
to black and a light gray pixel color to white.

Recall black and white are represented by c ∈ {0, 1}.

Recall grays are represented by c ∈ {0, 1, 2, . . . , 255}.

So light grays are in the range 128 . . . 255, that is, > 127
. . .

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 26



Basic Dithering Algorithm

☛ ✟✞ ☎
begin

for x = 0 to x_max
for y = 0 to y_max

i f ( Or ig ina l ImageColor ( x , y ) > 127 )
DitheredImageColor ( x , y ) = 1 ; / / White ! !

else
DitheredImageColor ( x , y ) = 0 ; / / Black ! !

end
✡ ✠✝ ✆

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 27



Expansive Dithering

Can we do better?

By allowing the size of the dithered image to be bigger
than the original, we can “preserve more of the original
image”. Such a dithered image is a better quality than
the simple dithered image.

Each pixel in the original image will correspond to 4
pixels (2 x 2) in the new image. Note all original pixels
are 8-bit and all new ones are 1-bit pixels.

Depending on the darkness of the original pixel the
resulting four pixels (called a 4-pixel gray) contain either
il = 0, 1, 2, 3, 4 white pixels (the other ones are black)
in a random arrangement. We call il the intensity level.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 28



Principle of Expansive Dithering

First, linearly map the grayscale “colors” 0..255 into the
intensities 0..4 :

grayscale value intensity level
0..51 0

52..102 1
103..153 2
154..204 3
205..255 4

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 29



Principle of Expansive Dithering

Then, map the intensities into “4-pixel grays” . . . refer to
lecture explanations!

il

0 7→ B B B B

1 7→ W B B B any permutation
2 7→ W W B B any permutation
3 7→ W W W B any permutation
4 7→ W W W W

Given the original image, for each intensity, a fixed choice of
permutation 4-pixel gray is chosen. Why?

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 29



Principle of Expansive Dithering

There is a cunning way in which to compute such 4-pixel
grays . . . . Think of B as falsity and W as truth!

dm(i, j)

il > 0 1 2 3

0 7→ B B B B

1 7→ W B B B

2 7→ W W B B

3 7→ W W W B

4 7→ W W W W

It is intuitive to arrange the values dm(i, j) = 0, 1, 2, 3 from
the il > dm(i, j) computations as a 2× 2 dithering matrix.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 29



A 2× 2 Example

Example of a 2 x 2 dithering matrix




3 1

0 2



 . Each pixel of

the original image yields an intensity il. We then “map”
e 7→ (il > e) “over the matrix elements e” to obtain one 4-pixel
gray from each pixel il (see Step 2 code):

grayscale value intensity level 4-pixel gray

0..51 0

52..102 1

103..153 2

104..204 3

205..255 4

il > 3 il > 1

il > 2 il > 0

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 30



Final Observations on Expansive Dithering

An n× n dithering matrix can represent n2 + 1 levels of
intensity.

The new image created by an n× n matrix used for
expansive dithering is n times wider and n times higher
than the original. So the new image is n2 larger then the
original one.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 31



Final Observations on Expansive Dithering

Note that il = (int)(((n2 + 1)/256) ∗ gs). Why?
Try drawing line y = f(x) = m ∗ x+ k where k = 0

and m = (n2 + 1)/256 and x = gs. Then draw a
picture of the effect of Java (int) coersion to
understand computation of il.

Example of 4× 4 dithering matrix (17 intensity levels,
il = 0 . . . 16)








0 8 2 10

12 4 14 6

3 11 1 9

15 7 13 5








Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 32



Ordered Dithering

We now perform 8-bit to 1-bit image dithering which
uses a n× n dithering matrix, but the output size equals
that of the input.

First map each pixel gray-color to its intensity.

By sliding the dithering matrix over the image (n pixels
in the horizontal and vertical direction at a time) each
pixel has a corresponding entry in the dithering matrix.

A pixel with intensity level higher than the
corresponding dithering matrix entry is mapped to a
white pixel and otherwise a black pixel.

This technique is called ordered dithering.

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 33



Ordered Dithering Example

Image:

120 110 160 180
75 75 120 130
250 220 75 170
120 30 30 75

Dithering matrix:

(

3 1

0 2

)

Result:

Why does ordered dithering work?

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 34



Ordered Dithering Algorithm

The ordered dither algorithm:
☛ ✟✞ ☎

for x = 0 to x_max
for y = 0 to y_max

/ / note row i correspond to coord ina te y ! ! ! !
i = y mod n
j = x mod n
i f I n tens i t yLeve lO f_Or ig ina l ImageCo lo r ( x , y ) > DM( i , j )

Di theredImageColor ( x , y ) = 1
else

DitheredImageColor ( x , y ) = 0
✡ ✠✝ ✆

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 35



Basic Dithering Program (Step 1)

☛ ✟✞ ☎
pr ivate BufferedImage bas i cD i the r ( BufferedImage img , i n t b ) {

BufferedImage ans = new BufferedImage (
img . getWidth ( ) , img . getHeight ( ) ,
BufferedImage .TYPE_BYTE_BINARY ) ;

for ( i n t i =0; i <img . getWidth ( ) ; i ++ ) {
for ( i n t j =0; j <img . getHeight ( ) ; j ++ ) {

