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Preface

These notes are to support five lectures given at Midlands Graduate Schools in the

Foundations of Computer Science.

In outline, two languages are presented, a simple imperative language with state, and a

simple pure (that is, stateless) eager functional language. For each language we present

an evaluation (natural) semantics, an abstract machine, and we prove that the machine

and evaluation semantics are mutually correct. This forms a nice story for a course of

five (rapid) lectures.

We do not cover types in great detail (polymorphism and type inference are not cov-

ered). Also, we do not cover transition (Plotkin) semantics, nor any form of lazy evalu-

ation for the functional language.

The MGS notes are based on previous courses given by the author which do cover these

topics, and also denotational semantics. The notes for the previous courses can be

obtained from the author, as well as an implementation (and descriptive report) of an

operational semantics which is a considerable superset of the languages presented in

the MGS course.

Please do let me know about any typos or other errors which you find. If you have any

other (constructive) comments, please tell me about them.

First edition 2006 (revised 2007,2008). Based upon author’s notes from 1999 (revised

2000, 2001, 2003).

c©R. L. Crole April 2008.
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1

Operational Semantics for an Imperative Language IMP

1.1 Introduction

Motivation 1.1.1 We shall look at a formal definition of a simple imperative language

which we call IMP . Here we define the syntax of this language and its type system—

in a real programming language, it is the job of the compiler to do type checking.

In Chapter 1 we then describe how programs in the language execute—the so called

operational semantics of IMP . This corresponds to the run-time of a real language.

The program expressions of the IMP language comprise integers, Booleans and com-

mands. As our language is imperative, it has a concept of state. Thus IMP has a

collection of (memory) locations which hold data—a state is any particular assignment

of data to (some of) the locations. The commands of the language are “instructions” for

changing the state—just as in any real imperative language.

A configuration in IMP consists of a program expression together with a specified

state—in a real language, this would correspond to a real program and a given machine

(memory) state. If the program expression happens to be a command, the configuration

executes (or runs) by using the information coded by the command to change the state.

The final result of the execution is given by the state at the end of execution—the details

are in Chapter 1.

1.2 Expressions

Definitions 1.2.1 We begin to describe formally the language IMP . The first step is

to give a definition of the syntax of the language. In this course, syntax will in fact be

abstract syntax—every syntactic object will be a finitely branching tree—see page 62.

The syntax of IMP will be built out of various sets of symbols. These are

Z
def
= { . . . ,−1,0,1, . . .} the set of integers;

B
def
= {T,F} the set of Booleans;

Loc
def
= {L1,L2, . . .} the set of locations;

ICst
def
= { n | n ∈ Z } the set of integer constants;

BCst
def
= { b | b ∈ B } the set of Boolean constants;

IOpr
def
= {+,−,∗} a fixed, finite set of integer valued operators;

BOpr
def
= {=,<,≤, . . .} a fixed, finite set of Boolean valued operators.
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We shall let the symbol c range over elements of Z∪B, and l over Loc. Note that the

operator symbols will be regarded as denoting the obvious mathematical functions. For

example, ≤ is the function which takes a pair of integers and returns a truth value. Thus

≤ : Z×Z → B is the function given by (m,n) 7→ m ≤ n, where

m ≤ n =

{

T if m is less than or equal to n

F otherwise

For example, 5≤ 2 = F.

Note also that we write c to indicate that the constant c is an IMP program expression.

Given (for example) 2 and 3 we cannot add these “numbers” until our programming

language IMP instructs that this may happen: the syntax tree 2+ 3 is not the same

thing as the tree 5! However, when 2 is added to 3 by IMP , the result is 5, and we shall

write

2+3 = 5.

The set of expression constructors is specified by

Loc∪ ICst∪BCst∪ IOpr∪BOpr∪{skip,assign,sequence,cond,while}.

We now define the program expressions of the language IMP . The set Exp of program

expressions of the language is inductively defined by the grammar

P ::= c constant
| l memory location
| iop(P,P′) integer operator
| bop(P,P′) boolean operator
| skip do nothing
| assign(l,P′) assignment
| sequence(P,P′) conditional
| cond(P,P′,P′′) while loop
| while(P,P′) sequencing

where each program expression is a finite tree, whose nodes are labelled with construc-

tors. Note that iop ranges over IOpr and bop ranges over BOpr. Also, op ranges over

IOpr ∪BOpr. We immediately adopt the following abbreviations (known as syntactic

sugar):

• We write P iop P′ for the finite tree iop(P,P′);

• P bop P′ for bop(P,P′);

• l :=P′ for assign(l,P′);

• P ; P′ for sequence(P,P′);

• if P then P′ else P′′ for cond(P,P′,P′′); and
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• while P do P′ for while(P,P′).

We shall also adopt the following bracketing and scoping conventions:

• Arithmetic operators (generally denoted op) group to the left. Thus P1 op P2 op P3

abbreviates (P1 op P2) op P3 with the expected extension to any finite number of integer

expressions.

• Sequencing associates to the right.

Remark 1.2.2 We will usually denote elements of any given set of syntactic objects

by one or two fixed symbols. So for example, P is always used to denote program

expressions, that is, elements of Exp. We shall occasionally also use Q to denote a

program expression.

We shall use brackets as informal punctuation when writing expressions. As an exercise,

draw the syntax trees for

if P then P1 else (P2 ; P3) (if P then P1 else P2) ; P3.

1.3 Types

Motivation 1.3.1 We shall asssume that you have some basic familiarity with types,

such as that gained from programming at a typical undergraduate level. In this course,

we shall only ever consider compile time checks.

If a program expression P can be assigned a type σ we write this as P : : σ and call the

statement a type assignment. A programming language will algorithmically encode1

certain rules for deriving type assignments. In fact, such type assignments are often

inductively defined. Given P and σ, type checking is the process of checking that P : : σ
is valid.

Definitions 1.3.2 The types of the language IMP are given by the grammar

σ ::= int | bool | cmd

We shall define a location environment L to be a finite set of (location, type) pairs. A

pair (l,σ) will be written l : : σ. The types in a location environment are either int or bool

and the locations are all required to be different. We write a typical location environment

as

L = l1 : : int, . . . , ln : : int, ln+1 : : bool, . . . , lm : : bool

1This statement is perhaps overselling the truth with regard to certain languages. The lectures will
give further details.
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[any n ∈ Z] : : INT

n : : int
: : TRUE

T : : bool
: : FALSE

F : : bool

[l : : int ∈ L] : : INTLOC

l : : int
[l : : bool ∈ L] : : BOOLLOC

l : : bool

P1 : : int P2 : : int
[ iop ∈ IOpr] : : IOP

P1 iop P2 : : int

P1 : : int P2 : : int
[ bop ∈ BOpr] : : BOP

P1 bop P2 : : bool

: : SKIP

skip : : cmd

l : : σ P : : σ
[σ is int or bool] : : ASS

l :=P : : cmd

P1 : : cmd P2 : : cmd
: : SEQ

P1 ; P2 : : cmd

P1 : : bool P2 : : cmd P3 : : cmd
: : COND

if P1 then P2 else P3 : : cmd

P1 : : bool P2 : : cmd
: : LOOP

while P1 do P2 : : cmd

Table 1.1: IMP type assignments P : : σ

and we leave out the set braces { and }. Given a location environment L , then a pro-

gram expression P built up using only locations which appear in L can (sometimes) be

assigned a type; we write P : : σ to indicate this, and P : : σ is called a type assignment.

Such type assignments are defined inductively using the rules in Table 1.1.

Example 1.3.3 We give an example of a deduction of a type assignment, given the

(concrete) location environment L1 : : int,L2 : : int of the first two locations of memory.

L1 : : int 1 : : int

L1 ≤ 1 : : bool

D1 D2

D3 D4
(†)

L1 :=L1−1 ; L2 :=L2∗L1 : : cmd

if L1 = 1 then L2 :=1 else (L1 :=L1−1 ; L2 :=L2∗L1) : : cmd

while L1 ≤ 1 do (if L1 = 1 then L2 :=1 else (L1 :=L1−1 ; L2 :=L2∗L1)) : : cmd

It is an exercise to write down the missing deductions. See the note below, and the

example after it.
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≫ NOTE 1.3.4 In order to produce the missing deductions, consider the following

situation
?

R
P : : σ

in which P : : σ is given. To see which rule R should be, look at the outermost

constructor of P. This will determine the rule R. For example, look at (†) in Exam-

ple 1.3.3. We have
?

R
L1 :=L1−1 ; L2 :=L2∗L1 : : cmd

and the outermost constructor is sequence. Thus rule R is : : SEQ.

Example 1.3.5 Perform type checking for L1 :=L1+4 : : cmd given L
def
= L1 : : int. We do

this by giving a deduction. The outermost constructor is assign, thus the final rule used

must be : : ASS. Working backwards we have

?
??

L1 : : σ

???
????

L1+4 : : σ
: : ASS

L1 :=L1+4 : : cmd

Given L , we must have σ = int, ??= : : INTLOC and ? is blank! Further, ????must be : : IOP.

You can fill in ???for yourself.

1.4 An Evaluation Relation

Motivation 1.4.1 We shall now describe an operational semantics for IMP which, in

the case of integer expressions, specifies how such program expressions can compute

directly to integers. The operational semantics has assertions which look like (P , s) ⇓
(n , s), meaning that the expression P evaluates to an integer with no state changes, and

(P , s) ⇓ (skip , s′), meaning that the expression P evaluates to yield a change of state

from s to s′. Types play a role here; in practice we can only derive such “evaluations” if

P is of type int or cmd respectively.

Definitions 1.4.2 The set States of states is given by the subset of [Loc,Z∪B]par con-

sisting of those partial functions s with a finite domain of definition dom(s). If s ∈ States
and l ∈ Loc and s(l) is defined, we refer to s(l) as “the datum held in l at state s”
or just “the contents of location l”. Typical examples of states are 〈L1 7→ 4,L2 7→ 5〉,
〈L1 7→ 45,L2 7→ T,L3 7→ 2〉, and a general (finite) state will look like

s = 〈l1 7→ c1, . . . , ln 7→ cn〉
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If s ∈ States, l ∈ Loc and c ∈ Z∪B, then there is a state denoted by s{l 7→c} : Loc → Z∪B

which is the partial function defined by

(s{l 7→c})(l′)
def
=

{

c if l′ = l
s(l′) otherwise

for each l′ ∈ Loc. We say that state s is updated at l to c. As a simple exercise, if

〈l1 7→ c1, . . . , ln 7→ cn〉 is a general finite state, simplify the updated state

〈l1 7→ c1, . . . , ln 7→ cn〉{l 7→c}

Definitions 1.4.3 We shall inductively define the set ⇓ of IMP configurations, where

⇓ ⊆ (Exp×States)× (Exp×States)

by the rules in Table 1.2.

Examples 1.4.4

(1) Let us write P for while l > 0 do P′ where P′ is the command l′ := l′+2 ; l := l−1. Sup-

pose that s is a state for which s(l) = 1 and s(l′) = 0. A proof of (P , s)⇓ (skip , s{l′ 7→2}{l 7→0})

is given in Figure 1.1. It is an exercise to add in the appropriate labels to the deduction

tree, and to fill in T .

(2) Show, by carefully examining deduction trees, that for any commands P1, P2 and

P3, and any states s and s′, that

((P1 ; P2) ; P3 , s) ⇓ (skip , s′) implies (P1 ; (P2 ; P3) , s) ⇓ (skip , s′)

(Thus the execution behaviour of (finite) sequences of commands is unchanged by re-

arranging the sequence tree associatively.)

For any Ci, and s and s′, suppose that ((P1 ; P2) ; P3 , s) ⇓ (skip , s′). Then the deduction

tree must take the form

(P1 , s) ⇓ (skip , s2) (P2 , s2) ⇓ (skip , s3)

(P1 ; P2 , s) ⇓ (skip , s3) (P3 , s3) ⇓ (skip , s′)

((P1 ; P2) ; P3 , s) ⇓ (skip , s′)

Then, using ⇓ SEQ twice with the evaluations at the leaves of the tree above, we can

deduce that (P1 ; (P2 ; P3) , s) ⇓ (skip , s′). The converse direction is similar.

(3) A student tries to do the previous problem using Rule Induction. She formulates the

following proposition

∀x.∀y.∀z ( P = (x ; y) ; z and V = skip implies (x ; (y ; z) , s) ⇓ (skip , s′) )

about the evaluation relation, which if proved (by Rule Induction) for all (P , s) ⇓ (V , s′)
implies the result of the previous problem. This is correct—can you explain why?
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[ provided l ∈ domain of s]⇓LOC

(l , s) ⇓ (s(l) , s)
⇓CONST

(c , s) ⇓ (c , s)

(P1 , s) ⇓ (n1 , s) (P2 , s) ⇓ (n2 , s)
⇓OP

(P1 op P2 , s) ⇓ (n1 op n2 , s)

⇓SKIP

(skip , s) ⇓ (skip , s)

(P , s) ⇓ (c , s)
⇓ASS

(l := P , s) ⇓ (skip , s{l7→c})

(P1 , s1) ⇓ (skip , s2) (P2 , s2) ⇓ (skip , s3)
⇓SEQ

(P1 ; P2 , s1) ⇓ (skip , s3)

(P , s1) ⇓ (T , s1) (P1 , s1) ⇓ (skip , s2)
⇓COND1

(if P then P1 else P2 , s1) ⇓ (skip , s2)

(P , s1) ⇓ (F , s1) (P2 , s1) ⇓ (skip , s2)
⇓COND2

(if P then P1 else P2 , s1) ⇓ (skip , s2)

(P1 , s1) ⇓ (T , s1) (P2 , s1) ⇓ (skip , s2) (while P1 do P2 , s2) ⇓ (skip , s3)
⇓LOOP1

(while P1 do P2 , s1) ⇓ (skip , s3)

(P1 , s) ⇓ (F , s)
⇓LOOP2

(while P1 do P2 , s) ⇓ (skip , s)

Table 1.2: Evaluation Relation (P , s) ⇓ (P , s′) in IMP
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D1 D2 D3

(P , s) ⇓ (skip , s{l′ 7→2}{l7→0})

where D1 is

(l , s) ⇓ (1, s) (0, s) ⇓ (0, s)

(l > 0, s) ⇓ (T , s)

and D2 is

(l′ , s) ⇓ (0, s) (2, s) ⇓ (2, s)

(l′ +2, s) ⇓ (2, s)

(l′ := l′ +2, s) ⇓ (skip , s{l′ 7→2})

T

(l := l−1, s{l′ 7→2}) ⇓ (skip , s{l′ 7→2}{l7→0})

(l′ := l′ +2 ; l := l−1, s) ⇓ (skip , s{l′ 7→2}{l7→0})

and D3 is

(l , s{l′ 7→2}{l7→0}) ⇓ (0, s{l′ 7→2}{l7→0}) (0, s{l′ 7→2}{l7→0}) ⇓ (0, s{l′ 7→2}{l7→0})

(l > 0, s{l′ 7→2}{l7→0}) ⇓ (F , s{l′ 7→2}{l7→0})

(P , s{l′ 7→2}{l7→0}) ⇓ (skip , s{l′ 7→2}{l7→0})

Figure 1.1: An Example Deduction of an Evaluation
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A Compiled CSS Machine

2.1 Architecture of the Machine

Motivation 2.1.1 We have seen that an operational semantics gives a useful model of

IMP , and while this situtation is fine for a theoretical examination of IMP , we would

like to have a more direct, computational method for evaluating configurations. We

provide just that in this chapter, by defining an abstract machine which executes via

single step re-write rules.

Definitions 2.1.2 In order to define the CSS machine, we first need a few preliminary

definitions. The CSS machine consists of rules for transforming CSS configurations.

Each configuration is composed of code which is executed, a stack which consists of a

list of integers or Booleans, and a state which is the same as for IMP .

A CSS code C is a “list” which is produced by the following grammars:

ins ::= PUSH(c) | FETCH(l) | OP(op) | SKIP | STO(l) | BR(C,C) | LOOP(C,C)

C ::= − | ins : C

where op is any operator, l is any location and c is any constant. The objects ins are

CSS instructions. A stack S is produced by the grammar

S ::= − | c : S

where c is any integer or Boolean. A state s is indeed an IMP state. We shall write −

to indicate an empty code or stack. We shall also abbreviate C : − to C and S : − to S.

A CSS configuration is a triple (C,S,s) whose components are defined as above. A CSS

re-write takes the form

(C1 , S1 , s1) 7−→ (C2 , S2 , s2)

and indicates a relationship between CSS configurations. Thus 7−→ is a binary relation

on the set of all CSS configurations. This binary relation is defined inductively by a set

of rules, each rule having the form

R
(C1 , S1 , s1) 7−→ (C2 , S2 , s2)

that is, every rule has no hypotheses. We call such a binary relation as 7−→ which is

inductively defined by rules with no hypotheses a re-write relation. The CSS re-writes

are defined in Table 2.1, where each rule R is written

C1 S1 s1 7−→ C2 S2 s2
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PUSH(c) : C S s 7−→ C c : S s

FETCH(l) : C S s 7−→ C s(l) : S s

OP( op ) : C n1 : n2 : S s 7−→ C n1 op n2 : S s

SKIP : C S s 7−→ C S s

STO(l) : C c : S s 7−→ C S s{l7→c}

BR(C1,C2) : C T : S s 7−→ P1 : C S s

BR(C1,C2) : C F : S s 7−→ P2 : C S s

LOOP(C1,C2) : C S s 7−→ C1 : BR(C2 : LOOP(C1,C2),SKIP) : C S s

Table 2.1: The CSS Re-Writes

Motivation 2.1.3 We shall now compile IMP program expressions into CSS codes. We

shall assume that any given program expression has already been through the type

checking phase of compilation. We shall define a function [[−]]:Exp → CSScodes which

takes a CSS program expression and turns it into CSS code.

