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1 MotivationEver since McCarthy [MAE+62] referred to the input/output (I/O) operations READand PRINT in LISP 1.5 as \pseudo-functions," I/O e�ects have been viewed withsuspicion. LISP 1.5 was the original applicative language. Its core could be explainedas applications of functions to arguments, but \pseudo-functions"|which e�ected\an action such as the operation of input-output"|could not. Explaining pseudo-functions that e�ect I/O is not a matter of semantic archaeology: although lazyfunctional programmers avoid unrestricted side-e�ects, this style of I/O is pervasivein imperative languages and persists in applicative ones such as LISP, Scheme andML. But although both the latter are de�ned formally [MTH90, RC86] neitherde�nition includes the I/O operations.We address this longstanding but still pertinent problem by supplying both anoperational and a denotational semantics for I/O e�ects. We work with a call-by-value PCF-like language, O, equipped with interactive I/O operations analogous tothose of LISP 1.5. We can think of O as a tiny higher-order imperative language,with an applicative syntax making it a fragment of ML. In this paper we shall:� de�ne a CCS-style labelled transition semantics for O;� show that the associated bisimilarity is a congruence;� de�ne a domain-theoretic denotational semantics for O;� prove that denotational equality implies bisimilarity.Our aim is to present such an approach to I/O in detail for a simple language andto concentrate on small examples; let us discuss some motivation and detail:Morris-style contextual equivalence is often adopted as operational equivalencefor applicative languages without side-e�ects, such as PCF. Two programs p andq are contextually equivalent i� for any context C such that ; ` C[p] : bool and; ` C[q] : bool, then C[p] converges just when C[q] does. This is also known asobservational congruence. It is inappropriate for our calculus because (unlike inCCS, say) contexts cannot observe the side-e�ects of a program. In fact, any twoprograms which are ready to engage in I/O are contextually equivalent becauseneither immediately converges to a value.Thus, in order to set up a useful operational semantics and notion of equivalenceof programs, we must seek a framework which can subsume the usual semantics ofapplicative languages, but at the same time provide a mechanism for the semanticsof side-e�ects. A suitable framework is a labelled transition system, with assertionsof the form p ��! q meaning that program p performs action � to become program q.Using an appropriate labelled transition system, CCS-style bisimilarity provides thenatural operational equivalence on O programs. Theorem 1 is that bisimilarity is acongruence. It follows that if two programs are bisimilar, they are also contextuallyequivalent. This is what we would hope: it would be disconcerting if bisimilarityequated two programs that were contextually distinct.1



Another candidate for operational equivalence is trace equivalence. If s =�1 : : : �n is a �nite sequence of actions, we say that s is a trace of p i� p �1�! � � � �n�!.Two programs are trace equivalent i� they have the same set of traces. As notedelsewhere [Gor93, Mil89] in a deterministic calculus such as O trace equivalencecoincides with bisimilarity; we prefer to use bisimilarity because it admits proofs byco-induction.The denotational semantics is speci�ed in two stages. First, we give a denota-tional semantics to a metalanguage M in the category CPPO of cppos and Scottcontinuous functions. Second, we give a formal translation of the types and expres-sions of O into those ofM. M is based on the equational fragment of the FIX-logicof [CP92], but contains a single parameterised recursive datatype which is used tomodel computations engaged in I/O, and does not (explicitly) contain a �xpointtype. Following Plotkin's use of a metalanguage to study object languages [Plo85]we equip the programs (closed expressions) of M with an operational semantics.Theorem 2 shows the `good �t' between the domain-theoretic semantics of M andits operational semantics: we prove that the denotational semantics is sound andadequate with respect to the operational semantics.To complete our study, we establish a close relationship between the operationalsemantics of each O program and that of its denotation. Hence we prove our thirdtheorem: that if the denotations of two O programs are equal, the programs arein fact operationally equivalent. The proof is by co-induction: we can show thatthe relation between O programs of equal denotations is in fact a bisimulation, andhence contained in bisimilarity.We overcame two principal di�culties in this study. First, although it is fairlystraightforward to write down operational semantics rules for side-e�ects, the essen-tial problem is to develop a useful operational equivalence. Witness the great currentinterest in ML plus concurrency primitives: there are many operational semantics[BMT92, Hol83] but few developed notions of operational equivalence. Holmstr�om[Hol83] pioneered a strati�ed approach to mixing applicative and imperative featuresin which a CCS-style labelled transition system for the side-e�ects was de�ned interms of a `big-step' natural semantics for the applicative part of the language. ButHolmstr�om's approach fails for the languages of interest here, in which side-e�ectsmay be freely mixed with applicative computation. Instead, as we have described,we solve the problem of �nding a suitable operational equivalence by expressing boththe applicative and the side-e�ecting aspects of O in a single labelled transition sys-tem, where the actions correspond to the atomic observations one can make of an Oprogram. The classical de�nition of (strong) bisimilarity from CCS [Mil89] gener-ates a natural operational equivalence, which subsumes both Abramsky's applicativebisimulation [AO92] and the strati�ed equivalences suggested by Holmstr�om's se-mantics [Gor94, Gor93]. The second main di�culty was the construction of formalapproximation relations in the proof of adequacy for M. Proof of their existenceis complicated by the presence in M of a parameterised recursive type needed tomodel O computations engaged in I/O; our construction is based on recent work ofPitts [Pit94b] for untyped languages, and uses the idea of minimal invariant objectsdue to Freyd. 2



Finally, some comments about notation. As usual, we identify phrases of syntaxup to �-conversion, that is, renaming of bound variables. We write � �  to meanthat phrases � and  are �-convertible. We write �[ =x] for the substitution ofphrase  for each variable x free in phrase �. A context, C, is a phrase of syntaxwith one or more holes, but not identi�ed up to �-conversion. A hole is written as[ ] and we write C[�] for the outcome of �lling each hole in C with the phrase �. IfR is a relation, R+ is its transitive closure, R� its reexive and transitive closure,and Rop its opposite, that is, f(y; x) j (x; y) 2 Rg.2 The object language OIn this section we de�ne the (object) programming language O. First we give thetypes and expressions of O. Then we specify the programs and values, and usethese to present a \single-step" operational semantics. Next we highlight certainO expressions which are able to engage in I/O; these are used to develop a labelledtransition system semantics, in which some of the actions (labels) amount to I/Oe�ects. This labelled transition system induces a notion of program bisimilarity,which will be good for program reasoning provided bisimilarity is a congruence. Wesay a relation between O-expressions is a precongruence i� it is preserved by allcontexts, and a congruence if in addition it is an equivalence relation. We provebisimilarity is a congruence by introducing a relation on O-expressions which isclearly a precongruence, and which can be shown equal to similarity; the resultfollows by showing that bisimilarity is the symmetric interior of similarity.O is a call-by-value version of PCF, including constants for I/O. The types ofO, ranged over by � , consist of ground types unit, bool and int, together withfunction and product types; these types have the same intended meanings as in ML,and are speci�ed by the grammar� ::= unit j bool j int j � -> � 0 j � * � 0:Let Lit , ranged over by `, be the set ftrue; falseg [ f: : : ; -2; -1; 0; 1; 2; : : :g ofBoolean and integer literals, and let Rator , be the set f+; -; *; =; <g of arithmeticoperators. It will be convenient to use the notations b (b 2 ftt ;� g), i (i 2 Z) and� (� 2 f+;�;�;=; <g) to range over the sets Lit and Rator . We let k range overthe set of O constants, given byf(); fst; snd; �;
; read; writeg [ Lit [ Rator :Here is the grammar for O expressions,e ::= k� j x j �x:�: e j e e j (e; e) j if e then e else ewhere x ranges over a countable set of variables, and k� is an expression if and onlyif k:� is an instance of one of the following type schemes:3



