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Introduction

By the end of this introduction, you should be able to

� briefly explain the meaning of syntax and semantics;

� give a snap-shot overview of the course;

� explain what inductively defined sets are; and

� do simple rule inductions.
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What’s Next? Background

� What is a Programming Language?

� What is Syntax?

� What is Semantics?
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Some Answers

� Programming Languages are formal languages used to

“communicate” with a “computer”.

� Programming languages may be “low level”. They give

direct instructions to the processor (instruction set

architecture).

� Or “high level”. The instructions are indirect—being

(eg) compiled for the processor—but much closer to

concepts understood by the user (Java, C++, . . . ).
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� Syntax refers to particular arrangements of “words

and letters” eg David hit the ball or

if t > 2 then H = Off.

� A grammar is a set of rules which can be used to

specify how syntax is created.

� Examples can be seen in automata theory, or

programming manuals.

� Theories of syntax and grammars can be

developed—ideas are used in compiler construction.
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� Semantics is the study of “meaning”.

� In particular, syntax can be given meaning. The word

run can mean

• execution of a computer program,

• spread of ink on paper, . . .

� Programming language syntax can be given a

semantics—at least in theory!. We need this to write

meaningful programs . . .
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Semantic descriptions are often informal. Consider

while (expression) command ;

adapted from Kernighan and Ritchie 1978/1988, p 224:

The command is executed repeatedly so long as the value

of the expression remains unequal to 0; the expression must

have arithmetic or pointer type. The execution of the (test)

expression, including all side effects, occurs before each

execution of the command.

We want to be more precise, more succinct.
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Top Level view of Course

� Define syntax for programs P and types σ ;

� (define type assignments P : : σ );

� define operational semantics looking like

(P , s) ⇓ (V , s′) P ⇓V ;

� and compile P and V to abstract machine instructions

P 7→ [[P]] and V 7→ (|V |)

� Then prove correctness: P ⇓V iff [[P]] 7−→t (|V|)
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What’s Next? Inductively Defined Sets

� Specify inductively defined sets; programs, types etc

will be defined this way. BNF grammars are a form of

inductive definition; abstract syntax trees are also defined

inductively.

� Define Rule Induction; properties of programs will be

proved using this. It is important.

Midlands Graduate School, University of Birmingham, April 2008 10'

&

$

%

Example Inductive Definition

Let Var be a set of propositional variables. Then the set Prpn

of propositions of propositional logic is inductively defined

by the rules

[P ∈ Var] (A)
P

φ ψ
(∧)

φ∧ψ

φ ψ
(∨)

φ∨ψ

φ ψ
(→)

φ → ψ

φ
(¬)

¬φ

Each proposition is created by a deduction . . .
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Inductively Defined Sets in General

� Given a set of rules, a deduction is a finite tree such

that

− each leaf node label c occurs as a base rule

(∅,c) ∈ R

− for any non-leaf node label c, if H is the set of

children of c then (H,c) ∈ R is an inductive rule.

� The set I inductively defined by R consists of those

elements e which have a deduction with root node e. One

may prove ∀e ∈ I. φ(e) for a property φ(e) by rule

induction. See the notes . . .
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Example of Rule Induction

Consider the set of trees T defined inductively by

[n ∈ Z]
n

T1 T2

+(T1,T2)

Let L(T ) be the number of leaves in T , and N(T ) be the

number of +-nodes of T . We prove (see board)

∀T ∈ T . L(T ) = N(T )+1

where the functions L,N:T → N are defined recursively by

• L(n) = 1 and L(+(T1,T2)) = L(T1)+L(T2)

• N(n) = 0 and N(+(T1,T2)) = N(T1)+N(T2)+1
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Chapter 1

By the end of this chapter, you should be able to

� describe the programs (syntax) of a simple

imperative language called IMP;

� give a type system to IMP and derive types;

� explain the idea of evaluation relations;

� derive example evaluations.
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What’s Next? Types and Expressions

� We define the types and expressions of IMP .

