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Preface

It is assumed that readers have attended the course “First Order Predicate Logic”. We

shall refer to this as Logic A.

These notes are to accompany the first half of the course MC 212. They contain all of

the core material for this course. For more motivation and background, as well as further

comments about some of the details of proofs, please attend the lectures.

Please do let me know about any typos or other errors which you find in the notes. If

you have any other (constructive) comments, please tell me about them.

Books recommended for the first eighteen lectures of MC 212 are

•Modal Logic by Brian F. Chellas. Cambridge University Press 1980.

•A Companion to Modal Logic by G. E. Hughes and M. J. Cresswell. Methuen 1984.

Thanks to Dr S. Ambler, Dr N. Measor and Dr R. Thomas for their help in the

preparation of these notes. Any errors are the responsibility of the author.
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1

Mathematical Preliminaries

1.1 Introduction

Discussion 1.1.1 We shall begin by reviewing some mathematics which will be used

throughout this course on Modal Logic. Some of the material you have seen before. For

the material that is new, you may need to flesh out the definitions and concepts using

books or other sets of notes. However, most of the basic ideas you have met in Logic A.

We shall adopt a few conventions:

• If we give a definition, the entity being defined will be written in an italic typeface; and

when we emphasise something it appears in a slanted typeface.

• If we wish to define a set A whose elements are known as widgets, then we shall simply

say “let A be the set of widgets.”

• ⇐⇒ means “if and only if”. Some authors write⇔ instead of iff. In proofs of theorems

which are of the form

statement 1 ⇐⇒ statement 2

we shall write

(⇒) . . . proof that statement 1 implies statement 2 . . .

(⇐) . . . proof that statement 2 implies statement 1 . . .

• Suppose we wish to speak of a set A, and indicate that the set A happens to be a subset

of a set X. We will write “consider the set A ⊆ X . . .” for this. For example, we might

say “let O ⊆ N be the set of odd numbers” to emphasise that we are considering the

set of odd numbers denoted by O, which happen to be a subset of the natural numbers

(denoted by N).

1.2 A Review of Sets

Discussion 1.2.1 We assume that the idea of a set is understood, being an unordered

collection of objects. A capital letter such as A or B or X or Y will be used to denote an

arbitrary set. If a is any object in a set A, we say that a is an element of A, and write

a ∈ A for this. If a is not an element of A, we write a 6∈ A. The idea of union A ∪ B,

intersection A∩B, and difference A \B, of sets should already be known. We collect the
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definitions here:

Union A ∪B def
= { x | x ∈ A or x ∈ B }

Intersection A ∩B def
= { x | x ∈ A and x ∈ B }

Difference A \B def
= { x | x ∈ A and x 6∈ B }

Powerset P(A)
def
= { S | S ⊆ A }

FinitePowerset Pf in(A)
def
= { S | S ⊆ A and S is finite }

Recall that the empty set, ∅, is the set with no elements, and that we say a set S is a

subset of a set A, written S ⊆ A, if any element of S is an element of A. Thus given sets

A and S we could write this definition of subset as

S ⊆ A ⇐⇒ (x ∈ S =⇒ x ∈ A). (∗)

Note that ⇐⇒ stands for “if and only if” and is used to give definitional equivalences.

We could read (∗) as S ⊆ A “is by definition the same as” x ∈ S =⇒ x ∈ A. Note that

∅ ⊆ A for any set A, because x ∈ ∅ is always false. So ∅ ∈ P(A). We regard ∅ as a

finite set.

Two sets A and B are equal, written A = B, if they have the same elements. So, for

example, { 1, 2 } = { 2, 1 }. Here, the critical point is whether an object is an element of

a set or not: if we write down the elements of a set, it is irrelevant what order they are

written down in. But we shall need a way of writing down “a set of objects” in which the

order is important.

To see this, think about the map references “1 along and 2 up” and “2 along and 1 up.”

These two references are certainly different, both involve the numbers 1 and 2, but we

cannot use the sets { 1, 2 } and { 2, 1 } as a mathematical notation for the map references

because the sets are equal. Thus we introduce the idea of a pair to model this. If A and

B are sets, with a ∈ A and b ∈ B, we shall write (a, b) for the pair of a and b. The crucial

property of pairs is that (a, b) and (a′, b′) are said to be equal iff a = a′ and b = b′. We

write

(a, b) = (a′, b′)

to indicate that the two pairs are indeed equal. We could write (1, 2) and (2, 1) for our

map references. Note that the definition of equality of pairs captures the exact property

required of map references. We can also consider n-tuples (a1, . . . , an) and regard such

an n-tuple as equal to another n-tuple (a′1, . . . , a
′
n) iff ai = a′i for each 1 ≤ i ≤ n. Note

that a pair is a 2-tuple.

The cartesian product of A and B, written A×B, is a set given by

A×B def
= { (a, b) | a ∈ A and b ∈ B }.

For example,

{ 1, 2 } × { a, b, c } = { (1, a), (1, b), (1, c), (2, a), (2, b), (2, c) }.
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Examples 1.2.2

(1) { 1, 2, 3 } ∪ {x, y } = { 1, 2, 3, x, y } = {x, 1, y, 3, 2 } = . . . The written order of the

elements is irrelevant.

(2) { a, b } \ { b } = { a }.

(3) A \ A = ∅.

(4) P({ 1, 2 }) = { { 1, 2 }, { 1 }, { 2 },∅ }.

(5) { a } × { b } = { (a, b) }.

(6) (x, y) = (2, 100)⇐⇒ x = 2 and y = 100.

1.3 Relations

Discussion 1.3.1 The idea here is to see how we can formalise the the notion of rela-

tionships. Some examples of relationships are

• Ron is the father of Roy;

• 0 ≤ 5;

• London is south of Leicester;

In each case, we have a pair of objects (for example 0 and 5) which are related in some

way. Note that the order in which the objects are written down is important: 0 ≤ 5, but

not 5 ≤ 0. Let us look for a general framework into which all of our examples fit.

Given sets A and B, a relation R between A and B is a subset R ⊆ A×B. Informally,

R is the set whose elements are pairs (a, b) for which a is related to b. Given a set A, a

binary relation on A is a subset R ⊆ A× A.

Remark 1.3.2 Note that a relation is a set: it is the set of all pairs for which the first

element of the pair is in a relationship to the second element of the pair. If R ⊆ A×B is

a relation, and (a, b) ∈R, we may also write a R b for this. So is the father of is a relation

on the set Humans of humans, and if we have (Ron,Roy) ∈ Humans then we can write

instead Ron is the father of Roy. Note that if (a, b) 6∈ R then we write a 6R b for this.

Example 1.3.3 Being strictly less than is a binary relation, written <, on the natural

numbers N. So < ⊆ N× N, and (by definition)

<
def
= { (0, 1), (0, 2), (0, 3), (0, 4) . . . , (1, 2), (1, 3) . . . , (2, 3), . . . }.

Being less than or equal to is also a binary relation on N, written ≤. By definition,

≤ def
= { (0, 0), (0, 1), (0, 2), (0, 3), . . . , (1, 1), (1, 2), . . . }.

Discussion 1.3.4 We will be interested in binary relations which satisfy certain impor-

tant properties. Let A be any set and R any binary relation on A. Then
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(i) R is reflexive iff for all a ∈ A we have a R a;

(ii) R is symmetric iff for all a, b ∈ A, a R b implies b R a;

(iii) R is transitive iff for all a, b, c ∈ A, a R b and b R c implies a R c; and

(iv) R is anti-symmetric iff for all a, b ∈ A, a R b and b R a implies a = b.

(v) R is euclidean iff for all a, b, c ∈ A, a R b and a R c implies b R c.

Examples 1.3.5 Let A
def
= {α, β, γ } be a three element set, and recall the binary

relations < and ≤ on N from Example 1.3.3.

(1) R
def
= { (α, α), (β, β), (γ, γ), (α, γ) } is reflexive, but < is not reflexive.

(2) R
def
= { (α, β), (β, α), (γ, γ) } is symmetric, but ≤ is not.

(3) R
def
= { (α, β), (β, γ), (α, γ) } is transitive, as are < and ≤.

(4) R
def
= { (α, β), (β, γ), (α, γ) } is anti-symmetric. Both < and ≤ are anti-symmetric.

(5) R
def
= { (α, β), (β, γ) } is euclidean.

(6) Note that R in (1) is also transitive—what other properties hold of the other examples?

Discussion 1.3.6 A partial order � on a set A is a binary relation which is reflexive,

transitive and anti-symmetric. An example is the relation ≤ on the natural numbers. A

partially ordered set, or poset, is a pair (A,�) where A is any set and � is any partial

order on A. So (N,≤) is a poset, but (N, <) is not.

1.4 Inductively Defined Sets

Discussion 1.4.1 Let us first introduce some notation. Consider

statement 1 =⇒statement 2.

It is sometimes convenient to write this as

statement 1

statement 2

Consider

statement 1 ⇐⇒statement 2.

It is sometimes convenient to write this as

statement 1
=========
statement 2

For example, we can write “x ≤ 4 =⇒ x ≤ 6” as

x ≤ 4

x ≤ 6
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The reason for using this notation will become clear very soon—it can make implications

involving many hypotheses much easier to read.

Discussion 1.4.2 As motivation for this section, consider the following:

The set E ⊆ N of even natural numbers is the least subset of the natural numbers

satisfying

(a) 0 ∈ E, and

(b) if n ∈ E then n+ 2 ∈ E.

Note that “least” means that if another subset S ⊆ N satisfies (a) and (b) (by which

we mean 0 ∈ S, and if n ∈ S then n + 2 ∈ S) then E ⊆ S. The above definition of E

amounts to saying that the elements of E are created by the rules (a) and (b), and that

there can be no other elements in E. We say that E is inductively defined by the rules

(a) and (b). So E = { 0, 2, 4, 6, 8, . . . }, another set satisfying (a) and (b) is (for example)

S
def
= { 0, 2, 4, 5, 6, 7, 8, 9, . . . }, and indeed E ⊆ S.

We shall now give a general formal recipe for defining a set S inductively. First we need

some machinery. A rule R is a pair (F, x) where F is any finite set, and x is an element.