() : unit i : int true; false : bool� : �� -> � 0� 
 : �+; *; - : int * int -> int =; < : int * int -> boolfst : �1 * �2 -> �1 snd : �1 * �2 -> �2read : unit -> int write : int -> unitThe intended meanings of expressions are those which the reader expects. Forthe sake of simplicity there is just one user-de�nable constant, �, which provides arecursive program declaration as described shortly. The expression 
� is one whoseevaluation diverges. This is a spartan programming language, but it su�ces toillustrate the semantics of side-e�ecting I/O.The type assignment judgements are of the form � ` e:� , where the environment,�, is a �nite set of (variable, type) pairs, f x:�1; : : : ; x:�n g, in which the variablesare required to be distinct. In such judgements, e will be an �-equivalence classof expressions. The provable judgements are generated by the usual monomorphictyping rules for this fragment of ML, where � ` k� : � is provable just when k� isa valid expression. We shall write e:� instead of ; ` e : � . We assume there is auser-speci�ed expression e�, determining the behaviour of the constant �, for whichwe assume that x:�� ` e� : � 0� is provable. It would be routine to extend O to allow�nitely many user-de�nable constants, but for the sake of simplicity we allow justone.We shall de�ne the notions of program and value for O. A program is a closedexpression e for which there is a type � where e:� . Each program has a uniquetype, given the type annotations on constants and lambda-abstractions, though fornotational convenience we often omit these annotations. The metavariables p andq will range over programs. A value expression, ve, is an expression that is either avariable, a constant (but not 
), a lambda-abstraction or a pair of value expressions.The set of values, ranged over by v, u or w, consists of the value expressions thatare programs; so values are those programs which appear in the grammarv ::= k� j �x: e j (v; v)where k� must be a valid expression and k is not 
.In order to specify various operational semantics for O, we shall make heavyuse of relationships between programs of the same type; with this in mind we shallintroduce some notation. We shall write U� for the largest binary relation on pro-grams of type � , that is U� def= f e j e:� g � f e j e:� g, and U is then de�ned to bethe union of these relations over all types: U def= S� U� .Before de�ning the labelled transition system that induces a behavioural equiv-alence on O, we need to de�ne the applicative reductions of O. We de�ne a call-by-value `small-step' reduction relation between programs, !, by the rules in Table 1.It is a standard and easy exercise to verify that in fact ! � U , that is, ! preservestypes in the expected way. 4



(�x: e) v ! e[v=x] �(i; j)! i� j� v ! e�[v=x] 
! 
fst(u; v)! u snd(u; v)! vif true then p else q ! p if false then p else q ! qtogether with the inference rule p! qE [p]! E [q]where E is an experiment, a context speci�ed by the grammarE ::= [ ] p j v [ ] j if [ ] then p else q j ([ ]; p) j (v; [ ]):Table 1: Rules for Generating the ! RelationThe rules for � and 
 introduce the possibility of non-termination intoO: observehow � yields a recursive program provided that � appears within the expression e�.One can easily verify that the relation ! is a partial function.A communicator is, informally, a program ready to engage in I/O. The elementsof the set Com of communicators is speci�ed by the grammarc ::= read () j write i j E [c]:A communicator is essentially speci�ed by a �nite nesting of experiments with aread () or write i at the innermost level. It is quite easy to see that the set of com-municators is disjoint from the set of values. Let us de�ne the set of active programs,Active, ranged over by a and b, to be the (disjoint) union of the communicators andthe values. We can easily show that the active programs are the normal forms of!, that is:Lemma 2.1 Active = Normal, where Normal = fp j :9q(p! q)gProof We can show that Active � Normal by proving that any communicator, orvalue, is normal; and this follows by showing that the set of normal forms is closedunder the rules for de�ning the sets of values and communicators.That Normal � Active follows by structural induction on expressions; moreprecisely, we prove that e 2 Normal implies e 2 Activeholds for all expressions by structural induction. 25



` `�! 
 (u; v) fst�! u (u; v) snd�! vu @v�! u v if u v a program read () ?n�! n write n !n�! ()p! p00 p00 ��! p0 (?)p ��! p0 p ��! qE [p] ��! E [q]Table 2: Rules for Generating the Labelled Transition SystemOur behavioural equivalence is based on a set of atomic observations, or actions,that may be observed of a program. In particular, there are actions associated withboth read and write e�ects. We letMsg, ranged over by �, beMsg def= f?i; !i j i 2 Zg,where ?i represents input of a number i and !i output of i. Thus Msg , a set ofmessages, represents I/O e�ects. The set of actions, ranged over by �, is given byAct def= Lit [ ffst; snd;@v j v is a value g [Msg :The labelled transition system is a ternary relation whose relationships will bewritten p ��! p0 where p and p0 are programs, and � is an action. The labelledtransition system is inductively de�ned by the rules in Table 2.The last rule allows messages|but not arbitrary actions|to be observed as side-e�ects of subterms. Each transition p ��! q can be factored as a (�nite) sequenceof applicative reductions, down to an active program, followed by an � transition;this fact is highly important, and is made precise in the following lemma.Lemma 2.2 p ��! q i� 9a 2 Active (p!� a ��! q).Proof Given the existence of a factorisation of an action via an active program,p!� a ��! q, it is easy to see that p ��! q by applying the rulep! p00 p00 ��! p0 (?)p ��! p0Conversely, we use rule induction on the set of labelled transitions. Let us giveone example case: consider the rule p ��! qE [p] ��! E [q]for any arbitrary experiment E . By induction, there is an active program a such thatp !� a ��! q, and so we have E [p] !� E [a] ��! E [q]. By inspecting the de�nitionof the labelled transition system, if a is a value a ��! q could only be deduced from(?), implying that there is some p00 for which a ! p00. But this is not possible byLemma 2.1. Hence a is a communicator, implying that E [a] is also a communicatoras required. We omit the veri�cations for the remaining rules. 26



We write p+ to mean 9a 2 Active(p!� a). Unless p+, p has no transitions. So
, for instance, has no transitions.We adopt bisimilarity from Milner's CCS [Mil89] as our operational equivalencefor O. Let q be an �-derivative of p i� p ��! q. We want two programs p andq to be behaviourally equivalent i�, for every action �, every �-derivative of p isbehaviourally equivalent to some �-derivative of q, and vice versa. We shall assumethat the reader is familiar with these ideas, at least in the setting of concurrencytheory and process calculi. However, it will be convenient to give a terse summaryof the notions of (bi)simulations, presented within our own framework.Given a relation S � U we de�ne [S] � U by deeming that p[S]q i� wheneverp ��! p0, there is q0 with q ��! q0 and p0 S q0. Note that this is well de�ned; that [S]really is a subset of U follows by inspecting the de�nition of the labelled transitionsystem. We can de�ne functions �s;�b : P(U) ! P(U) where �s(S) def= [S] and�b(S) def= [S] \ [Sop]op. One can check that these functions are well-de�ned andmonotone. We say that S is a simulation if S � �s(S) and that S is a bisimulationif S � �b(S):We de�ne similarity, . � U , to be the greatest (post-)�xed point of �s,. def= �(�s);and bisimilarity to be the greatest (post-)�xed point of �b,� def= �(�b):If p . q we say that p is similar to q, and if p � q we say that p is bisimilar to q. Weshall soon see that similarity is a preorder and that bisimilarity is an equivalence.It is immediate that (bi)similarity is the greatest (bi)simulation; in fact appealingto the (proof of the) Knaster-Tarski theorem we have. = Sf S j S � �s(S) g� = Sf S j S � �b(S) gThe following principles of co-induction are corollaries of the de�nitions of . and�.Lemma 2.3 p . q i� there is a simulation S with p S q; and p � q i� there is abisimulation S with p S q.The main objective of this paper is to give a denotational semantics of O so thatour metalanguage M may be used to establish operational equivalences. Nonethe-less, just as in CCS, the availability of co-induction means a great deal can beachieved simply using operational methods, provided that � is a congruence. Thisis our �rst main result, Theorem 1, which we shall prove via an adaptation of Howe'smethod; similar proofs can be found elsewhere [Gor94, Gor95a, How89].The proof of this result is rather lengthy, involving a number of intermediatesteps and de�nitions. We begin by observing that in order to prove Theorem 2.10we may deal simply with similarity, rather than bisimilarity.7