Definitions 2.1.4 The function [[−]]:Exp → CSScodes is specified by the clauses in Ta-

ble 2.2.

2.2 Correctness of the Machine

Motivation 2.2.1 We prove that the CSS machine is correct for our operational seman-

tics. This means that whenever we execute an expression according to the semantics in

Chapter 1, the result matches that of the CSS machine, and vice versa. We make this

precise in the following theorem:

Theorem 2.2.2 For all n ∈ Z, b ∈ B, P1 : : int, P2 : : bool, P3 : : cmd and s,s1,s2 ∈ States
we have

(P1 , s) ⇓ (n , s) iff [[P1]] − s 7−→t − n s

(P2 , s) ⇓ (b , s) iff [[P2]] − s 7−→t − b s

(P3 , s1) ⇓ (skip , s2) iff [[P3]] − s1 7−→t − − s2

where 7−→t denotes the transitive closure of 7−→.
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[[c]]
def
= PUSH(c)

[[l]]
def
= FETCH(l)

[[P1 op P2]]
def
= [[P2]] : [[P1]] : OP(op)

[[l := P]]
def
= [[P]] : STO(l)

[[skip]]
def
= SKIP

[[P1 ; P2]]
def
= [[P1]] : [[P2]]

[[if P then P1 else P2]]
def
= [[P]] : BR([[P1]], [[P2]])

[[while P1 do P2]]
def
= LOOP([[P1]], [[P2]])

Table 2.2: Compiling IMP into CSS Code

We shall not prove this theorem, although in Chapter 3 we shall prove a correctness

theorem for an interpreted CSS machine. Once you are familiar with the proof, try to

prove Theorem 2.2.2.

2.3 Executions (of Compiled code)

Examples 2.3.1

(1) Let s be a state for which s(l) = 6. Execute 10− l on the CSS machine.

First, compile the program.

[[10− l]] = FETCH(l) : PUSH(10) : OP(−)

Then

FETCH(l) : PUSH(10) : OP(−) − s 7−→ PUSH(10) : OP(−) 6 s

7−→ OP(−) 10: 6 s

7−→ − 4 s

(2) Let s be a state for which s(l) = 1. Run the program if l ≥ 0 then l := l−1 else skip.

First compile

[[if l ≥ 0 then l := l−1 else skip]]

= [[l ≥ 0]] : BR([[l := l−1]], [[skip]])

= PUSH(0) : FETCH(l) :≥: BR(PUSH(1) : FETCH(l) : OP(−) : STO(l),SKIP)
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Then

PUSH(0) : FETCH(l) :≥: BR(PUSH(1) : FETCH(l) : OP(−) : STO(l),SKIP) − s

7−→ FETCH(l) :≥: BR(PUSH(1) : FETCH(l) : OP(−) : STO(l),SKIP) 0 s

7−→ ≥: BR(PUSH(1) : FETCH(l) : OP(−) : STO(l),SKIP) 1 : 0 s

7−→ BR(PUSH(1) : FETCH(l) : OP(−) : STO(l),SKIP) T s

7−→ PUSH(1) : FETCH(l) : OP(−) : STO(l) − s

7−→ FETCH(l) : OP(−) : STO(l) 1 s

7−→ OP(−) : STO(l) 1 : 1 s

7−→ STO(l) 0 s

7−→ − − s{l 7→0}



3

Correctness of an Interpreted CSS Machine

3.1 Architecture of the Machine

Definitions 3.1.1 We make slight changes to the previous definitions. A CSS code C is

a list which is produced by the following grammars:

ins ::= P | op | STO(l) | BR(P1,P2) C ::= nil | ins : C

where P is any IMP expression, op is any operator, l is any location and P1 and P2 are

any two commands. The objects ins are CSS instructions. A stack S is produced by the

grammar

S ::= nil | c : S

where c is any integer or Boolean. A state s is indeed an IMP state. We shall write −

instead of nil for the empty code or stack list.

The CSS re-writes are defined in Table 3.1, where each rule R is written

C1 S1 s1 7−→ C2 S2 s2

3.2 A Correctness Theorem

Motivation 3.2.1 We prove that the CSS machine is correct for our operational seman-

tics. This means that whenever we execute an expression according to the semantics in

Chapter 1, the result matches that of the CSS machine, and vice versa. We make this

precise in the following theorem:

Theorem 3.2.2 For all n ∈ Z, b ∈ B, P1 : : int, P2 : : bool, P3 : : cmd and s,s1,s2 ∈ States
we have

(P1 , s) ⇓ (n , s) iff P1 − s 7−→t − n s

(P2 , s) ⇓ (b , s) iff P2 − s 7−→t − b s

(P3 , s1) ⇓ (skip , s2) iff P3 − s1 7−→t − − s2

where 7−→t denotes the transitive closure of 7−→.
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n : C S s 7−→ C n : S s

P1 op P2 : C S s 7−→ P2 : P1 : op : C S s

l : C S s 7−→ C s(l) : S s

op : C n1 : n2 : S s 7−→ C n1 op n2 : S s

T : C S s 7−→ C T : S s

F : C S s 7−→ C F : S s

skip : C S s 7−→ C S s

l :=P : C S s 7−→ P : STO(l) : C S s

STO(l) : C n : S s 7−→ C S s{l7→n}

(P1 ; P2) : C S s 7−→ P1 : P2 : C S s

if P then P1 else P2 : C S s 7−→ P : BR(P1,P2) : C S s

BR(P1,P2) : C T : S s 7−→ P1 : C S s

BR(P1,P2) : C F : S s 7−→ P2 : C S s

while P1 do P2 : C S s 7−→ P1 : BR((P2 ; while P1 do P2),skip) : C S s

Table 3.1: The CSS Re-Writes
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3.3 Preliminary Results

Motivation 3.3.1 The proof method for Theorem 3.2.2 is as follows: For the =⇒ impli-

cation(s) we use Rule Induction for ⇓. For the ⇐= implication(s) we use Mathematical

Induction on k, where of course κ 7−→t κ′ iff for some k ≥ 1∈ N and κ1, . . . ,κk

κ =7−→ κ1 7−→ . . . 7−→ κk = κ′ k re-writes

If it is not immediately clear to you how Mathematical Induction will be used, then look

ahead to page 19. We shall need a few preliminary results before we can prove the

theorem.

Lemma 3.3.2 The CSS machine re-writes are deterministic, that is each CSS configu-

ration re-writes to a unique CSS configuration:

More precisely, if

C S s 7−→ C1 S1 s1 and C S s 7−→ C2 S2 s2

then C1 = C2, S1 = S2 and s1 = s2.

Proof This follows from inspecting the definition of 7−→: given any C S s , either

there is no transition (the configuration is stuck), or there is only one transition which

is valid. 2

Lemma 3.3.3 Given any sequence of CSS re-writes, we can (uniformly) extend both

the code and stack of each configuration, without affecting the execution of the original

code and stack:

For any codes Ci, stacks Si, states si and k ∈ N,

C1 S1 s1 7−→k C2 S2 s2

implies

C1 : C3 S1 : S3 s1 7−→k C2 : C3 S2 : S3 s2

where we define 7−→0 to be the identity binary relation on the set of all CSS configu-

rations, and of course 7−→k means there are k re-writes when k ≥ 1. We write C : C′ to

mean that the list C is appended to the list C′.

Proof We use induction on k ∈ N, that is we prove φ(k) holds for all k ∈ N where φ(k)
is the assertion that
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for all appropriate codes, stacks and states

C1 S1 s1 7−→k C2 S2 s2

implies
C1 : C3 S1 : S3 s1 7−→k C2 : C3 S2 : S3 s2 .

(Proof of φ(0)): This is trivially true (why?).

(Proof of for all k0 ∈ N, φ(k)k≤k0 implies φ(k0 + 1)): Let k0 be arbitrary and assume

(inductively) that φ(k) holds for all k ≤ k0. We prove φ(k0 +1) from these assumptions.

Spelling this out, we shall show that if

for all codes, stacks and states,

C1 S1 s1 7−→k C2 S2 s2

implies
C1 : C3 S1 : S3 s1 7−→k C2 : C3 S2 : S3 s2

holds for each k ≤ k0, then

for all codes, stacks and states,

C1 S1 s1 7−→k0+1 C2 S2 s2

implies
C1 : C3 S1 : S3 s1 7−→k0+1 C2 : C3 S2 : S3 s2 .

Let us choose arbitrary codes, stacks and states for which

C1 S1 s1 7−→k0+1 C2 S2 s2

We now consider the possible forms that C1 can take; here we just give a couple of cases:

(Case C1 is −): We have to prove that

− S1 s1 7−→k0+1 C2 S2 s2

implies
− : C3 S1 : S3 s1 7−→k0+1 C2 : C3 S2 : S3 s2

But there are no transitions from a configuration with empty code. Thus the above

implication asserts that “false implies ??” which is true. (Ask if you are confused by

this).

(Case C1 is n : C1): Suppose that we have

n : C1 S1 s1 7−→k0+1 C2 S2 s2
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We need to prove that

n : C1 : C3 S1 : S3 s1 7−→k0+1 C2 : C3 S2 : S3 s2 (1)

By Lemma 3.3.2 we must have1

n : C1 S1 s1 7−→1 C1 n : S1 s1 7−→k0 C2 S2 s2

and so by induction (k0 ≤ k0 !!)

C1 : C3 n : S1 : S3 s1 7−→k0 C2 : C3 S2 : S3 s2 (2)

But

n : C1 : C3 S1 : S3 s1 7−→1 C1 : C3 n : S1 : S3 s1 (3)

and then (2) and (3) prove (1) as required.

(Case C1 is BR(P1,P2) : C1): Assume that2

BR(P1,P2) : C1 T : S1 s1 7−→k0+1 C2 S2 s2

We need to prove that

BR(P1,P2) : C1 : C3 T : S1 : S3 s1 7−→k0+1 C2 : C3 S2 : S3 s2 (4)

Now

BR(P1,P2) : C1 T : S1 s1 7−→1 P1 : C1 S1 s1

and so by induction we have

P1 : C1 : C3 S1 : S3 s1 7−→k0 C2 : C3 S2 : S3 s2 (5)

But

BR(P1,P2) : C1 : C3 T : S1 : S3 s1 7−→1 P1 : C1 : C3 S1 : S3 s1 (6)

and then (5) and (6) imply (4) as required. We omit the remaining cases. 2

Lemma 3.3.4 Given a sequence of re-writes in which the code of the first configura-

tion takes the form of two appended codes, then each of these codes may be executed

separately:

For all k ∈ N, and

1We often use determinism of 7−→ in the next few pages, without always quoting Lemma 3.3.2. Infor-
mally, any configuration has a unique sequence of re-writes (if there are any).

2Given that the code begins with the instruction BR(P1,P2) and we know that there is a valid re-write,
the stack must begin with T.
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for all appropriate codes, stacks and states, if

C1 : C2 S s 7−→k − S′′ s′′

then there is a stack and state S′ and s′, and k1,k2 ∈ N for which

C1 S s 7−→k1 − S′ s′

C2 S′ s′ 7−→k2 − S′′ s′′

where k1 + k2 = k.

Proof We use Mathematical Induction on k; let φ(k) denote the property of k given in

the above box.

(Proof of φ(0)): This is trivially true (why?).

(Proof of for all k0 ∈ N, φ(k)k≤k0 implies φ(k0 + 1)): Let k0 be arbitrary and assume

(inductively) that φ(k) holds for all k ≤ k0. We prove φ(k0 +1) from these assumptions.

Let us choose arbitrary codes, stacks and states for which

C1 : C2 S s 7−→k0+1 − S′′ s′′

and then consider the possible forms that C1 can take.

(Case C1 is while P1 do P2 : C1):

We suppose that

while P1 do P2 : C1 : C2 S s 7−→k0+1 − S′′ s′′

and hence by Lemma 3.3.2

while P1 do P2 : C1 : C2 S s

7−→1 P1 : BR((P2 ; while P1 do P2), skip) : C1 : C2 S s

7−→k0 − S′′ s′′

So as k0 ≤ k0 (!), by induction we have k1,k2 where k0 = k1+ k2 and S′ and s′ such that

P1 : BR((P2 ; while P1 do P2), skip) : C1 S s 7−→k1 − S′ s′ (1)

and

C2 S′ s′ 7−→k2 − S′′ s′′ (2)

But

while P1 do P2 : C1 S s 7−→1 P1 : BR((P2 ; while P1 do P2), skip) : C1 S s (3)

and so we are done using (1) with (3), and (2). The other cases are left as exercises. 2
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Lemma 3.3.5 For all appropriate codes, stacks, states and natural numbers,

P : : int and P S s 7−→k − S′ s′ implies

s = s′ and S′ = n : S some n ∈ Z and P − s 7−→k − n s

and

P : : bool and P S s 7−→k − S′ s′ implies

s = s′ and S′ = b : S some b ∈ B and P − s 7−→k − b s

Proof A lengthy induction; as an exercise, experiment with structural induction on P
and mathematical induction on the number of transitions. Which works? Both? Just

one? 2

3.4 Proving Theorem 3.2.2

Let us now give the proof of the correctness theorem:

Proof (=⇒): We use Rule Induction for ⇓, together with a case analysis on the types. If

the type is int, only the rules for operators can be used in the deduction of the evaluation.

We show property closure for just one example rule:

(Case ⇓ OP1): The inductive hypotheses (where Pi : : int) are

P1 − s 7−→t − n1 s and P2 − s 7−→t − n2 s

Then we have

P1 op P2 − s 7−→ P2 : P1 : op − s

by Lemma 3.3.3 and inductive hypotheses 7−→t P1 : op n2 s

by Lemma 3.3.3 and inductive hypotheses 7−→t op n1 : n2 s

7−→ − n1 op n2 s

as required. We leave the reader to verify property closure of the remaining rules.

(⇐=): We prove each of the three right to left implications separately, by Mathematical

Induction. Note that the first is:

for all P : : int,n,s, P − s 7−→t − n s implies (P , s) ⇓ (n , s).

But this statement is logically equivalent to

for all k, for all P : : int,n,s, P − s 7−→k − n s implies (P , s) ⇓ (n , s)
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which you should check with care!! We prove the latter assertion by induction on k ∈N,

letting φ(k) denote the boxed proposition:

(Proof of φ(0)): This is trivially true (why?).

(Proof of for all k0 ∈ N, φ(k)k≤k0 implies φ(k0 +1)): Suppose that for some arbitrary k0,

P : : int, n and s
P − s 7−→k0+1 − n s (∗)

and then we prove (P , s) ⇓ (n , s) by considering cases on P.

(Case P is m): If m 6= n then (∗) is false, so the implication is true. If m = n, note that as

(n , s) ⇓ (n , s) there is nothing to prove.

(Case P is P1 op P2): Suppose that

P1 op P2 − s 7−→k0+1 − n s

and so

P2 : P1 : op − s 7−→k0 − n s .

Using Lemmas 3.3.4 and 3.3.5 we have, noting P2 : : int, that

P2 − s 7−→k1 − n2 s

P1 : op n2 s 7−→k2 − n s

where k1 + k2 = k0, and repeating for the latter transition we get

P1 n2 s 7−→k21 − n1 : n2 s

op n1 : n2 s 7−→k22 − n s (1)

where k21+ k22 = k2. So as k1 ≤ k0, by Induction we deduce that (P2 , s) ⇓ (n2 , s), and

from Lemma 3.3.5 that

P1 − s 7−→k21 − n1 s .

Also, as k21 ≤ k0, we have Inductively that (P1 , s) ⇓ (n1 , s) and hence

(P1 op P2 , s) ⇓ (n1 op n2 , s).

But from Lemma 3.3.2 and (1) we see that n1 op n2 = n and we are done.

We omit the remaining cases.

Note that the second right to left implication (dealing with Boolean expressions) in-

volves just the same proof technique.

The third right to left implication is (equivalent to):

for all k,

for all P : : cmd,s,s′ P − s 7−→k − S s′ implies S = − and (P , s) ⇓ (skip , s′)
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which you should check!! We prove the latter assertion by induction on k ∈ N, letting

φ(k) denote the boxed proposition:

(Proof of φ(0)): This is trivially true (why?).

(Proof of for all k0 ∈ N, φ(k)k≤k0 implies φ(k0 + 1)): Choose arbitrary k0 ∈ N. We shall

show that if

for all P : : cmd,s,s′,

P − s 7−→k − S s′ implies S = − and (P , s) ⇓ (skip , s′)

for all k ≤ k0, then

for all P : : cmd,s,s′,

P − s 7−→k0+1 − S s′ implies S = − and (P , s) ⇓ (skip , s′)

Pick arbitrary P : : cmd and S and s,s′ and suppose that

P − s 7−→k0+1 − S s′

We consider cases for P:

(Case P is l :=P): Using Lemma 3.3.2, we must have

l :=P − s 7−→1 P : STO(l) − s 7−→k0 − S s′

and so by Lemmas 3.3.4 and 3.3.5 (and the typing rules)

P − s 7−→k1 − c s

STO(l) c s 7−→k2 − S s′ (1)

where k1 + k2 = k0. By determinism for (1) we have S = − and s{l 7→c} = s′. By the first

right to left implication for integer expressions (proved above) we have (P , s) ⇓ (c , s).
Hence (l := P , s) ⇓ (skip , s{l 7→c}), and as s{l 7→c} = s′ we are done. NB this case did not

make use of the inductive hypotheses φ(k)k≤k0!