Note that F might be ∅, in which case the rule R is of Form 1 . If F is non-empty we

say R is of Form 2 . In the case that F is non-empty we might write F = {x1, . . . , xn }
where 1 ≤ n. We can write down a rule R = (∅, x) of Form 1 using the following notation

Form 1

(R)
x

and a rule R = ({x1, . . . , xn }, x) of Form 2 as

Form 2

x1 x2 . . . xn
(R)

x

A set I is closed under a rule R of Form 1 if x ∈ I; and is closed under a rule R

of Form 2 if whenever x1 ∈ I, x2 ∈ I, . . . , xn ∈ I, then x ∈ I. The set I is closed under

R if I is closed under each rule in R. We can now say that:

Inductively Defined Sets

A set I is inductively defined by a set of rules R if

IC I is closed under R; and

IL for every set S which is closed under R, we have I ⊆ S.
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Remark 1.4.3 Rules for defining the set E of even numbers are

0

n

n+ 2

IC means that the elements of the inductively defined set are built up by applying the

rules: thus the elements of E are 0, 0 + 2 = 2, 2 + 2 = 4 and so on. IL amounts to saying

that there can be no elements of E other than those arising by application of the rules:

any other set S closed under the rules must contain E as a subset. An example of such

an S is { 0, 2, 4, 6, 7, 8, 9, 10, . . . }.
This is of course true in general: IC means that certain elements of the Inductively

defined set I are Constructed by applying the rules in R, and IL captures precisely the

idea that I is the Least set satisfying the rules, that is, there can be no elements of I

other than those constructed by the rules.

Discussion 1.4.4 If I is inductively defined by a set of rules R, and x ∈ I, a deduction

that x is an element of I is given by a list

y1 ∈ I, y2 ∈ I, . . . , ym ∈ I

where

(i) y1 is a conclusion to a rule of Form 1;

(ii) for any 1 ≤ i ≤ m, yi is the conclusion of some rule R for which the hypothesis of R

is a subset of { y1, . . . , yi }; and

(iii) ym = x.

A labelled deduction that x ∈ I looks like

y1 ∈ I (R1)
y2 ∈ I (R2)
. . .

ym ∈ I (Rm)

in which the sequence of yi ∈ I’s is a deduction that x ∈ I, and each Ri is the rule from

R which has been used to deduce that yi ∈ I.

Examples 1.4.5

(1) The set I of integer multiples of 3 can be inductively defined by a set of rules

R def
= { (∅, 0), ({n }, n+ 3), ({n }, n− 3) | n ∈ Z }.

We can write these rules more expressively as

(a)
0

n
(b)

n+ 3

n
(c)

n− 3
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Note that rules (b) and (c) are used when n is any element of Z. We call each of (b) and

(c) a rule schema, meaning that each “written rule” is a shorthand for a collection of

rules. For example I being closed under (b) means that if n is any element of I, so too is

n+ 3. A deduction that 9 ∈ I is given by 0 ∈ I, 3 ∈ I, 6 ∈ I, 9 ∈ I, and a labelled version

of this deduction would be
0 ∈ I (a)
3 ∈ I (b)
6 ∈ I (b)
9 ∈ I (b)

(2) Suppose that Σ is any set, which we think of as an alphabet. Each element l of Σ

is called a letter. We inductively define the set Σ∗ of words over the alphabet Σ by the

set of rules R def
= { 1, 2, 3 } (so 1, 2 and 3 are just labels for rules!) given by

(1)
ε

(2)
l

w w′

(3)
ww′

A word is just a list of letters. The symbol ε denotes the empty word, which is the word

with no letters. IC says that Σ∗ is closed under the rules 1,2,3— so Rule 1 says that ε is

an element of Σ∗, that is, ε is a word. Rule 2 says that any letter is a word. Rule 3 says

that if w and w′ are any two words, the list of letters ww′ obtained by writing down the

list of letters w followed immediately by the list of letters w′ is a word. Note also that

“rules” 2 and 3 are in fact rule schemas: the l in rule 2 ranges over any letter; w and w′

range over any words.

(3) We can use sets of rules to define the language of propositional logic. Let Var be a set

of propositional variables with typical elements written p, q or r. Then the set Prop

of propositions of propositional logic is inductively defined by the rules (more precisely,

rule schemas)

(V )
p

φ ψ
(∧)

φ ∧ ψ

φ ψ
(∨)

φ ∨ ψ

φ ψ
(→)

φ→ ψ

φ
(¬)

¬ψ

Clause IC of the definition of an inductively defined set says that Prop is closed under

each of these rules. Thus the first rule (schema) says that any propositional variable p is a

proposition. Also (for example) if φ ∈ Prop and ψ ∈ Prop then φ ∧ ψ ∈ Prop. Clause IL

captures formally the requirement that propositions can only arise through applications

of the above rules. Finally, a labelled deduction that (p→ q)∨(q → p)∧r is a proposition

might be
p (V )
q (V )
p→ q (→)
q → p (→)
r (V )
(p→ q) ∨ (q → p) (∨)
(p→ q) ∨ (q → p) ∧ r (∧)
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Remark 1.4.6 We can use a BNF grammar to write sets of rules informally but

concisely. The set Prop of propositions is specified by the BNF grammar

φ ::= p | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ¬φ

where p is any element of the set Var . One reads the grammar as “any element of Prop is

either a propositional variable, or of the form φ ∧ ψ where φ and ψ are any propositions,

or . . .” As an exercise, write a BNF grammar for example (2).

Remark 1.4.7 We have said that a convenient way of writing a rule

R = ({x1, . . . , xn }, x)

is
x1 . . . xn

(R)
x

and that a set X is closed under the rule if whenever xi ∈ X for each 1 ≤ i ≤ n then

x ∈ X. It is therefore useful to write

x1 ∈ X . . . xn ∈ X
(R)

x ∈ X

to mean that X is closed under the rule R. We might also say (for example) that Prop is

inductively defined by rules such as

φ ∈ Prop ψ ∈ Prop
(∧)

φ ∧ ψ ∈ Prop

If we then say that a set S is closed under rule ∧, what we mean is that

φ ∈ S ψ ∈ S
(∧)

φ ∧ ψ ∈ S

1.5 Principles of Induction

Discussion 1.5.1 In this section we see how inductive techniques of proof which the

reader has met before fit into the framework of inductively defined sets.

First we shall see how the Principle of Structural Induction for the propositions of first

order logic fits into our general framework of inductively defined sets. Recall that this

says in order to prove that a property P (φ) holds for all propositions φ it is enough to

show that

• P (r) holds for each propositional variable r;

• if P (φ) and P (ψ) hold for any φ and ψ, then so do P (φ ∧ ψ), P (φ ∨ ψ), P (φ→ ψ) and

P (¬φ).
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Now, we have specified the collection Prop of propositions as an inductively defined set.

If we put

S
def
= { φ ∈ Prop | P (φ) }

then S ⊆ Prop by definition. If also S is closed under the rules defining Prop, then

Prop ⊆ S by property IL, and so Prop = S. But then for any proposition φ we must

have φ ∈ S, and so P (φ). Thus: showing S is closed under the rules defining Prop will

prove that P (φ) holds for all φ. Let us examine one (typical) part of proving that S is

closed under the rules for defining Prop. Take the rule

φ ψ

φ ∧ ψ

Showing S is closed under this rule amounts to showing that if φ ∈ S and ψ ∈ S, then

φ∧ψ ∈ S. But this is exactly proving that if P (φ) and P (ψ) hold, then so does P (φ∧ψ).

We conclude by remarking that the Principle of Structural Induction arises as a special

case of the clause IL of a general inductively defined set.

The Principle of Mathematical Induction also arises as a special case of a property of

an inductively defined set. We can regard the set N as inductively by the rules

(zero)
0

n
(add1 )

n+ 1

Suppose we wish to show that P (n) holds for all n ∈ N. Let S
def
= { n ∈ N | P (n) }.

If S = N we are done. But (by IL) we can prove S = N by showing that S is closed

under the rules zero and add1 and this amounts to precisely what one needs to verify for

Mathematical Induction:

• S is closed under zero iff 0 ∈ S iff P (0); and

• S is closed under add1 , iff n ∈ S implies n+ 1 ∈ S, iff P (n) implies P (n+ 1).

We finish this chapter by noting a useful inductive principle which subsumes the two

principles given above—we call it rule induction.

Rule Induction

Let I be inductively defined by a set of rules R. Suppose we wish to show that
a
property P (i) holds for all elements i ∈ I. Then all we need to do is show that
the set

S
def
= { i | i ∈ I and P (i) }

is closed under R.
For S ⊆ I by definition, and from IL we get I ⊆ S, that is S = I. So if i is
any
element of I, then i ∈ S, and so P (i).
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Logics

2.1 The Notion of A Logic

Discussion 2.1.1 It is assumed that you have met the idea of classical first order logic.

We begin by describing a very general notion of a logic. Classical first order logic will then

be one example of a logic within our general formulation. In this course we will study a

number of new logics. These new logics, while having different technical details, possess

a common link. This link is that the new logics all have a so-called modal language, and

are all examples of modal logics.

Discussion 2.1.2 A logic L is a pair (L,`) where L is a set and ` is a subset of

Pf in(L) × L, that is, a relation between Pf in(L)1 and L. We call the set L a language

and an element of L a sentence. The elements of ` are called sequents. Note that L can

be any set, but that it will usually be a set whose elements conform to a common-sense

interpretation of our idea of linguistic sentences. An example of a language L might be

the set Prop of sentences of classical first order logic—see page 7. Note that ` specifies

relationships between finite sets of sentences and individual sentences—an example of `
would be the collection of natural deduction sequents of classical first order logic. Given

a logic (L,`) with Γ ` φ (recall the notation for relations on page 3) we think of the

elements of Γ as hypotheses, and φ as a conclusion. If Γ ` φ, then (informally) we might

say “φ can be deduced from (the elements of) Γ.” Note that while the element (Γ, φ) of

` is (by definition) called a sequent, we shall also refer to Γ ` φ as a sequent. Finally,

we write ` φ for a sequent ∅ ` φ (which is, of course, a notation for (∅, φ) ∈ `).

Discussion 2.1.3 We need some rather general ways in which to compare different

logics.

• L = (L′,`′) is an extension of L = (L,`) iff L ⊆ L′ and ` ⊆ `′. The idea is simply

that we extend a logic by giving a richer language, and by giving a greater number of

sequents.

• (L′,`′) is a conservative extension of (L,`) iff (L′,`′) is an extension of (L,`), and

whenever Γ `′ φ with Γ ∈ Pf in(L) and φ ∈ L we have Γ ` φ. Informally, we can see that

this means “no new sequents can be derived” in the extension logic if we use the language

of the original logic.

