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Operational Semantics
Abstract Machines

Introduction

and By the end of this introduction, you should be able to
Correctness B briefly explain the meaning of syntax and semantics;
B give a snap-shot overview of the course;
Roy L. Crole
B explain what inductively defined sets are; and
‘University of Leicester, UK‘ B do simple rule inductions.
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Some Answers
What's Next? Background

B Programming Languages are formal languages used to
“communicate” with a “computer”.

B What is a Programming Language? B Programming languages may be “low level”. They give
direct instructions to the processor (instruction set

. N .
B What is Syntax? architecture).

W What is Semantics? B Or “high level”. The instructions are indirect—being
(eg) compiled for the processor—but much closer to

concepts understood by the user (Java, C++, ...).
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B Syntax refers to particular arrangements of “words o ]
and letters” eg David hit the ball or B Semantics is the study of “meaning”.

ift>2then H = Off. B In particular, syntax can be given meaning. The word

run can mean
W A grammar is a set of rules which can be used to

. . e execution of a computer program
specify how syntax is created. P program,

e spread of ink on paper, ...
B Examples can be seen in automata theory, or

programming manuals. B Programming language syntax can be given a
semantics—at least in theory!. We need this to write

B Theories of syntax and grammars can be meaningful programs ...

developed—ideas are used in compiler construction.

\_ / N J
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Semantic descriptions are often informal. Consider Top Level view of Course

while ression) command ; X
(exp ) B Define syntax for programs E and types[0};

B (define type assignments ;

B define operational semantics looking like

adapted from Kernighan and Ritchie 1978/1988, p 224:

The command is executed repeatedly so long as the value
of the expression remains unequal to 0; the expression must

o . . (P9 4(V,s)]  [PUV]

have arithmetic or pointer type. The execution of the (test)

expression, including all side effects, occurs before each B and compile P and V to abstract machine instructions
execution of the command. ‘ P—[P] ‘ and |V = (V) ‘

We want to be more precise, more succinct. B Then prove correctness: P |V iff [P] —! (V)

- / N J
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Example Inductive Definition

1 I) H +
What's Next? Inductively Defined Sets Let Var be a set of propositional variables. Then the set Prpn

of propositions of propositional logic is inductively defined
by the rules

B Specify inductively defined sets; programs, types etc
will be defined this way. BNF grammars are a form of

inductive definition; abstract syntax trees are also defined — [P Var] (A (p_tl.l (N)
inductively. P OAY

B Define Rule Induction; properties of programs will be oy oy (0]
proved using this. It is important. VY v -y - :p (=)

Each proposition is created by a deduction ...

\_ / N /
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Inductively Defined Sets in General N f Example of Rule Induction N

. o Consider the set of trees 7 defined inductively by
B Given a set of rules, a deduction is a finite tree such

that _Inez] T T
— each leaf node label c occurs as a base rule n +(T1,T2)
(@,c) e R Let L(T) be the number of leaves in T, and N(T) be the
— for any non-leaf node label ¢, if H is the set of number of +-nodes of T. We prove (see board)

children of c then (H,c) € & is an inductive rule. VT e T, [LT)=N(T)+1

B The set | inductively defined by R consists of those

where the functions L,N: ‘7 — N are defined recursively by
elements e which have a deduction with root node e. One

may prove Vee | . for a property ¢(e) by rule o L(n)=1land L(+(Ty,T2)) = L(T) +L(T2)
\ induction. See the notes ... / k o N(n) =0and N(+(Ty,T2)) = N(T1) + N(T2) +1 /
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Chapter 1

What's Next? Types and Expressions

By the end of this chapter, you should be able to

B describe the programs (syntax) of a simple

imperative language called IMP; B We define the types and expressions of IMP.
W give a type system to IMP and derive types; B We give an inductive definition of a formal type
system.

B explain the idea of evaluation relations;

B derive example evaluations.