(Case P is P ; P′): Do this as an exercise!

The remaining cases are omitted. 2

3.5 Executions (of Interpreted Code)

Examples 3.5.1

(1) Let s be a state for which s(x) = 6. Then we have

10− x − s 7−→ l : 10: − − s

7−→ 10: − 6 s

7−→ − 10: 6 s

7−→ − 4 s
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where we have written − for both empty list and subtraction—care!

(2) Let s be a state for which s(x) = 1. Then we have

if l ≥ 0 then l := l−1 else skip − s 7−→ l ≥ 0 : BR(l := l−1, skip) − s

7−→ 0 : x ≥: BR(l := l−1, skip) − s

7−→ l :≥: BR(l := l−1, skip) 0 s

7−→ ≥: BR(l := l−1, skip) 1 : 0 s

7−→ BR(l := l−1, skip) T s

7−→ l := l−1 − s

7−→ l−1 : STO(l) − s

7−→ 1 : x : − : STO(l) − s

7−→ l : − : STO(l) 1 s

7−→ − : STO(l) 1 : 1 s

7−→ STO(l) 0 s

7−→ − − s{l 7→0}
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Operational Semantics for a Functional Language FUN
e

4.1 Introduction

Motivation 4.1.1 In this chapter we turn our attention to (pure) functional program-

ming languages. Such languages provide a syntax of expressions in which one can write

down functions directly, without having to think about how to code them as commands

acting on a state. In fact the simple functional languages we meet here do not have

any kind of state: a program is an expression which potentially denotes a value which

can be returned to the programmer. In this chapter we shall study the syntax and type

system of a simple functional programming language. Before we begin the details, let

us look at some examples. Figure 4.1 gives an example of an identifier environment.

This gives the types of various constant and function identifiers. Figure 4.2 declares the

meanings of the identifiers. Most of this should be clear, but we give a few explanatory

comments. If σ is any types then [σ] is the type of σ-lists. The empty list is written as

nil. If E2 denotes a list of type [σ], and E1 is of type σ, then E1 : E2 is the list whose head

is E1 and tail is E2. Expressions of type σ1 → σ2 are functions with input type σ1 and

output type σ2. If E1 : : σ1 → σ2 and E2 : : σ1 then we write E1 E2 for the application of

the function E1 to the input E2.

4.2 Types and Expressions

Motivation 4.2.1 We begin by defining the types and expressions of a simple language

called FUN
e . Every expression of the language can be thought of as a data-value (as

against, say, a command) and the language executes by simplifying complex expressions

to much simpler expressions. The simpler expressions are returned as output to the

programmer.

Definitions 4.2.2 The types of the language FUN
e are (the syntax trees) given induc-

tively (exercise: what are the rules?) by the grammar

σ ::= int | bool | σ → σ | [σ]

We shall write Type for the set of types. Thus FUN
e contains the types of integers,

Booleans, (higher order) functions, and lists. We shall write

σ1 → σ2 → σ3 → . . . → σn → σ

for

σ1 → (σ2 → (σ3 → ( . . . → (σn → σ) . . .))).
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cst :: Int
f :: Int -> Int
g :: Int -> Int -> Int
h :: Int -> Int -> Int -> Int
empty_list :: [Int]
l1 :: [Int]
l2 :: [Int]
h :: Int
t :: Int
length :: [Bool] -> Int
map :: (Int -> Bool) -> [Int] -> [Bool]

Note that function types associate to the right. Thus

Int -> Int -> Int abbreviates Int -> (Int -> Int)
Int -> Int -> Int -> Int abbreviates Int -> (Int -> (Int -> Int))

Figure 4.1: An example of an Identifier Environment

cst = 76 -- definition of constant cst
f x = x
g x y = x+y
h x y z = x+y+z -- definition of function identifier h
l1 = 5:(6:(8:(4:(nil)))) -- a list
l2 = 5:6:8:4:nil -- the same list
h = hd (5:6:8:4:nil) -- head of list
t = tl (5:6:8:4:nil) -- tail of list
length l = if elist(l) then 0 else (1 + length t)
map f l = if elist(l) then nil else (f h) : (map f t)

Note that function application associates to the left—thus g x y is sugar for (g x) y
and h x y z is sugar for ((h x) y) z.
The function length calculates the length of a list l of Booleans, and map applies a function
f :: Int -> Bool to each element of a list l. Note also that l1 = l2.

Figure 4.2: An example of an Identifier Declaration
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Thus for example σ1 → σ2 → σ3 means σ1 → (σ2 → σ3).

Let Var be a fixed set of variables. We shall also need a fixed set of identifiers, with

typical elements ranged over by metavariables I, F and K. These symbols will be used

to define constants and higher order functions in FUN
e —compare

F xy = x+ y in FUN
e to f x y = x+y in Haskell.

The sugared expressions of the functional language FUN
e are given inductively by the

grammar

E ::= x variables
| c integer or Boolean constant
| K constant identifier
| F function identifier
| E1 iop E2 integer valued operator on integers
| E1 bop E2 Boolean valued operator on integers
| if E1 then E2 else E3 conditional
| E1 E2 function application
| nilσ empty list
| hd(E) head of list
| tl(E) tail of list
| E1 : E2 cons for lists
| elist(E) Boolean test for empty list

Examples 4.2.3

(1) [(bool,bool) → int → int → int] is sugar for [(bool,bool) → (int → (int → int))]

(2) ((int → int) → int → int) → (int → int) → bool is sugar for

((int → int) → (int → int)) → ((int → int) → bool)

Remark 4.2.4 We shall adopt a few conventions to make expressions more readable:

• In general, we shall write our “formal” syntax in an informal manner, using brackets

“(” and “)” to disambiguate where appropriate—recall that in Pascal and Haskell one

can add such brackets to structure programs. So for example, if we apply E2 to E3 to

get E2 E3, and then apply E1 to the latter expression, we write this as E1 (E2 E3).

• E1E2E3 . . .En is shorthand for (. . .((E1E2)E3) . . .) En. We say that application associates

to the left. For example, E1E2E3 is short for (E1 E2) E3. Note that if we made the tree

structure of applications explicit, rather than using the sugared notation E E′ instead

of, say, ap(E,E′) where ap is a tree constructor, then (E1 E2) E3 would be a shorthand

notation for the tree denoted by ap(ap(E1,E2),E3). Exercise: make sure you understand

why function types associate to the right, and function applications to the left.
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• The integer valued integer operators also associate to the left; thus we will write (for

example) n+m+ l to mean (n+m)+ l, with the obvious extension to a finite number of

integer constants.

• The cons constructor associates to the right. So, for example, we shall write E1 : E2 : E3

for E1 : (E2 : E3). This is what one would expect—the “head of the list” is appended to

the “tail of the list”. (Recall that lists such as [1,4,6], which one often finds in real

languages, would correspond to the FUN
e list 1 : 4 : 6 : nilint).

• Exercise: Try writing out each of the general expression forms as finite trees, using

tree constructors such as cons for the cons operation.

Definitions 4.2.5 The variable x occurs in the expression x op 3 op x. In fact, it occurs

twice. For an expression E and a variable v we shall assume that it is clear what v occurs

in E means. We do not give a formal definition. We shall also talk of the identifiers which

occur (or appear) in E.

If E and E1, . . . ,En are expressions, then E[E1, . . . ,En/x1, . . . ,xn] denotes the expression E
with Ei simultaneously replacing xi for each 1≤ i ≤ n. (We omit the proof that the finite

tree E[E1, . . . ,En/x1, . . . ,xn] is indeed an expression).

Examples 4.2.6 Examples of expressions and substitutions are

(1) x

(2) hd(2 : 4 : nilint)

(3) f (g y) where f ,g,y ∈ Var.

(4) b : T : F : nilbool

(5) F23

(6) (xy : 2 : z : nil)[F,2+3,z/x,y,z] = F(2+3) : 2 : z : nil

(7) (x+ y+ z)[y,x/x,y][3,y/x,y] = y+3+ z

(8) (x+ y+ z)[x/y][u,4/x,z] = u+u+4

(9) Exercise: work out (x + y + z)[z + 1,4/x,z] and then ((x + y + z)[z + 1/x])[4/z]. What

happens? Did you expect this?

(10) F 2 (4∗−7) is sugar for (F 2) (4∗−7)

(11) G (F (2∗−7) (4∗−7),(3∗6+5) ≤ 6) is sugar for

G ((F (2∗−7)) (4∗−7),((3∗6)+5) ≤ 6)

Motivation 4.2.7 In this chapter, we will build programs out of identifiers and vari-

ables, and in order to help construct sensible programs we shall first assign types to

such identifiers and variables, much as we assigned types to locations in IMP .
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Definitions 4.2.8 A context Γ is a finite set of (variable, type) pairs, where the type

is a FUN
e type, and the variables are required to be distinct so that one does not assign

two different types to the same variable. So for example Γ = {(x1,σ1), . . . ,(xn,σn)}. We

usually write a typical pair (x,σ) as x : : σ, and a typical context as

Γ = x1 : : σ1, . . . ,xn : : σn.

Note that a context is by definition a set, so the order of the xi : : σi does not matter

and we omit curly braces simply to cut down on notation. We write Γ,Γ′ def
= Γ∪Γ′ and

Γ,x : : σ def
= Γ∪{x : : σ}.

An identifier type is a type of the form σ1 → σ2 → σ3 → . . . → σa → σ where a is a

natural number and σ is NOT a function type. If a is 0 then the type is simply σ. You

should think of such an identifier type as typing information for an identifier. If a = 0
then the identifier is called a constant. If a > 0 then the identifier is called a function;

the identifier will represent a function that takes a maximum of a inputs with types

σi and gives an output of type σ. We call a the arity of the identifier. Of course the

identifier can take less than a inputs to yield another function—compare (h 4) 5 in

Figure 4.2 where h has a = 3. We shall denote identifier types by the Greek letter ι.

An identifier environment is specified by a finite set of (identifier, identifier type)

pairs, with a typical identifier environment being denoted by

I = I1 : : ι1, . . . , Im : : ιm.

We say that ιi is the identifier type of Ii.

We shall say that a variable x appears in a context Γ if x : : σ ∈ Γ for some type σ. Thus

z appears in x : : int,y : : [bool],z : : int → int. We shall similarly say that a type appears in

a context, and use similar conventions for identifier environments.

Example 4.2.9 A simple example of an identifier environment is

I
def
= map : : (int → int) → [int] → [int], suc : : int → int

Note that (int→ int)→ [int]→ [int] is the identifier type of map. Another simple example

of an identifier environment is plus : : (int, int) → int.

Motivation 4.2.10 Given a context Γ of typed variables, and an identifier environment

I , we can build up expressions E which use only variables and identifiers which ap-

pear in Γ and I . This is how we usually write (functional) programs: we first declare

constants and types, possibly also functions and types, and then write our program E
which uses these data. We shall define judgements of the form Γ ⊢ E : : σ which should

be understood as follows: given an identifier environment I , and a context Γ, then the

expression E is well formed and has type σ. Given I and Γ, we say that E is assigned

the type σ. We call Γ ⊢ E : : σ a type assignment relation.
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Definitions 4.2.11 Given any identifier environment I , we shall inductively define a

type assignment (ternary) relation which takes the form Γ ⊢ E : : σ using the rules in

Table 4.1.

Proposition 4.2.12 Given an identifier environment I , a context Γ and an expression

E, if there is a type σ for which Γ ⊢ E : : σ, then such a type is unique. Thus FUN
e is

monomorphic.

Proof Omitted. Exercise. 2

Examples 4.2.13

(1) We give a deduction of the following type assignment x : : bool ⊢ G (2≤ 6,x) : : bool

where G : : (bool,bool) → bool.

D

x : : bool ⊢ 2 : : int x : : bool ⊢ 6 : : int

x : : bool ⊢ 2≤ 6 : : bool x : : bool ⊢ x : : bool

x : : bool ⊢ (2≤ 6,x) : : (bool,bool)

x : : bool ⊢ G (2≤ 6,x) : : bool

where D is

x : : bool ⊢ G : : (bool,bool) → bool

(2) With I as in Example 4.2.9, we have

x : : int,y : : int,z : : int ⊢ mapsuc (x : y : z : nilint) : : [int]

(3) Let I be twicehead : : [int] → int → (int, int). Then we have

y : : [int],x : : int ⊢ twicehead y x : : (int, int)

(4) We have

∅ ⊢ if T then fst((2 : nilint,nilint)) else (2 : 6 : nilint) : : [int]

4.3 Function Declarations and Programs

Motivation 4.3.1 An identifier declaration is a method for declaring that identifiers have

certain meanings. We look at two examples:

We begin by specifying an identifier environment, such as plus : : (int, int) → int or fac : :
int→ int or b : : bool. Then to declare that plus is a function which takes a pair of integers
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( where x : : σ ∈ Γ) : : VAR

Γ ⊢ x : : σ
: : INT

Γ ⊢ n : : int

: : TRUE

Γ ⊢ T : : bool
: : FALSE

Γ ⊢ F : : bool

Γ ⊢ E1 : : int Γ ⊢ E2 : : int
: : OP1

Γ ⊢ E1 iop E2 : : int

Γ ⊢ E1 : : int Γ ⊢ E2 : : int
: : OP2

Γ ⊢ E1 bop E2 : : bool

Γ ⊢ E1 : : bool Γ ⊢ E2 : : σ Γ ⊢ E3 : : σ
: : COND

Γ ⊢ if E1 then E2 else E3 : : σ

Γ ⊢ E1 : : σ2 → σ1 Γ ⊢ E2 : : σ2
: : AP

Γ ⊢ E1 E2 : : σ1

( where I : : ι ∈ I ) : : IDR

Γ ⊢ I : : ι

: : NIL

Γ ⊢ nilσ : : [σ]

Γ ⊢ E1 : : σ Γ ⊢ E2 : : [σ]
: : CONS

Γ ⊢ E1 : E2 : : [σ]

Γ ⊢ E : : [σ]
: : HD

Γ ⊢ hd(E) : : σ

Γ ⊢ E : : [σ]
: : TL

Γ ⊢ tl(E) : : [σ]

Γ ⊢ E : : [σ]
: : ELIST

Γ ⊢ elist(E) : : bool

Table 4.1: Type Assignment Relation Γ ⊢ E : : σ in FUN
e
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and adds them, we write plus x = fst(x)+ snd(x). To declare that fac denotes the factorial

function, we would like

fac x = if x == 1 then 1 else x∗ fac(x−1)

And to declare that b denotes T we write b = T.

Thus in general, if F is a function identifier, we might write Fx = E where E is an

expression which denotes “the result” of applying F to x. In FUN
e , we are able to

specify statements such as Fx = E and K = E ′ which are regarded as preliminary data to

writing a program—we declare the definitions of certain functions and constants. The

language is then able to provide the user with identifiers F whose action is specified

by the expression E. Each occurrence of F in program code executes using its declared

definition. This is exactly like Haskell.

In general, an identifier declaration will specify the action of a finite number of function

identifiers, and moreover the definitions can be mutually recursive—each identifier may

be defined in terms of itself or indeed the others. Note that the factorial function given

above is defined recursively: the identifier fac actually appears in the expression which

gives “the result” of the function.

A program in FUN
e is an expression in which there are no variables and each of the

identifiers appearing in the expression have been declared. The idea is that a program

is an expression in which there is no “missing data” and thus the expression can be

“evaluated” as it stands. A value is an “evaluated program”. It is an expression which

often has a particularly simple form, such as an integer, or a list of integers, and thus is

a sensible item of data to return to a user. Functions without arguments are also values.

We now make all of these ideas precise.

Definitions 4.3.2 Let I = I1 : : ι1, . . . , Im : : ιm be a given, fixed, identifier environment

for which

ι j = σ j1 → σ j2 → σ j3 → . . . → σ ja j → σ j. ( j ∈ {1, . . . ,m})

Then an identifier declaration decI consists of the following data:

I1 x11. . .x1a1 = EI1

I2 x21. . .x2a2 = EI2
...

I j x j1 . . .x ja j = EI j
...

Im xm1 . . .xmam = EIm

We define a program expression P to be any expression for which no variables occur

in P. A program in FUN
e is a judgement of the form

decI in P
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where decI is a given identifier declaration and the program expression P satisfies a

type assignment of the form

∅ ⊢ P : : σ (P : : σ)

and the declarations in decI satisfy

x11 : : σ11, . . . ,x1a1 : : σ1a1 ⊢ EI1 : : σ1

x21 : : σ21, . . . ,x2a2 : : σ2a2 ⊢ EI2 : : σ2
...

x j1 : : σ j1, . . . ,x ja j : : σ ja j ⊢ EI j : : σ j
...

xm1 : : σm1, . . . ,xmam : : σmam ⊢ EIm : : σm

Note that the data which are specified in decI just consist of the declarations I j~x = EI j; the

type assignments just need to hold of the specified EI j . In practice, such type checking

will be taken care of by the compiler. We shall sometimes abbreviate the jth type

assignment to ΓI j ⊢ EI j : : σ j. We call the expression EI j the definitional body of I j.