� We give an inductive definition of a formal type

system.
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Program Expressions and Types for IMP

The program expressions are given (inductively) by

P ::= c constant

| l memory location

| P iop P′ integer operator

| P bop P′ boolean operator

| l :=P′ assignment

| P ; P′ sequencing

| if P then P′ else P′′ conditional

| while P do P′ while loop
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� The types of the language IMP are given by the

grammar

σ ::= int | bool | cmd

� A location environment L is a finite set of (location,

type) pairs, with type being just int or bool:

L = l1 : : int, . . . , ln : : int, ln+1 : : bool, . . . , lm : : bool

� Given L , then any P whose locations all appear in L

can (sometimes) be assigned a type; we write P : : σ to

indicate this, and define such type assignments

inductively.
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[any n ∈ Z]
n : : int T : : bool F : : bool

[l : : int ∈ L ]
l : : int

P1 : : int P2 : : int
[ bop ∈ BOpr]

P1 bop P2 : : bool

skip : : cmd

l : : σ P : : σ

l :=P : : cmd

P1 : : bool P2 : : cmd P3 : : cmd

if P1 then P2 else P3 : : cmd

P1 : : bool P2 : : cmd

while P1 do P2 : : cmd
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Example: Deduction of a Type Assignment

l : : int 5 : : int

l ≥ 5 : : bool D2

D3 D4

l := l−1 ; l′ := l′ ∗ l : : cmd

if l ≥ 5 then l′ :=1 else (l := l+1 ; l′ := l′ ∗ l) : : cmd
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What’s Next? An Evaluation Relation

� We define a notion of state.

� We define an evaluation relation for IMP .

� We look at an example.
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States

� A state s is a finite partial function Loc → Z∪B.

� For example s = 〈l1 7→ 4, l2 7→ T, l3 7→ 21〉

� There is a state denoted by s{l7→c} : Loc → Z∪B which

is the partial function

(s{l7→c})(l′)
def
=







c if l′ = l

s(l′) otherwise

� We say that state s is updated at l by c.
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An Evaluation Relation

Consider the following evaluation relationship

( l′ :=T ; l :=4+1 , 〈〉 ) ⇓ ( skip , 〈l′ 7→ T, l 7→ 5〉 )

The idea is

Starting program ⇓ final result

We describe an operational semantics which has assertions

which look like

(P , s) ⇓ (c , s) and (P , s1) ⇓ (skip , s2)
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[ provided l ∈ domain of s]⇓LOC

(l , s) ⇓ (s(l) , s)

(P1 , s) ⇓ (n1 , s) (P2 , s) ⇓ (n2 , s)
⇓OP

(P1 op P2 , s) ⇓ (n1 op n2 , s)

(P , s) ⇓ (c , s)
⇓ASS

(l :=P , s) ⇓ (skip , s{l7→c})

(P1 , s1) ⇓ (skip , s2) (P2 , s2) ⇓ (skip , s3)
⇓SEQ

(P1 ; P2 , s1) ⇓ (skip , s3)
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(P , s1) ⇓ (F , s1) (P2 , s1) ⇓ (skip , s2)
⇓COND2

(if P then P1 else P2 , s1) ⇓ (skip , s2)

(P1 , s1) ⇓ (T , s1) (P2 , s1) ⇓ (skip , s2) (while P1 do P2 , s2) ⇓ (skip , s3)

(while P1 do P2 , s1) ⇓ (skip , s3)

(P1 , s) ⇓ (F , s)
⇓LOOP2

(while P1 do P2 , s) ⇓ (skip , s)
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Example Evaluations

We derive deductions for

((3+2)∗6, s) ⇓ (30, s)

and

(while l = 1 do l := l−1, 〈l 7→ 1〉) ⇓ (skip , 〈l 7→ 0〉)
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Chapter 2

By the end of this chapter you should be able to

� describe the “compiled” CSS machine, which

executes compiled IMP programs;

� show how to compile to CSS instruction

sequences;

� give some example executions.
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Motivating the CSS Machine

An operational semantics gives a useful model of IMP—we

seek a more direct, “computational” method for evaluating

configurations. If P ⇓e V, how do we “mechanically

produce” V from P?

P ≡ P0 7→ P1 7→ P2 7→ . . . 7→ Pn ≡V

“Mechanically produce” can be made precise using a

relation P 7−→ P′ defined by rules with no hypotheses.

n+m 7−→ m+n
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P0 7→ P1 7→ P2 7→ P3 7→ P4 . . . 7→V

Re-Write Rules (Abstract Machine)

deduction tree

P ⇓e
�

-

V

Evaluation Semantics
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An Example

Let s(l) = 6. Execute 10− l on the CSS machine.

First, compile the program.

[[10− l]] = FETCH(l) : PUSH(10) : OP(−)

Then

FETCH(l) : PUSH(10) : OP(−) − s

7−→ PUSH(10) : OP(−) 6 s

7−→ OP(−) 10: 6 s

7−→ − 4 s
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Defining the CSS Machine

� A CSS code C is a list:

C ::= − | ins : C

ins ::= PUSH(c) | FETCH(l) | OP(op) | SKIP

| STO(l) | BR(C,C) | LOOP(C,C)

The objects ins are CSS instructions. We will overload : to

denote append; and write ξ for ξ : − (ditto below).