- / N J
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/ Program Expressions and Types for IMP \ / \
B The types of the language IMP are given by the
The program expressions are given (inductively) by grammar
0 = int|bool | cmd
P = c constant
| memory location B A location environment £ is a finite set of (location,
. . e) pairs, with type being just int or bool:
| PiopP integer operator Ype) pairs, Rl &)
| PbopP’ boolean operator Lzll o int7...,|n o il"lt7 |n+]_ o b00|7..,,|m .2 bool
|:=P assignment . . .
| & B Given L, then any P whose locations all appear in £
. / 1 . . .
| PP sequencing can (sometimes) be assigned a type; we write P :: 0 to
| if Pthen P’ else P” conditional indicate this, and define such type assignments
|  whilePdoP while loop inductively.

- / N /
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[any ne Z]
n::int T :: bool F :: bool
. P1:iint Py::iint
— I inte £] —— [bop €BOpr]
I:tint Py bop P; :: bool
l::0 P:io
skipiiemd _p o emd
P1::bool Py::cmd P3::cmd P1 :: bool Py ::cmd
if P1 then P, else P3 :: cmd while P1 do P, :: cmd
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What's Next? An Evaluation Relation

B We define a notion of state.
B We define an evaluation relation for IMP.

B We look at an example.

o
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-

An Evaluation Relation

Consider the following evaluation relationship
(I"=T;1:=4+1, () )4 (skip , ("—=T.l—5))
The idea is
Starting program |} final result

We describe an operational semantics which has assertions
which look like

(P,s)4(c,;s) and  (P,s1) |} (skip, )

\_

/
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(P.s1) 4 (E,s1) (P2, 1) U (skip, &)
(if P then Py else P2, s1) || (skip, )

|lconpy

(P1,s) I (T,s1) (P2,81) | (skip,s2) (while Py do P2, s) |} (skip

~

,S3)

(while Py do P2, s1) |} (skip, S3)

(P1,9) 4 (E,9)
(while Py do Py, s) |} (skip, S)

{JLoop,

Midlands Graduate School, University of Birmingham, April 2008

a

Example: Deduction of a Type Assignment

| ::int 5:int D3 D4

| >5:: bool D2 l:=1=1:"=I"«l:: cmd

if | >5thenl :=1else (I:=1+1;1":=1"%l) :: cmd

N
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States

B A state sis a finite partial function Loc — ZUB.
B For example s= (I3 — 4,I, — T,l3+— 21)

B There is a state denoted by S{l—c} : Loc — Z UB which
is the partial function

ifl'=1

otherwise

def | C

sfl-c}) (I
G

B We say that state sis updated at | by c.

N

/
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[ provided | € domain of g{Loc

(s 4 (sl),s)

(Pl,S)U(m,S) (Pz,S)U«(&,S)

(PLopP2,s) |l (M opny, s)

{or

(P.s)l(c,9
(I:=P, s) § (skip, s{i—c})

Jass

(P1,s1) | (skip,s2) (P2,%2) | (skip, s3)

~

UsEQ
(P1;P2,51) | (skip, s3)
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Example Evaluations

We derive deductions for
((3+2)%6,9) 4 (30,9

and

(whilel =1dol:=1-1, (I — 1)) | (skip, (I~ 0))

20

22
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Chapter 2

By the end of this chapter you should be able to

B describe the “compiled” CSS machine, which
executes compiled IMP programs;

B show how to compile to CSS instruction
sequences;

B give some example executions.

- /
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Py—Pi—Po—P3—=Py...—=V

Re-Write Rules (Abstract Machine)

deduction tree
P Ak \%

Evaluation Semantics

- /
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/ Defining the CSS Machine \

B ACSS code Cis alist:
C = —|ins:C
ins = PUSH(c) | FETCH(l) | OP(op) | SKIP
| STO(I) | BR(C,C) | LOOP(C,C)

The objects ins are CSS instructions. We will overload : to
denote append; and write  for & : — (ditto below).