Discussion 2.1.4 We shall also require some simple ways of combining logics. Suppose

that we are given logics L and L′ with the same languages, that the set ` of sequents of

1See Discussion 1.2.1
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L is defined inductively by a set of rules R, and that `′ is defined by R′. Then we define

the sum sum L + L′ of logics to be (L,`′′) where `′′ is the set of sequents defined by

the rule set R′′ def
= R ∪ R′. Informally, then, we add two logics by combining the given

rules for deducing sequents (provided that the sets of sequents of each of the two logics

is specified inductively by a set of rules).

If L = (L,`) is a logic with ` specified inductively, and R is a rule of the form (F, x)

where F is a finite subset of L and x ∈ L, then we write L + R for the logic whose

language is again L and whose set of sequents is inductively defined by the set of rules

R∪ {R }, where R is the set of rules specifying `.

2.2 Formalising Natural Deduction

Discussion 2.2.1 Recall the set Prop of propositions from page 7. In the natural

deduction style presentation of classical logic, rules are given for deriving sequents of the

form Γ ` φ where Γ is a finite subset of Prop and φ ∈ Prop. Now, as we remarked above,

a sequent is really a pair (Γ, φ), we write ` for the set of sequents, and writing Γ ` φ
is a convenient notation for (Γ, φ) ∈ `. In fact ` is an inductively defined set. To see

this we need to show that there is a set of rules R for defining `. Recalling what this

means, a typical rule should look like (F, x) where F is a finite set of elements of `, say

{ (Γ1, φ1), . . . , (Γn, φn) }, and x is an element of `, say (Γ, φ). Thus a rule

F

x

should take the form
(Γ1, φ1) . . . (Γn, φn)

(Γ, φ)

and mean that if (Γi, φi) ∈ ` for 1 ≤ i ≤ n then (Γ, φ) ∈ `. And indeed (as an example)

the rule for conjunction introduction does take this form:

Γ ` φ1 Γ ` φ2

Γ ` φ1 ∧ φ2

which is really shorthand for
(Γ, φ1) ∈ ` (Γ, φ2) ∈ `

(Γ, φ1 ∧ φ2) ∈ `

So we have explained how we can make precise the definition of natural deduction sequents

using set theory—you should note that a sequent Γ ` φ as described in your course on

classical logic was simply given as some abstract notation with an intended meaning,

without being specified set-theoretically.

2.3 Hilbert Style Classical Logic

Discussion 2.3.1 Here we recall the Hilbert style presentation of classical propositional

logic. We suppose that we are given a countable set Var of propositional variables, with
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typical elements written p, q or r. We define the classical logic H = (LC ,`H) as follows:

The language LC is specified inductively by the BNF grammar

φ ::= p | ¬φ | φ→ ψ

where p is any element of Var . We call LC the set of classical propositions , or

sometimes just the set of propositions. The set `H of sequents of H is inductively

defined2 by the set of rules RH
def
= {C1, C2, C3,MP } where

(C1)
`H φ→ (ψ → φ)

(C2)
`H (φ→ (ψ → θ))→ ((φ→ ψ)→ (φ→ θ))

(C3)
`H (¬ψ → ¬φ)→ (φ→ ψ)

`H φ→ ψ `H φ
(MP)

`H ψ

Note that each “rule” is in fact a “rule schema:” when you read a rule, φ, ψ and θ can be

any classical propositions. When a rule is used to deduce that a particular sequent holds,

we say that the sequent arises as an instance of the rule. Thus both `H p → (q → p)

and `H p→ (p→ p) both arise through instances of C1. Also,

`H (¬p→ q)→ (¬r → (¬p→ q))

is an instance of C1, where φ is ¬p→ q and ψ is ¬r.
We shall specify conjunction, disjunction and equivalence of propositions as definitions:

• φ ∧ ψ def
= ¬(φ→ ¬ψ);

• φ ∨ ψ def
= ¬φ→ ψ; and

• φ↔ ψ
def
= (φ→ ψ) ∧ (ψ → φ) .

We shall use brackets “(“ and “)” informally to show how a proposition should be read

(parsed), and you should recall the bracketing conditions introduced in Logic A.

Remark 2.3.2 Recall Remark 1.4.7 and Discussion 2.1.2. Note that in this presentation

of classical logic, every sequent is of the form (∅, θ) where θ ∈ LC , (∅, θ) ∈ `H and `H is

a subset of Pf in(LC)× LC . For example, C1 is an abbreviation of

(C1)
(∅, φ→ (ψ → φ)) ∈ `H

and formally the rule C1 is just the pair (∅, (∅, φ→ (ψ → φ))). Care—the first element

of the pair (the hypothesis of the rule C1) is ∅, and the second (the conclusion of C1) is

(∅, φ→ (ψ → φ)).

Note that in this presentation of classical logic, all sequents have empty hypotheses,

and so the subset `H of Pf in(L) × L amounts to a subset `H of LC , by identifying each

(∅, θ) with θ. We adopt this perspective in the rest of this course.

2See Remark 1.4.7
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Remark 2.3.3 Recall from Logic A that the set { φ | `H φ } comprises the collection

of theorems of H. If `H φ, φ is a theorem of H (as just defined), but we sometimes also

refer to the theorem `H φ when no confusion is likely to result. Recall from Logic A

that a tautology is a classical proposition for which [[φ]]v = 1 for all valuations v. We

shall assume that H is complete, that is:

Theorem 2.3.4 If φ ∈ LC and [[φ]]v = 1 for all valuations v, then φ is indeed a theorem

of H, that is `H φ.

Proof See Logic A. �

Discussion 2.3.5 We finish this chapter by listing a few theorems of H. It’s easy to

verify that they are theorems by completeness. As an exercise, try to verify some by

giving derivations (labelled deductions), but do not worry if you get stuck! Here, φ, ψ,

and θ are any classical propositions.

•

`H (φ ∧ ψ)→ φ `H (φ ∧ ψ)→ ψ

•

`H φ→ (φ ∨ ψ) `H ψ → (φ ∨ ψ)

•
`H φ→ ψ `H ψ → θ

`H φ→ θ

•

`H (φ ∧ ψ)→ θ
=============
`H φ→ (ψ → θ)

•
`H φ→ θ `H ψ → θ
=================
`H (φ ∨ ψ)→ θ

•
`H θ → φ `H θ → ψ
=================
`H θ → (φ ∧ ψ)

•
`H φ→ ψ

==========
`H ¬ψ → ¬φ
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Introducing Modal Logic

3.1 Introduction

Discussion 3.1.1 We begin by indicating the scope of this course. You have met first

order logic as a way of formalising everyday statements and arguments which are all either

true or false. We have seen in Chapter 2 how to extend logics, by first giving a very general

definition of a logic (of which classical first order logic is but one example). What about

statements that are not absolutely true or false? We can accommodate this problem by

either extending classical logic, or giving alternatives to it.

Some things we consider in everyday life may be true on one day, but false on later

on. At the beginning of this term, it is true that Dr Crole is giving a course of lectures

on modal logic. But if he wins the lottery, this might become false, because he decides

he’d rather be sun-bathing in Barbados. So we have notions of truth which depend on

the passage of time—we call these notions temporal.

The statement that “2+4 = 6” is true, and in fact is necessarily true. But the statement

that “Major is Prime Minister” is not necessarily true. However “Major is Prime Minister”

is possibly true. This course deals with the logic of necessity and possibility. You should

note that these “connectives” are not truth-functional, in the sense that if they “act” on

true sentences, the resulting sentence might be true or false:

2 + 4 = 6 is true

necessarily(2 + 4 = 6) is true

Major is Prime Minister is true

necessarily(Major is Prime Minister) is false

possibly(Major is Prime Minister) is true

So we cannot formalise these properties within classical logic, because classically all propo-

sitions are true or false—period. In first order logic, a language involving the connectives

“and” (∧), “or” (∨) and so on was built up. In this course we extend this language to

include connectives �—meaning “necessarily,” and ♦—meaning “possibly”. These mean-

ings are informal semantics for � and ♦. One should note that “possibly φ” can be

regarded as being the same as “it is not the case that φ is necessarily false.” We shall

define ♦ as an abbreviation for ¬�¬, just as (for example) we can define ∧ in terms of ¬
and →.

To summarise, we shall study logics which extend classical logic with connectives for

necessity and possibility, and the things we study about such logics will be very similar

to those found in Logic A.
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3.2 A Modal Language

Discussion 3.2.1 The modal logics which we consider in this course are all extensions

of Hilbert style classical propositional logic. In order to define our modal logics, we first

need to give a language. Note that each modal logic we consider has the same language.

We shall write LM for it, and define it inductively by the BNF grammar

φ ::= p | ¬φ | φ→ ψ | �φ

where p is any propositional variable drawn from a fixed set Var of propositional vari-

ables. We call an element φ ∈ LM a modal proposition. We shall sometimes simply

refer to φ as a proposition, when no confusion can result.

We shall define a macro for our language LM by setting ♦φ
def
= ¬�¬φ. Each of the

symbols � and ♦ are called modalities. We call � the necessity modality, and ♦ the

possibility modality. Note that LC ⊆ LM , which is part of the requirements for each

of our modal logics to be extensions of the classical logic H. We shall write �nφ, where

n ≥ 1 is a natural number, to mean the modal proposition with n occurrences of � before

φ; ♦nφ is similar.

We shall now introduce a number of modal logics, each new logic being a non-conservative

extension of its predecessor.

3.3 The Modal Logic K
Discussion 3.3.1 The logic K has language LM , and its set of sequents `K (in fact set

of theorems) is defined by the rule set RK
def
= {M1,M2,M3,MP , D,N } where

• The rules M1, M2, M3 and MP are “the same as” the rules C1, C2, C3 and MP but

the propositions φ, ψ and θ appearing in the rules are now modal propositions, that is,

elements of LM rather than LC .

• The rule D is given by

(D)
`K �(φ→ ψ)→ (�φ→ �ψ)

• The rule N is given by
`K φ

(N)
`K �φ

We say that a modal logic (LM ,`) is normal if the set of rules for defining ` contains

RK—so in particular K is normal. In fact all of the modal logics we shall consider are

normal. One reason for this is that any normal modal logic has a semantics which takes

on a rather pleasant form, and non-normal modal logics do not have such nice semantics.

Another reason is that it is quite easy to prove that “equivalent propositions can replace

each other in a theorem”, provided that the modal logic is normal. We have a result
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(Theorem 3.3.8) which formalises this idea, and we prove this in due course. First, we

make further comments about normal modal logics extending classical logic.