� A stack S is produced by the grammar

S ::= − | c : S
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� A CSS configuration is a triple (C,S,s).

� A CSS re-write takes the form

(C1 , S1 , s1) 7−→ (C2 , S2 , s2)

and re-writes are specified inductively by rules with no

hypotheses (such rules are often called axioms)

R
(C1 , S1 , s1) 7−→ (C2 , S2 , s2)

� Note that the CSS re-writes are deterministic.
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PUSH(c) : C S s 7−→ C c : σ s

FETCH(l) : C S s 7−→ C s(l) : S s

OP( op ) : C n1 : n2 : S s 7−→ C n1 op n2 : S s

STO(l) : C c : S s 7−→ C S s{l7→c}

BR(C1,C2) : C F : S s 7−→ C2 : C S s

LOOP(C1,C2) : C S s 7−→

C1 : BR(C2 : LOOP(C1,C2),SKIP) : C S s
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[[c]]
def
= PUSH(c)

[[l]]
def
= FETCH(l)

[[P1 op P2]]
def
= [[P2]] : [[P1]] : OP(op)

[[l := P]]
def
= [[P]] : STO(l)

[[skip]]
def
= SKIP

[[P1 ; P2]]
def
= [[P1]] : [[P2]]

[[if P then P1 else P2]]
def
= [[P]] : BR([[P1]], [[P2]])

[[while P1 do P2]]
def
= LOOP([[P1]], [[P2]])
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Chapter 3

By the end of this chapter you should be able to

� describe the “interpreted” CSS machine,

which executes IMP programs;

� explain the outline of a proof of correctness;

� explain some of the results required for

establishing correctness, and the proofs of these

results.
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Architecture of the Machine

� A CSS code C is a list of instructions which is produced

by the following grammars:

C ::= − | ins : C ins ::= P | op | STO(l) | BR(P1,P2)

We will overload : to denote append; and write ξ for

ξ : − (ditto below).

� A stack S is produced by the grammar

S ::= − | c : S
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n : C S s 7−→ C n : σ s

P1 op P2 : C S s 7−→ P2 : P1 : op : C S s

op : C n1 : n2 : S s 7−→ C n1 op n2 : S s

l :=P : C S s 7−→ P : STO(l) : C S s

STO(l) : C n : S s 7−→ C S s{l7→n}

while P1 do P2 : C S s 7−→

P1 : BR((P2 ; while P1 do P2),skip) : C S s
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A Correctness Theorem

For all n ∈ Z, b ∈ B, P1 : : int, P2 : : bool, P3 : : cmd and

s,s1,s2 ∈ States we have

(P1 , s) ⇓ (n , s) iff P1 − s 7−→t − n s

(P2 , s) ⇓ (b , s) iff P2 − s 7−→t − b s

(P3 , s1) ⇓ (skip , s2) iff P3 − s1 7−→t − − s2

where 7−→t denotes the transitive closure of 7−→.
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Proof Method

� =⇒onlyif by Rule Induction for ⇓.

� ⇐=if by Mathematical Induction on k. Recall κ 7−→t κ′

iff (∃ k ≥ 1)(κ 7−→k κ′), where for k ≥ 1, κ 7−→k κ′ means

that
(∀1≤ i ≤ k)(∃κi)(κ 7−→ κ1 7−→ . . . 7−→ κk = κ′)

Then note if the 2 are configurations with ξ parameters

(∀ξ)( (∃k)(2 7−→k
2) implies 2 ⇓ 2 )

≡

(∀k)(∀ξ) (2 7−→k
2 implies 2 ⇓ 2)

︸ ︷︷ ︸

φ(k)

Midlands Graduate School, University of Birmingham, April 2008 38'

&

$

%

Code and Stack Extension

For all k ∈ N, and for all appropriate codes, stacks and

states,

C1 S1 s1 7−→k C2 S2 s2

implies

C1 : C3 S1 : S3 s1 7−→k C2 : C3 S2 : S3 s2

where 7−→0 is reflexive closure of 7−→.

Midlands Graduate School, University of Birmingham, April 2008 39'

&

$

%

Code Splitting

For all k ∈ N, and for all appropriate codes, stacks and

states, if

C1 : C2 S s 7−→k
− S′′ s′′

then there is a stack and state S′ and s′, and k1,k2 ∈ N for

which

C1 S s 7−→k1 − S′ s′

C2 S′ s′ 7−→k2 − S′′ s′′

where k1 + k2 = k.