Note that the type assignments force each of the variables in {x j1, . . . ,x ja j } to be distinct

(for each j ∈ {1, . . . ,m}). We may sometimes simply refer to P as a program, when

no confusion can arise from this. We call σ the type of the program decI in P (and

sometimes just say σ is the type of P).

Examples 4.3.3

(1) Let I = I1 : : [int]→ int→ int, I2 : : int→ int, I3 : : bool. Then an example of an identifier

declaration decI is
I1x11x12 = hd(tl(tl(x11)))+ I2x12

I2x21 = x21∗ x21

I3 = T

Note that here we labelled the variables with subscripts to match the general definition

of identifier declaration—in future we will not bother to do this. It is easy to see that

the declaration is well defined: for example x21 : : int ⊢ x21∗ x21 : : int.

(2) Let I be F : : int → int → int → int. Then we have a declaration decI

F x y z = x+ y+ z

where of course x : : int,y : : int,z : : int ⊢ x+ y+ z : : int.

(3) The next few examples are all programs

F x = if x ≤ 1 then 1 else x∗F (x−1) in F 4
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(4)

F1 x y z = if x ≤ 1 then y else z

F2 x = F1 x 1 (x∗F2 (x−1))

}

in F2 4

(5)

Ev x = if x = 0 then T else Od (x−1)

Od x = if x = 0 then F else Ev (x−1)

}

in Ev 12

Note that Ev and Od are defined by mutual recursion, and that they only correctly de-

termine the evenness or oddness of non-negative integers. How would you correct this

deficiency?

(6) F x = F x in F (3 : nilint) is a program which does not evaluate to a value; the

program loops—see Chapter 4.

4.4 An Eager Evaluation Relation

Motivation 4.4.1 The operational semantics of FUN
e gives rules for proving that a

program P evaluates to a value V within a given identifier declaration decI . For any

given identifier declaration, we write this as P ⇓e V, and a trivial example is, say, 3+4+

10⇓e 17 or hd(2 : nilint) ⇓
e 2.

This is an eager or call-by-value language. This means that when expressions are

evaluated, their arguments (or sub-expressions) are fully evaluated before the whole

expression is evaluated. We give a couple of examples:

Let F x y = x+y. We would expect F (2∗3) (4∗5) ⇓e 26. But how do we reach this value?

The first possibility is call-by-value evaluation. First we calculate the first argument to

get F 6 (4∗ 5), then the second to get F 6 20. Having got the values of the function

arguments, we call the function to get 6+20, which evaluates to 26.

In evaluating a function application FP1P2 we first compute values for P1 and P2, say

V1 and V2, and then evaluate FV1V2. In evaluating a list we compute values for each

element of the list, before the list itself is passed to a function.

Definitions 4.4.2 Let decI be a identifier declaration. A value expression is any

expression V which can be produced by the following grammar

V ::= c | nilσ | V : V | F ~V

where c is any Boolean or integer, σ is any type, and ~V abbreviates V1 V2 . . . Vk−1 Vk

where 0 ≤ k < a, and a is the maximum number of inputs taken by F. A value is any
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value expression for which decI in V is a valid FUN
e program. Note that constants K

are not values. Note also that k is strictly less than a, and that if a = 1 then F ~V denotes

F.

Definitions 4.4.3 We shall define an evaluation relation whose judgements will take

the form

P ⇓e V

where P and V are respectively a program expression and value expression whose func-

tion identifiers appear in an identifier declaration decI . The rules for inductively gener-

ating these judgements are given by the rules in Table 4.2.

Remark 4.4.4 You may find the definition of F~V as a value expression rather odd. In

fact, there is good reason for the definition. The basic idea behind the definition of

a value is that “values are those expressions which are as fully evaluated as possible,

according to the call-by-value execution strategy”. This explains why F~V is indeed a

value expression; a small example will clarify:

Suppose that

F : : int → int → int → int,

and that P1 and P2 are integer programs, which compute to the values n1 and n2. Then

F P1 is not a value, because the language is eager. It will evaluate to F n1. But this latter

expression cannot be evaluated any further—informally, the function F cannot itself be

called until it is applied to three integer arguments. Thus F n1 is a value. Giving it the

argument P2, we have a program F n1 P2 which evaluates to the value F n1 n2. Again,

we have a value, as the expression cannot be computed any further. Finally, however,

we can supply a third argument to F n1 n2 giving F n1 n2 P3. This evaluates to F n1 n2 n3,

and at last F has its full quota of three arguments—thus the latter expression is not a

value as we can now compute the function F using rule ⇓e
FID.

Examples 4.4.5

(1) Let I
def
= G : : int → int,K : : int be an identifier environment. Suppose also that decI

is
G x = x∗2

K = 3

We prove that G K ⇓e 6. To do this, we produce a deduction tree. First note that the

program being evaluated is an application, that G is a value, but K is not a value. So

the rule used in the final deduction step must be rule AP, hence we need to show that

G⇓e F~V (easy: take F to be G with the ~V “empty”), that K ⇓e V for some V which is easy,

as we can guess that V must be 3, and that G V ⇓e 6. The latter must be a conclusion of



34 Chapter 4. Operational Semantics for a Functional Langua ge FUN
e

⇓e
VAL

V ⇓e V

P1 ⇓
e m P2 ⇓

e n
⇓e

OP

P1 op P2 ⇓
e m op n

P1 ⇓
e T P2 ⇓

e V
⇓e

COND1
if P1 then P2 else P3 ⇓

e V

P1 ⇓
e F P3 ⇓

e V
⇓e

COND2
if P1 then P2 else P3 ⇓

e V

{

P1 ⇓
e F ~V P2 ⇓

e V2 F ~V V2 ⇓
e V

where either P1 or P2 is not a value
⇓e

AP

P1 P2 ⇓
e V

EF[V1, . . . ,Va/x1, . . . ,xa] ⇓
e V

[F~x = EF declared in decI ] ⇓e
FID

FV1 . . .Va ⇓
e V

EK ⇓e V
[K = EK declared in decI ] ⇓e

CID

K ⇓e V

P ⇓e V : V ′

⇓e
HD

hd(P) ⇓e V

P ⇓e V : V ′

⇓e
TL

tl(P) ⇓e V ′

P1 ⇓
e V P2 ⇓

e V ′

⇓e
CONS

P1 : P2 ⇓
e V : V ′

P ⇓e nilσ
⇓e

ELIST1
elist(P) ⇓e T

P ⇓e V : V ′

⇓e
ELIST2

elist(P) ⇓e F

Table 4.2: Evaluation Relation P ⇓e V in FUN
e
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FID and so we now need to show that (x∗2)[V/x] ⇓e 6. This is also easy following from

OP. Putting this altogether we get

VAL

G ⇓e G

VAL

3⇓e 3
CID

K ⇓e 3

VAL

3⇓e 3
VAL

2⇓e 2
OP

(x∗2)[3/x] = 3∗2⇓e 6
FID

G 3⇓e 6
AP

G K ⇓e 6

(2) Suppose that

F : : int → int → int → int where F x y z = x+ y+ z

Then the expressions F 2 and F 23 are (programs and) values. F 23 (4+1) is a program,

but not a value: the function F takes a maximum of three inputs, and can now be

evaluated. Note that F 2 3 is sugar for (F 2) 3 and that F 2 3 (4+ 1) is sugar for the

expression ((F 2) 3) (4+1). In Definitions 4.4.2, a = 3, and in F 23 we have ~V = 23 and

l = 2 < 3.

We can prove that

F 2 3 (4+1) ⇓e 10

where F x y z = x+ y+ z as follows:

⇓e
VAL

F 2 3⇓e F 2 3

4⇓e 4 1⇓e 1

4+1⇓e 5 T
⇓e

AP

F 2 3 (4+1) ⇓e 10

where T is the tree

2⇓e 2 3⇓e 3

2+3⇓e 5 5⇓e 5

2+3+5⇓e 10
==========================

(x+ y+ z)[2,3,5/x,y,z] ⇓e 10
⇓e

FID

F 2 3 5⇓e 10

It is an exercise to fill in the missing labels on the rules, and missing brackets.

(3) Let G x = x+2.
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Prove that hd(G 3 : nil) ⇓e 5. To do this, we derive a deduction tree:

VAL

nil ⇓e nil

VAL

3⇓e 3
VAL

2⇓e 2
OP

(x+2)[3/x] = 3+2⇓e 5
FID

G 3⇓e 5
CONS

G 3 : nil ⇓e 5 : nil
HD

hd(G 3 : nil) ⇓e 5

Motivation 4.4.6 We shall now prove two results about the language FUN
e . The first is

that evaluation is deterministic: when we evaluate a program, if this results in a value,

that value is unique. We shall also prove that the type of the value is the same as that

of the original program.

Theorem 4.4.7 Let decI be a identifier declaration. The evaluation relation for FUN
e

is deterministic in the sense that if a program evaluates to a value, that value is unique.

More precisely, for all P, V1 and V2, if

P ⇓e V1 and P ⇓e V2

then V1 = V2.

Proof We prove by Rule Induction that

∀P ⇓e V1. ∀V2. (P ⇓e V2 implies V1 = V2)

This is an exercise. 2

Motivation 4.4.8 We shall now show that if a program is evaluated, then the result-

ing value has the same type as the original program. This is stated precisely in Theo-

rem 4.4.10. However, the proof will require the following lemma in order to deal with

the rule ⇓e
FID.

Lemma 4.4.9 Suppose that we have Γ,x1 : : σ1, . . . ,xn : : σn ⊢ E : : σ and that Γ ⊢ Pi : : σi

for i ∈ {1, . . . ,n}. Then Γ ⊢ E[P1, . . . ,Pn/x1, . . . ,xn] : : σ.

Proof Essentially the proof is a Rule Induction on the derivation of the type assignment

for E. However, to set things up properly, we have to jiggle the data around.

Let us pick arbitrary type assignments Γ⊢ Pi : : σi where i∈ {1, . . . ,n}, and pick arbitrary

x1, . . . ,xn.
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We then show by Rule Induction that

∀∆ ⊢ E : : σ. (∆ = Γ,x1 : : σ1, . . . ,xn : : σn) implies Γ ⊢ E[P1, . . . ,Pn/x1, . . . ,xn] : : σ

where ∆ denotes a context.

We look at property closure for the (base) rule

( where x : : σ ∈ ∆) : : VAR

∆ ⊢ x : : σ

Suppose that ∆ = Γ,x1 : : σ1, . . . ,xn : : σn. Then either x : : σ ∈ Γ, or x : : σ is equal to one

of the xi : : σi. In the first case,

x[P1, . . . ,Pn/x1, . . . ,xn] = x

But certainly Γ ⊢ x : : σ by assumption! In the second case, x[P1, . . . ,Pn/x1, . . . ,xn] = Pi as

x = xi from the assumption. But certainly Γ ⊢ Pi : : σ as σ = σi. This completes the work

for rule : : VAR.

The remaining property closures are left as exercises. 2

Theorem 4.4.10 Evaluating a program decI in P does not alter its type. More pre-

cisely,

(∅ ⊢ P : : σ and P ⇓e V) implies ∅ ⊢ V : : σ

for any P, V, σ and I . The conservation of type during program evaluation is called

subject reduction.

Proof We prove by Rule Induction that

∀P ⇓e V. ∀σ(∅ ⊢ P : : σ implies ∅ ⊢ V : : σ).

The proof is an exercise. 2
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A Compiled SECD Machine

5.1 Why Introduce the Machine?

Motivation 5.1.1 We have seen how to define an evaluation relation ⇓e for the lan-

guage FUN
e . If in fact P ⇓e V, how do we effectively compute V from P?

We seek a formal execution mechanism which can take a program P, and mechanically

produce the value V of P:

P ≡ P0 7→ P1 7→ P2 7→ . . . 7→V

Now, “mechanically produce” can be made precise by saying that we require a relation

P 7→ P′ between programs, which is defined by a set of rules in which there are no

hypotheses. Such rules are called re-writes (see Chapter 2).

An evaluation semantics, ⇓e, is very much an opposite to the notion of a re-write rela-

tion 7→. To show that P ⇓e V requires a “large” proof search for a deduction tree, and

completely suppresses any notion of “mechanistic evaluation” of P to V . However, ⇓e

is more useful for proving general properties of programs. We illustrate these ideas in

Figure 5.1.

We will define a “machine”, an SECD machine, which will “mechanically compute” cer-

tain programs to values, using re-write rules. Landin invented the original SECD ma-

chine. It was developed as an interpreter for a programming language based upon

lambda terms and function applications. SECD machines can be implemented directly

on silicon. The original evaluation strategy was eager. The machine described here is

based upon the original machine, but has been developed by the author for the direct

execution of the FUN
e language, and the presentation is entirely original.

In this chapter we shall show how to perform such mechanical computations for a frag-

ment of the language FUN
e . The expressions of this language fragment are given by

the (very restricted) grammar

E ::= x | n | F | E E

and the definition of program is just as in Chapter 4 but using this restricted set of

expressions. The reason for making this restriction is simply to illustrate the SECD

machine, without being cluttered by too many computation rules which deal with the

various kinds of program which normally appear in FUN
e .

≫ NOTE 5.1.2 The SECD machine has an environment which maps variables to

expressions. This is slightly different from our previous use of “typing” environ-

ments. As the SECD terminology is established, we stick with it.
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P0 7→ P1 7→ P2 7→ P3 7→ P4 . . . 7→V

Re-Write Rules (Abstract Machine)

deduction tree

P ⇓e
�

-

V

Evaluation Semantics

Figure 5.1: Illustrating Two Kinds of Operational Semantics

5.2 Architecture of the Machine

In order to define the SECD machine, we first need a few preliminary definitions. The

SECD machine consists of rules for transforming SECD configurations. It has a typical

configuration (S,E,C,D) consisting of four components:

The stack S is a (possibly empty) finitely branching tree whose nodes are constants

or closures. The empty stack is denoted by −. Non-empty stacks are generated by the

following informal grammar where n ∈ N and a ≥ l ≥ 0 where a is the arity of F

S ::=
n
↑

|
Sl . . .S1

cloF

↑

Each node has a level. n is at level 1; if a node is at level α in any Si then that node is

at level α+1 in any
Sl . . .Si . . .S1

cloF

↑

Given any stack S, we can identify the finite set of nodes at level α ∈ N, which may be

empty. The set of nodes at level 0 is ∅ by definition. A stack S has a height which is

given by the maximum level at which a cloF node occurs, and is otherwise 0. For any

stack S of height h at least 1 and natural number h ≥ α ≥ 1, there is a (unique) left-most

closure node cloF at level α. We call this the α-prescribed node, and may write �cloF

to indicate the occurrence within a stack; we also write α S to indicate that S has an

α-prescribed node. Given such an α S for which in general there is a sub-stack of
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shape
Sl . . . S1

�cloF

↑

and given any other stack Sl+1, then there is a stack Sl+1⊕S which “extends S with the

stack Sl+1” in the sense that the α-prescribed node now looks like

Sl+1 Sl . . . S1

�cloF

↑

Finally, we shall sometimes write Av α S to indicate that S is of a certain form, which we

call an application value. The predicate Av is called the status of the stack. Application

values are any stacks different from
n
↑

and
cloF

↑
; roughly speaking they are machine

representations of values of the form F ~V where ~V is non-empty. It is an exercise to draw

some examples of such stacks (finitely branching trees) and to use them to understand

the definitions.

The environment E takes the form x1 =?S1 : . . . : xn =?Sn, essentially meaning that the

variables x1, . . . ,xn currently have the values S1, . . . ,Sn respectively. The environment

may be empty −. The value of each ? is determined by the form of an Si. If Si is
n
↑

then

? is 0; if Si is
cloF

↑
then ? is 1; in any other case, ? is Av 1.

A SECD code C is a list which is produced by the following grammars:

ins ::= x | n | F | APP

C ::= − | ins : C

where n and F are any numbers or identifiers. The objects ins are SECD instructions.

We shall write − to indicate an empty code. We shall also abbreviate ins : − to ins.

The dump D is either empty − or is another machine configuration (S,E,C,D′). So a

typical dump looks like

(S1,E1,C1,(S2,E2,C2, . . .(Sn,En,Cn,−) . . .))

It is essentially a list of triples (S1,E1,C1),(S2,E2,C2), . . . ,(Sn,En,Cn) and serves as the

function call stack—the empty dump has size 0, with such a non-empty dump being of

size n (the length of the list).

The machine will execute FUN
e expressions from the restricted grammar E := x | n |

F | E1 E2 where for technical convenience we will assume that F has arity a ≥ 1. In
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particular, such expressions will always be considered in the context of a given decla-

ration decI . We shall now compile such expressions into SECD codes. We shall assume

that any given program expression has already been through the type checking phase

of compilation. We shall define a function [[−]]:Exp → SECDcodes which takes an SECD

expression and turns it into code.