Remark 3.3.2 Let L = (LM ,`) be any normal modal logic. L extends K, and K
extends H, because LC ⊆ LM (by definition) and also `H ⊆ `K ⊆ ` (because L contains

all of the rules for deriving theorems of K, and K contains all of the rules for deriving

theorems of H). In particular, we might read `H ⊆ ` as saying that any classical theorem

is a theorem of any normal modal logic.

Remark 3.3.3 However, we can also see that the set of theorems of L contains all of

the theorems of H, that is, the classical theorems, in which propositions “appearing in”

a classical theorem range over LM . To see this, recall the definitions of the rules M1,

M2, M3 and MP which L contains because it is normal. For example, `K p→ (p ∨�r)
is a theorem, as is `K φ → (ψ ∨ φ) where φ and ψ are any modal propositions, because

`H p→ (p∨q) is a classical theorem. We make this more precise in a (very useful) lemma,

after we have defined substitution:

Discussion 3.3.4 Let φ, ψ ∈ LM , and let p and q be any distinct propositional variables.

We shall define a new modal proposition, written φ[ψ/p], by induction over the structure

of φ:

• p[ψ/p] def
= ψ and q[ψ/p]

def
= q (remember p 6= q by assumption);

• (¬θ)[ψ/p] def
= ¬(θ[ψ/p]);

• (θ → θ′)[ψ/p]
def
= θ[ψ/p]→ θ′[ψ/p]; and

• (�θ)[ψ/p]
def
= �(θ[ψ/p]).

We say that the proposition φ[ψ/p] has resulted from the substitution of ψ for all

occurrences of p in φ. Note that one should also check that this is a good definition, that

is, φ[ψ/p] really is an element of LM . This follows from a simple (structural) induction—

do it as an exercise.

Example 3.3.5 Suppose that φ
def
= ¬(p → (q → p)) and ψ

def
= �r, where p, q and r are

propositional variables. Then using the above definition we have

φ[ψ/p] = ¬(p→ (q → p))[�r/p]
(1) = ¬(p[�r/p]→ (q → p)[�r/p])
(2) = ¬(p[�r/p]→ (q[�r/p]→ p[�r/p])

= ¬(�r → (q → �r)).

Lemma 3.3.6 Let L = (LM ,`) be any normal modal logic. Let φ be any classical

proposition, that is φ ∈ LC , where `H φ. If ψ is a modal proposition, then ` φ[ψ/p].
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Proof We use Rule Induction—see page 9. Fix any modal proposition ψ. Set

S
def
= { φ | `H φ and` φ[ψ/p] } ⊆ `H.

We can show (exercise) that S is closed under the rules defining `H, hence `H ⊆ S, and

so S = `H. The result follows—if `H φ, that is1 φ ∈ `H, then φ ∈ S and so ` φ[ψ/p]. �

Remark 3.3.7 We can capture the essence of Lemma 3.3.6 by saying that any normal

modal logic “contains classical reasoning.” These ideas are important, and will be used

throughout the course. For example, let L = (LM ,`) be a normal modal logic and

` φ and ` ψ. By “classical reasoning” we would have ` φ → ψ and thus we claim

this is indeed a theorem of L. We can prove this precisely: L is normal, so contains

` p → q → (p → q) (because this is a classical theorem) so using Lemma 3.3.6 twice

we have ` φ → ψ → (φ → ψ). The conclusion follows from MP (applied twice) to the

assumptions ` φ and ` ψ.

Theorem 3.3.8 Let L = (LM ,`) be a normal modal logic, and let ` ψ ↔ ψ′. Then for

any φ ∈ LM , ` φ[ψ/p]⇐⇒` φ[ψ′/p].

Proof We induct on the structure of φ; we give one case:

(Case φ is �φ): Suppose that ` (�φ)[ψ/p]. By induction we have that ` φ[ψ/p]

implies ` φ[ψ′/p], and so ` φ[ψ/p] → φ[ψ′/p] is a theorem of L via classical reasoning.

Hence from N we have ` �(φ[ψ/p] → φ[ψ′/p]), and using the rules D and MP we have

` �(φ[ψ/p])→ �(φ[ψ′/p]). Using this, the supposition, and MP we deduce ` (�φ)[ψ′/p].

�

Remark 3.3.9 We shall refer to applications of Lemma 3.3.8 as “substitution of equiv-

alent propositions.” For example, let L = (LM ,`) be a normal modal logic. Then

` (¬¬¬ψ → ¬φ)→ (φ→ ¬¬ψ)

follows (from M3) by substitution of equivalent propositions (for ` ψ ↔ ¬¬ψ by classical

reasoning).

Examples 3.3.10 In these examples we look at deriving theorems in the modal logic K.

We present the derivations as labelled deductions of elements of the inductively defined

set `K.

(i) If p and q are propositional variables, then `H p ∨ ¬p. If we take φ to be p ∨ ¬p and

ψ to be ��♦q in Lemma 3.3.6 then we see that `K (��♦q) ∨ (¬��♦q).

1See end of Remark 2.3.2
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(ii)

`K φ→ (φ ∨ ψ) [1]
`K �(φ→ (φ ∨ ψ)) (N)
`K �(φ→ (φ ∨ ψ))→ (�φ→ �(φ ∨ ψ)) (D)
`K �φ→ �(φ ∨ ψ) (MP)

where [1] follows by classical reasoning.

(iii)

`K φ→ (ψ → φ) (M1)
`K �(φ→ (ψ → φ))→ (�φ→ �(ψ → φ)) (D)
`K �(φ→ (ψ → φ)) (N)
`K �φ→ �(ψ → φ) (MP )

3.4 Three More Modal Logics

Discussion 3.4.1 Throughout this course we shall concentrate on four particular (nor-

mal) modal logics. These logics are some of the most fundamental of all modal logics.

They have simple and interesting models, and will allow us to study the basic ideas behind

semantics of modal logic, without having to become too involved with complex mathe-

matical machinery. We have introduced K; now we specify three more modal systems:

The Modal Logic T

The modal logic T is a non-conservative extension of K. The set of rules for defining the

set `T of sequents of T is given by RT
def
= RK ∪ {T }, where the rule T is

`T �φ→ φ

Thus we have T def
= K + T . As an example of a T-theorem, we have:

Lemma 3.4.2 We have `T φ→ ♦φ in T for any φ ∈ LM .

Proof
`T �¬φ→ ¬φ (T )
`T (�¬φ→ ¬φ)→ (¬¬φ→ ¬�¬φ) [1]
`T ¬¬φ→ ♦φ (MP) [2]

[1] follows from M3 and a careful substitution of equivalent propositions. The result

follows from [2] by another substitution of equivalent propositions. �

The Modal Logic S4

We define S4 to be T + 4 where the rule 4 is given by

(4)
`S4 �φ→ ��φ
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The Modal Logic S5

The modal logic S5 is a non-conservative extension of S4. In fact S5 is defined to be

S4 + E where the rule E is given by

(E)
`S5 ♦φ→ �♦φ

3.5 Some Results about the Modal Logics

Discussion 3.5.1 In this section we build up some facts about our modal logics, and

develop ways of manipulating theorems. A characteristic feature of S4 is that any modal

proposition of the form �nφ with n ≥ 2 which appears in a theorem ψ, can be replaced

by the proposition ��φ. A similar statement holds for ♦. We shall make this precise,

but first require a lemma:

Lemma 3.5.2 Let L = (LM ,`) be any normal modal logic. Then a derived rule is

` φ→ ψ

` �φ→ �ψ

Proof Starting from the hypotheses of the rule, apply N , take the corresponding in-

stance of D, and use MP . �

Proposition 3.5.3 We have `S4 �φ↔ ��φ for all φ ∈ LM .

Proof Immediate from the rules 4 and T of S4. �

Proposition 3.5.4 We have `S4 ♦φ↔ ♦♦φ for all φ ∈ LM .

Proof

(Show `S4 ♦♦φ→ ♦φ):

`S4 �¬φ→ ¬¬�¬φ [1]
`S4 ��¬φ→ �¬¬�¬φ [2]
`S4 �¬φ→ ��¬φ (4)
`S4 �¬φ→ �¬¬�¬φ [3]
`S4 ¬�¬¬�¬φ→ ¬�¬φ [4]

[1] follows by classical reasoning and substitution of equivalent propositions. [2] follows

from [1] by Lemma 3.5.2. [3] follows from its previous two deductions by classical reason-

ing. [4] follows from [3] by using M3 and MP .

(Show `S4 ♦φ→ ♦♦φ): This follows from Lemma 3.4.2.

The proposition follows by classical reasoning. �
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Discussion 3.5.5 We defined S5 as an extension to S4 by adding in just one rule (E)

for defining sequents. In fact, S5 can be obtained by adding E to T. We make this precise

in the next theorem:

Theorem 3.5.6 S4 + E = T + E.

Proof This is claiming that (LM ,`′) = (LM ,`), where `′ is defined by RT∪{E }∪{ 4 }
and ` is defined by RT ∪ {E }. To show that ` ⊆ `′ we need to show that `′ is closed

under RT ∪ {E }, which is trivially so. To show that `′ ⊆ `, we need to show that ` is

closed under RT ∪ {E } ∪ { 4 }. Thus all we have to do is show that ` is closed under 4,

that is

for all φ ∈ LM . ` �φ→ ��φ.

We have
` ♦¬φ→ �♦¬φ (E)
` ¬�♦¬φ→ ¬♦¬φ [1]
` �φ↔ ¬♦¬φ [2]
` ¬�♦¬φ→ �φ [3]
` ♦�¬¬φ→ �φ [4]
` ¬¬φ↔ φ [5]
` ♦�φ→ �φ [6]
` �♦�φ→ ��φ [∗]

[1] follows from the first theorem using M3 and MP . [2] arises from classical reasoning

and substitution. [3] follows from [1] and [2] using Theorem 3.3.8, [4] follows from [3] by

definition of ♦, [6] follows from [4] and [5] by using Theorem 3.3.8, and [∗] follows from

[6] using Lemma 3.5.2.

We also have

` �φ→ ♦�φ [7]
` ♦�φ→ �♦�φ (E)
` �φ→ �♦�φ [8] [∗∗]

[7] follows from Lemma 3.4.2. [8] follows by classical reasoning.

Using classical reasoning on [∗] and [∗∗] yields the desired conclusion. �

3.6 Theorems of Modal Logic

Discussion 3.6.1 We list some more theorems of modal logic, some of which will be

used later on in the course.
•

`K �(φ ∧ ψ)↔ (�φ ∧�ψ).