Midlands Graduate School, University of Birmingham, April 2008 40'

&

$

%

Typing and Termination Yields Values

For all k ∈ N, and for all appropriate codes, stacks, states,

P : : int and P S s 7−→k
− S′ s′ implies

s = s′ and S′ = n : S some n ∈ Z

and P − s 7−→k
− n s

and similarly for Booleans.
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Proving the Theorem

(=⇒onlyif ): Rule Induction for ⇓

(Case ⇓ OP1): The inductive hypotheses are

P1 − s 7−→t
− n1 s P2 − s 7−→t

− n2 s

Then

P1 op P2 − s 7−→ P2 : P1 : op − s

7−→t P1 : op n2 s ≡ P1 : op n2 s

7−→t op n1 : n2 s

7−→ − n1 op n2 s
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(⇐=if ): We prove by induction for all k, for all P : : int,n,s,

P − s 7−→k − n s implies (P , s) ⇓ (n , s)
︸ ︷︷ ︸

φ(k)

(Proof of ∀k0 ∈ N, φ(k)k≤k0 implies φ(k0 +1)): Suppose that

for some arbitrary k0, P : : int, n and s

P − s 7−→k0+1
− n s (∗)

and then we prove (P , s) ⇓ (n , s) by considering cases on P.
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(Case P is P1 op P2): Suppose that

P1 op P2 − s 7−→k0+1
− n s

and so

P2 : P1 : op − s 7−→k0 − n s .

Using splitting and termination we have, noting P2 : : int,

that

P2 − s 7−→k1 − n2 s

P1 : op n2 s 7−→k2 − n s

where k1 + k2 = k0,
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and repeating for the latter re-write we get

P1 n2 s 7−→k21 − n1 : n2 s

op n1 : n2 s 7−→k22 − n s (1)

where k21+ k22 = k2. So as k1 ≤ k0, by induction we deduce

that (P2 , s) ⇓ (n2 , s), and from termination that

P1 − s 7−→k21 − n1 s .

Also, as k21 ≤ k0, we have inductively that (P1 , s) ⇓ (n1 , s)

and hence

(P1 op P2 , s) ⇓ (n1 op n2 , s).

But from determinism and (1) we see that n1 op n2 = n and

we are done.
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Chapter 4

By the end of this chapter you should be able to

� describe the expressions and type system of a

language with higher order functions;

� explain how to write simple programs;

� specify an eager evaluation relation;

� prove properties such as determinism.
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What’s Next? Expressions and Types for FUN

� Define the expression syntax and type system.
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Examples of FUN Declarations

g :: Int -> Int -> Int

g x y = x+y

l1 :: [Int]
l1 = 5:(6:(8:(4:(nil))))

h :: Int
h = hd (5:6:8:4:nil)

length :: [Bool] -> Int

length l = if elist(l) then 0 else (1 + length t)
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FUN Types

� The types of FUN
e are

σ ::= int | bool | σ → σ | [σ]

� We shall write

σ1 → σ2 → σ3 → . . . → σn → σ

for

σ1 → (σ2 → (σ3 → ( . . . → (σn → σ) . . .))).

Thus for example σ1 → σ2 → σ3 means σ1 → (σ2 → σ3).
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FUN Expressions

The expressions are

E ::= x variables

| c constants

| K constant identifier

| F function identifier

| E1 E2 function application

| tl(E) tail of list

| E1 : E2 cons for lists

| elist(E) Boolean test for empty list

Bracketing conventions apply . . .
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What’s Next? A Formal FUN Type System

� Show how to declare the types of variables and

identifiers.

� Give some examples.

� Define a type assignment system.
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Contexts (Variable Environments)

� When we write a FUN program, we shall declare the

types of variables, for example

x : : int,y : : bool,z : : bool

� A context, variables assumed distinct, takes the form

Γ = x1 : : σ1, . . . ,xn : : σn.
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Identifier Environments

� When we write a FUN program, we want to declare the

types of constants and functions.

� A simple example of an identifier environment is

K : : bool, map : : (int → int) → [int] → [int], suc : : int → int

� An identifier type looks like σ1 → σ2 → σ3 → . . . → σa → σ
where a ≥ 0 and σ is NOT a function type.

� An identifier environment looks like

I = I1 : : ι1, . . . , Im : : ιm.
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Example Type Assignments

� With the previous identifier environment

x : : int,y : : int,z : : int ⊢ mapsuc(x : y : z : nilint) : : [int]

� We have

∅ ⊢ if T then hd(2 : nilint) else hd(4 : 6 : nilint) : : int
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Inductively Defining Type Assignments

Start with an identifier environment I and a context Γ.