B A stack Sis produced by the grammar
Si=—|c:S

. /
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(ruswio [ s[s] — [c[eo]3]

rercnc[s]s] — [c][si:s]s)

‘OP(Op):CH@:m:SHs‘ — ‘CH nlopnz:SHs‘

souc][ess] — [c]s[sa]

|BR(CLCo):C|E:s|s| — |cuc|s]s]

| Loop(CL.Co):C [ ss]| —

| C1:BR(Cz: LOOP(C1,Co),SKIP) :C | S| 5

25

27

29

31
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/ Motivating the CSS Machine \

An operational semantics gives a useful model of IMP—we
seek a more direct, “computational” method for evaluating
configurations. If P {}¢V, how do we “mechanically
produce” V from P?

P=Ph—Pi—P—...—oPh=V

“Mechanically produce” can be made precise using a
relation P —— P’ defined by rules with no hypotheses.

n+m—m+n

- /
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/ An Example \

Let s(I) = 6. Execute 10— | on the CSS machine.
First, compile the program.
[10—1] = FETCH(l): PUSH(10) : OP(—)

Then

‘ FETCH(I) : PUSH(10) : OP(—) H - H s‘

.—>‘ PUSH(10) : OP(—) H § H s‘

—[op() [ 20:6 5|
—[=]a]s

N /
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B A CSS configuration is a triple (C,S s).
B A CSS re-write takes the form
(C1,81,8)— (C2, S, )

and re-writes are specified inductively by rules with no
hypotheses (such rules are often called axioms)

R
(Cl7 Sl,Sj_) | (C2732792)

B Note that the CSS re-writes are deterministic.

N )
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[c] = PusH(g)
[l = FETCH(I)
[PropP2] = [[P2]:[[Ps] : OP(0p)
=P = [P]:sTO(l)
[skip] = skKiP
[PriPa] = [Pa]: [P2]
[if Pthen Pyelse Po] = [P[ : BR([P1]}, [P2]))

[while P do P2] %" Loor([Ps], [P2])

26
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Chapter 3

\

B describe the “interpreted” CSS machine,
which executes IMP programs;

B explain some of the results required for

results.

-

By the end of this chapter you should be able to

B explain the outline of a proof of correctness;

establishing correctness, and the proofs of these
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n:c|s]s] — [c]n:o]s]

’PlopPg:CHSHs‘ — ‘Pz:Pl: op:CHSHs‘

‘ op:CHm:&:SHs‘ — ‘CH nloan:SHs‘

‘I::P:CHSHS‘ — ‘P:STO(I):CHSHS’
‘STO(UZCHQZSHS‘ — ‘CHSHS{I»—m}‘

| whileP1doP,:C | S|s| —

| P1:BR((P2: while Py do Py).skip) :C | S| s

\
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-
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Proof Method

B — it by Rule Induction for |.

B <——j; by Mathematical Induction on k. Recall K —! K’

iff (3k>1)(k —* k'), where for k> 1, k —Xk’ means
that

(V1<i<K)(3IKi)(K— Ki+—...—> Kx= Kl)

Then note if the O are configurations with & parameters

(VE)( (3K)(O+—K D) implies O O )

(VK) (V&) (0 KD implies 04 0) |

oK)

\_
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Code Splitting

For all k € N, and for all appropriate codes, stacks and
states, if

UG

then there is a stack and state S and S, and ky,k; € N for
which

CuiCa| S]]

csls| —n [-[s]s]
Cls]s] k|-
where k; + ko = k.

S/

S//

-

/

35

~

/

~
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Architecture of the Machine

~

by the following grammars:
C:=—]ins:C ins::=P| op | STO(l) | BR(P1,P2)

We will overload : to denote append; and write & for
& . — (ditto below).

B A stack Sis produced by the grammar

S:=—]c:S

-
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A Correctness Theorem

Forallne Z,beB, Py :: int, P2 :: bool, P3 :: cmd and
S,S1,S € Sates we have

(P1,9 4 (n,s)

B A CSS code Cis a list of instructions which is produced

it [P|—[s|—"-]n[s]
P29 b,y it [P —[s]—t[=]b[s]
(Ps,s0) U (skip,s2)  iff | P3|~ [s|—" |- =]

where —! denotes the transitive closure of —.