Lemma 2.4 Bisimilarity is the symmetric interior of similarity, that is � = . \.op.Proof The proof depends on the easily veri�ed fact that our labelled transitionsystem is image singular in the sense thatwhenever p ��! p0 and p ��! p00 then p0 � p00.Since � = �b(�) = [�]\ [�op]op we have � � [�] and �op � [�op]. By co-induction� � . and �op � ., hence � � . \ .op. For the reverse inclusion it su�ces toshow that . \.op is a simulation (as any symmetric simulation is a bisimulation).Consider p and q such that p . q and q . p. Suppose that p ��! p0. From p . qthere must be a q0 such that q ��! q0 and p0 . q0. We need to show q0 . p0 also.Since q ��! q0 there must be a p00 with p ��! p00 and q0 . p00. But by the fact above,it must be that p0 � p00, so we are done. 2This lemma fails in a nondeterministic calculus such as CCS, where the labelledtransition system is not image singular. Now, in order to prove Theorem 2.10, all weneed do is show that . is a precongruence; let us introduce some technical machineryin order to prove this.We have given a de�nition of . � U . This gives relationships between programs(of the same type). We will now extend the de�nition of . to provide relationshipsbetween expressions. The restriction of this relation to programs will amount tosimilarity, so we denote it also by .. We de�ne a relation ., with relationshipsdenoted by � ` e . e0 : � , and for which it will be implicit (by de�nition) that bothe and e0 are assigned the type � in the environment �. We de�ne � ` e . e0 : � i�� � ` e : � ,� � ` e0 : � and� if � = f x1:�1; : : : ; xn:�n g, then for all �nite sets of values f v1:�1; : : : ; vn:�n gwe have e[~v=~x] . e0[~v=~x]where here . is similarity of programs as de�ned above.Let us now de�ne a relation .�, analogous in form to ., using the rules in Table 3.We call .� Howe's relation. We have a lemma which gives some basic properties ofHowe's relation, and (bi)similarity.Lemma 2.5 (1) . is a preorder and � is an equivalence;(2) If p . q and p!� p0 then p0 . q;(3) If � ` e1 .� e2 : � and � ` e2 . e3 : � then � ` e1 .� e3 : � ;(4) � ` e : � implies � ` e .� e : � ; 8



(�; x:� ` x . e : �)�; x:� ` x .� e : � (� ` k . e : �)� ` k .� e : ��; x:� ` e1 .� e2 : � (� ` �x:�: e2 . e3 : � -> �)� ` �x:�: e1 .� e3 : � -> �� ` e1 .� e01 : � -> � � ` e2 .� e02 : � (� ` e01e02 . e3 : �)� ` e1e2 .� e3 : �� ` e1 .� e01 : � � ` e2 .� e02 : � (� ` (e01; e02) . e3 : � * �)� ` (e1; e2) .� e3 : � * �� ` e1 .� e01 : bool � ` e2 .� e02 : � � ` e3 .� e03 : � (� ` if e01 then e02 else e03 .� e4 : �)� ` if e1 then e2 else e3 .� e4 : �Table 3: Rules for Generating the Relation .�(5) � ` e1 . e2 : � implies � ` e1 .� e2 : � ;(6) If � ` e .� e0 : � and �; x:� ` e1 .� e2 : � then � ` e1[e=x] .� e2[e0=x] : � ; and(7) .� is a precongruence.Proof(1) It is easy to see that if I def= f (p; p) j p is a program g then (I � U and)I � �s(I). Thus I � . implying that . is reexive. One can also proveroutinely that for any simulation S we have [S] � [S] � [S � S]; that . = [.]implies that . � . � .. So . is a preorder and it is thus immediate fromLemma 2.4 that � is an equivalence.(2) This is immediate from the de�nition of . plus rule (?) of Table 2.(3) Use induction on the derivation of � ` e1 .� e2 : � . One needs to appeal tothe transitivity of ., proved in (1).(4) Use induction on the derivation of � ` e : � .(5) This follows from parts (3) and (4).(6) Use induction on the derivation of �; x:� ` e1 .� e2 : � , together with part (5).(7) This follows from the de�nition of .�, plus part (4).9



2Lemma 2.6 Whenever v .� q, there exists a value u for whichv .� u and q !� u:In particular, if v is l then q !� l.Proof We use induction on the structure of value v.(Case v is �x:�: e1): Suppose that �x:�: e1 .� q, where �x:�: e1:� -> � , say. Thenthere is an expression e2 for which x:� ` e1 .� e2 : � and �x:�: e2 . q. Eachtype � is inhabited, in particular there is v:� for each �. Thus we have�x:�: e2 . q
(�x:�: e2)v@v ? . q0@v?

................and so appealing to Lemma 2.2 there is a value u for which q !� u @v�! uv = q0;the de�nition of the labelled transition system ensures that u is indeed a value.Note that the only transitions �x:�: e2 can make are of the form @v for somev:�; it follows that �x:�: e2 . u and hence, using Lemma 2.5 part (3), that�x:�: e1 .� u.(Case v is (v; v0)): Suppose that (v; v0) .� q. Then there are q1 and q01 for whichv .� q1, v0 .� q01 and (q1; q01) . q. By induction there exist values u1 and u01where q1 !� u1 and q01 !� u01 and such that v .� u1 and v0 .� u01. Thus usingLemma 2.2 we have(q1; q01) . q
u1fst ? . wfst?.................

(q1; q01) . q
u2snd ? . w0snd?................and so q !� (w;w0) where u1 . w and u01 . w0. It follows that (v; v0) .�(w;w0).The remaining cases consist of the value constants: each case is quite similar,relying on Lemma 2.2. We give just two examples:(Case v is l): If l .� p then l . p and thus there is a program p0 for which p l�! p0.Hence we must have p !� a l�! 
 = p0 and hence a = l because a has to bea value of type int. 10



(Case v is read): Suppose that read .� p, so thatread . p
read()@() ? .� p0@()?................Using Lemma 2.2 there is an active a for which p!� a @()�! a(). Thus a mustbe a value, with read .� a. 2Lemma 2.7 Whenever p! p0 and p .� q, then p0 .� q.Proof We induct on the derivation of p! p0.(Case fst(u; v)! u): Suppose that we have fst(u; v) .� q. Then appealing toLemma 2.6, there are programs p1, p2 and values v1, v2 and v02 for which� fst .� p1 !� v1 where fst .� v1;� (u; v) .� p2 !� (v2; v02) where (u; v) .� (v2; v02) and� fst(u; v) .� p1p2 . q.It follows that fst . v1 p1p2 . q

fst(v2; v02)@(v2; v02) ? . v1(v2; v02)@(v2; v02)? == v1(v2; v02)�?
u .� v2?and so u .� q as required by Lemma 2.5 parts (1), (2) and (3).(Case snd(u; v)! v): symmetric to the previous case.(Case (�x:�: e)v ! e[v=x]): Suppose that (�x:�: e)v .� q. Then using Lemma 2.6,there are p1, p2 and v2 such that� �x:�: e .� p1;� v .� p2 !� v2 where v .� v2 and11



� p1p2 . q.Thus there is e0 such that x:� ` e .� e0 and �x:�: e0 . p1. So from Lemma 2.2and from Lemma 2.5 part (6) we have�x:�: e0 . p1 p1p2 . q
(�x:�: e0)v2@v2 ? . v1v2@v2? ======= v1v2�?

e[v=x] .� e0[v2=x]?and so e[v=x] .� q by Lemma 2.5 parts (1), (2) and (3).(Case �v ! e�[v=x]): Suppose that �v .� q. Thus using Lemma 2.6, there are p1,p2, v1 and v2 such that� � .� p1 !� v1 where � .� v1;� v .� p2 !� v2 with v .� v2 and� p1p2 . q.Hence by Lemma 2.5 part (6)� . v1 p1p2 . q
�v2@v2 ? . v1v2@v2? ======= v1v2�?

e�[v=x] .� e�[v2=x]?and so e�[v=x] . q by Lemma 2.5 parts (1), (2) and (3). 2Proposition 2.8 .� is a simulation.Proof We have to verify that if p .� q and p ��! p0 then there exists q0 whereq ��! q0 and p0 .� q0. We induct on the derivation of the labelled transitions.12



(Case l l�! 
): This is immediate because we have l . q whenever l .� q.(Case (u; v) fst�! u): There exist values u0 and v0 for which(u; v) .� (u0; v0) . q
ufst ? .� u0fst? . q0fst?................and so from Lemma 2.5 part (3) we deduce u .� q0.(Case (u; v) snd�! u): Similar to fst.(Case u @v�! uv): Let u .� q. Then q !� w with u .� w for some w, usingLemma 2.6. Thus u and w have the same type. Note that from Lemma 2.5part (4) we have v .� v and so appealing to Lemma 2.2 we haveu .� q

uv@v ? .� wv@v?(Case write i !i�! ()): Suppose that write i .� q. Then using Lemma 2.6, thereare p1, p2 and v1 such that� write .� p1 !� v1 where write .� v1;� i .� p2 !� i and� p1p2 . q.Thus we have write . v1 p1p2 . q
write i@i ? . v1i@i?======== v1i�?