Then

( where x : : σ ∈ Γ) : : VAR

Γ ⊢ x : : σ
: : INT

Γ ⊢ n : : int

Γ ⊢ E1 : : int Γ ⊢ E2 : : int
: : OP1

Γ ⊢ E1 iop E2 : : int
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Γ ⊢ E1 : : σ2 → σ1 Γ ⊢ E2 : : σ2
: : AP

Γ ⊢ E1 E2 : : σ1

( where I : : ι ∈ I ) : : IDR

Γ ⊢ I : : ι

: : NIL

Γ ⊢ nilσ : : [σ]

Γ ⊢ E1 : : σ Γ ⊢ E2 : : [σ]
: : CONS

Γ ⊢ E1 : E2 : : [σ]
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What’s Next? Function Declarations and Programs

� Show how to code up functions.

� Define what makes up a FUN program.

� Give some examples.
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Introducing Function Declarations

� To declare plus can write plus x y = x+ y.

� To declare fac

fac x = if x == 1 then 1 else x∗ fac(x−1)

� And to declare that true denotes T we write true = T.

� In FUN
e , can specify (recursive) declarations

K = E Fx = E′ G x y = E′′ . . .
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An Example Declaration

Let I = I1 : : [int] → int → int, I2 : : int → int, I3 : : bool. Then

an example of an identifier declaration decI is

I1 l y = hd(tl(tl(l)))+ I2 y
def
= EI1

I2x = x∗ x
def
= EI2

I3 = T
def
= EI3

I4 u v w = u+ v+w
def
= EI4
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An Example Program

Let I = F : : int → int → int,K : : int. Then an identifier

declaration decI is

F x y = x+7− y
def
= EF

K = 10

An example of a program is decI in F 8 1≤ K . Note that

∅ ⊢ F 8 1≤ K : : bool

and

x : : int,y : : int
︸ ︷︷ ︸

ΓF

⊢ x+7− y : : int
︸︷︷︸

σF

and ∅ ⊢ K : : int
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Defining Programs

A program in FUN
e is a judgement of the form

decI in P

where decI is a given identifier declaration and the

program expression P satisfies a type assignment of the

form

∅ ⊢ P : : σ (written P : : σ)

and ∀ F~x = EF ∈ decI

ΓF ⊢ EF : : σF
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What’s Next? Values and the Evaluation Relation

� Look at the notion of evaluation order.

� Define values, which are the results of eager program

executions.

� Define an eager evaluation semantics: P ⇓e V.

� Give some examples.
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Evaluation Orders

� The operational semantics of FUN
e says when a

program P evaluates to a value V. It is like the IMP

evaluation semantics.

� Write this in general as P ⇓e V, and examples are

3+4+10⇓e 17 hd(2 : nilint) ⇓
e 2
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� Let F x y = x+ y. We would expect F (2∗3) (4∗5) ⇓e 26.

� We could

• evaluate 2∗3 to get value 6 yielding F 6 (4∗5),

• then evaluate 4∗5 to get value 20 yielding F 6 20.

� We then call the function to get 6+20, which evaluates to

26. This is call-by-value or eager evaluation.

� Or the function could be called first yielding (2∗3)+(4∗5)

and then we continue to get 6+(4∗5) and 6+20 and 26. This

is called call-by-name or lazy evaluation.
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Defining and Explaining (Eager) Values

� Let decI be an identifier declaration, with typical typing

F : : σ1 → σ2 → σ3 → . . . → σa → σ

Informally a is the maximum number of inputs taken by F. A

value expression is any expression V produced by

V ::= c | nilσ | F ~V | V : V

where ~V abbreviates V1 V2 . . . Vk−1 Vk and 0≤ k < a.

� Note also that k is strictly less than a, and that if a = 1 then

F ~V denotes F.
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� A value is any value expression for which decI in V

is a valid FUN
e program.

� Suppose that F : : int → int → int → int and that P1 ⇓
e 2

and P2 ⇓
e 5 and P3 ⇓

e 7 with Pi not values. Then

P V

F

F P1 F 2

F 2 P2 F 2 5

P V

F 2 5 P3

F 2 5 7 14

F P1 P2 P3 14
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The Evaluation Relation