•

`K ♦(φ ∨ ψ)↔ (♦φ ∨ ♦ψ).
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•

`K (�φ ∨�ψ)→ �(φ ∨ ψ).

•

`K ♦(φ ∧ ψ)→ (♦φ ∧ ♦ψ).

•

`K φ→ ψ

`K ♦φ→ ♦ψ

3.7 A Summary

We can summarise the results of this Chapter as follows:

S5 = S4 + E = T + 4 + E = T + E
S4 = T + 4
T = K + T

We illustrate the above pictorially:

S4
+E
- S5

T

+4

6 -

K

+T

6

The diagram shows a table of modal logic extensions. Recall also that each is normal,

so extends the classical logic H.
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Kripke Semantics

4.1 Introduction

Discussion 4.1.1 So far we have explained the language of modal logic, given an intu-

itive meaning (or semantics) to the language, and developed a proof theory for deriving

theorems. Everything thus far has dealt with the syntax of modal logic, and the manip-

ulation of the syntax. We shall now look at the semantics of modal logic.

Recall the semantics of classical logic. A meaning is given to a classical proposition

by asserting whether the proposition is true or false—and precise rules are given for

computing the semantic truth or falsity of a proposition, given knowledge of the truth

or falsity of the propositional variables appearing in the proposition. One very good

reason for defining such a semantics is that one can prove the completeness of classical

logic—thus we can use the model theory to verify whether propositions are theorems or

not.

We have already seen that modal propositions cannot be regarded as simply true or

false. We have also seen that modal propositions can be regarded as making statements

about the future, that is, a notion of time is involved. In fact we shall describe a semantics

in which there is a concept of changing worlds (think of the passage of time on the earth

as giving rise to a changing world) and in which the modal propositions can then be

regarded as true or false with respect to a particular world. In our semantics, a binary

relation between worlds is specified, and if a pair of worlds appear in the relation, we can

think of the second world as the first world seen at a later time—a future world. Very

roughly, a modal proposition of the form �φ can be thought of as true in a given world

iff φ is true in all future worlds, and ♦φ can be thought of as true in a given world iff φ

is true in some future world.

One word of warning about this “real life” visualisation of the semantics which we give.

It suggests that the relation between worlds is anti-symmetric—exercise: why? But in the

formal definition of the semantics it can in fact be any relation! Perhaps a more accurate

intuition is that if a world, say W , is related to a different world, say W ′, then W ′ is

“accessible” from W—but W ′ might also be “accessible” from W , which is fine provided

the relation does not have to be anti-symmetric. Bearing all this in mind, let’s read on:

4.2 Kripke Frames and Models

Discussion 4.2.1 A Kripke frame is a pair (W , R) where W is any non-empty set of

worlds, and R is any binary relation on W . Though W can be any non-empty set, one

should think of the elements of W as worlds or universes W in which a proposition may
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or may not hold. If W and W ′ are worlds, that is W,W ′ ∈ W , and if W R W ′, then you

should think of the world W ′ as “reachable” or “accessible” from W .

A Kripke model is a triple (W , R,) where (W , R) is a Kripke frame and  is a

relation between W and LM , that is,  is a subset of W × LM , for which the following

properties hold:

W  ¬φ
=======
W 6 φ

W  φ→ ψ
===============
W  φ =⇒ W  ψ

W  �φ
===============================
W ′  φ for all W ′ such that W R W ′

If F = (W , R) we sometimes write (F,) for a model of the form (W , R,). We shall

say that a Kripke model M is based on a Kripke frame F if M is of the form (F,). If

W  φ then we say that the world W forces the proposition φ. We call the relation 
a forcing relation. We say that F (or M) is reflexive if R is reflexive—with analogous

definitions for other properties of relations. Note that a consequence of the definition of

Kripke model is:

Proposition 4.2.2 Any Kripke model (W , R,) satisfies

W  φ ∧ ψ
===============
W  φ and W  ψ

W  φ ∨ ψ
==============
W  φ or W  ψ

W  ♦φ
=====================================
W  φ for some world W ′ such that W R W ′

Proof A simple exercise, using the definitions of the connectives. �

Discussion 4.2.3 We shall say that a modal proposition φ is valid in a Kripke model

M = (W , R,) iff W  φ for all worlds W ∈ W . We shall write |=M φ for φ is valid in

the Kripke model M. We say that φ is valid in a Kripke frame F = (W , R) iff φ is

valid in every Kripke model based on F. We write |=F φ to indicate this. We say that φ

is valid if |=F φ for all Kripke frames F, and we write |= φ to mean that φ is valid. We

have

Proposition 4.2.4 Let φ be a modal proposition. Then following are equivalent:

(i) |= φ;

(ii) |=F φ for all Kripke frames F; and

(iii) |=M φ for all Kripke models M.

Proof (i) and (ii) are equivalent by definition. (ii) follows by a careful examination of

the definitions. �
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4.3 Soundness Results

Discussion 4.3.1 Recall the notion of soundness from Logic A. A model is sound for

a logic if whenever a sequent is derived in the logic, the model satisfies the sequent. We

present such ideas for modal logics:

If L = (LM ,`L) is a modal logic for which `L is specified inductively by RL, we say

that a frame F is sound for L iff

∀φ ∈ LM . `L φ =⇒|=F φ.

We say that a model M is sound for L iff

∀φ ∈ LM . `L φ =⇒|=M φ.

We say that a model M is sound for a rule R ∈ RL if the set { φ | |=M φ } is closed

under R. We say that a frame F is sound for a rule R ∈ RL if the set { φ | |=F φ } is

closed under R.

Theorem 4.3.2 Let F be any Kripke frame. Then F is sound for K.

Proof We have to show that for any φ ∈ LM , `K φ =⇒|=M φ for any M based on F.

Thus 1 we show that if M is any such Kripke model, `K φ =⇒|=M φ.

Let P
def
= { φ | `K φ and|=M φ } where M = (W , R,) is any Kripke model based

on F. We shall show that P is closed under the rules defining `K. Thus as P ⊆ `K by

definition, we have P = `K and the theorem follows—see rule induction.

(Closure of P under M1): We have to show that |=M φ → (ψ → φ) for any modal

propositions φ and ψ, that is W  φ → (ψ → φ) for any W ∈ W . So pick any such W ,

and we have to verify that

W  φ =⇒ (W  ψ =⇒ W  φ)

which is of course true.

(Closure of P under M2, M3, MP , N): Easy exercises.

(Closure of P under D): We have to prove that |=M �(φ → ψ) → (�φ → �ψ). So

we pick any W ∈ W for which W  �(φ → ψ) and W  �φ and we shall prove that

W  �ψ. This means we have to show that for all worlds W ′ with W R W ′, one has

W ′  ψ. But for any such W ′ we have W ′  φ → ψ and W ′  φ from the assumptions,

and the result follows from (one of) the properties of .

�

Discussion 4.3.3 We shall need to construct examples of Kripke models based on Kripke

frames. Let F = (W , R) be a frame, and S ⊆ W×Var any subset. Then there is a model

M = (W , R,) based on F where  is specified through the following clauses:

1Remember that “∀x.P =⇒ Q(x)” is equivalent to “P =⇒ ∀x.Q(x)” when P does not depend on x.
Above, x is M, P is `K φ, and Q(x) is |=M φ.
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(i) W  p iff (W, p) ∈ S;

(ii) W  ¬φ iff W 6 φ2;

(iii) W  φ→ ψ iff W  φ implies W  ψ; and

(iv) W  �φ iff W ′  φ for all worlds W ′ for which W R W ′.

Note that  will indeed give rise to a Kripke model! We say that such a model has been

generated from S.

Theorem 4.3.4 Let F be any Kripke frame. Then

(a) F is reflexive iff F is sound for T .

(b) F is transitive iff F is sound for 4.

(c) F is euclidean iff F is sound for E.

Proof Note that parts (b) and (c) use the same proof method as part (a), but omit

preliminary details which are analogous to those in part (a).

(a) (⇒) Let F be reflexive. We have to show that A = { ψ | |=F ψ } is closed under

T , which simply amounts to showing that �φ → φ ∈ A for any φ, that is |=F �φ → φ.

So choose any (arbitrary) model based on F, say M = (F,), and we shall show that

|=M �φ → φ. To show the latter, we pick an arbitrary world W and show that W 
�φ → φ. Suppose that W  �φ. Then W ′  φ for all worlds W ′ where W R W ′,

and from reflexivity W  φ, so we are done—W was arbitrary, so W  �φ → φ for all

W ∈ W , that is |=M �φ→ φ.

(⇐) Let F = (W , R) be a frame which is not reflexive. We shall show that F is not

sound for T—which amounts to finding a model M based on F, and a modal proposition

φ, for which |=M φ does not hold. Define S ⊆ W × Var by

S
def
= { (W ′, p) | U R W ′ and W ′ ∈ W }

where p is a fixed propositional variable and the world U satisfies U 6R U . Note that

(U, p) 6∈ S. Suppose that |=M �p → p where M is the model generated from S. Then

in particular U  �p → p, U  �p holds because  is generated from S, and so U  p.
Hence (U, p) ∈ S which is a contradiction. Therefore |=M �p → p does not hold, and so

F is not sound for T .

(b) (⇒) Let F be transitive, and M = (F,) any model based on F. It is enough

to show that |=M �φ → ��φ for any proposition φ, so pick any world W and we show

that W  �φ→ ��φ. Suppose that W  �φ. Let W ′ and W ′′ be any worlds for which

W R W ′ R W ′′. Then W R W ′′ and hence W ′′  φ by the supposition, implying that

W ′  �φ (because W ′′ was arbitrary) and thus W  ��φ (because W ′ was arbitrary).

2See Remark 1.3.2
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(⇐) Let F = (W , R) be a frame which is not transitive. Then there are worlds U , U ′,

U ′′ with U R U ′ R U ′′ but U 6R U ′′. Put

S
def
= { (W ′, p) | U R W ′ and W ′ ∈ W }

where p is a fixed propositional variable. Let M = (F,) be the model generated by S.

Suppose that |=M �p → ��p. Then in particular U  �p implies U  ��p: but the

former holds by definition of , hence the latter holds too. But U  ��p implies U ′′  p
and so U R U ′′, a contradiction. So the supposition is false, that is, |=M �p→ ��p does

not hold.

(c) (⇒) Let F be euclidean, and M = (F,) any model based on F. We shall show

that |=M ♦φ→ �♦φ for any φ. Pick any arbitrary world W and suppose that W  ♦φ.