/ / se l e c t 8−b i t gray data
i n t e n s i t y L e v e l = ( i n t ) ( ( img . getRGB( x , y ) & 0 x f f ) ) ;
i f ( i n t e n s i t y L e v e l > b )

ans . setRGB ( i , j ,0 x f f f f f f ) ; / / se t ou tpu t co l o r to whi te
else

ans . setRGB ( i , j ,0 x000000 ) ; / / se t ou tpu t co l o r to b lack
}

}
return ans ;

}
✡ ✠✝ ✆

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 36



Expansive Dithering Program (Step 2)

☛ ✟✞ ☎
pr ivate BufferedImage expans iveDi ther ( BufferedImage img , i n t [ ] [ ] dm) {

i n t n = dm. leng th ; i n t i n t e n s i t y L e v e l ;
BufferedImage ans = new BufferedImage (

n∗ img . getWidth ( ) , n∗ img . getHeight ( ) ,
BufferedImage .TYPE_BYTE_BINARY ) ;

for ( i n t x =0; x<img . getWidth ( ) ; x++ ) {
for ( i n t y =0;y<img . getHeight ( ) ; y++ ) {

/ / se l e c t 8−b i t gray data ; l i n e a r l y map to 0 to n∗n
i n t e n s i t y L e v e l = ( i n t ) ( ( img . getRGB( x , y ) & 0 x f f ) ∗ ( ( n∗n + 1 ) / 2 5 6 ) ) ;
for ( i n t i =0; i <n ; ++ i ) {

for ( i n t j =0; j <n ; ++ j ) {
i f ( i n t e n s i t y L e v e l > dm[ i ] [ j ] )

ans . setRGB ( n∗x+ i , n∗y+ j ,0 x f f f f f f ) ;
else

ans . setRGB ( n∗x+ i , n∗y+ j ,0 x000000 ) ;
} } } }

return ans ;
}

✡ ✠✝ ✆
Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 37



Ordered Dithering Program (Step 3)

☛ ✟✞ ☎
pr ivate BufferedImage orderedDi ther ( BufferedImage img , i n t [ ] [ ] dm) {

BufferedImage ans = new BufferedImage (
img . getWidth ( ) , img . getHeight ( ) ,
BufferedImage .TYPE_BYTE_BINARY ) ;

i n t i , j ;
i n t n = dm. leng th ;
for ( i n t x =0; x<img . getWidth ( ) ; x++ ) {

for ( i n t y =0;y<img . getHeight ( ) ; y++ ) {
i n t e n s i t y L e v e l = ( i n t ) ( ( img . getRGB( x , y ) & 0 x f f ) ∗ ( ( n∗n + 1 ) / 2 5 6 ) ) ;
/ / why would i = x%n ; j = y%n ; s t i l l y i e l d a c o r r e c t program?
i = y%n ; j = x%n ;
i f ( i n t e n s i t y L e v e l > dm[ i ] [ j ] )

ans . setRGB ( x , y ,0 x f f f f f f ) ;
else

ans . setRGB ( x , y ,0 x000000 ) ;
} }

return ans ;
}

✡ ✠✝ ✆
Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 38



Further Topics

dithering from 8 to 4 bits

dithering on color images

resizing

gamma correction

compression

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 39



More resources

Fundamentals of Multimedia, by Ze-Nian Li and Mark S.
Drew. (publ. Pearson)

Java Documentation

Roy Crole: Bitmap Images (CO2016, 2014/2015) – p. 40


	Overview of Lectures on Images
	Examples of Images
	Examples of Images
	Examples of Images

	Attributes of Images
	1-Bit Images
	8-Bit Grayscale Images
	(Recall)
Hexadecimal
	24-bit Color Images
	24-bit Color Images
	8-bit Color Images - Briefly
	The RGB Model of Color in Java
	Color Methods in Java
	Coordinate Geometry
	Coordinate Geometry
	small Pixel Position Transformations in Java
	small Pixel Position Transformations in Java
	small Pixel Position Transformations in Java
	(JAVA)
And and Or
	JAVA And and Or
	Manipulating Color in Java
	Reading Images in Java
	�ootnotesize Pixel Color Transformations in Java: Split RGB Program
	�ootnotesize Pixel Color Transformations in Java: Split Into Color Components
	�ootnotesize Pixel Color Transformations in Java: Split Into Grays
	Image Compression and Dithering
	Basic Dithering from 8 to 1-bit
	Basic Dithering Algorithm
	Expansive Dithering
	Principle of Expansive Dithering
	Principle of Expansive Dithering
	Principle of Expansive Dithering

	A $2	imes 2$ Example
	large Final Observations on Expansive Dithering
	large Final Observations on Expansive Dithering
	Ordered Dithering
	Ordered Dithering Example
	Ordered Dithering Algorithm
	Basic Dithering Program (Step 1)
	Expansive Dithering Program (Step 2)
	Ordered Dithering Program (Step 3)
	Further Topics
	More resources