⇓e
VAL

V ⇓e V

P1 ⇓
e m P2 ⇓

e n
⇓e

OP

P1 op P2 ⇓
e m op n

P1 ⇓
e T P2 ⇓

e V
⇓e

COND1
if P1 then P2 else P3 ⇓

e V
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





P1 ⇓
e F ~V P2 ⇓

e V2 F ~V V2 ⇓
e V

where either P1 or P2 is not a value
⇓eAP

P1 P2 ⇓
e V

EF[V1, . . . ,Va/x1, . . . ,xa] ⇓
e V

[F~x = EF declared in decI ] ⇓eFID

FV1 . . .Va ⇓
e V

EK ⇓e V
[K = EK declared in decI ] ⇓eCID

K ⇓e V
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P ⇓e V : V ′

⇓eHD

hd(P) ⇓e V

P ⇓e V : V ′

⇓eTL

tl(P) ⇓e V ′

P1 ⇓
e V P2 ⇓

e V ′

⇓eCONS

P1 : P2 ⇓
e V : V ′

P ⇓e nilσ
⇓eELIST1

elist(P) ⇓e T

P ⇓e V : V ′

⇓eELIST2
elist(P) ⇓e F

Midlands Graduate School, University of Birmingham, April 2008 69'

&

$

%

Examples of Evaluations

Suppose that decI is

G x = x∗2

K = 3

VAL

G ⇓e G

VAL

3⇓e 3
CID

K ⇓e 3

VAL

3⇓e 3
VAL

2⇓e 2
OP

(x∗2)[3/x] = 3∗2⇓e 6
FID

G 3⇓e 6
AP

G K ⇓e 6
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We can prove that

F 2 3 (4+1) ⇓e 10

where F x y z = x+ y+ z as follows:

⇓e
VAL

F 2 3⇓e F 2 3

4⇓e 4 1⇓e 1

4+1⇓e 5 T
⇓e

AP

F 2 3 (4+1) ⇓e 10
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where T is the tree

2⇓e 2 3⇓e 3

2+3⇓e 5 5⇓e 5

2+3+5⇓e 10
==========================

(x+ y+ z)[2,3,5/x,y,z] ⇓e 10
⇓e

FID

F 2 3 5⇓e 10
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What’s Next? FUN Properties of Eager Evaluation

� Explain and define determinism.

� Explain and define subject reduction, that is,

preservation of types during program execution.
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Properties of FUN

� The evaluation relation for FUN
e is deterministic.

More precisely, for all P, V1 and V2, if

P ⇓e V1 and P ⇓e V2

then V1 = V2. (Thus ⇓e is a partial function.)

� Evaluating a program decI in P does not alter its

type. More precisely,

(∅ ⊢ P : : σ and P ⇓e V) implies ∅ ⊢ V : : σ

for any P, V, σ and decI . The conservation of type during

program evaluation is called subject reduction.
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Chapter 5

By the end of this chapter you should be able to

� describe the SECD machine, which executes

compiled FUN
e programs; here the expressions

Exp are defined by E ::= x | n | F | E E;

� show how to compile to SECD instruction

sequences;

� write down example executions.
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Architecture of the Machine

� The SECD machine consists of rules for transforming SECD

configurations (S,E,C,D).

� The non-empty stack S is generated by

S ::=
n

↑
|

Sl . . .S1

cloF

↑

� Each node occurs at a level ≥ 1.

� A stack S has a height the maximum level of any cloF , or 0

otherwize.
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� If the (unique) left-most closure node cloF at level α
exists, call it the α-prescribed node, and write α S.

� For any stack α S of height ≥ 1 there is a sub-stack S′

of shape

Sl . . . S1

�cloF

↑
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Given any other stack Sl+1 there is a stack S′′

Sl+1 Sl . . . S1

�cloF

↑

� Write Sl+1⊕S for S with S′ replaced by S′′.
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� The environment E takes the form

x1 =?S1 : . . . : xn =?Sn.

� The value of each ? is determined by the form of an Si.

� If Si is
n

↑
then ? is 0; if Si is

cloF

↑
then ? is 1; in any

other case, ? is Av 1.
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� A SECD code C is a list which is produced by the

following grammars:

ins ::= x | n | F | APP

C ::= − | ins : C

� A typical dump looks like

(S1,E1,C1,(S2,E2,C2, . . .(Sn,En,Cn,−) . . .))

� We will overload : to denote append; and write ξ for

ξ : −.

Midlands Graduate School, University of Birmingham, April 2008 80'

&

$

%

We define a compilation function [[−]]:Exp → SECDcodes

which takes an SECD expression and turns it into code.

� [[x]]
def
= x

� [[n]]
def
= n

� [[F ]]
def
= F

� [[E1 E2]]
def
= [[E1]] : [[E2]] : APP
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There is a representation of program values as stacks, given

by

� (|n|)
def
=

n

↑

�

(|F V1 . . .Vk|)
def
=

(|Vk|) . . . (|V1|)

cloF

↑

= (|Vk|)⊕ . . .⊕ (|V1|)⊕
cloF

↑

� Recall k < a with a the arity of F.
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The Re-writes

A number is pushed onto the stack (the initial stack can be

of any status):

S [Av ]α S

E E

C n : C

D D

num
7−→

S α
n

↑
⊕S

E E

C C

D D

Midlands Graduate School, University of Birmingham, April 2008 83'

&

$

%

A function is pushed onto the stack (the initial stack can be

of any status):

S [Av ]α S

E E

C F : C

D D

fn
7−→

S α+1
�cloF

↑
⊕S

E E

C C

D D
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A variable’s value is pushed onto the stack, provided that the

environment E contains x = ?T ≡ [Av ]δ T (where δ is 0 or 1).