We have to show that W ′  ♦φ for any world W ′ where W R W ′. So choose any such W ′.

By the supposition, W ′′  φ for some world W ′′ where W R W ′′, and hence W ′ R W ′′.

Thus W ′  ♦φ as required.

(⇐) Let F be non-euclidean. Hence there are worlds U , U ′ and U ′′ with U R U ′,

U R U ′′ but U ′ 6R U ′′. Fix a propositional variable p and set S
def
= { (U ′′, p) }. Let

M = (F,) be generated by S. Suppose that |=M ♦p → �♦p. Note that we have

U  ♦p (because U R U ′′ and U ′′  p) and so U  �♦p. Hence U ′  ♦p and therefore

W  p for some world W where U ′ R W . But by the definition of , W must be U ′′ and

thus U ′ R U ′′, a contradiction. The supposition is false, so we are done. �

Corollary 4.3.5 Let F be any Kripke frame. Then

(a) F is sound for K.

(b) F is reflexive iff F is sound for T.

(c) F is reflexive and transitive iff F is sound for S4.

(d) F is reflexive and euclidean iff F is sound for S5.

Proof This follows immediately from Theorem 4.3.2 and Theorem 4.3.4. �

4.4 Constructing Counter Models

Discussion 4.4.1 Using the soundness results, in order to prove that a proposition is

not a theorem of a logic, all we need do is construct a model in which the proposition is

not valid. For if a proposition is not valid in a model, it is not valid in the frame based

on the model, and is thus not a theorem by Corollary 4.3.5. We give an example:

Example 4.4.2 We want to prove that 6`K �p→ p. So we need to show that |=F �p→ p

does not hold, that is, |=M �p → p does not hold for some model M. But the latter

happens just in case there is a world W in M = (W , R,) for which W 6 �p → p.
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The latter will happen if W  �p but W 6 p—(1). So, can we find a model with these

properties?

Well, W  �p iff for all worlds W ′ where W R W ′, we have W ′  p—(2). So we need

to satisfy both (1) and (2).

Bearing all this in mind, setW def
= {U,U ′ } (just any two element set), R

def
= { (U,U ′) }.

This defines a Kripke frame. Looking at (1) and (2) we specify S
def
= { (U ′, p) } where p

is any fixed propositional variable. Setting M to be the model generated by S, it is an

exercise to check that indeed U 6 �p→ p, as required.
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Completeness Results

5.1 Introduction

We have seen that any frame F is sound for K. With a moment’s thought (exercise!) we

see that this tells us that

`K φ =⇒ φ.

In this chapter we shall show that the converse holds, which is an example of a complete-

ness result—if φ is valid in all frames, then φ is a theorem of K. This will give us a useful

method for checking whether a modal proposition is a theorem.

5.2 Background Definitions

Here we recall some facts from Logic A which will be used to prove our completeness

theorems. Let L be any normal modal logic. A finite set Λ = {φ1, . . . φn } of modal

propositions is L-inconsistent if `L ¬(φ1 ∧ . . . ∧ φn). We say that Λ is L-consistent if

Λ is not inconsistent. An infinite set Λ of modal propositions is L-consistent if every

finite subset of Λ is L-consistent. Any set Λ of modal propositions is maximal if for

every modal proposition φ, either φ ∈ Λ or ¬φ ∈ Λ. Finally, we say that Λ is maximal

L-consistent if it is both maximal and L-consistent. Note that we shall often simply write

“consistent” for “L-consistent” when it is clear that we are refering to the logic L.

Lemma 5.2.1 Let L be a normal modal logic and let Λ be a consistent set of modal

propositions containing ¬�φ for some given proposition φ. Then the set

A = { ψ ∈ LM | �ψ ∈ Λ } ∪ {¬φ }

is consistent.

Proof Let us suppose that A is inconsistent and derive a contradiction. Thus there is

a finite subset { θ1, . . . , θn } of { ψ ∈ LM | �ψ ∈ Λ } such that ` ¬(θ1 ∧ . . . ∧ θn ∧ ¬φ)

(care!—why?). Because L is a normal modal logic, we have

` ¬(θ1 ∧ . . . ∧ θn ∧ ¬φ)
=⇒ ` θ1 ∧ . . . ∧ θn → φ
=⇒ ` �(θ1 ∧ . . . ∧ θn → φ)
=⇒ ` �(θ1 ∧ . . . ∧ θn)→ �φ
=⇒ ` �θ1 ∧ . . . ∧�θn → �φ
=⇒ ` ¬(�θ1 ∧ . . . ∧�θn ∧ ¬�φ)

It is an exercise for you to check why these implications hold. So we have deduced that

there is a finite subset of Λ which is inconsistent, which is a contradiction. �
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Lemma 5.2.2 Let L be a normal modal logic and S a consistent set of modal proposi-

tions. Then there is a maximal consistent set Λ for which S ⊆ Λ.

Proof Omitted—the proof works in the same way as for classical logic—see Logic A.

�

Lemma 5.2.3 Let L be a normal modal logic, and let Λ be maximal L-consistent. Then

(i) φ ∈ LM implies either φ ∈ Λ or ¬φ ∈ Λ, but not both.

(ii) `L φ =⇒ φ ∈ Λ and so {φ } is consistent;

(iii) If φ ∈ Λ and φ→ ψ ∈ Λ, then ψ ∈ Λ.

Proof

(i) By maximality, one of φ or ¬φ is in Λ. If both are, then {φ,¬φ } ⊆ Λ, contradicting

the consistency of Λ (`L ¬(φ ∧ ¬φ) by classical reasoning).

(ii) If φ 6∈ Λ, then ¬φ ∈ Λ and so {¬φ } is consistent. But this contradicts `L ¬¬φ which

follows from the hypothesis. So φ ∈ Λ.

(iii) Suppose that ψ 6∈ Λ, thus ¬ψ ∈ Λ. It is easy to see that {φ, φ → ψ,¬ψ } is an

inconsistent subset of Λ, a contradiction. Hence ψ ∈ Λ.

�

5.3 Canonical Models

If L is a normal modal logic, the canonical model M = (W , R,) of L is specified by

the following data:

• W is the set of all maximal L-consistent sets, that is

W def
= { W ⊆ LM | W is maximal L-consistent };

Note that W is indeed non-empty: There is at least one theorem φ of L (!) and so by

Lemma 5.2.3 {φ } is consistent. We then apply Lemma 5.2.2. We call the elements of W
canonical worlds.

•W R W ′ iff �φ ∈ W implies φ ∈ W ′. We call R the canonical relation; and

• the forcing relation  is generated by the set { (W, p) | p ∈ W,W ∈ W , p ∈ Var }. We

call this  the canonical forcing relation. The canonical frame is the frame on which

the canonical model is based.

Theorem 5.3.1 Let L be a normal modal logic and M = (W , R,) its canonical model.

Then for every world W and modal proposition φ, W  φ iff φ ∈ W .
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Proof Throughout the proof bear in mind Lemma 5.2.3. We prove the result by struc-

tural induction on modal propositions: recall that LM is specified by the grammar

φ ::= p | ¬φ | φ→ ψ | �φ

(Induction step for p): Trivial.

(Induction step for ¬φ): Easy exercise.

(Induction step for �φ): Suppose the result holds for φ.

(⇒) Let W  �φ. We suppose that �φ 6∈ W for a contradiction. Hence ¬�φ ∈ W by

maximal consistency, and from Lemma 5.2.1 we have that A
def
= { ψ | �ψ ∈ W }∪{¬φ }

is consistent. From Lemma 5.2.2, there is a world U containing A. Now, �ψ ∈ W implies

ψ ∈ A ⊆ U , so W R U (property of the canonical model). Therefore U  φ and induction

gives φ ∈ U , contradicting the consistency of U .

(⇐) Let �φ ∈ W . Let W ′ be any world where W R W ′. Then φ ∈ W ′, and by

induction W ′  φ. So W  �φ.

(Induction step for φ→ ψ):

(⇒) Let W  φ→ ψ, so that W  φ implies W  ψ. By induction, this says exactly

that φ ∈ W implies ψ ∈ W—(∗). Suppose, for a contradiction, that φ → ψ 6∈ W . Then

¬(φ→ ψ) ∈ W . It follows that φ ∈ W and ¬ψ ∈ W—for if φ 6∈ W then ¬φ ∈ W and so

{¬φ,¬(φ → ψ) } ⊆ W which is an inconsistent subset. Hence φ ∈ W and we can show

¬ψ ∈ W similarly. From (∗) we deduce ψ ∈ W , implying {ψ,¬ψ } ⊆ W , a contradiction.

Therefore φ→ ψ ∈ W .

(⇐) Trivial exercise. �

Theorem 5.3.2 Let L be a normal modal logic and write M = (W , R,) for its canon-

ical model. Then for any modal proposition φ ∈ LM , `L φ iff |=M φ.

Proof

(⇒): Let `L φ. Note that by Lemma 5.2.3 φ must be a member of any maximal con-

sistent set. Thus φ belongs to all canonical worlds, so by Theorem 5.3.1, every canonical

world forces φ, that is |=M φ.

(⇐): Let |=M φ. Suppose (for a contradiction) that 6`L φ. Clearly 6`L ¬¬φ and so

{¬φ } is consistent, and so from Lemma 5.2.2 there is a canonical world W such that

¬φ ∈ W . Hence from Theorem 5.3.1 we have W  ¬φ, that is W 6 φ, implying that

|=M φ does not hold, a contradiction. �

5.4 Characterisation and Completeness

Discussion 5.4.1 Let L be a normal modal logic, F a Kripke frame and F any class of

Kripke frames. We shall write |=F φ if |=F φ for all frames F ∈ F . Then
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• F is sound for L iff

∀φ ∈ LM . `L φ =⇒|=F φ.

• F is complete for L iff

∀φ ∈ LM . |=F φ =⇒`L φ.

• L is characterised by a frame F iff F is sound and complete for L.

• F is sound for L iff

∀φ ∈ LM . `L φ =⇒|=F φ.

• F is complete for L iff

∀φ ∈ LM . |=F φ =⇒`L φ.

• L is characterised by F iff F is sound and complete for L.

One should note that if a class of frames is complete for L then it does not follow that

every frame in the class is complete for L. However, {F } is complete for L just in case

F is complete for L.

Theorem 5.4.2 Let L be a normal modal logic and F its canonical frame. Then F is

(sound and) complete for L if F is sound for L.

Proof

(⇒) Follows by definition.