N
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Code and Stack Extension

For all k € N, and for all appropriate codes, stacks and
states,

INEENC CYEYEY

implies

colss]sl—aalss]s)

where —0

N

is reflexive closure of —.
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Typing and Termination Yields Values

For all k € N, and for all appropriate codes, stacks, states,

P::int and ‘PHSHS"—J“—HSHS" implies

s=s and S=n:SsomencZ

and [P| -~ [s|—*[-[n]s

and similarly for Booleans.

N

/

~
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Proving the Theorem \

N

(= onyif): Rule Induction for |}

(Case |} or1): The inductive hypotheses are

Then

Fronrs[ ]3]

[P = ls) == [ru]ls] [P [ - [[s)—"[-[re] <]

’Pz:Pl: op Hst‘

—* [Priop [nafs]=[Ps: op [ra ]

Midlands
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(Case P is P1 op P2): Suppose that

Using splitting and termination we have, noting P; :: int,
that

where k; + ko = ko,

[PropPy |~ [ sttt -

nd so

(Pa:Pyiop |~ [s|—"[~[n]s]

[P~ [s] " [=[res]
. ko
Puiop [nefs] —* ||

Midlands
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Chapter 4

-

By the end of this chapter you should be able to

B describe the expressions and type system of a
language with higher order functions;

B explain how to write simple programs;
B specify an eager evaluation relation;

B prove properties such as determinism.

Midlands
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Examples of FUN Declarations \

1
1

g
g xy =Xty

length :: [Bool] -> Int
length I

Int ->1Int ->1Int

s [Int]
5:(6:(8:(4:(nil))))

I nt
hd (5:6:8:4:nil)

=if elist(l) then O else (1 + length t

)
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(«<=it): We prove by induction for all k, for all P :: int,n,s,

Pl Is/—[als] imlies P.9v009

oK)

(Proof of Yko € N, @(K)k<k, implies @(ko+1)): Suppose that
for some arbitrary ko, P :: int, nand s
()

Pl =[s)—=*[=]

and then we prove (P, s) |} (n, s) by considering cases on P.

- /
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Gnd repeating for the latter re-write we get \

ka1
wlzal —*

where kz1+ ko2 = ko. So as kg < ko, by induction we deduce
that (P2, s) |} (n2, s), and from termination that

Pu - [sJ—=[-m[s]

Also, as kp1 < ko, we have inductively that (Pz, ) | (ny, s)
and hence

(PLopP2,s) | (npopny,s).

But from determinism and (1) we see that n; opny = n and
we are done.
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What's Next? Expressions and Types for FUN

B Define the expression syntax and type system.

N )
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/ FUN Types \

B The types of FUN® are
0 = int|bool|o—a][o]
B We shall write
01— 02— 03— ...

— Op— 0

for

01— (02 — (03— (... — (On — 0)...))).

\ Thus for example 07 — 02 — 03 means 01 — (G2 — 03).

)
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FUN Expressions
The expressions are

E = x variables
| ¢ constants
| K constant identifier
| F function identifier
| EE function application
| tI(E) tail of list
| Ei:E cons for lists
| elist(E) Boolean test for empty list

\Bracketing conventions apply ...

J
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Contexts (Variable Environments)

\

B When we write a FUN program, we shall declare the
types of variables, for example

X :iint,y :: bool,;z:: bool

B A context, variables assumed distinct, takes the form

[=X1::01,....,% :: Op.

o
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Example Type Assignments

B With the previous identifier environment
X:rintyiiint,z::intE mapsuc(X:y:z:nilin) :: [int]
B We have

@ b if T then hd(2: niling) else hd(4: 6 niline) ©: int

\_
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FE1::0p—01 THEx::O2
L. AP
BB i o1
——(wherel ::1€1) ::mr
FEL
B Nl-Ey::o0 THE:: o]
. -+ NIL :: CONS
= nilg 2 [0] F-Ep:Ez:: [o]

49
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What's Next? A Formal FUN Type System

B Show how to declare the types of variables and
identifiers.