()!i ? . p3!i? . q0
!i?and so () .� q0 by Lemma 2.5 part (5).13



(Case read () ?i�! i): Similar to the previous case.(Case p! p00 p00 ��! p0 (?)p ��! p0 ): This is immediate from Lemma 2.7.(Case p ��! qE [p] ��! E [q] ): We need to consider the various experiments. Let usconsider (v; [ ]). Let (v; p) ��! (v; p0) and (v; p) .� q. Hence (as usual) wehave p1, p2 and v1 such that� v .� p1 !� v1 where v .� v1;� p .� p2 and� (p1; p2) . q.By induction, p .� p2
p0� ? .� p02�?Putting everything together and using Lemma 2.2 we get(v; p) .� (p1; p2) . q

(v; p0)� ? .� (v1; p02)�? . q0�?
................and thus (v; p0) .� q0 (as usual!). 2Proposition 2.9 . is a precongruence.Proof First, note that . � .� follows from Lemma 2.5 part (5). Proposition 2.8shows that .� is a simulation, and thus .� � .. Hence . = .�, and appealing toLemma 2.5 part (7) we see that . is a precongruence. 2Thus we can now prove the central theorem of this section:Theorem 2.10 Bisimilarity is a congruence.Proof This follows from Proposition 2.9 and Lemma 2.4. 214



3 The Metalanguage M and its ComputationalAdequacyIn this section we begin by de�ning the metalanguage M, describing its types,expressions, proved expressions, and its operational theory. Theorem 2 is stated,asserting a computational adequacy result for M. Next we outline some categor-ical methods which will be used to give a denotational semantics to M. Thesemethods have their origins in Scott's work on models of the lambda-calculus, andalso adapt the results of Freyd and Pitts on minimal invariant objects. Next wespecify the denotational semantics, which is essentially quite standard|types aremodelled by complete pointed partial orders, and proved expressions by Scott con-tinuous functions. We prove that certain formal approximation relations exist usingthe properties of minimal invariant objects. Finally, we prove Theorem 2 using theformal approximation relations.We outline a Martin-L�of style type theory which will be used as a metalanguage,M, into which O may be translated and reasoned about|it is based on ideas fromthe FIX-Logic [CP92, Cro92], thoughM does not explicitly contain a �xpoint type.For a general account of similar type theories and their semantics, see for example[Cro93].First we describe the types ofM. The (open and simple) types are given by thegrammar � ::= X0 j Unit j Bool j Int j � � � j � ! � j �? j U(�)where X0 is a �xed type variable, together with a single top-level recursive datatypedeclaration datatype U(X0) = c1 of �1 j � � � j ca of �awhere a > 0 and any type U(�) occurring in the �i is of the form U(X0), and eachfunction type in any �i has the form � ! �0? (thus the function types in the bodyof the recursive type are required to be partial). Note that the positive integer ais �xed, as are each of the types �i. However, a and the types �i are essentiallyarbitrary, and have in fact speci�ed a family of type systems|in Section 4, we shallchoose a speci�c type-system in which the recursive datatype U(X0) is used to modelI/O.Informally, the (open) types are either a type variable, a unit type, Booleans, in-tegers, products, exponentials, liftings, or a single, parameterised recursive datatypewhose body consists of a (�nite) disjoint sum of (a) instances of the latter types.These types will be used in the expected way when modelling the object types of O.A closed type � is one in which there are no occurrences of the type variableX0, and we omit the easy formal de�nition, noting that there are no type variablebinding operations, and indeed just one type variable. We shall make use of typesubstitution, and will write �(�0) for �[�0=X0], where the latter has the obviousde�nition.The collection of expressions of M is given by the grammar in Table 4. Mostof the syntax of M is standard [Cro92, CG93]. The expressions Lift(E) andDropE1 to x inE2 give rise to an instance of (the type theory corresponding to) the15



E ::= x (variable)j () (unit value)j b`c (literal value)j E b�c E (arithmetic)j If E thenE elseE (conditional)j (E;E) (pair)j SplitE as (x; y) inE (projection)j c(E) (recursive data)j CaseE of c1(x)! E j � � � j ca(x)! E (case analysis)j �x:�: E (abstraction)j E E (application)j Lift(E) (lifted value)j DropE to x inE (sequential composition)j Rec x:� inE (recursion)` 2 B [ Z c 2 f c1; : : : ; ca gTable 4: Expressions of the Metalanguage M, ranged over by Elifting computational monad [Mog89]. The expression SplitE1 as (x; y) inE2 is theusual one for decomposing binary product expressions. Further details can be foundin [NPS90].We de�ne a type assignment system forM which consists of rules for generatingjudgements of the form � ` E:�, where � is a closed type, and the environment � isa �nite set f x1:�1; : : : ; xn:�n g of (variable, closed type) pairs in which the variablesare required to be distinct. In such judgements, which we call proved expressions,E is formally an �-equivalence class of expressions (the latter de�ned in Table 4).Usual scope rules apply. Most of the rules for generating these judgements arefairly standard, though for completeness they are given in Table 5. The type of anarithmetic expression is lifted so that its value can be forced using Drop. In the casethat the environment � is empty, we shall write E:� for the type assignment.We can equip M with a standard equational theory, which includes �, � andcongruence rules. The judgements take the form � ` E = E 0:�, which we calltheorems. Having given the full set of rules for type assignment, we omit the rulesfor deriving theorems. In the case that the environment � is empty, we shall writea theorem as E = E 0:�, or even E = E 0 if no confusion is likely to occur.An M program is a closed expression P for which there exists a (closed) type �where P :�. The set of M value expressions is given by the grammarV ::= () j blc j (E;E) j �x:�: E j Lift(E) j c(E);and values are those V which are programs.Finally, we equip the syntax of M with an operational semantics. This is speci-�ed by `small-step' reduction relations which take the form P1 ! P2. The rules for16



�; x:�;�0 ` x : � � ` () : Unit ` 2 B� ` b`c : Bool ` 2 Z� ` b`c : Int� ` E1 : Int � ` E2 : Int� ` E1b�cE2 : Int? � ` E1 : Bool � ` E2 : � � ` E3 : �� ` If E1 thenE2 elseE3 : �� ` Ei : �i (i = 1; 2)� ` (E1; E2) : �1 � �2 � ` E1 : �1 � �2 �; x1:�1; x2:�2 ` E2 : �� ` SplitE1 as (x1; x2) inE2 : �� ` E : �i[�=X0] 1 � i � a� ` ci(E) : U(�) � ` E : U(�) �; x:�i[�=X0] ` Ei : �0� ` CaseE of c1(x)! E1 j � � � j ca(x)! Ea : �0�; x:�0 ` E : �� ` (�x:�0: E) : �0 ! � � ` E : �0 ! � � ` E 0 : �0� ` E E 0 : �� ` E : �� ` Lift(E) : �? � ` E : �? �; x:� ` E 0 : �0� ` DropE to x inE 0 : �0 �; x:�? ` E : �?� ` Rec x:�? inE : �?Table 5: Generation of proved expresssions in Mgenerating the operational semantics appear in Table 6. The operational semanticsof M is lazy in the sense that constructors do not evaluate their arguments.Given any program P , we write P+ to mean that there is a value V for whichP !+ V . Note that M is deterministic: every program P which reduces to somevalue V , must reduce to a unique value V up to �-equivalence.In the rest of this section, our aim is to construct a domain-theoretic denotationalsemantics for M, assigning a denotation [[P ]] to each program P , and to prove thefollowing theorem.Theorem 3.1(1) If P is a program of type � and P ! P 0, then P 0 is also a program of type �and moreover [[P ]] = [[P 0]] 2 [[�]].(2) If P is a program of type �? and [[P ]] 6= ? then there exists a value V of type�? and P !� V .(3) The denotational semantics is sound for the equational theory of M, that isif P = P 0 is a theorem, then [[P ]] = [[P 0]].Part (1) is soundness of the operational semantics of M: it preserves denotation.Part (2) is adequacy: if a program does not denote ? then its evaluation converges.In Section 4, we obtain a denotational semantics for O indirectly via a textual17



b`1cb�cb`2c ! b`1 � `2cIf tt thenP1 else P2 ! P1If � thenP1 else P2 ! P2Split (P1; P2) as (x; y) inE ! E[P1; P2=x; y]Case ci(P ) of c1(x1)! E1 j : : : j ca(xa)! Ea ! Ei[P=xi](�x:�: E)P ! E[P=x]Drop Lift(P ) tox inE ! E[P=x]Rec x inE ! E[Rec x inE=x]together with the inference rule P1 ! P2E [P1]! E [P2]where E is an experiment, a context speci�ed by the grammarE ::= [ ]b�cPj V b�c[ ]j If [ ] thenP1 elseP2j Split [ ] as (x; y) inEj Case [ ] of c1(x0)! E1 j : : : j ca(x0)! Eaj [ ]Pj V [ ]j Lift([ ])j Drop [ ] tox inETable 6: The reduction relation for M
18