(⇐) Let F be sound for L. It remains to show completeness. So let |=F φ and suppose

that 6`L φ. But then Theorem 5.3.2 tells us that |=M φ cannot hold when M is the

canonical model, and so |=F φ cannot hold, a contradiction. Hence F is (sound and)

complete for L, as required. �

Discussion 5.4.3 We shall show that for each of the logics K, T, S4 and S5 that the

canonical frames are sound and complete for the respective logics. If L is any normal

modal logic, we shall write FL for its canonical frame, and ML for its canonical model.

First we need a lemma:

Lemma 5.4.4

(i) FT is reflexive.

(ii) FS4 is reflexive and transitive.

(iii) FS5 is reflexive and euclidean.

Proof Throughout the proof bear in mind Lemma 5.2.3.
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(i) Let R be the canonical relation of FT, and choose an arbitrary canonical world W .

Suppose that �φ ∈ W . As W is maximal T-consistent, �φ → φ ∈ W , and so φ ∈ W .

Hence W R W by the definition of R, and thus R is reflexive as required because W was

arbitrary.

(ii) Write FS4 = (W , R). We know that FS4 must be reflexive, because S4 extends T; we

prove that R is transitive. So let us pick any three arbitrary canonical worlds for which

W R W ′ R W ′′. Suppose that �φ ∈ W where φ is any modal proposition. As W is

maximal S4-consistent, ��φ ∈ W (because `S4 �φ → ��φ). From the definition of R,

it follows that φ ∈ W ′′ and recalling the supposition we see that W R W ′′, and so we are

done.

(iii) We know that FS5 must be reflexive and transitive, because S5 extends S4. Thus we

show that FS5 is symmetric. Write FS5 = (W , R). Pick any two arbitrary worlds for which

W R W ′. We shall show that if �φ ∈ W ′ then φ ∈ W , for then W ′ R W . So let �φ ∈ W ′

and suppose that φ 6∈ W . By maximality of W , ¬φ ∈ W . Now, `S5 ¬φ → �¬�φ
(exercise! use Lemma 3.4.2) and so by maximal S5-consistency we have �¬�φ ∈ W . As

W R W ′ we have that ¬�φ ∈ W ′, which contradicts the maximality of W ′, and we are

done.

�

Theorem 5.4.5

(i) FK is sound and complete for K.

(ii) FT is sound and complete for T.

(iii) FS4 is sound and complete for S4.

(iv) FS5 is sound and complete for S5.

Proof Note that each of the logics is normal modal. Using Lemma 5.4.4 together with

Corollary 4.3.5, we see that each of the canonical frames is sound for the respective logics.

The theorem follows from Theorem 5.4.2. �

Discussion 5.4.6 We shall show that for each of the logics K, T, S4 and S5 that there

is a particular class of frames which is sound and complete for the logic in question.

Theorem 5.4.7

(i) The class of all frames is sound and complete for K.

(ii) The class of all reflexive frames is sound and complete for T.

(iii) The class of all reflexive and transitive frames is sound and complete for S4.

(iv) The class of all reflexive and euclidean frames is sound and complete for S5.
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Proof Each class of frames is sound for the respective logic, using Corollary 4.3.5. We

look at T; the other logics have analogous proofs. Write Fref for the class of reflexive

frames. In the case of T, the corollary says that

∀F ∈ Fref . `T φ =⇒|=F φ

which is the same statement as

`T φ =⇒|=Fref
φ.

For completeness, we look at T: the other logics have analogous proofs. If |=Fref
φ,

then in particular |=FT φ and so `T φ because FT is complete for T. �
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Modal Tableaux

6.1 Introduction

Recall the use of classical tableaux from Logic A. If we restrict attention to theorems,

rather than general sequents, the basic idea is that we want to show that all valuations of

a proposition φ are of value true. To do this, we suppose (for a contradiction) that there

is a valuation making φ false, that is ¬φ is true. We then systematically divide ¬φ (Fφ

when using signed propositions) into sets of sub-propositions which when assigned the

value true ensure that ¬φ has value true too, that is, if each set is satisfiable, so too is

¬φ. The sub-propositions are written down in the form of a tree (called a tableau), whose

leaves collect up the sub-propositions. If we can show that each leaf is not satisfiable (the

tableau is closed) then neither is ¬φ, a contradiction as required.

A tableaux for modal logic is similar to that for classical logic, but we begin with a

model in which a world W forces a modal proposition ¬φ, and then systematically divide

¬φ (Fφ when using signed propositions) into sets of sub-propositions which when forced,

ensure that ¬φ is indeed forced by W . The rules for producing the sub-propositions

arising from the classical connectives are the same as in Logic A—we give additional rules

for the modalities.

6.2 Basic Definitions

Discussion 6.2.1 Recall that the set LM of (modal) propositions is given by the gram-

mar

φ ::= p | ¬φ | φ→ ψ | �φ.
The set of signed propositions is specified by the grammar σ ::= Tφ | Fφ where T and

F are formal syntactic symbols. A modal tableaux T is a tree whose nodes are sets of

signed propositions. For example, if p, q ∈ Var and θ ∈ LM , then {Tp,F(p → q),Fθ }
is a typical set of signed propositions. We shall simply refer to a modal tableaux as a

tableaux, because all of our logics are modal.

Lemma 6.2.2 Given a tableau T , a leaf L of T , a set of signed propositions L′ and

another modal tableau T ′ with root L, then

(i) there is a tableau T [L  L′] which is T with L′ replacing L; and

(ii) there is a tableau T [L  T ′] which is formed by fusing the root L of T ′ to the leaf

L of T .

Proof A tedious (but very trivial) manipulation of the definition of a tree, which is

omitted. �
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Example 6.2.3 Let T be
Σ1

Σ2

�
Σ3

-

and T ′ be
Σ3

Σ4

?

Σ5

?

then T [Σ3  T ′] is the tableau

Σ1

Σ2

�
Σ3

-

Σ4

?

Σ5

?

Discussion 6.2.4 A set Σ of signed propositions is (K/T/S4)-satisfiable if there exists

(any / a reflexive /a reflexive and transitive) Kripke model M containing a world W , for

which W  σ for all signed propositions σ of Σ. A tableau T is (K/ T/ S4)-satisfiable

if there exists a leaf L of T which is (K/T/S4)-satisfiable—recall any such leaf is indeed a

set of signed propositions. We say that a tableau T is closed if all leaves L of T contain

both φ and ¬φ for some modal proposition φ. Otherwise T is said to be open.

Recall from Logic A that it is convenient to define rules for manipulating tableaux

which make use of propositions in alpha and beta form. For modal logic we need two

more kinds of propositional forms; here we list all of the forms we need:

• The set of eta-propositions is given by the grammar η ::= Tp | Fp for all p ∈ Var ;

• The set of alpha propositions is given by the grammar α ::= F(φ→ ψ) | F(¬φ);

• the set of beta propositions is given by the grammar β ::= T(φ→ ψ) | T(¬φ);

• the set of nu propositions is given by the grammar ν := T(�φ) | F(♦φ); and

• the set of pi propositions is given by the grammar π := F(�φ) | T(♦φ).

We shall refer to a proposition η to mean that η is an eta-proposition, and similarly for

the other definitions.

α α1 α2 β β1 β2 ν ν0 π π0

F(φ→ ψ) Tφ Fψ T(φ→ ψ) Fφ Tψ T(�φ) Tφ F(�φ) Fφ

F(¬φ) Tφ Tψ T(¬φ) Fφ Fφ F(♦φ) Fφ T(♦φ) Tφ
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We make the definitions that given a Kripke model M with a world W , W  Tφ iff W  φ
and also W  Fφ iff W 6 φ.

Lemma 6.2.5 Let M be any Kripke model in which there is a worldW . For propositions

α, β, ν and π we have

(i) W  α iff W  α1 and W  α2;

(ii) W  β iff W  β1 or W  β2;

(iii) W  ν iff W ′  ν0 for all worlds W ′ where W R W ′; and

(iv) W  π iff W ′  π0 for some world W where W R W ′.

Proof We look at just two examples.

(i) Suppose that α is F(φ→ ψ).

W  F(φ→ ψ) ⇐⇒ W 6 φ→ ψ
⇐⇒ W  φ and W 6 ψ
⇐⇒ W  α1 and W  α2

(ii) Suppose that ν is T(�φ).

W  T(�φ) ⇐⇒ W  �φ
⇐⇒ W ′  φ for all worlds W ′ where W R W ′

⇐⇒ W ′  Tφ for all worlds W ′ where W R W ′

�

6.3 Modal Tableaux Rules

Discussion 6.3.1 If S is any set, and s 6∈ S, then we shall write S ; s for the set S∪{ s }.
We shall write Σ to denote any set of signed propositions. We shall now specify rules for

transforming tableaux—the rules make reference to Lemma 6.2.2.
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• The K rules:

[ Σ ; η  Σ ; η ]

[ Σ ; T(φ→ ψ)  

Σ ; T(φ→ ψ)

Σ ; Fφ
�

Σ ; Tψ

-


[ Σ ; F(φ→ ψ)  Σ ; Tφ ; Fψ ]

[ Σ ; T(¬φ)  Σ ; Fφ ]

[ Σ ; F(¬φ)  Σ ; Tφ ]

[ Σ ; π  { ν0 | ν ∈ Σ } ; π0 ]

• The T rules: are those of K together with

[Σ ; ν  Σ ; ν0]

• The S4 rules: are those of T but with the rule for Σ ; π replaced by

[Σ ; π  { ν | ν ∈ Σ } ; π0]

We shall refer to a rule which applies to Σ ; σ (where σ is any signed proposition) as a

σ-rule.

6.4 Derived Tableaux Rules

Discussion 6.4.1 When using the tableau rules, it will be convenient not to have to

bother to expand out the definitions of ∧ and ∨ and ♦. It is easy to prove that the

following rules all follow from the the rules given in the previous section:

Lemma 6.4.2 The following rules can all be derived from the basic K-rules given in
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Section 6.3 (and hence are trivially derivable from the T-rules and the S4-rules):

[ Σ ; T(φ ∧ ψ)  Σ ; Tφ ; Tψ ]

[ Σ ; F(φ ∧ ψ)  

Σ ; F(φ ∧ ψ)

Σ ; Fφ
�

Σ ; Fψ

-



[ Σ ; T(φ ∨ ψ)  

Σ ; T(φ ∨ ψ)

Σ ; Tφ
�

Σ ; Tψ

-


[ Σ ; F(φ ∨ ψ)  Σ ; Fφ ; Fψ ]

Proof Easy exercise—do it! �

As a summary, we present all modal tableaux rules in Table 6.1.