• [[x]]
def
= x

• [[n]]
def
= n

• [[F]]
def
= F

• [[E1 E2]]
def
= [[E1]] : [[E2]] : APP

Given a function identifier F, then we define cloF
def
= CLO(~x, [[EF ]]) where F ~x

def
= EF

occurs in the current function declaration. There is then a representation of program

values as stacks, given by

• (|n|)
def
=

n
↑

• (|F V1 . . .Vk|)
def
=

(|Vk|) . . . (|V1|)
cloF

↑
= (|Vk|)⊕ . . .⊕ (|V1|)⊕

�cloF

↑

Let us write SECD machine configurations as arrays:

S Stack,S
E Environment,E
C Control,C
D Dump,D

To evaluate the (restricted) FUN
e program P, the machine begins execution in the ini-

tial configuration, where P is in the Control and all other components are empty:

S −

E −

C P
D −

If the control is non-empty, then its first command triggers a configuration re-write,

whereby the SECD machine changes to a new configuration. The re-writes are deter-

ministic, and are determined by the element at the head of the Control list, the status

and level of the stack, and the structural form of the stack at the α-prescribed node.
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Here are the re-writes; note that in specifying the rules, a ≥ 1, a > k ≥ 1, and in the

patterns . . .S1 each Si 6≡ −; however, S may be empty:

A number is pushed onto the stack (the initial stack can be of any status):

S [Av ]α S
E E
C n : C
D D

num
7−→

S α n
↑

⊕S

E E
C C
D D

A function is pushed onto the stack (the initial stack can be of any status):

S [Av ]α S
E E
C F : C
D D

fn
7−→

S α+1
�cloF

↑
⊕S

E E
C C
D D

A variable’s value is pushed onto the stack, provided that the environment E contains
x =?T ≡ [Av ]δ T (where δ is 0 or 1). Note that by definition, the status of T determines
the status of the re-written stack, irrespective of the status of the initial stack:

S [Av ]α S
E E
C x : C
D D

var
7−→

S [Av ]δ+ α T ⊕S
E E
C C
D D

An application command creates an application value, type 0:

S α
Sk . . .S1

�cloF

↑
⊕S

E E
C APP : C
D D

cav0
7−→

S Av α
Sk . . .S1

�cloF

↑
⊕S

E E
C C
D D

An application command creates an application value, type 1:

S α

�cloH

↑
Sk−1 . . .S1

cloF

↑

⊕S

E E
C APP : C
D D

cav1
7−→

S Av α−1

cloH

↑
Sk−1 . . .S1

�cloF

↑

⊕S

E E
C C
D D
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An application command produces an application value from an application value:

S Av α

Sk . . .S1

�cloF

↑
S′k′−1 . . .S′1

cloG

↑

⊕S

E E
C APP : C
D D

avtav
7−→

S Av α−1

Sk . . .S1

cloF

↑
S′k′−1 . . .S′1

�cloG

↑

⊕S

E E
C C
D D

An application command calls a function, type 0:

S α
Sa . . .S1

�cloF

↑
⊕S

E E
C APP : C
D D

call0
7−→

S −

E xa =?Sa : . . . : x1 =?S1 : E
C [[EF ]]

D (α−1 S,E,C,D)

An application command calls a function, type 1:

S α

�cloH

↑
Sa−1 . . .S1

cloF

↑

⊕S

E E
C APP : C
D D

call1
7−→

S −

E xa =?Sa : . . . : x1 =?S1 : E
C [[EF ]]

D (α−2 S,E,C,D)

An application command calls a function, type 2:

S Av α

Sk . . .S1

�cloF

↑
S′a−1 . . .S′1

cloG

↑

⊕S

E E
C APP : C
D D

call2
7−→

S −

E xa =?S′a : . . . : x1 =?S′1 : E
C [[EG]]

D (α−2 S,E,C,D)

Restore, where the final status is determined by the initial status:

S [Av ]β T
E E ′

C −

D (α S,E,C,D)

res
7−→

S [Av ]α+ β T ⊕S
E E
C C
D D
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5.3 Executions

1. Take the declaration F x y = x and G u = u. Then [[F 4 G]]
def
= F : 4 : APP : G : APP.

Note that F 4 G ⇓e 4. It is a very short exercise to fill in the ? re-write labels.

S 0 −

E −

C F : 4 : APP : G : APP

D −

?

7−→2

S 1

4
↑
�cloF

↑

E −

C APP : G : APP

D −

cav0
7−→

S Av 1

4
↑
�cloF

↑

E −

C G : APP

D −

fn
7−→

S Av 2

�cloG

↑
4
↑

cloF

↑

E −

C APP

D −

call1
7−→

S 0 −

E x = 0
4
↑

: y = 1
�cloG

↑

C x
D (−,−,−,−)

var
7−→

S 0
4
↑

E x = 0
4
↑

: y = 1
�cloG

↑

C −

D (−,−,−,−)

res
7−→

S 0
4
↑

E −

C −

D −

2. Suppose that K, N and MN are functions which are also values, and that

• F x y = x

• L u v = u

• I a b = b

• H z = L (M N) z

Then (F (H 4)) (I 2 K) ⇓e M N. Note that

[[(F (H 4)) (I 2 K)]] = (11.
def
= F) : H : 4 : APP : APP : I : 2 : APP : K : APP : (APP

def
= 1.)
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and

[[L (M N) z]]
def
= 7.

def
= L : M : N : APP : APP : z : APP

def
= 1.

S 0
E −
C 11.
D −

num/fn
7−→

3

S 2

4
↑
�cloH

↑
cloF

↑
E −
C 8.
D −

call0
7−→

S 0 −

E E ′ def
= z = 0

4
↑

C [[L (M N) z]]

D ξ def
= (1

cloF

↑
,−,7.,−)

fn
7−→

3

S 3

�cloN

↑
cloM

↑
cloL

↑
E E ′

C 4.
D ξ

cav1
7−→

S Av 2

cloN

↑
�cloM

↑
cloL

↑
E E ′

C 3.
D ξ

avtav
7−→

S Av 1

cloN

↑
cloM

↑
�cloL

↑
E E ′

C 2.
D ξ

num
7−→

S 1

4
↑

cloN

↑
cloM

↑
�cloL

↑
E E ′

C 1.
D ξ

call0
7−→

S 0 −

E E ′′ def
= u = Av 1

cloN

↑
�cloM

↑

: v = 0
4
↑

: E ′

C u

D ξ′ def
= (−,E ′,−,ξ)

var
7−→

S Av 1

cloN

↑
�cloM

↑
E E ′′

C −
D ξ′

res
7−→

S Av 1

cloN

↑
�cloM

↑
E E ′

C −
D ξ

res
7−→

S Av 2

cloN

↑
�cloM

↑
cloF

↑
E −
C 7.
D −
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avtav
7−→

S Av 1

cloN

↑
cloM

↑
�cloF

↑
E −
C 6.
D −

num/fn
7−→

2

S 2

2
↑
�cloI

↑

cloN

↑
cloM

↑
cloF

↑
E −
C 4.
D −

cav0
7−→

S Av 2

2
↑
�cloI

↑

cloN

↑
cloM

↑
cloF

↑
E −
C 3.
D −

It is an exercise to complete the sequence of re-writes. Also, try the problem again

where K is removed from the program (yielding 9 instructions), checking that

instruction 3. is now 1.≡ APP and giving rise to call2.

3. Check that the rules are deterministic. Note that this requires great care! The

conditions on a, k and the non-emptiness of the Si are crucial.
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Correctness of the Compiled SECD Machine

6.1 A Correctness Theorem

Motivation 6.1.1 We shall show that the SECD machine is correct. In more detail, we

prove the following theorem.

Theorem 6.1.2 For all programs decI in P for which ∅ ⊢ P : : σ we have

P ⇓e V iff

S −
E −
C [[P]]
D −

7−→t

S (|V|)
E −
C −
D −

6.2 Preliminary Results

Lemma 6.2.1 The SECD machine re-writes are deterministic.

Proof This follows by inspecting the rules. Notice that one needs to examine both the

head command and the status and form of the stack. 2

Lemma 6.2.2 Given any sequence of SECD re-writes, we can (uniformly) extend both

the code and stack of each configuration, without affecting the execution of the original

code and stack:

For any stacks, environments, codes, and dumps, if C1 is non-empty then

S S1

E E
C C1

D D

7−→k

S S2

E E
C C2

D D

implies
S S1⊕S3

E E
C C1 : C3

D D

7−→k

S S2⊕S3

E E
C C2 : C3

D D

where 7−→k means k re-writes.
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Proof We sketch the proof. It bears similarity to Lemma 3.3.3, but requires a slight

insight. In fact in order to prove the lemma, we shall prove a slightly stronger result,

namely that in any case where the dump D is non-empty (say (S′,E ′,C′,D′)), we can

not only extend the stack and code as above (ie the stack and code which occur in

the machine’s stack and code components), but we can also extend any of the stacks

and codes which occur in (S′,E ′,C′,D′) by any other Si and Ci we choose. We label

an extended D by D, and if M is an SECD configuration we write M for an arbitrary

extension of M’s stack, code and dump.

We use induction on k. If k = 0 then there is nothing to prove; extension is trivial.

Suppose that the stronger result holds for all k ≤ k0 where k0 is arbitrary. We prove

that we can extend any re-write of length M 7−→k0+1 M′. By determinism, we have

M 7−→1 M′′ 7−→k0 M′. There are two cases to consider.

Suppose that the first re-write is not a function call or restore. By examining each of

the re-write rules which apply for each case (there are a number of possible rules if the

head is APP), we see M 7−→1 M′′ can be extended to M 7−→1 M′′. But by induction we

have M′′ 7−→k0 M′ and we are done.

Now consider what happens when the head C1 is APP : C and there is a function call.

We must have

M
def
=

S T ⊕S
E E
C APP : C
D D

7−→1

S −

E E ′

C [[EF ]]

D (S,E,C,D)

7−→k1

S S′′

E E ′′

C C′′

D (S,E,C,D)

res
7−→

1

S S′′⊕S
E E
C C
D D

7−→k2 M′

where there are no function calls in the k2 re-writes (and k2 might possibly be 0); ex-

ercise: why? Note that k1 ≥ 1 as [[EF ]] is non-empty. After the k1 transitions the dump

(S,E,C,D) remains un-changed: This is because the restored dump D must be restored

from a dump (Ŝ, Ê,Ĉ,D). However, each re-write either does not alter the dump, or

a fresh stack, code and environment are appended to the dump. Hence the D result-

ing from the restore must be restored from (S,E,C,D). By induction, followed by an

instance of res, we have

M′′ def
=

S −

E E ′

C [[EF ]]

D (S⊕S3,E,C1 : C3,D)

7−→k1

S S′′

E E ′′

C C′′

D (S⊕S3,E,C1 : C3,D)

res
7−→

1

S S′′⊕S⊕S3

E E
C C1 : C3

D D

It is easy to see that M 7−→1 M′′. If k2 = 0 we are done. If k2 ≥ 1 then we can similarly

extend the stack, code and dump of the final k2 ≥ 1 transitions by induction and we are

also done. 2
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Lemma 6.2.3 Given a sequence of re-writes in which the code of the first configura-

tion takes the form of two appended codes, then each of these codes may be executed

separately:

For any stacks, environments, codes, and dumps, if C1 and C2 are non-empty then

S S
E E
C C1 : C2

D D

7−→k

S S′′

E E
C −

D D

implies
S S
E E
C C1

D D

7−→k1

S S′

E E
C −

D D

and

S S′

E E
C C2

D D

7−→k2

S S′′

E E
C −

D D

where k = k1+ k2 and ki ≥ 1.

Proof The proof is similar to that of Lemma 6.2.2. We prove by induction on k that

if the hypothesis has k re-writes, then the conclusions follow with k1 and k2 re-writes.

Let k0 be arbitrary, and suppose the result holds for all k ≤ k0. The proof requires a case

analysis on the head of the non-empty C1. In every case where there is no function call,

the k0+1 re-writes split as 1 followed by k0 ≥ 1 re-writes, and we are done by induction

and/or re-write inspection. When there is a function call, we have S = U ⊕T for some

U and T , and

S U ⊕T
E E
C APP : C1 : C2

D D

7−→1

S −

E Ê
C Ĉ
D (T,E,C1 : C2,D)

7−→k1

S S′

E E ′

C C′

D (T,E,C1 : C2,D)

S S′

E E ′

C C′

D (T,E,C1 : C2,D)

7−→1

S S′⊕T
E E
C C1 : C2

D D

7−→k2

S S′′

E E
C −

D D

The induction hypothesis applies to the final k2 re-writes. However, notice that for the

initial 1+ k1 + 1 re-writes, they remain valid if C1 : C2 is replaced by C1. The result

follows.

2
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Lemma 6.2.4 For any well typed FUN
e program decI in P where P : : σ and P ⇓e V,

S S
E E
C [[P]]

D D

7−→k

S Ŝ
E Ê
C −

D D̂

implies (∃k ≤ k)

S S
E E
C [[V]]

D D

7−→k′

S Ŝ
E Ê
C −

D D̂

with equality only if P is a value (and hence equal to V).

Proof

Induction on ⇓e. For axiom ⇓e
VAL the result is trivial. We consider the rule ⇓e

AP and

leave property closure of ⇓e
FID as an exercise. Suppose that

S S
E E
C [[P1]] : [[P2]] : APP

D D

7−→k

S Ŝ
E Ê
C −

D D̂

By Lemma 6.2.3 we have

S S
E E
C [[P1]]

D D

7−→k1

S S′

E E ′

C −

D D′

and

S S′

E E ′

C [[P2]] : APP

D D′

7−→k2

S Ŝ
E Ê
C −

D D̂

Again by Lemma 6.2.3 we have

S S′

E E ′

C [[P2]]

D D′

7−→k′1

S S′′

E E ′′

C −

D D′′

and

S S′′

E E ′′

C APP

D D′′

7−→k′2

S Ŝ
E Ê
C −

D D̂

So by induction we have

S S
E E
C [[F ~V ]]

D D

7−→k1

S S′

E E ′

C −

D D′

and

S S′

E E ′

C [[V2]]

D D′

7−→k′1

S S′′

E E ′′

C −

D D′′

where P1 ⇓
e F ~V and P2 ⇓

e V2

By repeated use of Lemma 6.2.2 (exercise: check) we get
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S S
E E
C [[F ~V ]] : [[V2]] : APP

D D

7−→(k1+k′1)+k′2

S Ŝ
E Ê
C −

D D̂

Again, by induction, we have

S S
E E
C [[V]]

D D

7−→(k1+k′1)+k′2

S Ŝ
E Ê
C −

D D̂

where F ~V V2 ⇓e V. It is an exercise to check that (k1+ k′1)+ k′2 ≤ k (easy!) with equality

just in case P1 P2 is a value (careful!).

2

6.3 Proving Theorem 6.1.2

Proof (=⇒): We use Rule Induction for ⇓. We show property closure for just two

example rules:

(Case ⇓e
VAL): For this axiom, we must prove for all V

S −

E −

C [[V]]

D −

7−→t

S (|V|)

E −

C −

D −

We do this by a separate induction on V . If V is n or cloF , this is trivial. By way of

illustration, we consider the inductive steps for a value F V1; the steps for F ~V are

similar. By induction, together with Lemma 6.2.2 we have

S
cloF

↑

E −

C [[V1]] : APP

D −

7−→t

S
(|V1|)
cloF

↑

E −

C APP

D −

cavδ
7−→

S
(|V1|)
�cloF

↑

E −

C −

D −

from which the required result follows easily from re-write
fn

7−→.
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(Case ⇓e
AP): The three induction hypotheses are easy to write down—do this as a simple

exercise. Using the first two hypotheses, and Lemma 6.2.2, we get

S −

E −

C [[P1]] : [[P2]] : APP

D −

7−→t

S
(|V1|)
cloF

↑

E −

C [[P2]] : APP

D −

7−→t

S
(|V2|) (|V1|)

cloF

↑

E −

C APP

D −

Now, we can also use Lemma 6.2.2, together with property closure for the axiom

(checked above), to show that

S −

E −

C F : [[V1]] : APP : [[V2]] : APP

D −

7−→t

S
(|V2|) (|V1|)

cloF

↑

E −

C APP

D −

Thus the result follows by the third induction hypothesis plus determinacy—details are

left as an exercise.

(⇐=): We shall prove that if P : : σ then

S S
E −

C [[P]]

D −

7−→k

S S′

E −

C −

D −

implies (∃V) S′ = (|V|)⊕S and P ⇓e V

from which the required result follows. Induction on k. If P is a number or a function

the result is trivial. Else P has the form P1P2. Suppose that

S S
E −

C [[P1]] : [[P2]] : APP

D −

7−→k0+1

S S′

E −

C −

D −

Then appealing to Lemma 6.2.3 and the induction hypothesis, we get

S S
E −

C [[P1]]

D −

7−→k1

S (|F ~V |)⊕S
E −

C −

D −

and

S (|F ~V |)⊕S
E −

C [[P2]] : APP

D −

7−→k2

S S′

E −

C −

D −
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where P1 ⇓
e F ~V . Appealing to Lemma 6.2.3 again, and by induction,

S (|F ~V |)⊕S
E −

C [[P2]]

D −

7−→k′1

S (|V2|)⊕ (|F ~V |)⊕S
E −

C −

D −

and
S (|V2|)⊕ (|F ~V |)⊕S
E −

C APP

D −

7−→k′2

S S′

E −

C −

D −

where P2 ⇓
e V2. By Lemma 6.2.4, and Lemma 6.2.2 we have (check!)

S S
E −

C [[F ~V V2]]

D −

7−→k1+k′1

S (|V2|)⊕ (|F ~V |)⊕S
E −

C APP

D −

and so S′ = (|V|)⊕S for some V where F ~V V2 ⇓
e V. Hence P1 P2 ⇓

e V as required.

2
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Mathematical Prerequisites

A.1 Introduction

Definitions A.1.1 We shall adopt a few conventions:

• If we give a definition, the entity being defined will be written in boldface; and when

we emphasise something it appears in an italic typeface.

• Variables will be denoted by notation such as x, x′, x′′, x1, x2, x3 and so on.