translation into intoM. We need Theorem 2 to show that if the induced denotationsof two O programs are equal, then the two programs are bisimilar. The rest of thissection is devoted to the proof of Theorem 2.Ultimately, we shall give a denotational semantics to M in the category CPPOof complete pointed posets (cppos) and (Scott) continuous functions. For us, acppo is a poset which is complete in the sense of having joins of all !-chains andpointed in the sense of having a bottom element. Closed types will be modelled bycppos, and the proved expressions by Scott continuous functions. However, in orderto set up our denotational semantics, we shall make use of some domain-theoreticconstructions in other categories. The following categories will be employed:� The category CPO with objects all cpos and morphisms all continuous func-tions;� the category CPPO with objects all cppos and morphisms all continuous func-tions;� the category Dom with objects all cppos and morphisms all strict continuousfunctions; and� the category DomT where T is any set and we de�neDomT def= ��2TDomto be the T -indexed product category. For the time being T can be any set;but later it will be the set of all closed types in M, and we shall use � todenote elements of T . We write (A� j �2T ) for an object of DomT , and recallthat by de�nition, hom-sets in DomT are given byDomT (A;B) def= ��2TDom(A�; B�):We shall make use of the following inclusion diagramDom incl- CPPO incl- CPOwhere the �rst inclusion yields a lluf subcategory, and the second a full subcategory.We write ? : CPO ! CPO for the (functor part of the) lifting monad, which mapsany cpo X to the lifted cppoX? def= f [x] j x 2 X g [ f?g:Note that each of the above categories is a CPO-enriched category. As usual,the hom-sets of the �rst two categories, whose elements are continuous functions,are given the pointwise order. The hom-sets of DomT are products of c(p)pos|hence cpos. We shall write ?A def= (?A� j � 2 T ) for the bottom element of A inDomT . While we shall only make use of CPO-enrichment, note that each hom-set19



DomT (A;B) is a pointed cpo; we write ?A;B def= (?A� ;B� j �2T ) for the bottom ofDomT (A;B) where ?A� ;B� 2 Dom(A�; B�) is the function with constant value ?B� .The terminal object 1 2 DomT is (f?g j �2T ). Finally, if f :A ! B in DomTand a 2 ��2T A� then we de�ne f(a) 2 ��2TB� by f(a)� def= f�(a�).Our wish is to give a semantics to M in CPPO, using functions which are notnecessarily strict to model proved expressions because M is a lazy type theory.However, while the semantics is speci�ed in CPPO, we wish to exploit the \minimalinvariant" properties associated with the lluf subcategory Dom of CPPO.Note that (DomT )op �DomT is a CPO-category. LetF : (DomT )op �DomT ! DomTbe a CPO-functor. A (parametrised) minimal invariant for F is given by an objectD of DomT , and an isomorphism i : F (D;D) �= D : j in DomT for which the(continuous) function� : DomT (D;D)! DomT (D;D) e 7! i � F (e; e) � jsatis�es �(�) = idD in DomT (D;D). The reader can verify that � is continuous|this follows from the facts that F is a CPO-functor and that each i� and j� arecontinuous.Proposition 3.2 Any CPO-functor F : (DomT )op�DomT ! DomT has a minimalinvariant.Proof The essence of the proof boils down to Scott's original construction of amodel for lambda-calculus [Sco69]. We shall sketch out the important constructionsin the proof, and leave detailed veri�cations to the reader.For each n 2 N there is a commutative diagram in DomT of the formDn+1 F (pn; en) -� F (en; pn) F (D;D)(�)Dn+1
wwwwwwwwwwwww en+1 -�pn+1 D j-� i F (D;D)

wwwwwwwwwwww
Dnin 6 rn? en -� pn D j-� i F (D;D)Let us give the de�nitions of the objects and morphisms in this diagram:(De�nition of D in DomT ) SetD0 def= 1 2 DomTDn+1 def= F (Dn; Dn) 2 DomT20



for each n 2 N . De�ne morphismsin : Dn ! Dn+1 and rn : Dn+1 ! Dnby i0 def= ?D0;D1r0 def= ?D1;D0in+1 def= F (rn; in)rn+1 def= F (in; rn):Now de�ne D� def= f (d�n j n < !) 2 �n<!D�n j r�n(d�n+1) = d�n gfor each � 2 T . Order eachD� pointwise, and note thatD� is a cppo because each r�nis strict continuous; here, ?D� = (?D�n j n < !). Hence we de�ne D def= (D� j �2T ),an object of DomT .(De�nition of en) We set en def= (e�n j �2T ) wheree�n : D�n ! D� d�n 7! (e�n(d�n)m j m < !)and e�n(d�n)m def= 8><>: r�n;m(d�n) if m < nx� if m = ni�n;m(d�n) if m > nHere, if m < n, then rn;m def= rm � : : : � rn and im;n def= in � : : : � im. It is easy to verifythat each e�n is indeed a strict continuous function.(De�nition of pn) These are the (strict continuous) projections, with p�n map-ping (d�n j n < !) to d�n.(De�nition of i) We set i = (i� j �2T ) wherei� : F (D;D)� ! D� i� def= _n<! e�n+1 � F (en; pn)�(De�nition of j) We set j = (j� j �2T ) wherej� : D� ! F (D;D)� j� def= _n<!F (pn; en)� � p�n+1One can show that these de�nitions yield commutative diagrams of the formgiven on page 20, and that each (e�n; p�n) is an embedding-projection pair in Dom.Using the square (�) we can prove that en � pn = �n(?D;D) for each n < !, and thus�(�) = _n<! �n(?D;D) = _n<! en � pn = idDwith the �nal equality following from the basic properties of embedding-projectionpairs. 221



Let us now assign a denotational semantics to the closed types of M where wewrite T for the set of all closed types. We shall �rst de�ne a T -indexed family offunctors ( F�:(DomT )op �DomT ! DomT j � 2 T )through the following clauses:� FUnit(A;B) def= f 0 g?;� FBool(A;B) def= B? ;� FInt(A;B) def= Z?;� F���0(A;B) def= F�(A;B)� F�0(A;B);� F�)�0(A;B) def= F�(B;A)) F�0(A;B);� F�?(A;B) def= F�(A;B)?; and� FU(�)(A;B) def= B�,where at base types, F�(�;+) maps morphisms to identity morphisms. Note that �and ) are the product and exponential functors in CPO, restricted to the categoryDom. We also de�ne a functorF : (DomT )op �DomT �! DomTby setting F (A;B) def= (LS (F�1(�)(A;B); : : : ; F�a(�)(A;B)) j �2T )where LS (�) : Doma ! Dom is the functor given byDoma incl�! CPOa +�! CPO ?�! CPO incl�! Domwith + being coproduct (of a objects) and ? being the lifting monad on CPO. Ingeneral, we write inj : Aj �! A1 + : : :+ Aafor coproduct insertion. Note that this is a sensible de�nition of F as � is a closedtype, and thus so is each �i(�). We leave the veri�cation that the functors F� andF are indeed CPO-functors to the reader.Appealing to Proposition 3.2 there is a minimal invariant D for F , equippedwith an isomorphism i : F (D;D)! D in DomT . We de�ne[[�]] def= F�(D;D)for each � 2 T . Note the following consequences of this de�nition:� [[Unit]] = f 0 g?; 22



� [[Bool]] = B? ;� [[Int]] = Z?;� [[� � �0]] = [[�]] � [[�0]];� [[� ! �0]] = [[�]]) [[�0]];� [[�?]] = [[�]]?; and� [[U(�)]] = FU(�)(D;D) = D�.Note that in Dom we haveF (D;D)� = : : : = LS ([[�1(�)]]; : : : ; [[�a(�)]])
D�i� ? = : : : = [[U(�)]]i�?Given an environment � we de�ne [[�]] to be the cppo which is the productof the denotations of the types appearing in �, and we then specify a continuousfunction [[� ` E:�]]:[[�]]! [[�]] for each proved expression. Note that if � is empty, wede�ne [[�]] def= f?g, any one-point cppo. The de�nition of these semantic functions isquite standard; we simply give the meaning of expressions associated with functions,recursion and cases:� If e def= [[�; x:� ` E:�0]] : ([[�]]� [[�]])! [[�0]] and � 2 [[�]], then we set[[� ` �x:E:� ) �0]](�) def= �x 2 [[�]]:e(�; x) : [[�]]! [[�0]]:� If [[�; x:�? ` E:�?]] : ([[�]] � [[�?]]) ! [[�?]], and �(e) denotes exponentialtranspose (currying), then[[� ` Rec x inE:�?]](�) def= _n<! �(e)(�)n(?[[�?]]):� If e def= [[� ` E:�j(�)]] : [[�]]! [[�j(�)]], and � 2 [[�]], then we shall set[[� ` cj(E):U(�)]](�) def= i�([inj(e(�))]) 2 [[U(�)]]� If e def= [[� ` E:U(�)]]:[[�]]! [[U(�)]] andej def= [[�; xj:�j(�) ` Ej:�0]] : [[�]] � [[�j(�)]]! [[�0]];then [[� ` CaseE of c1(x1)! E1 j : : : j cn(xn)! En:�0]](�)def= 8><>: ej(�;?) if j�(e(�)) = ?ej(�; d�j ) if j�(e(�)) = [inj(d�j )]23