B Give some examples.

B Define a type assignment system.

-
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Identifier Environments

B When we write a FUN program, we want to declare the
types of constants and functions.

B A simple example of an identifier environment is
K :: bool, map :: (int — int) — [int] — [int], suc :: int — int

B An identifier type looks like 01 - 02 - 03— ... >0, — 0O
where a > 0 and o is NOT a function type.

B An identifier environment looks like

N

/
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Inductively Defining Type Assignments

~

Start with an identifier environment I and a context I'.
Then

—— (wherex:: o€l
MN=x:o

LU INT

1 VAR E———
MFEn::int

FEp:tint THEy::int

.. 0P1
M-EjiopEy ::int

N
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What's Next? Function Declarations and Programs

B Show how to code up functions.
B Define what makes up a FUN program.

B Give some examples.

N
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~

Introducing Function Declarations

B To declare plus can write plus Xy = x+Y.
B To declare fac

fac X = if x== 1then lelse x*«fac(x—1)

\_

4 N

B Let Fxy=x+Yy. We would expect F (2x3) (4%5) ||° 26.
B We could

e evaluate 2x 3 to get value 6 yielding F 6 (4%5),

e then evaluate 4x5 to get value 20yielding F 6 20.

B We then call the function to get 6+ 20, which evaluates to
26. This is call-by-value or eager evaluation.

B Or the function could be called first yielding (2 3) + (4% 5)
and then we continue to get 6+ (4%5) and 6+ 20 and 26. This
is called call-by-name or lazy evaluation.

o _/

An Example Declaration

Let I =14 :: [int] = int —int, 2 :: int — int, |3 :: bool. Then
an example of an identifier declaration dec; is

def

lily = hd(tld()+l2y £ By

Iox = Xx*X def E,

B And to declare that true denotes T we write true = T.
def
. . . I3 = T = E

B In FUN®, can specify (recursive) declarations 3 - '3
f

K=E Fx=E Gxy=FE'.. lauvw = u+vEw £ &

-
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/ An Example Program \ / Defining Programs \
Let I =F :: int — int — int,K :: int. Then an identifier . L.
. . A program in FUNE is a judgement of the form
declaration dec; is
Fxy = X+7-y def Er dec; inP
K — 10 where dec; is a given identifier declaration and the
o program expression P satisfies a type assignment of the
An example of a program is|dec; in F81<K| Note that form
ZFF81<K :: bool gFP::0 (written P ::0)
and and V FX=Eg €dec;
X:iinty i -y i i
int,y ;intExX4+7-y:: int and gFK:int e FEF :: 0Ok
e OF
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What's Next? Values and the Evaluation Relation Evaluation Orders
B The operational semantics of FUN® says when a
B Look at the notion of evaluation order. program P evaluates to a value V. It is like the IMP
B Define values, which are the results of eager program evaluation semantics.
executions. B Write this in general as P |}®V, and examples are
: ; ioge e .
B Define an eager evaluation semantics: P || V. 3+4+10(°17 hd (2 niline) 182
B Give some examples.
Midlands Graduate School, University of Birmingham, April 2008 63 Midlands Graduate School, University of Birmingham, April 2008

~

Defining and Explaining (Eager) Values

B Let dec; be an identifier declaration, with typical typing
F..00—0,—>03—...—>0,—0

Informally a is the maximum number of inputs taken by F. A
value expression is any expression V produced by

Vi=c|nilg |[FV|V:V
where V abbreviates V3 Vs ... Vi_1 Vkand 0< k< a.

B Note also that k is strictly less than a, and that if a= 1 then
F V denotes F.