• If we wish to define a set A whose elements are known as widgets, then we shall

simply say “let A be the set of widgets.”

• Suppose we wish to speak of a set A, and indicate that the set A happens to be a subset

of a set X . We will write “consider the set A ⊆ X . . .” for this. For example, we might

say “let O ⊆ N be the set of odd numbers” to emphasise that we are considering the

set of odd numbers denoted by O, which happen to be a subset of the natural numbers

(denoted by N).

• We often use particular characters for particular purposes. For example, capital letters

such as A and X often represent sets, and lower case letters such as a and x represent

elements of sets. When you write down Mathematics or Computing, make sure your

lower and upper case letters are clearly distinguishable!

• We shall often use characters from the Greek alphabet; some of these appear in Ta-

ble A.1.

• If you read the notes and do not understand something, try reading ahead and looking

at examples. You may need to read definitions and look at examples of the definitions

simultaneously—each reinforces the other. When you read definitions, try to work out

your own simple examples, and see if you can understand the basic ideas behind the

technical details. Many of the examples have details omitted, which you need to fill in

using a pencil and paper.

A.2 Logic

We sometimes write A ≡ B to indicate syntactic identity. Thus 2+3 = 5 but 2+3 6≡ 5.

If P and Q are mathematical propositions, we can form new propositions as follows:

• P and Q (sometimes written P∧Q);

• P or Q (sometimes written P∨Q);
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α alpha

β beta

γ gamma (lower case)

Γ gamma (upper case)

δ delta (lower case)

∆ delta (upper case)

ε epsilon

ι iota

λ lambda (lower case)

Λ lambda (upper case)

ω omega (lower case)

Ω omega (upper case)

ρ rho (lower case)

σ sigma (lower case)

Σ sigma (upper case)

θ theta (lower case)

Θ theta (upper case)

τ tau

Figure A.1: Some Greek Characters
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• P implies Q (sometimes written P ⇒ Q or P → Q);

• not P (sometimes written ¬P);

• P if and only if Q (often written P ⇔ Q or P ↔ Q or P iff Q)—this is simply an abbre-

viation for

(P implies Q) and (Q implies P);

• for all x, P (sometimes written ∀x. P or (∀x) P);

• there exists x, P (sometimes written ∃x. P or (∀x) P).

In this course, we shall often prove propositions of the form ∀x ∈ X .P(x) where P(x) is

a is a proposition depending on x, and X is a given set. Then to prove (that is, show

true) ∀x ∈ X .P(x), we choose a new variable,1 say a, and write down a proof of P(a).

Providing no assumptions are made about a (we sometimes say a is arbitrary) we can

conclude that ∀x ∈ X .P(x) is true. For example, P(x) might be odd(2∗ x + 1). Then

to prove ∀x ∈ N.odd(2∗ x + 1) we let n denote an arbitrary natural number, and prove

odd(2∗n+1) (exercise: do it!).

A.3 Sets

Definitions A.3.1 We assume that the idea of a set is understood, being an unordered

collection of distinct objects. A capital letter such as A or B or X or Y will often be used

to denote an arbitrary set. If a is any object in a set A, we say that a is an element of

A, and write a ∈ A for this. If a is not an element of A, we write a 6∈ A. The idea of

union A∪B, intersection A∩B, difference A\B, and powerset P (A) of sets should already

be known. We collect the definitions here:

Subset S ⊆ A
def
= ∀x (x ∈ S implies x ∈ A)

Union A∪B
def
= { x | x ∈ A or x ∈ B }

Intersection A∩B
def
= { x | x ∈ A and x ∈ B }

Difference A\B
def
= { x | x ∈ A and x 6∈ B }

Powerset P (A)
def
= { S | S ⊆ A }

Finite Powerset Pf in(A)
def
= { S | S ⊆ A and S is finite }

Recall that the empty set, ∅, is the set with no elements. Note that ∅ ⊆ A for any set A,

because x ∈ ∅ is always false. So ∅ ∈ P (A). We regard ∅ as a finite set. We shall also

use the following sets

1NOTE: Sometimes we do not choose a new variable, but work with the original, in this case x. This is
okay, providing one remembers the role that the original variable is playing when it is used in the proof.
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natural numbers N = {0,1,2,3, . . .}

integers Z = { . . . ,−2,−1,0,1,2, . . .}

Booleans B = {T,F}

Two sets A and B are equal, written A = B, if they have the same elements. So, for

example, {1,2} = {2,1}. Here, the critical point is whether an object is an element of

a set or not: if we write down the elements of a set, it is irrelevant what order they are

written down in. But we shall need a way of writing down “a set of objects” in which

the order is important.

To see this, think about the map references “1 along and 2 up” and “2 along and 1 up.”

These two references are certainly different, both involve the numbers 1 and 2, but we

cannot use the sets {1,2} and {2,1} as a mathematical notation for the map references

because the sets are equal. Thus we introduce the idea of a pair to model this. If A and

B are sets, with a ∈ A and b ∈ B, we shall write (a,b) for the pair of a and b. The crucial

property of pairs is that (a,b) and (a′,b′) are said to be equal iff a = a′ and b = b′. We

write

(a,b) = (a′,b′)

to indicate that the two pairs are indeed equal. We could write (1,2) and (2,1) for our

map references. Note that the definition of equality of pairs captures the exact property

required of map references. We can also consider n-tuples (a1, . . . ,an) and regard such

an n-tuple as equal to another n-tuple (a′1, . . . ,a
′
n) iff ai = a′i for each 1≤ i ≤ n. Note that

a pair is a 2-tuple.

The cartesian product of A and B, written2 A×B, is a set given by

A×B
def
= { (a,b) | a ∈ A and b ∈ B }.

For example,

{1,2}×{a,b,c}= {(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)}.

Examples A.3.2

(1) {1,2,3}∪{x,y}= {1,2,3,x,y}= {x,1,y,3,2}= . . . The written order of the elements

is irrelevant.

(2) {a,b}\{b}= {a}.

(3) A\A = ∅.

(4) P ({1,2}) = {{1,2},{1},{2},∅}.

(5) {a}×{b} = {(a,b)}.

(6) (x,y) = (2,100) iff x = 2 and y = 100.

2NOTE: In many programming languages, A×B is denoted by A∗B or even (A,B). The latter is used
in Haskell.
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A.4 Relations

Definitions A.4.1 Given sets A and B, a relation R between A and B is a subset R ⊆

A × B. Informally, R is the set whose elements are pairs (a,b) for which “a is in a

relationship to b”—see Examples A.4.3. Given a set A, a binary relation R on A is a

relation between A and itself. So, by definition, R is a subset of A×A.

Remark A.4.2 Note that a relation is a set: it is the set of all pairs for which the

first element of the pair is in a relationship to the second element of the pair. If R ⊆

A×B is a relation, it is convenient to write a R b instead of (a,b) ∈ R. So, for example,

is_the_father_of is a relation on the set Humans of humans, that is

is_the_father_of ⊆ Humans×Humans

and if (Ron,Roy) ∈ is_the_father_of then we can write instead

Ron is_the_father_of Roy.

Reading the latter statement corresponds much more closely to common parlance. Note

that if (a,b) 6∈ R then we write a 6R b for this.

Example A.4.3 Being strictly less than is a binary relation, written <, on the natural

numbers N. So < ⊆ N×N, and

< = {(0,1),(0,2),(0,3),(0,4) . . .,(1,2),(1,3) . . .,(2,3), . . .}.

Thus < is the set of pairs (m,n) for which m and n are natural numbers, and m is strictly

less than n. Being less than or equal to is also a binary relation on N, written ≤. We

have

≤ = {(0,0),(0,1),(0,2),(0,3), . . .,(1,1),(1,2), . . .}.

Definitions A.4.4 We will be interested in binary relations which satisfy certain impor-

tant properties. Let A be any set and R any binary relation on A. Then

(i) R is reflexive iff for all a ∈ A we have a R a;

(ii) R is symmetric iff for all a,b ∈ A, a R b implies b R a;

(iii) R is transitive iff for all a,b,c ∈ A, a R b and b R c implies a R c;

(iv) R is anti-symmetric iff for all a,b ∈ A, a R b and b R a implies a = b.

Examples A.4.5 Let A
def
= {α,β,γ} be a three element set, and recall the binary relations

< and ≤ on N from Example A.4.3.
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(1) R
def
= {(α,α),(β,β),(γ,γ),(α,γ)} is reflexive, but < is not reflexive.

(2) R
def
= {(α,β),(β,α),(γ,γ)} is symmetric, but ≤ is not.

(3) R
def
= {(α,β),(β,γ),(α,γ)} is transitive, as are < and ≤.

(4) R
def
= {(α,β),(β,γ),(α,γ)} is anti-symmetric. Both < and ≤ are anti-symmetric.

(5) Note that R in (1) is also transitive—what other properties hold of the other exam-

ples?

Motivation A.4.6 Given any set A, the binary relation of equality on A is reflexive,

symmetric and transitive. For if a,b,c ∈ A are any elements of A, a = a, if a = b then

b = a, and if a = b and b = c, then a = c. An equivalence relation is any binary relation

which enjoys these three properties. Informally, such a relation can be thought of as

behaving like “equality” or “being the same as”. Later, we will use equivalence relations

to define a notion of equality between programs; two programs will be related when

they have the same execution behaviours, but possibly different codes.

Definitions A.4.7 An equivalence relation on a set A, denoted by ∼, is any binary

relation on A which is reflexive, symmetric and transitive. Given any element a of A,

the equivalence class of a, denoted by a, is defined by

a
def
= { a′ | a′ ∈ A and a ∼ a′ }.

So the equivalence class of a is the set of all elements of A which are related to a by ∼.

Note that if x ∈ a then x = a because ∼ is an equivalence relation—check!! We call any

element x of a a representative of a, because the equivalence class of x equals that of a.

We also say that a is represented by any of its elements; in particular, a is represented

by a. We shall write A/∼ for the set of equivalence classes of elements of A, that is,

A/∼
def
= { a | a ∈ A }.

Example A.4.8 We can define an equivalence relation ∼ on the set Z of integers by

setting

∀x ∈ Z. ∀y ∈ Z x ∼ y iff x− y is even.

For example, 3∼ 5, 12∼ 14, but 100 6∼ 101. Examples of equivalence classes are:

1 = { . . . ,−5,−3,−1,1,3,5, . . .} and 4 = { . . . ,−4,−2,0,2,4,6,8, . . .}

Examples of representatives of 1 are −997, 31, 1, indeed any integer not divisible by 2.

Representatives of 4 are 4, −10000, −8 and so on. Note that Z/∼ is a two element set;

for example

Z/∼ = {1,2} = {31,4} = . . .
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Definitions A.4.9 Let R be a binary relation on a set A. Then there is a binary relation

R∗ on A which is defined by

∀a,b ∈ A. a R∗ b
def
= ∃ai ( a = a0 R a1 R a2 . . .an−1 R an = b) (n ≥ 0)

∀a,b ∈ A. a Rt b
def
= ∃ai ( a = a0 R a1 R a2 . . .an−1 R an = b) (n ≥ 1)

We call R∗ the reflexive, transitive closure of R. Note that if n = 0 then a = b. We call

Rt the transitive closure of R.

A.5 Functions

A.5.1 Total Functions

We define the set of total functions between sets A and B to be3

[A,B]tot
def
= { f ∈ P (A×B) | ∀a ∈ A,∃ a unique b ∈ B,(a,b) ∈ f }

We usually refer to a total function simply as a function. We write f : A → B for f ∈

[A,B]tot. If a ∈ A and f : A → B then f (a) denotes the unique b ∈ B for which (a,b) ∈ f .

If also g : B →C is a function, then there is a function denoted by g◦ f : A →C, which is

defined by (g◦ f )(a)
def
= g( f (a)) on each a ∈ A. We call g◦ f the composition of f and g.

Informally, g ◦ f is the function which first applies f and then applies g. The identity

function, written idA : A → A is the function defined by idA(a)
def
= a on each a ∈ A.

A.5.2 Partial Functions

We define the set of partial functions between sets A and B to be

[A,B]par
def
=

{ f ∈ P (A×B) | ∀a ∈ A,∀b,b′ ∈ B,((a,b) ∈ f and (a,b′) ∈ f ) implies b = b′ }.

We write f : A⇀B to mean that f ∈ [A,B]par. If a ∈ A and f : A⇀B either there exists a

unique b ∈ B for which (a,b) ∈ f , or such a b does not exist. In the former case we say

that “ f (a) is defined” and in this case f (a) denotes the unique b. In the latter case we

say that “ f (a) is undefined”. The subset of A on which f is defined is called the domain

of definition of f . If this is finite, say {a1, . . . ,an}, and f (ai) = bi, then we sometimes

write

f = 〈a1 7→ b1, . . . ,an 7→ bn〉

3If Φ(x) is a proposition involving x, then ∃ a unique x.Φ(x) abbreviates

(∃x.Φ(x)) and (∀x,x′.Φ(x) and Φ(x′) implies x = x′)
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Note that ∅ ∈ [A,B]par satisfies the definition of a partial function, so ∅ : A⇀B. We say

∅ is the totally undefined partial function between A and B—why is this?
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Abstract Syntax and Rule Induction

B.1 Inductively Defined Sets

B.1.1 Abstract Syntax Trees

Motivation B.1.1 Consider conditional expressions. A typical example is

if true then 2 else 3

which will be written as a text string in a program file. However, a computer must

work out that such a string denotes a conditional which is built out of three pieces

of data, namely the Boolean and the two numbers. In a real language, it is the job

of the compiler to extract such information out of textual strings, usually during the

early phases of compilation, namely lexing and parsing. Crudely speaking the compiler

converts the textual (program) string into a parse tree which makes this information

explicit (see examples below). We shall be looking at simple compilation later on, but

for the time being we want to ignore the process of parsing, and write down programs

directly as parse trees. It would be messy to always draw pictures of such trees—thus we

• develop a simple notation for parse trees, which cuts out the drawing but is awk-

ward to read; and then

• agree on a way to make the notation more readable—we call this syntactic sugar.

Let us look at an example where l denotes a list. Here is the readable (sugared) nota-

tion:

if elist(l) then 0 else ( hd(l)+ sum(tl(l)))

It has the form

if B then E1 else E2

where, for example, B is elist(l). The conditional (if-then-else) expression requires three

arguments, B, E1 and E2, and to make this clear it is helpful to write it as

cond(elist(l) , 0 , hd(l)+ sum(tl(l))) (∗)

and think of the conditional as a constructor which acts on three arguments, to “con-

struct” a new program (you might like to think of a constructor as a function). Now we
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look at a sub-part of the program body, hd(l)+ sum(tl(l)). We can think of + as a con-

structor which acts on two arguments, and to make this visually clear, it is convenient

to write the latter expression as

+(hd(l) , sum(tl(l))).

Finally, looking at one of the sub-parts of this expression, namely hd(l), we can think of

hd(l) as a constructor hd acting on a single argument, l.

Definitions B.1.2 Let us make this a little clearer. We shall adopt the following nota-

tion for finite trees: If T1, T2, T3 and so on to Tn is a (finite) sequence of finite trees, then

we shall write C(T1,T2,T3, . . . ,Tn) for the finite tree which has the form

C

T1
� T2

�

T3

�

. . . Tn

-

Each Ti is itself of the form C′(T ′
1,T

′
2,T

′
3, . . . ,T

′
m). We call C a constructor and say that

C takes n arguments. Any constructor which takes 0 arguments is a leaf node. We call

C the root node of the tree. The roots of the trees Ti are called the children of C. The

constructors are labels for the nodes of the tree. Each of the Ti above is a subtree of the

whole tree—in particular, any leaf node is a subtree. Leaf nodes do not have children.

A proper subtree T ′ of a tree T is any subtree T ′ such that T ′ 6= T .

If we say that cond is a constructor which takes three arguments, + a constructor which

takes two arguments, and so on, then (∗) denotes the tree

Note that in this (finite) tree, we regard each node as a constructor. To do this, we can

think of both l and 0 as constructors which take no arguments!!. These form the leaves

of the tree. We call the root of the tree the outermost constructor, and refer to trees

of this kind as abstract syntax trees. We often refer to an abstract syntax tree by its

outermost constructor—the tree above is a “conditional”.

B.1.2 Rule Sets

Definitions B.1.3 Let us first introduce some notation. Consider

statement 1 implies statement 2.
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It is sometimes convenient to write this as

statement 1

statement 2

Consider

statement 1 iff statement 2.

It is sometimes convenient to write this as

statement 1
=========
statement 2

For example, we can write “x ≤ 4 implies x ≤ 6” as

x ≤ 4

x ≤ 6

The usefulness of this notation will soon become clear.

Motivation B.1.4 We are going to introduce the notion of an inductively defined set.

Such a set is one whose elements are defined using a special technique known as in-

duction. Before we can do this, we need to define things called rules. We will give the

definitions, and then some examples. We will see that many sets which arise in the

description of programming languages can be defined inductively.

Definitions B.1.5 Let us fix a set U. A rule R is a pair (H,c) where H ⊆ U is any finite

set, and c ∈ U is any element. Note that H might be ∅, in which case we say that R
is a base rule. If H is non-empty we say R is an inductive rule. In the case that H is

non-empty we might write H = {h1, . . . ,hk } where 1≤ k. We can write down a base rule

R = (∅,c) using the following notation

Base

(R)
c

and an inductive rule R = (H,c) = ({h1, . . . ,hk },c) as

Inductive

h1 h2 . . . hk
(R)

c



B.1. Inductively Defined Sets 65

Given a set U and a set R of rules based on U, a deduction is a finite tree with nodes

labelled by elements of U such that

• each leaf node label c arises as a base rule (∅,c) ∈ R

• for any non-leaf node label c, if H is the set of children of c then (H,c) ∈ R is an

inductive rule.