We �nish this section by noting that we have set up some machinery which catersfor the possibility that the body of the recursive datatype contains a contravarianttype variable. However, in our application to I/O, there is no such contravariance.We could slightly simplify both this section and the next by restricting attentionto such recursive types; however, the simpli�cation is not particularly signi�cant.Furthermore, the present formulation ofM makes it suitable for other applications,such as a denotational semantics of a language with a store, where such contravari-ance is essential.In this section we introduce some simple category theory that will play a keyrole in the proof of Theorem 3.1. We shall show that there is a T indexed family ofrelations ( /� � [[�]]� fP j 9�(P :�) g j � 2 T )satisfying certain conditions. Such formal approximation relations are fairly stan-dard (see for example [CG93], [Pit94b] and [Plo85]) so we simply give these condi-tions at function, lifted and recursive types:� f /�)�0 P i� f = ? or 9E: P !� �x:E and 8d /� P 0: f(d) /�0 E[P 0=x],� e /�? P i� 9d 2 [[�]]: e = [d] implies 9P 0: P !� Lift(P 0) and d /� P 0,� r� /U(�) P i� r� = ?D� or9Pj: P !� cj(Pj) and 9d�j 2 [[�j(�)]]: r� = i�([inj(d�j )]) and d�j /�j(�) Pj.Proposition 3.3 There exists a family of formal approximation relations(/� j � 2 T )enjoying the above properties.The existence of the formal approximation relations can be proved by techniqueswhich appear in Plotkin's CSLI notes [Plo85]. However, it is more elegant to adaptPitts' method of admissible actions on relational structures. We give an outlineof the method. Set TyProgs def= fP :� j P is a program of type �g, regard the setTyProgs as a discrete cpo, and for any cppo X putR(X) def= fR 2 P(X � TyProgs) j R is an !-chain complete subsetg:We de�ne R(A) def= ��2T (A�) where A is an object of DomT . We shall use theletters R and S to range over elements of both R(A) and R(X). In the former case,R� will denote the �-th component of R.Lemma 3.4 Both R(X) and R(A), where X is an object of Dom and A is an objectof DomT , are complete lattices.Proof Note that R(X) is a complete lattice with the inclusion order, wherearbitrary meets are given by set-theoretic intersection. It follows that R(A) is acomplete lattice with the product ordering. 224



Let D be the minimal invariant of F de�ned on page 22, and for each � 2 T weshall de�ne a monotone functionF� : R(D)op �R(D) �! R([[�]])through the following clauses:� FUnit(R; S) def= f (d; P :Unit) j d = ? or (d = [0] and P !� ()) g;� FBool(R; S) def= f (d; P :Bool) j d = ? or(d = [0] and P !� bttc) or (d = [1] and P !� b� c) g;� FInt(R; S) def= f (d; P :Int) j d = ? or (9z 2 Z: d = [z] and P !� bzc) g;� F���0(R; S) def= f (p; P1:� � �0) j p = ? or(9(d; d0) 2 [[�]] � [[�0]]: p = (d; d0) and 9P; P 0: P !� (P; P 0) and(d; P :�) 2 F�(R; S) and (d0; P 0:�0) 2 F�0(R; S)) g;� F�!�0(R; S) def= f (f; P :� ! �0) j f = ? or (9E 0: P !� �x:E 0and 8(d; P :�) 2 F�(S;R): (f(d); E 0[P=x]:�0) 2 F�0(R; S)) g;� F�? def= f (e; P :�?) j e = ? or (9d 2 [[�]]: e = [d] and9P 0: P !� Lift(P 0) and (d; P 0:�) 2 F�(R; S)) g;� FU(�)(R; S) def= S� where of course S� 2 R(D�) = R([[U(�)]]).We leave the reader to verify that (F� j � 2 T ) is a family of monotone functions.Next we de�ne a monotone functionF : R(D)op �R(D) �! R(F (D;D))by setting its components to beF (R; S)� def= f (x�; P :U(�)) j x� = ?F (D;D)� or9Pj: P !� cj(Pj) and 9d�j 2 [[�j(�)]]: x� = [inj(d�j )] and(d�j ; Pj:�j(�)) 2 F�j(�)(R; S) g:We also de�ne a monotone functionL : R(D)op �R(D) �! R(D)by settingL(R; S) def= f (u�; P :�) j u� = ?D� or9x� 2 F (D;D)�: u� = i�(x�) and (x�; P :�) 2 F (R; S)� g25



De�ne Lsym : R(D)op �R(D) �! R(D)op �R(D)by setting Lsym(R; S) def= (L(S;R); L(R; S)). Note that using Lemma 3.4 we candeduce that R(D)op � R(D) is a complete lattice, and hence by Knaster-Tarskithere is an element (R�; R+) 2 R(D)op � R(D) which is the least �xed point ofLsym . It follows from the equality(R�; R+) = (L(R+; R�); L(R�; R+))and leastness of (R�; R+), that Lsym(R+; R�) � (R+; R�) and hence thatR+ � R� (?)in the lattice R(D).We shall now set out to prove that R� � R+. This will involve some furthermachinery. We shall write e : R � S to mean� e 2 DomT (D;D);� R 2 R(D) and S 2 R(D); and� for every (u�; P :�) 2 R� we have (e�(u�); P :�) 2 S�.Lemma 3.5 If e : R � S then(d; P :�) 2 F� (S;R) implies (F� (e; e)(d); P :�) 2 F� (R; S):Proof The result follows from a simple induction on the closed type � . Weconsider one simple case:(Case � is U(�)) Let (r�; P :U(�)) 2 FU(�)(S;R) = R�. Recall that FU(�)(e; e)� =e�. We have (e�(r�); P :U(�)) 2 S� = FU(�)(R; S) and so we are done. 2Lemma 3.6 Whenever e : R � S we have �(e) : L(S;R) � L(R; S).Proof Suppose that (u�; P :�) 2 L(S;R)�. We wish to show that(�(e)�(u�); P :�) 2 L(R; S)�:If �(e)�(u�) = ?D� we are done. If not, we know that u� is non-bottom, and thusthere is a non-bottom x� 2 F (D;D)� for which�(e)�(u�) = i� � F (e; e)�(x�):Thus it remains to show that(F (e; e)�(x�); P :�) 2 F (R; S)� (y)26



By induction, it follows that (x�; P :�) 2 F (R; S)� and hence � must be of the formU(�), P !� cj(Pj) : : : (1) and x� = [inj(d�j )] where (d�j ; Pj:�j(�)) 2 F�j(�)(S;R).Using Lemma 3.5, we have(F�j(�)(e; e)(d�j ); Pj:�j(�)) 2 F�j(�)(R; S) : : : (2)Thus (y) will follow from (1) and (2) using the following computation:F (e; e)�(x�) = LS ((F�1(�)(e; e); : : : ; F�a(�)(e; e)))([inj(d�j )])= [(F�1(�)(e; e) + : : :+ F�a(�)(e; e))(inj(d�j ))]= [inj(F�j(�)(e; e)(d�j ))]where we have used the de�nition of F (e; e), naturality of the unit of the liftingmonad, and the universal property of coproducts. 2Let Z def= f e 2 DomT (D;D) j e : R� � R+ g:Using Lemma 3.6 we see that for any e 2 Z we have �(e) 2 Z. Also, ?D;D 2 Z, forif (d�; P :�) 2 R�� then (?D� ; P :�) 2 L(R�; R+)� = R�+. One can check that Z is!-chain complete, and hence it follows thatidD = �(�) = _n<! �n(?D;D) 2 Z:Hence idD : R� � R+, that is R�� � R�+ for each � 2 T , which amounts to R� � R+in R(D). Recalling assertion (?) from page 26, we can set R�x def= R� = R+ and�nally /� def= f (d; P ) j (d; P :�) 2 F�(R�x ; R�x ) g:Thus we have proved the existence of the required family of formal approximationrelations|it is very easy to see that the required properties hold.We shall need the following lemmas:Lemma 3.7 Suppose that P :�, P !� P 0 and d/�P 0. Whenever we have these data,d /� P .Proof The proof is a simple induction on the structure of �. 2Lemma 3.8 Whenever y1:�1; : : : ; ym:�m ` E:� and (dk /�k Pk j 1 � k � m) then[[� ` E:�]](~d) /� E[~P=~y]:Proof The proof proceeds by induction on the structure of the expression E.(Case E is Rec x inE) We have to prove that[[� ` Rec x inE:�?]](~d) /�? P;27