N
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/

B A value is any value expression for which dec;
is a valid FUN® program.

and P, || 5 and P3 ||¢ 7 with P; not values. Then

65

\

inV

P \%
F25P;
F257 |14
F Py Py P3| 14
Midlands Graduate School, University of Birmingham, April 2008
PLUSFV PV, FVVy(eV
where either Py or P, is not a value
/AP

P1P2 %V

Er[Vi,...,Va/Xt, .., %] °V

[FX = Ef declared in dec;] {/°FID
FVi...Va eV

Ex 4°V

[K = Ex declared in dec;] {}°ciD
K eV

-
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Examples of Evaluations
Suppose that dec; is
GXx Xx2
=3
VAL VAL
30°3 2y°2
VAL OP
30°3 (x%2)[3/] =3+21°6
VAL CID FID
G{°G K3 G3l°6
GK{°6

o

AP
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where T is the tree

20°2 31°3
2+31°5 50°5
2+3+50°10
(x+y+2)[2,3,5/xy,Z °10
1€
F235(°10

B Suppose that F :: int — int — int — int and that Py || 2

71

69

67
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The Evaluation Relation

Piy®m P2{®n

P1opP2 € mopn

18vaL

Y {%op

PLUT P2®V
if P then Ps else P3 ¢V

|/8conpy

-
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PeVv:V PUeV:V
|®HD JetL
hd(P) v ti(P) &V
PLIeV PV
—— |®cons
P1:Py l}e VvV
P 1€ nilg PleV:V
—— ||®ELISTy. ————— |I®ELIST,
elist(P) ¢ T elist(P) |°F
Midlands Graduate School, University of Birmingham, April 2008 70
We can prove that
F23(4+1)(°10
where F Xy z=x+y-+zas follows:
41°4 10°1
— %
F23|°F23 4+11°5 T
118 ap
F23(4+1)4°10

N
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What's Next? FUN Properties of Eager Evaluation

B Explain and define determinism.

B Explain and define subject reduction, that is,

preservation of types during program execution.

N
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Given any other stack § 1 there is a stack S’

S1S .. S

.Clog

1

B Write S, 1 ® Sfor Swith S replaced by S'.

\_

Midlands Graduate School, University of Birmingham, April 2008

/ B A SECD code C is a list which is produced by the
following grammars:

ins

x|n|F |APP

C = —]Jins:C

B A typical dump looks like

(Sl7 E]_,C]_, (827 E27CZ7 ce (817 En,Cn, 7) . ))

W We will overload : to denote append; and write § for

& —.

- /

73
/ Properties of FUN \
B The evaluation relation for FUN€ is deterministic.
More precisely, for all P, V1 and Vs, if
P¢Vy and P&V,
then V1 = V,. (Thus |J€ is a partial function.)
B Evaluating a program dec; in P does not alter its
type. More precisely,
(gFP::oand PY®V) implies @k-V:o
for any P, V, 0 and dec;. The conservation of type during
\ program evaluation is called subject reduction. /
Midlands Graduate School, University of Birmingham, April 2008 75
/ Architecture of the Machine \
B The SECD machine consists of rules for transforming SECD
configurations (S E,C,D).
B The non-empty stack Sis generated by
§...5
Si= "] o
T
B Each node occurs at a level > 1.
B A stack Shas a height the maximum level of any clog, or O
\ otherwize. /
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Chapter 5

By the end of this chapter you should be able to

B describe the SECD machine, which executes
compiled FUN® programs; here the expressions
Exp are defined by E :=x|n|F |EE;

B show how to compile to SECD instruction
sequences;

B write down example executions.

N
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B If the (unique) left-most closure node clog at level a
exists, call it the a-prescribed node, and write o S

B For any stack a Sof height > 1 there is a sub-stack S
of shape

S ... S

.Clor

N
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B The environment E takes the form

X1=7S1:... %X =7S.

B The value of each ?is determined by the form of an S.

clog

n
B IfSis = then?is0Q;if §is then ?is 1; in any
7

other case, ?is » 1.