We then say that the set inductively defined by R consists of those elements u ∈ U

which have a deduction with root node labelled by u.

Examples B.1.6

(1) Let U be the set {u1,u2,u3,u4,u5,u6} where the ui are six fixed elements of U, and

let R be the set of rules

{ R1 = (∅,u1),R2 = (∅,u3),R3 = ({u1,u3},u4),R4 = ({u1,u3,u4},u5),R5 = ({u2},u4) }

Then a deduction for u5 is given by the tree

which is more normally written up-side down and in the following style

R1
u1

R2
u3

R1
u1

R2
u3

R3
u4

R4
u5

(2) A set R of rules for defining the set E ⊆ N of even numbers is R = {R1,R2} where

(R1)
0

e
(R2)

e+2

Note that rule R2 is, strictly speaking, a rule schema, that is e is acting as a variable.

There is a “rule” for each instantiation of e. A deduction of 6 is given by

(R1)
0

(R2)
0+2

(R2)
2+2

(R2)
4+2



66 Appendix B. Abstract Syntax and Rule Induction

(3) The set I of integer multiples of 3 can be inductively defined by a set of rules R =

{A,B,C} where

(A)
0

i
(B)

i+3

i
(C)

i−3
and informally you should think of the symbol i as a variable, that is, (B) and (C) are

rule schemas.

(4) Suppose that Σ is any set, which we think of as an alphabet. Each element l of Σ is

called a letter. We inductively define the set Σ∗ of words over the alphabet Σ by the set

of rules R
def
= {1,2} (so 1 and 2 are just labels for rules!) given by1

[l ∈ Σ] (1)
l

w w′

(2)
ww′

Suppose that Σ def
= {a,b,c}. Then a deduction tree for abac is

(1)
a

(1)
b

(2)
ab

(1)
a

(1)
c

(2)

(2)
abac

(5) We can use sets of rules to define the language of propositional logic. Let Var be a

set of propositional variables with typical elements written P, Q or R. Then the set

Prpn of propositions of propositional logic is inductively defined by the rules

[P ∈ Var] (A)
P

φ ψ
(∧)

φ∧ψ

φ ψ
(∨)

φ∨ψ

φ ψ
(→)

φ → ψ

φ
(¬)

¬φ

Exercise: Give a deduction for ((P → Q)∨ (Q → P))∧R.

B.2 Principles of Induction

Motivation B.2.1 In this section we see how inductive techniques of proof which the

reader has met before fit into the framework of inductively defined sets. We shall write

φ(x) to denote a proposition about x. For example, if φ(x)
def
= x ≥ 2, then φ(3) is true and

φ(0) is false. If φ(a) is true then we often say that φ(a) holds.

Definitions B.2.2 We present in Figure B.1 a useful principle called Rule Induction. It

will be used throughout the course to prove facts about programming languages.

1In rule (1), [l ∈ Σ] is called a side condition. It means that in reading the rule, l can be any element
of Σ.
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Rule Induction

Let I be inductively defined by a set of rules R . Suppose we wish to show
that a proposition φ(i) holds for all elements i ∈ I, that is, we wish to prove

∀i ∈ I. φ(i).

Then all we need to do is

• for every base rule b ∈ R prove that φ(b) holds; and

• for every inductive rule h1...hk
c ∈ R prove that whenever hi ∈ I,

(φ(h1) and φ(h2) and . . . and φ(hk)) implies φ(c)

We call the propositions φ(h j) inductive hypotheses. We refer to carrying
out the bulleted (•) tasks as “verifying property closure”.

Figure B.1: Rule Induction

Motivation B.2.3 The Principle of Mathematical Induction arises as a special case of

Rule Induction. We can regard the set N as inductively defined by the rules

(zero)
0

n
(add1)

n+1

Suppose we wish to show that φ(n) holds for all n ∈ N, that is ∀n ∈ N.φ(n). According to

Rule Induction, we need to verify

• property closure for zero, that is φ(0); and

• property closure for add1, that is for every natural number n, φ(n) implies φ(n + 1),

that is ∀n ∈ N. (φ(n) implies φ(n+1))

and this amounts to precisely what one needs to verify for Mathematical Induction.

Examples B.2.4

(1) We can define sets of abstract syntax trees inductively. Let us just give an example.

Let a set of constructors be Z∪{+,−,<}. The integers will label leaf nodes, and +, −

and < will take two arguments written with an infix notation. The set of abstract syntax

trees T inductively defined by these constructors is given by

[z ∈ Z]
z

T1 T2

T1 +T2

T1 T2

T1−T2

T1 T2

T1 < T2
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Note that the base rules correspond to leaf nodes. The (parse) tree

<

−
�

2
-

55
�

7
-

is an element of T . In sugared notation it is written (55−7) < 2. Show this by giving a

deduction tree. Do not get confused by the fact that the elements of T are defined

by deduction trees—but each element is itself a parse tree!

55−7 is a subtree of (55−7) < 2, as are the leaves 55, 7 and 2. If abstract syntax trees

are used to describe programming language constructs, we often call them program

expressions, and refer to subexpressions.

Remark B.2.5 You will notice that the BNF grammar

T ::= n | b | T +T | T −T | T < T

“defines” the same set of abstract syntax trees (assuming that +, − and < are regarded

as constructors). In this module we will regard such BNF grammars as short hand for

an inductive definition. Given a BNF grammar, there is a corresponding set of rules.

The principle of structural induction is defined to be rule induction as applied to syntax

trees. Make sure you understand that if T is an inductively defined set of syntax trees,

to prove ∀T ∈ T .φ(T) we have to prove:

• φ(L) for each leaf node L; and

• assuming φ(T1) and . . . and φ(Tn) prove φ(C(T1, . . . ,Tn)) for each constructor C and

all trees Ti ∈ T .

(2) Let Σ = {a,b,c} and let a set2 S of words be defined inductively by the rules

(1)
b

(2)
c

w
(3)

aaw

w w′

(4)
ww′

Suppose that we wish to prove that every word in S has an even number of occurrences

of a. Write #(w) for the number of occurrences of a in w, and

φ(w)
def
= #(w) is even.

We prove that ∀w ∈ S.φ(w) holds, using Rule Induction; thus we need to verify property

closure for each of the rules (1) to (4):

2Note that S ⊆ Σ∗. So any element of S is a word, but there are some words based on the alphabet Σ
which are not in S.
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(Rule (1)): #(b) = 0, even. So φ(b) holds.

(Rule (2)): #(c) = 0, even. So φ(c) holds.

(Rule (3)): Suppose that w ∈ S is any element and φ(w) holds, that is #(w) is even (this

is the inductive hypothesis). Then #(aaw) = 2+#(w) which is even, so φ(aaw) holds.

(Rule (4)): Suppose w,w′ ∈ S are any elements and #(w) and #(w′) are even (these are

the inductive hypotheses). Then so too is #(ww′) = #(w)+#(w′).

Thus by Rule Induction we are done: we have ∀w ∈ S.φ(w).

B.3 Recursively Defined Functions

Definitions B.3.1 Let I be inductively defined by a set of rules R , and A any set. A

function f : I → A can be defined by

• specifying an element f (b) ∈ A for every base rule b ∈ R ; and

• specifying f (c) ∈ A in terms of f (h1) ∈ A and f (h2) ∈ A .... and f (hk) ∈ A for every

inductive rule h1...,hk
c ∈ R ,

provided that each instance of a rule in R introduces a different element of I—why

do we need this condition? When a function is defined in this way, it is said to be

recursively defined.

Examples B.3.2

(1) The factorial function F:N → N is usually defined recursively. We set

• F(0)
def
= 1 and

• ∀n ∈ N.F(n+1)
def
= (n+1)∗F(n).

Thus F(3) = (2+1) ∗F(2) = 3∗2∗F(1) = 3∗2∗1∗F(0) = 3∗2∗1∗1= 6. Are there are

brackets missing from the previous calculation? If so, insert them.
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Summary of Rules

[any n ∈ Z] : : INT

n : : int
: : TRUE

T : : bool
: : FALSE

F : : bool

[l : : int ∈ L] : : INTLOC

l : : int
[l : : bool ∈ L] : : BOOLLOC

l : : bool

P1 : : int P2 : : int
[ iop ∈ IOpr] : : IOP

P1 iop P2 : : int

P1 : : int P2 : : int
[ bop ∈ BOpr] : : BOP

P1 bop P2 : : bool

: : SKIP

skip : : cmd

l : : σ P : : σ
[σ is int or bool] : : ASS

l :=P : : cmd

P1 : : cmd P2 : : cmd
: : SEQ

P1 ; P2 : : cmd

P1 : : bool P2 : : cmd P3 : : cmd
: : COND

if P1 then P2 else P3 : : cmd

P1 : : bool P2 : : cmd
: : LOOP

while P1 do P2 : : cmd
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[ provided that s(l) is defined ] LOC

(l , s) (s(l) , s)

(P1 , s) (P2 , s)
 OP1

(P1 op P , s) (P2 op P , s)

(P1 , s) (P2 , s)
 OP2

(n op P1 , s) (n op P2 , s)

 OP3
(n1 op n2 , s) (n1 op n2 , s)

(P1 , s) (P2 , s)
 ASS1

(l :=P1 , s) (l :=P2 , s)

(P1 , s) (P2 , s)
 ASS2

(l :=P1 , s) (l :=P2 , s)

 ASS3
(l :=c , s) (skip , s{l 7→c})

(P1 , s1) (P2 , s2)
 SEQ1

(P1 ; P , s1) (P2 ; P , s2)

 SEQ2
(skip ; P , s) (P , s)

(P1 , s) (P2 , s)
 COND1

(if P1 then P1 else P2 , s) (if P2 then P1 else P2 , s)

 COND2
(if T then P1 else P2 , s) (P1 , s)

 COND3
(if F then P1 else P2 , s) (P2 , s)

 LOOP

(while P do P , s) (if P then (P ; while P do P) else skip , s)
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[ provided l ∈ domain of s]⇓LOC

(l , s) ⇓ (s(l) , s)
⇓CONST

(c , s) ⇓ (c , s)

(P1 , s) ⇓ (n1 , s) (P2 , s) ⇓ (n2 , s)
⇓OP1

(P1 iop P2 , s) ⇓ (n1 iop n2 , s)

(P1 , s) ⇓ (n1 , s) (P2 , s) ⇓ (n2 , s)
⇓OP2

(P1 bop P2 , s) ⇓ (n1 bop n2 , s)

⇓SKIP

(skip , s) ⇓ (skip , s)

(P , s) ⇓ (n , s)
⇓ASS1

(l :=P , s) ⇓ (skip , s{l 7→n})

(P , s) ⇓ (b , s)
⇓ASS2

(l :=P , s) ⇓ (skip , s{l 7→b})

(P1 , s1) ⇓ (skip , s2) (P2 , s2) ⇓ (skip , s3)
⇓SEQ

(P1 ; P2 , s1) ⇓ (skip , s3)

(P , s1) ⇓ (T , s1) (P1 , s1) ⇓ (skip , s2)
⇓COND1

(if P then P1 else P2 , s1) ⇓ (skip , s2)

(P , s1) ⇓ (F , s1) (P2 , s1) ⇓ (skip , s2)
⇓COND2

(if P then P1 else P2 , s1) ⇓ (skip , s2)

(P , s1) ⇓ (T , s1) (P , s1) ⇓ (skip , s2) (while P do P , s2) ⇓ (skip , s3)
⇓LOOP1

(while P do P , s1) ⇓ (skip , s3)

(P , s) ⇓ (F , s)
⇓LOOP2

(while P do P , s) ⇓ (skip , s)
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( where x : : σ ∈ Γ) : : VAR

Γ ⊢ x : : σ
: : INT

Γ ⊢ n : : int

: : TRUE

Γ ⊢ T : : bool
: : FALSE

Γ ⊢ F : : bool

Γ ⊢ E1 : : int Γ ⊢ E2 : : int
: : OP1

Γ ⊢ E1 iop E2 : : int

Γ ⊢ E1 : : int Γ ⊢ E2 : : int
: : OP2

Γ ⊢ E1 bop E2 : : bool

Γ ⊢ E1 : : bool Γ ⊢ E2 : : σ Γ ⊢ E3 : : σ
: : COND

Γ ⊢ if E1 then E2 else E3 : : σ

Γ ⊢ E1 : : σ2 → σ1 Γ ⊢ E2 : : σ2
: : AP

Γ ⊢ E1 E2 : : σ1

Γ ⊢ E1 : : σ1 Γ ⊢ E2 : : σ2
: : PAIR

Γ ⊢ (E1,E2) : : (σ1,σ2)

Γ ⊢ E : : (σ1,σ2)
: : FST

Γ ⊢ fst(E) : : σ1

Γ ⊢ E : : (σ1,σ2)
: : SND

Γ ⊢ snd(E) : : σ2

( where I : : ι ∈ I ) : : IDR

Γ ⊢ I : : ι

: : NIL

Γ ⊢ nilσ : : [σ]

Γ ⊢ E1 : : σ Γ ⊢ E2 : : [σ]
: : CONS

Γ ⊢ E1 : E2 : : [σ]

Γ ⊢ E : : [σ]
: : HD

Γ ⊢ hd(E) : : σ

Γ ⊢ E : : [σ]
: : TL

Γ ⊢ tl(E) : : [σ]

Γ ⊢ E : : [σ]
: : ELIST

Γ ⊢ elist(E) : : bool

Γ ⊢ E1 : : σ Γ ⊢ E2[E1/x] : : σ′

: : LET

Γ ⊢ let x = E1 in E2 : : σ′

Γ,x : : σ ⊢ E : : τ
: : ABS

Γ ⊢ fnx.E : : σ → τ
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⇓e
VAL

V ⇓e V

P1 ⇓
e m P2 ⇓

e n
⇓e

OP

P1 op P2 ⇓
e m op n

P1 ⇓
e T P2 ⇓

e V
⇓e

COND1
if P1 then P2 else P3 ⇓

e V

P1 ⇓
e F P3 ⇓

e V
⇓e

COND2
if P1 then P2 else P3 ⇓

e V

P1 ⇓
e V1 P2 ⇓

e V2
⇓e

PAIR

(P1,P2) ⇓
e (V1,V2)

P ⇓e (V1,V2)
⇓e

FST

fst(P) ⇓e V1

P ⇓e (V1,V2)
⇓e

SND

snd(P) ⇓e V2

{

P1 ⇓
e F ~V P2 ⇓

e V2 F ~V V2 ⇓
e V

where either P1 or P2 is not a value
⇓e

AP

P1 P2 ⇓
e V

EF[V1, . . . ,Vk j/x1, . . . ,xk] ⇓
e V

[F~x = EF declared in decI ] ⇓e
FID

FV1 . . .Vk ⇓
e V

EK ⇓e V
[K = EK declared in decI ] ⇓e

CID

K ⇓e V

P ⇓e V : V ′

⇓e
HD

hd(P) ⇓e V

P ⇓e V : V ′

⇓e
TL

tl(P) ⇓e V ′

P1 ⇓
e V P2 ⇓

e V ′

⇓e
CONS

P1 : P2 ⇓
e V : V ′

P ⇓e nilσ
⇓e

ELIST1
elist(P) ⇓e T

P ⇓e V : V ′

⇓e
ELIST2

elist(P) ⇓e F

P1 ⇓
e fnx.E P2 ⇓

e V ′ E[V ′/x] ⇓e V
⇓e

AA

P1 P2 ⇓
e V

E1 ⇓
e V1 E2[V1/x] ⇓e V

⇓e
LET

let x = E1 in E2 ⇓
e V
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⇓l
VAL

V ⇓l V

P1 ⇓
l m P2 ⇓

l n
⇓l

OP

P1 op P2 ⇓
l m op n

P1 ⇓
l T P2 ⇓

l V
⇓l

COND1
if P1 then P2 else P3 ⇓

l V

P1 ⇓
l F P3 ⇓

l V
⇓l

COND2
if P1 then P2 else P3 ⇓

l V

P ⇓l (P1,P2) P1 ⇓
l V

⇓l
FST

fst(P) ⇓l V

P ⇓l (P1,P2) P2 ⇓
l V

⇓l
SND

snd(P) ⇓l V

{

P1 ⇓
l F~P F~P P2 ⇓

l V

where either P1 or P2 is not a value
⇓l

AP

P1 P2 ⇓
l V

EF[P1, . . . ,Pk/x1, . . . ,xk] ⇓
l V

[F~x = EF declared in decI ] ⇓l
FID

FP1 . . .Pk ⇓
l V

EK ⇓l V
[K = EK declared in decI ] ⇓l

CID

K ⇓l V

P1 ⇓
l P2 : P3 P2 ⇓

l V
⇓l

HD

hd(P1) ⇓
l V

P1 ⇓
l P2 : P3 P3 ⇓

l V
⇓l

TL

tl(P1) ⇓
l V

P ⇓l nilσ
⇓l

ELIST1
elist(P) ⇓l T

P1 ⇓
l P2 : P3

⇓l
ELIST2

elist(P1) ⇓
l F
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Exercises

Note: Some of these exercises refer to concepts taught in courses other than these MGS

notes.

1. Give a careful definition of a state s for the language IMP .

2. Suppose that L is any location environment. Say what it means for a state s to be

sensible for L .