where P def= Rec x inE[~P=~y]. Suppose that [[� ` Rec x inE:�?]](~d) 6= ?[[�?]], say[[� ` Rec x inE:�?]](~d) = [a] 2 [[�?]]:It remains to prove that P !� Lift(P 0) for some P 0:�, and that a /� P 0.We have ? /�? P . From this, we can use induction on N to show that�(e)(~d)n(?) /�? P [Rec x inE=x] holds for all n 2 N . Note also that the domainelements indexed by n form an !-chain in [[�?]]. Appealing to the de�nition of thedenotational semantics we see that[a] = _n<! �(e)(~d)n(?)and so there is n0 2 N , and am 2 [[�]] for every m � n0, with �(e)(~d)m(?) = am.Therefore [am] /�? P [Rec x inE=x], implying that P [Recx inE=x]!� Lift(P 0) for someP 0:� and that am /� P 0 for all m � n0. Note that we make crucial use of thedeterminacy of !� here|each am yields the same P 0|and P !� Lift(P 0) followsfrom the de�nition of !�. Certainly (am j m � n0) is an !-chain in [[�]], and thusa = _n<! an = _m�n0 am /� P 0as /� is chain complete. 2We can now complete the proof of Theorem 3.1. It is easy to prove the �rstpart by rule induction on P ! P 0. A corollary is that whenever P !� V , [[P ]] =[[V ]] 2 [[�]]. For the second part, note that it follows from Lemma 3.8 that [[P :�]]/� Pfor any P of type �. To see this, just note that 0 /Unit (), and observe that onecan prove [[x:Unit ` P :�]] = [[P :�]] for any program P 2 fP j 9�(P :�) g. Nowsuppose that we have [[P :�?]] 6= ? and from Lemma 3.8 we have [[P :�?]] /�? P .Hence, from the property of /�? we deduce P !� Lift(P 0) for some P 0 as required.Finally, the third part of Theorem 3.1, that the denotational semantics is sound forthe equational theory, follows as usual by a routine induction on the derivation ofproved expressions.4 The translation of O into MFollowing [Plo85] we induce a denotational semantics on O, via a textual translationhh�ii of its types and expressions into M. Each O type � is sent to an M typehh�ii that models O values of type � . We have hhunitii def= Unit, hhboolii def= Bool,hhintii def= Int and hh�1 * �2ii def= hh�1ii � hh�2ii. Our translation of an O function,hh�1 -> �2ii, must model the \pseudo-functions" read and write, and so cannotsimply be hh�1ii ! hh�2ii but must be hh�1ii ! Thh�2ii, where the range is a type ofcomputations [Mog89]. If � is an O type,M type Thh�ii is to represent the behaviourof O programs of type � , including divergent programs and communicators as well28



as values. Using an idea that dates at least to the Pisa notes [Plo78, Chapter 5,Exercise 4], we set T� def= (U(�))? given the following top-level M declaration:datatype U(X0) = crd of Int! U(X0)?j cwr of Int� U(X0)?j cret of X0We may form programs of type T� using the following abbreviations:Read(E) def= Lift(crd(E))Write(E1; E2) def= Lift(cwr((E1; E2)))Return(E) def= Lift(cret(E))Roughly speaking, a computation of type Thh�ii consists of potentially unboundedstrings of Read's or Write's terminated with either ? or a Return bearing an elementof type hh�ii. Hence Thh�ii is a suitable semantic domain to model the behaviour ofarbitraryO programs of type � . It better models the interleaving of input and outputthan early denotational semantics models that passed around a state containinginput and output sequences (see [Mos90]).We need also a sequential composition, an M program, Let, that runs one com-putation after another, with the following type.Let: T� � (� ! T�0)! T�0(Strictly speaking, this is a type scheme, and Let is a type-indexed family of pro-grams.) We shall de�ne Let recursively using a �xpoint program. It is routine toderive such a program, with the following properties, from the Rec operator.Proposition 4.1 For each program P of type (� ! �?) ! (� ! �?) there is aprogram FixP of type � ! �? such that (FixP )Q!+ P (FixP )Q for any programQ of type �.Proof Omitted. See [Gor94, p61] for a proof. 2The program Let has the following recursive de�nition that roughly speakingstitches together the strings of I/O operations denoted by its two arguments.Let def= Fix(�let : �x: Split x as (�̂o; f) inDrop �̂o to �o inCase �o ofcrd(g)! Read(�y: let (g y; f))cwr(x)! Split x as (y; �̂o0) inWrite(y; let (�̂o0; f))cret(x)! f x)29



Note that let , �o and �̂o and their primed variants are simply M variables. Pro-gram Let has the following reduction behaviour.Let(P; �x: E)!+ DropP to �o in Case �o ofcrd(g)! Read(�y: Let(g y; �x: E))cwr(x)! Split x as (y; �̂o0) inWrite(y; Let(�̂o0; �x: E))cret(x)! (�x:E) xLemma 4.2 (1) Let(Return(P ); �x: E)!+ E[P=x](2) Let(Write(P;Q); �x: E)!+ Write(P; Let(Q; �x: E))(3) Let(Read(P ); �x: E)!+ Read(�y: Let(P (y); �x: E))Proof (1) and (3) follow immediately from the reduction above. For (2) we haveLet(Write(P;Q); �x: E)!+ Split (P;Q) as (y; �̂o0) inWrite(y; Let(�̂o0; �x: E))!+ Write(P; Let(Q; �x: E)) : 2O expressions are inductively translated into M expressions, following themonadic style pioneered by [Mog89] and [Pit91]. We simultaneously de�ne thetranslation hh�ii of arbitrary O expressions to M expressions, and an auxiliarytranslation hj � ji of O value expressions. Here are the rules for value expressions.hjxji � xhj()ji � ()hj`ji � b`chj�ji � �x: Split x as (y; y0) in Drop yb�cy0 to z in Return(z)hjfstji � �x: Split x as (y; z) in Return(y)hjsndji � �x: Split x as (y; z) in Return(z)hj�ji � Fix(�f�: �x: hhe�[f�=�]ii) given x:�� ` e� : � 0�hj(v; u)ji � (hjvji; hjuji)hj(�x:�: e)ji � �x:hh�ii: hheiihjreadji � �x:Unit:Read(�y:Return(y))hjwriteji � �x:Int:Write(x;Return(()))Here are the rules for expressions. Since value expressions, ranged over by ve, arealso expressions, ranged over by e, there is overlap between the rules marked (�)30



and some later rules. In case of overlap, a rule marked (�) takes precedence overany later rule. hhveii � Return(hjveji) (�)hh
ii � Rec x in xhhif e1 then e2 else e3ii � Let(hhe1ii; �x: If x then hhe2ii else hhe3ii)hhve1; e2ii � Let(hhe2ii; �x: hjve1ji x) (�)hhe1; e2ii � Let(hhe1ii; �f: Let(hhe2ii; �x: f x))hh(ve1; e2)ii � Let(hhe2ii; �y:Return((hje1ji; y))) (�)hh(e1; e2)ii � Let(hhe1ii; �x: Let(hhe2ii; �y:Return((x; y))))Lemma 4.3(1) If x1:�1; : : : ; xn:�n ` ve : � , then x1:hh�1ii; : : : ; xn:hh�nii ` hjveji : hh�ii too.(2) If x1:�1; : : : ; xn:�n ` e : � , then x1:hh�1ii; : : : ; xn:hh�nii ` hheii : T hh�ii too.Proof By a simultaneous induction on the derivations of x1:�1; : : : ; xn:�n ` ve : �and x1:�1; : : : ; xn:�n ` e : � . 2Lemma 4.4(1) Whenever �; x:� ` e : � 0 and � ` ve : � , e is a value expression i� e[ve=x].(2) If �; x:� ` e : � 0 and � ` ve : � then hheii[hjveji=x] � hhe[ve=x]ii.(3) If p! q then hhpii !+ hhqii.Proof (1) follows by induction on the derivation of �; x:� ` e : � 0, and likewise(2), which depends on (1) for the cases of the translation hh�ii that are conditionalon whether an expression is a value expression. (3) follows by induction on thederivation of p! q. 2Part (3) makes the proof of Lemma 4.6 particularly simple. Without the condi-tional translation rules for applications and pairs part (3) would fail. If p ! q wewould have (v; p)! (v; q) but not hh(v; p)ii !+ hh(v; q)ii.Lemma 4.5 If C[write n] and C[read ()] are communicators and v is a value,hhvii = Return(hjvji)hhC[read ()]ii = Read(�x:Int: hhC[x]ii)hhC[write n]ii = Write(bnc; hhC[()]ii)are all M theorems.
31