Note that by definition, the status of T determines the status

of the re-written stack:

S [Av ]α S

E E

C x : C

D D

var
7−→

S [Av ]δ+α T ⊕S

E E

C C

D D
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An APP command creates an application value, type 0:

S α

Sk . . .S1

�cloF

↑

⊕S

E E

C APP : C

D D

cav0
7−→

S Av α

Sk . . .S1

�cloF

↑

⊕S

E E

C C

D D
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An APP command creates an application value, type 1:

S α

�cloH

↑
Sk−1 . . .S1

cloF

↑

⊕S

E E

C APP : C

D D

cav1
7−→

S Av α−1

cloH

↑
Sk−1 . . .S1

�cloF

↑

⊕S

E E

C C

D D
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An APP command produces an application value from an
application value:

S Av α

Sk . . .S1

�cloF

↑

S′k′−1 . . .S′1

cloG

↑

⊕S

E E

C APP : C

D D

avtav
7−→

S Av α−1

Sk . . .S1

cloF

↑

S′k′−1 . . .S′1

�cloG

↑

⊕S

E E

C C

D D
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An APP command calls a function, type 0:

S α

Sa . . .S1

�cloF

↑

⊕S

E E

C APP : C

D D

call0
7−→

S −

E xa = ?Sa : . . . : x1 = ?S1 : E

C [[EF ]]

D (α−1 S,E,C,D)
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An APP command calls a function, type 1:

S α

�cloH

↑
Sa−1 . . .S1

cloF

↑

⊕S

E E

C APP : C

D D

call1
7−→

S −

E xa =?Sa : . . . : x1 =?S1 : E

C [[EF ]]

D (α−2 S,E,C,D)
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An APP command calls a function, type 2:

S Av α

Sk . . .S1

�cloF

↑

S′a−1 . . .S′1

cloG

↑

⊕S

E E

C APP : C

D D

call2
7−→

S −

E xa =?S′a : . . . : x1 =?S′1 : E

C [[EG]]

D (α−2 S,E,C,D)
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Restore, where the final status is determined by the initial

status:

S [Av ]β T

E E ′

C −

D (α S,E,C,D)

res
7−→

S [Av ]α+β T ⊕S

E E

C C

D D
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Suppose that K, N and MN are functions which are also

values, and that
F x y = x

L u v = u

I a b = b

H z = L (M N) z
Then

(F (H 4)) (I 2 K) ⇓e M N. Note that

[[(F (H 4)) (I 2 K)]] =

(11.
def
= F) : H : 4 : APP : APP : I : 2 : APP : K : APP : (APP

def
= 1.)

and

[[L (M N) z]]
def
= 7.

def
= L : M : N : APP : APP : z : APP

def
= 1.
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S 0 −

E −

C 11.

D −

num/fn
7−→

3

S 2

4

↑

�cloH

↑

cloF

↑

E −

C 8. ≡ APP : 7.

D −
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call0
7−→

S 0 −

E E ′ def
= z = 0

4

↑

C [[L (M N) z]]

D ξ def
= (1

cloF

↑
,−,7.,−)

fn
7−→

3

S 3

�cloN

↑

cloM

↑

cloL

↑

E E ′

C 4.

D ξ
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cav1
7−→

S Av 2

cloN

↑

�cloM

↑

cloL

↑

E E ′

C 3.

D ξ

avtav
7−→

S Av 1

cloN

↑

cloM

↑

�cloL

↑

E E ′

C 2.

D ξ
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Chapter 6

By the end of this chapter you should be able to

� explain the outline of a proof of correctness;

� explain some of the results required for

establishing correctness, and the proofs of these

results.
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A Correctness Theorem

For all programs decI in P for which ∅ ⊢ P : : σ we have

P ⇓e V iff

S −

E −

C [[P]]

D −

7−→t

S (|V|)

E −

C −

D −
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Code and Stack Extension

For any stacks, environments, codes, and dumps, if C1 is

non-empty

M
def
=

S S1

E E

C C1

D D

7−→k

S S2

E E

C C2

D D

def
= M′

implies

M
def
=

S S1⊕S3

E E

C C1 : C3

D D

7−→k

S S2⊕S3

E E

C C2 : C3

D D

def
= M′
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� Need to prove “lemma plus”: if D ≡ (S′,E ′,C′,D′) we

can also similarly arbitrarily extend any of the stacks and

codes in D (say to D).