3. Fix a given location environment L . Suppose that (P , s) (P′ , s′) is any transition,

that P : : σ is any type assignment, and that s is sensible for L . You are asked to

show some of the steps involved in verifying that P′ : : σ and that s′ is sensible for

L .

(a) Complete the following precise statement of what needs to be shown, by

saying what ?, ??, and ??? are

∀ (P , s) (P′ , s′) ∀ t. ((P : :?? and s ?) implies (P′ : :?? and ???)

(b) Write down the induction hypotheses and the conclusion to be proved, for

each of the rules OP1, SEQ1 and LOOP.

(c) Hence verify property closure for each of these three rules, giving complete

and thorough details.

1. Some genuine IMP program expressions appear below, written in a sugared syn-

tax. For each one, draw the corresponding abstract syntax tree, where you should

make up suitable labels for the nodes.

(a) 2∗ (3−3)∗ (2∗5+8)

(b) while l ≤ 1 do (if l = 1 then l′ :=1 else l′ := l′ ∗ l ; l′ :=4 ; l := l+1)

2. Let us write P for while l > 5 do P′ where P′ is the command

if l′ = 0 then l := l−1 else skip

Suppose that s
def
= 〈l 7→ 7, l′ 7→ 0〉 is a state. Give a deduction tree for the evaluation

(P ; l′′ :=7, s) ⇓ (skip , s{l 7→5}{l′′ 7→7})
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3. Consider the following grammar of Boolean expressions where ∧ denotes “and”

and ∨ denotes “or”, and b ∈ B

P ::= b | B∧B | B∨B

A language designer wants to explain to a programmer what sort of run time be-

haviour these Boolean expressions should have, by defining an evaluation relation

of the form B ⇓ b. Informally, in the evaluation of any abstract syntax tree B∧B′

or B∨B′, the right subtree should be considered first. According to whether B′

evaluates to T or F, the final result should be returned if possible. For example

the deduction tree for (F∨T)∧F ⇓ F should not involve the evaluation of F∨T.

(a) Write down rules which define such an evaluation semantics.

(b) Give a deduction of

(T ∧ (F∨T))∧ ((T ∧F)∨ (F∧F)) ⇓ F

1. The function [[−]]:Exp→ CSScodes takes IMP program expressions and turns them

into CSS code. For example, [[c]]
def
= PUSH(c). Write down recursive clauses for

locations, arithmetic expressions, assignment, and sequencing.

2. Write down the CSS re-writes for OPerators, STOre, BRanch and LOOP instruc-

tions.

3. Suppose that the CSS machine is up-dated to run repeat loops. Such loops can be

compiled as follows:

[[repeat P1 until P2]]
def
= [[P1]] : LOOP([[P2]] : δ, [[P1]])

where δ is BR(PUSH(F),PUSH(T)). Give a short, informal explanation of the stan-

dard run time semantics of a repeat loop, using this to justify, in terms of CSS

re-writes, the compilation given. Then write down the sequence of CSS re-writes

starting at

[[repeat l :=4∗ l until l > 20]] − 〈l 7→ 6〉

4. Use the SECD machine to calculate (fny.(fnx.x+ y)7) 6 giving all re-writes.

1. Here is a grammar of value expressions for the language FUN
e

V ::= c | nilσ | (V,V) | F ~V | V : V

Give three different, illustrative, concrete examples of value expressions for the

“function” and “pair” parts of the grammar. In doing so, you should explain in

detail the meaning of the notation F ~V by using an example of F with a maximum

of k = 3 inputs.
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2. Give the grammar of value expressions for the language FUN
l . Give three dif-

ferent, illustrative, concrete examples of value expressions for the “function” and

“list” parts of the grammar. Explain in general detail, and not by example, the

meaning of the notation F~P.

3. Do all value expressions in FUN
e type check? If not, illustrate this with an exam-

ple.

4. Given the declaration of a merge function

M l l′ = if hd(l) ≤ hd(l′) then hd(l) : (M tl(l) l′) else hd(l′) : (M l tl(l′))

give a deduction of M (5 : 7 : nil) (2 : 3 : nil) ⇓e 2 : 3 : 5 : 7 : nil, where you may assume

that the branches close off with M Vnil ⇓e V for any list value V .

5. The expressions hd(l) and hd(l′) occur twice in the declaration of M. As such, they

are evaluated twice in each recursive call to M.

(a) Write out a complete and correct declaration of M which deals with the cases

when l or l′ are empty.

(b) Modify your new declaration of M so that each list l and l′ will be evaluated

at most once during each call to M.

Recall that in IMP , the reflexive, transitive closure  ∗ is equal to ⇓. One can give

a transition semantics to FUN
e , so that finite sequences of transitions correspond to

evaluations, in the same way.

1. Write down rules, with hypotheses and conclusion of the form P P′, which give

a transition semantics for FUN
e expressions of the form P op P′ where op is an

arithmetic operator.

2. Recall that abstractions of the form fnv.E are values. In a transition semantics, one

should have a sequence of transitions from a (function) application P P′, resulting

in (fnv.E) P′, and then further transitions to (fnv.E) V ′. The function abstraction

is called, and then execution continues. Give three rules which provide an eager

transition semantics for such P P′ programs.

3. Use your rules to give the full transition sequence of ((fnx.fny.x+y) 2) (7+1). Give

a deduction tree for the second transition only.

4. In FUN
e , we would hope that the transition semantics, and evaluation semantics,

coincide. Certainly we would hope that

∀P ⇓e V P ∗ V

Give part of the verification of this fact, by proving property closure for the rule

⇓e
AP, giving full and complete details.
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This question introduces a simple imperative language of integer and Boolean expres-

sions with local declarations. Let A:Var → Loc be a finite partial function from a set Var
of variables to a set Loc of locations. We call any such function A an allocator; it allo-

cates (memory) locations to program variables. A finite partial function s:Loc →Z∪B is

a state. The standard notations A{v7→l} and s{l 7→c} denote updated allocators and states.

Let σ range over the types int and bool. Consider a set of programme expressions induc-

tively defined by four rules, where ∧ is the logical “AND” function:

[v ∈ Var]
v

[c ∈ Z∪B]
c

P1 P2
op∈ {+,∧,≤}

P1 op P2

P1 P2

let v = P1 in P2

(†)

The idea of let v = P1 in P2 is that it provides a “local” value of v in P2. The variable v
is a scoping variable, and its scope is P2. Thus free occurrences of v in P2 are bound in

let v = P1 in P2. A context Γ is a set of typed variables, typically written

Γ = x1 : : σ1, . . . ,xn : : σn.

A type assignment for the language looks like Γ ⊢ P : : σ. An example is

x : : bool,y : : bool ⊢ x∧ y : : bool

A configuration (P , (A,s)) consists of a program expression, together with an allocator

and a state. A is used to allocate locations to any free variables which appear in P. An

example is

(x+(let x = 4 in x+ y) , (〈x 7→ l,y 7→ l′〉,〈l 7→ 2, l′ 7→ 7〉)) (††)

1. Write fvar(P) for the set of free variables in P. Give a recursive definition of

fvar(P). Use your definition to calculate the set fvar(x +(let x = 4 in x + y)) giving

your steps.

2. (a) Write down some rules which inductively define an appropriate type assign-

ment system for this language.

(b) Let Γ def
= n : : int,m : : int,x : : bool,y : : bool. Use your rules to give a deduction

of Γ ⊢ let v = (m ≤ n) in (v∧ x) : : bool.

3. (a) A deterministic evaluation relation (P , (A,s)) ⇓ c can be inductively defined

by four rules. For the example (††) above, c = 13. In order to evaluate the

configuration (let v = P1 in P2 , (A,s)), one evaluates P1 with (A,s) which may

give a constant c1. Then one chooses a fresh location l̂ which does not appear

in the domain of definition of s. P2 is evaluated in (A′,s′) in which A′ is A with

v updated to l̂, and s′ is s with l̂ updated to c1. Write down four rules which

define the evaluation relation, making use of “update” notation.
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(b) Let A
def
= 〈v 7→ l,m 7→ l′,n 7→ l′′〉 and s

def
= 〈l 7→ T, l′ 7→ 7, l′′ 7→ 1〉. Use your rules

to give a deduction tree for

(v∧ (let v = (m ≤ n) in (v∧T)) , (A,s)) ⇓ F

This question concerns the language IMP and the CSS machine. You are reminded that

IMP does not have Boolean negation expressions not(B), and that the CSS machine does

not have any form of Boolean negation in the standard instruction set.

1. Write down grammars which define the CSS instructions, codes and stacks.

2. Define the function [[−]]:Exp → CSScodes which takes an IMP program expres-

sion and turns it into CSS code, by writing down recursive clauses for constants,

locations, arithmetic expressions, assignment, skip, sequencing, conditionals and

while loops.

3. Write down the (four) CSS re-writes for STOre, BRanch and LOOP instructions.

4. A do P while P loop repeatedly computes P and then P, until P computes to F when

execution stops. Show how to compile such loops into the standard CSS instruction

set. Hence write down the complete sequence of re-writes starting at

[[do l := l∗2 while l = 20]] − 〈l 7→ 20〉

Hint: Write P and P for the Boolean and command, and only write out [[P]] and [[P]]

in full when the individual instructions are required.

5. A repeat P until P loop repeatedly computes P and then P, until P computes to T
when execution stops. Show how to compile such loops into the standard CSS

instruction set. Hence write down the sequence of re-writes starting at

[[repeat l := l∗2 until l = 20]] − 〈l 7→ 10〉

6. Give a precise statement saying what it means for the CSS machine to be correct for

the IMP evaluation semantics. You are not required to give a proof of correctness.

1. What is a finite transition sequence for an IMP configuration (P , s)? Write down

an example of a configuration which has four transitions, and then write down the

complete transition sequence. You are not asked to give any deductions of individual

transitions.
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2. Give an example of a configuration with an infinite transition sequence, and write

down enough transitions to demonstrate that the sequence is infinite. You are not

asked to give any deductions of individual transitions.

3. Write down the complete transition sequence for the configuration (P , s) where

s
def
= 〈l 7→ 8, l′′ 7→ 1〉

P
def
= if l ≤ 4 then l :=3 else (skip ; l′ :=4+ l′′)

4. When is a configuration terminal? When is a configuration stuck? Hence state

precisely when a configuration (P , s) is not stuck.

For each of the following, say whether or not the configuration is stuck. Justify

your answers formally by considering deduction trees for transitions.

(a) (T , s)

(b) (T +4, s)

(c) (4+T +5, s)

(d) (4+5+T , s)

(e) (l+ l′+5, 〈l 7→ 1〉)

(f) (l+ l′+5, 〈l′ 7→ 1〉)

5. Suppose that we are given a fixed location environment L , and a fixed state s for

which every location l in L is in the domain of definition of s.

If P is any IMP expression, σ is any IMP type, and P : : σ is any valid type as-

signment, then (P , s) is not stuck. This can be proved by a Rule Induction over

type assignments. Write down the exact statement to be proved by induction, and

demonstrate part of the proof by showing Property Closure for the rules : : LOC,

: : LOOP and : : IOP.

Hint: You may assume that, for any transition (Q , r) (Q′ , r′), if Q : : int, then

r = r′ and Q′ : : int.

1. Suppose that Z : : [int] → [int] → [(int, int)] and that

Zxy = if elist(x) then nil else ((hd(x),hd(y)) : (Z(tl(x))(tl(y))))

The idea is that the function Z takes two lists of integers of the same length,

and produces the list of pairs of integers, with each pair consisting of consecutive

elements from the two lists. Show that

Z(3 : nil)(7 : nil) ⇓e (3,7) : nil
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2. A professor, who delights in making simple things difficult, wants to code the

factorial function in a complicated way. He writes down the identifier environment

I
C : : int → int → int → int

F : : int → int

and the function declaration decI

C x y z = if x = 1 then y else z

F x = C x 1 (x∗F (x−1))

and says that the FUN
e program

decI in F n

will compute the factorial of n for each integer n ≥ 1. A student claims that this is

not true, but that F n will evaluate to the factorial of n in FUN
l .

(a) The student’s claim that F n⇓l n! where n! is the factorial of n is correct. Show

that this is plausible by giving the deduction tree of F 2⇓l 2, and explaining

briefly what the tree will look like for a general integer n ≥ 1.

(b) Is the student’s claim, that the professor’s definition of factorial does not

work, true or false? Explain your answer in detail. Hint: consider the deduc-

tion tree of F 2⇓e 2.

1. Explain the idea of eager evaluation in FUN
e by giving the type and declaration

of a function G for which G 7 (2∗3) (4∗5) type checks, and explaining informally

the stages involved in the evaluation of G 7 (2∗3) (4∗5).

2. Explain the idea of lazy evalution in FUN
l in a similar way.

3. (a) Give the formal definition of identifier type. You should explain what con-

stant and function identifiers are, and what the phrase “k is the maximum

number of inputs taken by F” means. Any non-base types referred to in your

answer should be defined by a grammar.

(b) Give the formal grammar which specifies value expressions in FUN
e , ex-

plaining your notation in detail.

(c) Use the function G you declared above to give three examples of values in

FUN
e of the form G ~V, with a different number of inputs in each case. Ex-

plain informally, in terms of the evaluation semantics, why your examples

are indeed values.

(d) Are constants values? Explain your answer informally.
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APP, 40

Av , 40

BCst, 1

B, 1

BOpr, 1

bop, 2

BR(C,C), 9

BR(P1,P2), 13

c, 25

�cloF , 39

cloF , 41

C, 40

c, 2

Γ, 27

Γ ⊢ E : : σ, 27

ΓI j , 31

decI , 30

D, 40

E1 E2, 25

E1 bop E2, 25

E1 : E2, 25

E1 iop E2, 25

EI j , 31

elist(E), 25

E, 40

Exp, 2

F, 25

FETCH(l), 9

hd(E), 25

ι, 27

I , 27

if E1 then E2 else E3, 25

if then else , 2

ICst, 1

IOpr, 1

iop, 2

K, 25

k, 50

LOOP(C,C), 9

l, 2

Loc, 1

L , 3

nilσ, 25

OP(op), 9

op, 3

[A,B]par, 60

(P , s), 6

P ⇓e V, 33

P : : σ, 31

P : : σ, 4

PUSH(c), 9

R∗ , 60

Rt , 60

S, 39

SKIP, 9

skip, 2

S, 13

s, 5

s{l 7→c}, 6

STO(l), 9, 13

σ1 → σ2, 23

[σ], 23

σ, 3

tl(E), 25

while do , 3
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x, 25

x : : σ, 27

Z, 1

:=, 2

↑, 39

[[−]], 41

(|− |), 41

⇓, 6

≤, 2

−, 13

−, 9

−, 40

⊕, 40

?, 40

7−→, 9, 13

7−→k, 15

7−→, 42

7−→t , 10

7−→k, 47

; , 2

≡, 54
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abstract syntax, 63

alphabet, 66

anti-symmetric, 58

appears, 27

application value, 40

arity, 27

assigned, 27

assignment

type —, 4

type —, 27

associates, 25

base, 64

binary relation, 58

body

definitional —, 31

Boolean

— operators, 1

—constants, 1

call by value, 32

cartesian product, 57

children, 63

closure, 41

code, 9, 13, 40

compiling function, 41

composition, 60

configuration, 9

configurations, 6

constant, 27

constants

—integer, 1

constructor, 63

constructors, 2

context, 27

declaration

identifier —, 30

deduction, 65

defined, 60

definitional

— body, 31

deterministic, 36

difference, 56

domain of definition, 60

dump, 40

eager, 32

element, 56

empty, 56

environment, 40

identifier —, 27

equal, 57

equivalence, 59

equivalence class, 59

evaluation

— relation, 33

expression

program —, 30

value —, 32

expressions, 25, 68

function

identity —, 60

functions

set of —, 60

set of partial —, 60

grammar, 68

height, 39

holds, 66

identifier

— declaration, 30

— environment, 27

— type, 27

identifiers, 25
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identity

— function, 60

syntactic —, 54

inductive, 64

inductive hypotheses, 67

inductively defined, 65

initial configuration, 41

instructions, 9, 13, 40

integer

— operators, 1

—constants, 1

intersection, 56

labels, 63

leaf, 63

letter, 66

level, 39

location environment, 3

locations, 1

monomorphic, 28

operators

Boolean —, 1

integer —, 1

outermost, 63

pair, 57

partial

set of — functions, 60

powerset, 56

prescribed, 39

program, 30

— expression, 30

program expressions, 2

proper, 63

property closure, 67

propositional variables, 66

propositions, 66

re-write, 9

re-writes, 38

recursively, 69

reduction

subject —, 37

reflexive, 58

reflexive, transitive closure, 60

relation, 58

evaluation —, 33

representative, 59

represented, 59

root, 63

rule, 64

rule induction, 66

schema, 65

SECD configuration, 39

set, 56

— of functions, 60

— of partial functions, 60

side condition, 66

size, 40

stack, 9, 13, 39

state, 9, 13

updated —, 6

states, 5

status, 40

structural induction, 68

subexpressions, 68

subject

— reduction, 37

subtree, 63

sugar, 2, 62

symmetric, 58

syntactic

— identity, 54

total, 60

transitive, 58

transitive closure, 60

type

— assignment, 4, 27

identifier —, 27

type assignment, 3

type checking, 3
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undefined, 60

union, 56

updated

— state, 6

value, 32

— expression, 32

variables, 25

words, 66
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