6.5 Modal Tableau Theory

Let φ be a modal proposition. A K-tableau for φ is a tableau T generated from the

singleton tableau {Fφ } using the K-rules. A T-tableau for φ is a tableau T generated

from the singleton tableau {Fφ } using the T-rules. A S4-tableau for φ is a tableau T
generated from the singleton tableau {Fφ } using the S4-rules.

Theorem 6.5.1

(i) Let a tableau T be K-satisfiable. If T ∗ has been obtained from T by one of the K-rules

above then T ∗ is K-satisfiable.

(ii) Let a tableau T be T-satisfiable. If T ∗ has been obtained from T by one of the T-rules

above then T ∗ is T-satisfiable.

(iii) Let a tableau T be S4-satisfiable. If T ∗ has been obtained from T by one of the

S4-rules above then T ∗ is S4-satisfiable.

Proof

(i) T is K-satisfiable if there is a leaf L of T which is K-satisfiable. So there is a model

M and a world W of M for which W  L (recall Discussion 6.2.4). We prove the result

by considering (inductively) the different forms of L and the tableau rules which apply

in each case. Either L is changed to a new leaf L′, in which case we show that there is a
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We write
• η ::= Tp | Fp where p ∈ Var ;

• ν := T(�φ) | F(♦φ); and ν0 = Tφ if ν = T(�φ) and ν0 = Fφ if ν = F(♦φ);

• π := F(�φ) | T(♦φ); and π0 = Tφ if π = T(♦φ) and π0 = Fφ if π = F(�φ);

• Rules applicable to K are:

[ Σ ; η  Σ ; η ]

[ Σ ; T(φ→ ψ)  

Σ ; T(φ→ ψ)

Σ ; Fφ
�

Σ ; Tψ

-



[ Σ ; F(φ→ ψ)  Σ ; Tφ ; Fψ ]

[ Σ ; T(¬φ)  Σ ; Fφ ]

[ Σ ; F(¬φ)  Σ ; Tφ ]

[ Σ ; T(φ ∧ ψ)  Σ ; Tφ ; Tψ ]

[ Σ ; F(φ ∧ ψ)  

Σ ; F(φ ∧ ψ)

Σ ; Fφ
�

Σ ; Fψ

-



[ Σ ; T(φ ∨ ψ)  

Σ ; T(φ ∨ ψ)

Σ ; Tφ
�

Σ ; Tψ

-



[ Σ ; F(φ ∨ ψ)  Σ ; Fφ ; Fψ ]

[ Σ ; π  { ν0 | ν ∈ Σ } ; π0 ]

• Rules applicable to T are those of K together with:

[Σ ; ν  Σ ; ν0]

• Rules applicable to S4 are those of T but with the rule for Σ ; π replaced by:

[Σ ; π  { ν | ν ∈ Σ } ; π0]

Table 6.1: The Modal Tableaux Rules
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world W ′ satisfying W ′  L′—or a tableau T ′ with root L is fused to the leaf L, in which

case we show that there is W ′ and a leaf L′ of T ′ where W ′  L′.

(Case L is Σ ; η): T ∗ is T , so is satisfiable.

(Case L is Σ ; α): By examining the (two) forms that α can take we see that T ∗ will be

K-satisfiable if W  Σ ; α1 ; α2. But by assumption, W  Σ ; α, and so it remains to

prove that W  α1 and W  α2. We are done by Lemma 6.2.5 part (i).

(Case L is Σ ; β): Use Lemma 6.2.5 part (ii).

(Case L is Σ ; π): We have W  Σ ; π. Hence W  ν for any ν ∈ Σ and thus from

Lemma 6.2.5 part (iii) we have W ′  ν0 for all W ′ where W R W ′. Lemma 6.2.5 part

(iv) tells us that U  π0 for some U with W R U , and thus U  ν0 for any ν ∈ Σ. Hence

U  { ν0 | ν ∈ Σ } ; π0 and we are done.

(ii) T is T-satisfiable if there is a leaf L of T which is T-satisfiable. So there is a reflexive

model M and a world W of M for which W  L. The proof is the same as for part (i),

but we also have to consider

(Case L is Σ ; ν): We have W  Σ ; ν. So in particular W  ν and W ′  ν0 for all W ′

where W R W ′. But here, R is reflexive, so taking W ′ to be W we have W  ν0 and so

W  Σ ; ν0.

(iii) T is S4-satisfiable if there is a leaf L of T which is S4-satisfiable. So there is a reflexive

and transitive model M and a world W of M for which W  L. The proof is the same

as for part (ii) except the case when L is Σ ; π:

(Case L is Σ ; π): We have W  Σ ; π. So U  π0 for some U with W R U . Let W ′ be

any world where U R W ′. Then W R W ′, for here R is (reflexive and) transitive. So if

ν ∈ Σ, W  ν by assumption and thus W ′  ν0. Thus U  ν, and altogether we have

U  { ν | ν ∈ Σ } ; π0.

�

Remark 6.5.2 [Comments on The Use of Modal Tableaux]

Let us consider tableaux for classical logic. It is a standard result that if a tableau T ∗
is obtained from T by applying a rule, then T is satisfiable iff T ∗ is satisfiable. Now let

Fφ be a signed proposition, and TC be its complete tableaux. Suppose that Σ1, Σ2 . . . Σk

are the leaves of TC . It follows that

Fφ is satis ⇔ (Σ1 is satis or Σ2 is satis or . . . Σk is satis ) (∗)

or equivalently

Fφ not satis ⇔ (Σ1 not satis and Σ2 not satis and . . . Σk not satis ) (∗∗)

Hence (remembering that TC is complete)
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TC is closed ⇔ each Σi contains Tp and Fp for some variable p
⇒ (Σ1 not satis and Σ2 not satis and . . . Σk not satis )

(**) ⇒ Fφ not satis
⇔  φ.

and
TC is open ⇔ some Σi does not contain Tp and Fp for any variable p

⇒ some Σi is satis
⇒ (Σ1 is satis or Σ2 is satis or . . . Σk is satis )

(*) ⇒ Fφ is satis
⇔ we do not have  φ.

Note that a complete classical tableaux is either open or closed.

In the case of modal logic, if tableaux T ∗ is obtained from T by applying a rule, then

all we have (see Theorem 6.5.1) is that T is satisfiable implies T ∗ is satisfiable, and NOT

the converse. Thus for modal logic, all we have is

Fφ is satis ⇒ (Σ1 is satis or Σ2 is satis or . . . Σk is satis ) (∗)

or equivalently

Fφ not satis ⇐ (Σ1 not satis and Σ2 not satis and . . . Σk not satis ) (∗∗)

and from (**) we can deduce (just as for classical logic) that if there is a closed tableau

for Fφ then  φ.

To see that we cannot have the converse of (*), consider

F((p ∧ ¬p)→ �r)  T(p ∧ ¬p) ; F�r
 Fr

where in the second tableau rewrite, the π proposition F�r becomes the π0 proposition Fr,

and T(p∧¬p), which is not a ν, is deleted. Clearly Fr is satisfiable, but F((p∧¬p)→ �r)
is not.

Note also that the tableaux rules are not deterministic—Fφ may lead to both open

and closed tableaux.

Theorem 6.5.3 Let φ ∈ LM , and write Fref for the class of reflexive frames, Fref &tran

for the class of frames which are both reflexive and transitive.

(i) If there is a closed K-tableau for φ, then  φ, and so `K φ.

(ii) If there is a closed T-tableau for φ, then |=Fref
φ, and so `T φ.

(iii) If there is a closed S4-tableau for φ, then |=Fref &tran
φ, and so `S4 φ.

Proof

(i) Let T be such a T-tableau for φ, and suppose (for a contradiction) that  φ does not

hold. Then there is a Kripke model M and a world W in M for which W 6 φ, that is

W  Fφ. Therefore {Fφ } is K-satisfiable and thus so is T by Theorem 6.5.1. But if T is

K-satisfiable then it cannot be closed, a contradiction. Hence  φ does hold. That `T φ

then follows by completeness—see Theorem 5.4.7.
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(ii) Analogous to part (i).

(iii) Analogous to part (i).

�

Discussion 6.5.4 In fact we have (soundness and) completeness results for modal

tableaux. We shall not prove completeness here, but quote a result which you are free to

use.

Theorem 6.5.5 Let φ ∈ LM .

(i) There is a closed K-tableau for φ iff `K φ.

(ii) There is a closed T-tableau for φ iff `T φ.

(iii) There is a closed S4-tableau for φ iff `S4 φ.

6.6 Using Modal Tableaux

Discussion 6.6.1 The use of modal tableaux is of course just the same as for classical

tableaux which you used in Logic A. By Theorem 6.5.3, if we can show that a proposition

has a closed tableau, then the proposition is in fact a theorem. We give a few examples:

Examples 6.6.2

(1) We show that `K (�p ∧�q)→ �(p ∧ q). Let us produce the K-tableau:

F((�p ∧�q)→ �(p ∧ q))  T(�p ∧�q) ; F�(p ∧ q)

 T�p ; T�q ; F�(p ∧ q)

 (1) Tp ; Tq ; F(p ∧ q)

 

Tp ; Tq ; F(p ∧ q)

Tp ; Tq ; Fp
�

Tp ; Tq ; Fq

-

So the tableau is closed as required. Note that step (1) follows by the K π-rule, where π

is of course F�(p ∧ q).
(2) We show that `T p→ ♦p. We have

F(p→ ♦p)  Tp ; F♦p

 Tp ; Fp



6.6. Using Modal Tableaux 43

where the last step follows from Lemma 6.4.2. The tableau is closed. Note that if you ever

get stuck remembering a derived rule, simply expand out the definition of the connective

(here ♦ is ¬�¬) and use the basic rules.

(3) We show that `S4 �p→ ��p. Let us produce the K-tableau:

F(�p→ ��p)  T�p ; F��p

 T�p ; F�p

The tableau is closed. The last step follows by the S4 π-rule.

Remark 6.6.3 In the formal presentation of the tableau rules, it suggests implicitly

that when a rule is applied, the entire tableau is re-written. In practice, one would not

do this, but simply expand out the tableau as you did in Logic A. For example, Example

(1) is best written down as:

F((�p ∧�q)→ �(p ∧ q))

T�p ; T�q ; F�(p ∧ q)

Tp ; Tq ; F(p ∧ q)

Tp ; Tq ; Fp
�

Tp ; Tq ; Fq

-