Proof The �rst equation follows by de�nition of hhvii. We can prove the secondby induction on the number of experiments making up evaluation context C. Forthe base case, when C is simply a hole, [ ], we have the following.hhread ()ii � Let(hh()ii; �x: hjreadji x)= (�x:Read(�y:Return(y))) ()= Read(�x:Return(x))= Read(�x: hhxii)In the inductive case, the context C takes the form E [C 0] where E is a single ex-periment and C 0 a smaller context. We shall only consider the case where E is anapplication of the form (v [ ]).hhC[(read ())]ii � hhv (read ())ii= Let(hhC 0[read ()]ii; �x: hjvji x)= Let(Read(�y: hhC 0[y]ii); �x: hjvji x) (induction hypothesis)= Read(�y: Let(hhC 0[y]ii; �x: hjvji x)) (Lemma 4.2)= Read(�y: hhv C 0[y]ii)= Read(�x: hhC[x]ii)The other cases are similar. The third equation can be proved similarly. 2Lemma 4.6 p+ i� hhpii+.Proof(Only If) Suppose p !� a. So hhpii = hhaii by Lemma 4.4 and Theorem 3.1. Butthen hhpii+ by Lemma 4.5 and Theorem 3.1.(If) We prove the contrapositive. If not p+ there must be an in�nite chain p !p1 ! p2 ! � � � in O. By Lemma 4.4 there is another in�nite chain hhpii !+hhp1ii !+ hhp2ii !+ � � � in M and hence not hhpii+. 2Lemma 4.7 If hhaii = hhbii and a ��! p there is q with b ��! q and hhpii = hhqii.Proof The proof is by a case analysis of how a ��! p was derived. We �rstconsider the two cases where a is a communicator.� a ?n�! C[n] if a � C[read ()]. So by Lemma 4.5 and the fact that Read(�),Write(�) and Return(�) have disjoint images, b must be a communicator ofthe form D[read ()]. So b ?n�! D[n]. We have hhaii = Read(�x: hhC[x]ii) andhhbii = Read(�x: hhD[x]ii). Since Read(�) is injective we have �x: hhC[x]ii =�x: hhD[x]ii and in particular hhC[n]ii = hhD[n]ii, as required.32



� a !n�! C[()] if a � C[write n]. Again by Lemma 4.5, bmust be a communicatorof the form D[write n]. We have hhaii = Write(bnc; hhC[()]ii) and hhbii =Write(bnc; hhD[()]ii), and since Write(�) is injective, hhC[()]ii = hhD[()]ii asrequired.Now we consider the possibilities where a is a value.� a `�! 
 if a � `. Since hhaii = hhbii and b is a value, b � ` too, and so b `�! 
too.� a fst�! u1 if a � (u1; u2). In this case b must be a pair too, say (v1; v2). Hencea fst�! v1 and hh(u1; u2)ii = hh(v1; v2)ii implies that hhu1ii = hhv1ii.� a snd�! u2 if a � (u1; u2). Symmetric to the previous case.� a @v�! a v if a v a program. Since a is a function so is b. Hence we haveb @v�! b v and hha vii = hhb vii by compositionality. 2Lemma 4.8 Relation S def= f(p; q) j hhpii = hhqiig is a bisimulation.Proof Suppose that pS q and that p ��! p0. By Lemma 2.2 there is a with p!� aand a ��! p0. By Lemma 4.4 we have hhpii !� hhaii and therefore hhpii = hhaii byTheorem 3.1. By transitivity hhqii = hhaii holds, so by Theorem 3.1 and Lemma 4.5we have hhqii+. Hence q+ by Lemma 4.6, that is, there is active b with q !� b. ByLemma 4.4 and Theorem 3.1 we have hhqii = hhbii and so hhaii = hhbii by transitivity.Hence by Lemma 4.7 there is q0 with b ��! q0 and hhp0ii = hhq0ii. Altogether we haveq ��! q0 and p0 S q0. A symmetric argument shows that q can match any action ofp, hence S is a bisimulation. 2Theorem 4.9 hhpii = hhqii implies p � q.Proof Suppose hhpii = hhqii. Then (p; q) is a member of a bisimulation, the S ofLemma 4.8. So p � q since every bisimulation is included in �, by its de�nition. 25 DiscussionBy consolidating prior work on operational semantics, bisimulation equivalence andmetalanguages for denotational semantics, we have presented the most comprehen-sive study yet of I/O via side-e�ects. Previous work has treated denotational oroperational semantics in isolation. Our study combines the two to admit proofs ofprograms based either on direct operational calculations (Theorem 1) or equality ofdenotations (Theorem 3).Williams and Wimmers [WW88] are perhaps the only others to consider an equa-tional theory for a strict functional language with what amounts to side-e�ecting33



I/O, but they do not consider operational semantics. Similarly, the semantic do-mains for I/O studied in early work in the Scott-Strachey tradition of denotationalsemantics [Mos90, Plo78] were not related to operational semantics. In his CSLI lec-ture notes, Plotkin [Plo85] showed how Scott-Strachey denotational semantics couldbe reconciled with operational semantics by equipping his metalanguage (analogousto our M) with an operational semantics. He showed for a given object language(analogous to O) that the adequacy proof for the object language (analogous toLemma 4.6) could be factored into an adequacy result for the metalanguage (anal-ogous to Theorem 3.1) together with comparatively routine calculations about theoperational semantics. Moggi [Mog89] pioneered a monadic approach to modular-ising semantics. In an earlier study [CG93] we reworked Plotkin's framework in amonadic setting, for a simple applicative language.We have made two main contributions to Plotkin's framework. First, by adapt-ing recent advances in techniques for showing the existence of formal approximationrelations we have a relatively straightforward proof of computational adequacy fora type theory with a parameterised recursive type. This avoids the direct construc-tion of formal approximation relations using the limit/colimit coincidence (see forexample [FP93]). Instead we use the minimal invariant property which characterisesthe (smallest) coincidence. Second, we use the adequacy result for O (Lemma 4.6)and co-induction to prove the soundness of denotational reasoning with respect tooperational equivalence (Theorem 3).The idea of using a labelled transition system for a functional language, to-gether with co-inductively de�ned bisimilarity, is perhaps the most important butthe least familiar in this paper. It appears earlier in the concurrent -calculus ofBoudol [Bou89], but Boudol does not establish whether bisimilarity on his calculusis a congruence. Applicative bisimulation [AO92] is another co-inductively de�nedequivalence on functional languages but based on a `big-step' natural semantics. La-belled transitions better express I/O, and hence are preferable to natural semanticsfor de�ning languages with I/O.Since the work reported here was completed, Gordon [Gor95b, Gor95a] has in-vestigated a labelled transition system semantics for a variety of stateless functionallanguages, without I/O. A useful future project would be to extend the results of thispaper to a language with nondeterminism and concurrency. Indeed, since this workwas completed, Je�rey has investigated monadic languages (analogous to our M)with nondeterminism [Jef95a] and concurrency [Jef95b]. Based on the presentationin [Gor95b] of a labelled transition system form of Howe's congruence proof, Je�reyshowed that bisimilarity for his concurrent monadic language is a congruence. Auseful next step would be to extend this result to a language, like our O, in whichside-e�ects are freely mixed with applicative computation.Having worked through the details of both a classical denotational semanticsfor O and an entirely operational treatment of bisimilarity, we are in a positionto compare the two approaches. Though we have not spelt out the details, bothoperational and denotational semantics can validate an equational theory for O.Bisimilarity immediately o�ers a co-induction principle, and a domain-theoretic se-mantics a �xpoint induction principle. With more work co-induction can be derived34
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