74

~

/
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We define a compilation function [—]|: Exp — SECDcodes
which takes an SECD expression and turns it into code.

B [x] =%

m )&

m [F]=F

B [E1E] ©[Ed] : [Eo] : APP

78
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There is a representation of program values as stacks, given
by

\

m ()=
|
(Vi) - (Va) o
(F Va... Vi) &' clo = (Md)®...@ (Vi) @ TF
T

B Recall k < awith a the arity of F.

- /
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\

A function is pushed onto the stack (the initial stack can be
of any status):

.Clog
S| [~a S Sja+1 N S
E E
L E E
C F:C
D D
D D

o
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s

An APP command creates an application value, type 0:

S|a .Clop @S S| a~a .clog ®S
1 o 1
—
E E E E
APP:C
D D D D

o )

Midlands Graduate School, University of Birmingham, April 2008

-

An APP command produces an application value from an
application value:

~

o S-S dor  Si.;---S
S| ~a T ®S S|ana—-1 1 ®S
clog aviay .clog
uikaad
1 1
E E E E
APP:C
D D D D

81
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The Re-writes

A number is pushed onto the stack (the initial stack can be
of any status):

n
S|l wja S S| a Teas
E E num
C n:C
— C
D D
D D

-
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A variable’s value is pushed onto the stack, provided that the
environment E contains x= 7T = [»]® T (where dis0or 1).

/

Note that by definition, the status of T determines the status

of the re-written stack:

S [Av]d S S [Av]6+d TeS
E E wr | E E
—
C x:C C C
D D D D

-
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An APP command creates an application value, type 1:

.cloy cloy
; S1---S1 ; S1---S1
S|a @®S S||~a—1 @S
clog .clog

1 = 1
E E E E
C APP:C
D D D D

-
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An APP command calls a function, type O:

S|a .clog @S s _
T ano | E[Xa="S:...:x=75E
—
E E c [E¢]
APP:C D (a—1 SE,C,D)
D D
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.cloy
; S1.--S

S|a ®S

clog

1 s

E E

APP:C
D D

N

An APP command calls a function, type 1:

Xa=7S:....: % =75 E

[Er]

g|jo|min

(a—2 SE,C,D)

J
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\

Restore, where the final status is determined by the initial

s

.

s

status:
S| WP T S| [wJa+B Tas
E E' lE E
C — C C
D|(a SE,C,D) D D
Midlands Graduate School, University of Birmingham, April 2008
4
1
.Cloy
S|0 — S N
E - num/in3
— clog
C| 11
I
D _
E —
8.=APP:7.
D —
Midlands Graduate School, University of Birmingham, April 2008
cloy cloy
1 1
.cloy cloy
a2 S|al
7 T
cavl avtav
clo_ .clog
1 1
E E E’
3. 2.
D g
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An APP command calls a function, type 2:

o S-S
S || a0 T oS S _
clog a2 El|%=2%:...:x =75 :E
f c [Eq]
E E D| (-2 sEcD)
APP:C
D D

- /
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Suppose that K, N and MN are functions which are also
lab=b
Hz=L(MN)z

Fxy=x

values, and that Then

Luv=u
(F (H 4)) (I 2K) {|®M N. Note that

[(F (H4) (12K)] =

(1L %'F):H:4:APP:APP:1:2:APP:K : APP: (APP £'1)

and
ILMN)Z] €72 M:N:APP: APP: z: APP &1,
Midlands Graduate School, University of Birmingham, April 2008
.C|0N
T
S 0 - |
Clom
4 S|3
E B®z—0 ° 1
callo T m 3
— — clo_
C [LMN)Z] |
clo
D|eX'a -7, E E
4.
D

o
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Chapter 6

results.

N

By the end of this chapter you should be able to
B explain the outline of a proof of correctness;

B explain some of the results required for
establishing correctness, and the proofs of these

)
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A Correctness Theorem

For all programs dec; in P for which @+ P :: 0 we have

(V)

PleV  iff

o/oOm|mn
oo m|wn
|

[P

- /
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B Need to prove “lemma plus”: if D = (S,E’,C',D’) we
can also similarly arbitrarily extend any of the stacks and
codes in D (say to D).