� We use induction on k. Suppose lemma plus is true

∀k ≤ k0. Must prove we can extend any re-write

M 7−→k0+1 M′ to M 7−→k0+1 M′. By determinism, we have

M 7−→1 M′′ 7−→k0 M′.

� If no function call during M 7−→1 M′′, trivial to extend

to get M 7−→1 M′′. And by induction, M′′ 7−→k0 M′.
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If there is a function call, there are k1 and k2 such that

M
def
=

S T ⊕S

E E

C APP : C

D D

7−→1

S −

E E ′

C [[EF ]]

D (S,E,C,D)

7−→k1

S S′′

E E ′′

C C′′

D (S,E,C,D)

res
7−→

1

S S′′⊕S

E E

C C

D D

7−→k2 M′

where there are no function calls in the k2 re-writes.

Midlands Graduate School, University of Birmingham, April 2008 101'

&

$

%

By induction, we have

M′′ def
=

S −

E E ′

C [[EF ]]

D (S⊕S3,E,C : C3,D)

7−→k1

S S′′

E E ′′

C C′′

D (S⊕S3,E,C : C3,D)

It is easy to see that M 7−→ M′′, and obviously

S S′′

E E ′′

C C′′

D (S⊕S3,E,C : C3,D)

7−→1

S S′′⊕S⊕S3

E E

C C : C3

D D
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If k2 = 0 then we are done.

If k2 ≥ 1 then we can similarly extend the stack and code of

the final k2 ≥ 1 transitions by induction

S S′′⊕S⊕S3

E E

C C : C3

D D

7−→1 M′.

and we are also done.
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Code Splitting

For any stacks, environments, codes, and dumps, if C1 and

C2 are non-empty then

S S

E E

C C1 : C2

D D

7−→k

S S′′

E E

C −

D D

implies that
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S S

E E

C C1

D D

7−→k1

S S′

E E

C −

D D

and

S S′

E E

C C2

D D

7−→k2

S S′′

E E

C −

D D

where k = k1+ k2.
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Program Code Factors Through Value Code

For any well typed FUN
e program decI in P where P : : σ

and P ⇓e V,

S S

E E

C [[P]]

D D

7−→k

S Ŝ

E Ê

C −

D D̂

implies (∃k ≤ k)

S S

E E

C [[V]]

D D

7−→k

S Ŝ

E Ê

C −

D D̂

with equality only if P is a value (and hence equal to V).
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Proving the Theorem

(⇐=if ): We shall prove that if P : : σ then

S S

E −

C [[P]]

D −

7−→k

S S′

E −

C −

D −

implies (∃V) S′ = (|V|)⊕S and P ⇓e V

from which the required result follows. Induction on k. If P

is a number or a function the result is trivial. Else P has the

form P1P2.
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Suppose that

S S

E −

C [[P1]] : [[P2]] : APP

D −

7−→k0+1

S S′

E −

C −

D −

Then appealing to splitting and the induction hypothesis,

we get

Midlands Graduate School, University of Birmingham, April 2008 108'

&

$

%

S S

E −

C [[P1]]

D −

7−→k1

S (|F ~V |)⊕S

E −

C −

D −

and

S (|F ~V |)⊕S

E −

C [[P2]] : APP

D −

7−→k2

S S′

E −

C −

D −

where P1 ⇓
e F ~V .
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Appealing to splitting again, and by induction,

S (|F ~V |)⊕S

E −

C [[P2]]

D −

7−→k21

S (|V2|)⊕ (|F ~V |)⊕S

E −

C −

D −

and

S (|V2|)⊕ (|F ~V |)⊕S

E −

C APP

D −

7−→k22

S S′

E −

C −

D −

where P2 ⇓
e V2.
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By factorization on P1 and P2, and extension we have (check!)

S S

E −

C [[F ~V V2]]

D −

7−→k1+k21

S (|V2|)⊕ (|F ~V |)⊕S

E −

C APP

D −

7−→k22

S S′

E −

C −

D −

and so if P1 P2 is not a value then

k1 + k21+ k22 < k0 +1

and by induction S′ = (|V|)⊕S for some V where F ~V V2 ⇓
e V.

Hence P1 P2 ⇓
e V as required.

If P1 P2 is a value, refer to part (=⇒onlyif ) of the proof, case ⇓e
VAL