B We use induction on k. Suppose lemma plus is true
Vk < kg. Must prove we can extend any re-write

M —ko+t1 M’ to M ——k+1 M7, By determinism, we have
M 1 M7 ko M/,

B If no function call during M ——* M” trivial to extend
to get M —1 M”. And by induction, M” —ko M/,

- /
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S - S s’
i def E E’ s E E"
c = c c
D (SEBS3,E,C:C3,5) D (SGBS3,E,C:C3,§)

It is easy to see that M — M”, and obviously

S IS4 S| FasSess

E = .| E E
—

C c” C C:Cs

D | (S®S3,E,C:C3,D) D D

- /

/By induction, we have \
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Code Splitting

For any stacks, environments, codes, and dumps, if C; and
C, are non-empty then

sl/

Ci:C

olo/min
o/o/min
|

implies that

- /
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f Code and Stack Extension \
For any stacks, environments, codes, and dumps, if C; is
non-empty

S| S S
M 2 EIE| «EIE def vy
cla cllc
D| D D| D
implies
S|S0 S| SeS
mee (Bl E L wELE defiyy
Cl|lC:C3 C||C:Cs
D D D D

N
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If there is a function call, there are k; and k; such that
s| Taes s - s| ¢
! "
M d:ef E E —1 E E sk E E
C | APP:C C [Ee] C c”
D D D || (SE,C,D) D || (SE,C,D)
S|S®S
E E
=t YV
C C
D D
where there are no function calls in the ko re-writes.
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If ko = 0 then we are done.

If k, > 1 then we can similarly extend the stack and code of
the final ky > 1 transitions by induction

S||SeSeSs

Bl E L aw
C CZCg

D D

and we are also done.

N )
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S S S S|s
Ele| |E|E E|le| |E|E
—t and —"2
C|IC Cl - C|IC Cl -
D| D DD D|D D D

where k = k; + ko.

N )

/
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Program Code Factors Through Value Code
For any well typed FUN® program dec; in Pwhere P:: o
and PV,
S| s s|$ S s|$§
E| E JEIE] o E JEIE
— implies (3k<Kk) —
C| [Pl c C| V] Cl-
D| D DD D| D DD
with equality only if P is a value (and hence equal to V).
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Suppose that

S

ko+1

[P4] : [P]) : APP

o oO|m|n
O|O|m|n
|

Then appealing to splitting and the induction hypothesis,
we get

\

/
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Appealing to splitting again, and by induction,

(FV)@s (Va)@(FV)@s

[P]

ka1

|l m|w

olo|m|w

and

(V2@ (FV) @S

APP

OO mw
OlOo|miw
I

where P, ||® Vs.

\_

~

109
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Proving the Theorem

(«<=it): We shall prove that if P :: ¢ then

S S

[P

implies (3V) S=(V)®S and PV

|lOo|mlwn
I

o|lOo|mwn

from which the required result follows. Induction on k. If P
is a number or a function the result is trivial. Else P has the

Midlands Graduate School, University of Birmingham, April 2008

form P1P,.
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S| s S| (FV)@®s
E B P E _
C | [P c -
D| - D -
and
S|l (FV)es s|is
E _ ke Ej -
C | [P2]: APP cl-
D - D| -
where Py |8F V.

/

Gy factorization on Py and P,, and extension we have (check!) \

S S S| (V2)@(FV)@sS s||s
E : ,_}k_1+E E }_>kzz E -
C || [FV V] C APP cl|-
D - D - D| —

and so if Py P; is not a value then
Ko+ ko1 +kap < ko+1

and by induction S = (|V|) @ Sfor some V where F V V, ¢ V.
Hence P P, ||®V as required.

\If Py P> is a value, refer to part (= onyif) of the proof, case ||° VAL/
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