
Preface

These notes are to accompany the module CO3008. They contain all of the core ma-
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1

Mathematical Prerequisites

1.1 Introduction

Definitions 1.1.1 We shall begin by reviewing some mathematics which will be used

throughout this course. Some of the material you have seen before. For the material

that is new, you may need to flesh out the definitions and concepts using books or

other sets of notes. However, most of the basic ideas you have met in MC 111.

We shall adopt a few conventions:

� If we give a definition, the entity being defined will be written in boldface; and when

we emphasise something it appears in an italic typeface.

� Variables will be denoted by notation such as x, x 	 , x 	 	 , x1, x2, x3 and so on.

� If we wish to define a set A whose elements are known as widgets, then we shall

simply say “let A be the set of widgets.”

� Suppose we wish to speak of a set A, and indicate that the set A happens to be a

subset of a set X . We will write “consider the set A
�

X ����� ” for this. For example, we

might say “let O
� � be the set of odd numbers” to emphasise that we are considering

the set of odd numbers denoted by O, which happen to be a subset of the natural

numbers (denoted by � ).

� We often use particular characters for particular purposes. For example, capital

letters such as A and X often represent sets, and lower case letters such as a and x
represent elements of sets. When you write down Mathematics or Computing, make

sure your lower and upper case letters are clearly distinguishable!

� We shall often use characters from the Greek alphabet; some of these appear in

Table 1.1.

� If you read the notes and do not understand something, try reading ahead and look-

ing at examples. You may need to read definitions and look at examples of the defi-

nitions simultaneously—each reinforces the other. When you read definitions, try to

work out your own simple examples, and see if you can understand the basic ideas

behind the technical details. Many of the examples have details omitted, which you

need to fill in using a pencil and paper.

1.2 Logic

We sometimes write A � B to indicate syntactic identity. Thus 2 � 3 � 5 but 2 � 3 �� 5.
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α alpha

β beta

γ gamma (lower case)

Γ gamma (upper case)

δ delta (lower case)

∆ delta (upper case)

ε epsilon

ι iota

λ lambda (lower case)

Λ lambda (upper case)

ω omega (lower case)

Ω omega (upper case)

ρ rho (lower case)

σ sigma (lower case)

Σ sigma (upper case)

θ theta (lower case)

Θ theta (upper case)

τ tau

Figure 1.1: Some Greek Characters
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If P and Q are mathematical propositions, we can form new propositions as follows:

� P and Q (sometimes written P � Q);

� P or Q (sometimes written P � Q);

� P implies Q (sometimes written P � Q or P � Q);

� not P (sometimes written � P);

� P if and only if Q (often written P � Q or P � Q or P iff Q)—this is simply an abbre-

viation for

� P implies Q � and � Q implies P � ;
� for all x, P (sometimes written � x � P);

� there exists x, P (sometimes written � x � P).

In this course, we shall often prove propositions of the form � x 	 X � P � x � where P � x � is

a is a proposition depending on x, and X is a given set. Then to prove (that is, show

true) � x 	 X � P � x � , we choose a new variable,1 say a, and write down a proof of P � a � .
Providing no assumptions are made about a (we sometimes say a is arbitrary) we can

conclude that � x 	 X � P � x � is true. For example, P � x � might be odd � 2 
 x � 1 � . Then to

prove � x 	 � � odd � 2 
 x � 1 � we let n denote an arbitrary natural number, and prove

odd � 2 
 n � 1 � (exercise: do it!).

1.3 Sets

Definitions 1.3.1 We assume that the idea of a set is understood, being an unordered

collection of distinct objects. A capital letter such as A or B or X or Y will often be used

to denote an arbitrary set. If a is any object in a set A, we say that a is an element of A,

and write a 	 A for this. If a is not an element of A, we write a �	 A. The idea of union

A � B, intersection A � B, difference A  B, and powerset P � A � of sets should already be

known. We collect the definitions here:

Subset S
�

A
def� � x � x 	 S implies x 	 A �

Union A � B
def� � x � x 	 A or x 	 B �

Intersection A � B
def� � x � x 	 A and x 	 B �

Difference A  B
def� � x � x 	 A and x �	 B �

Powerset P � A � def� � S � S
�

A �
Finite Powerset Pf in � A � def� � S � S

�
A and S is finite �

1NOTE: Sometimes we do not choose a new variable, but work with the original, in this case x. This
is okay, providing one remembers the role that the original variable is playing when it is used in the
proof.
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Recall that the empty set, � , is the set with no elements. Note that � �
A for any set

A, because x 	�� is always false. So � 	 P � A � . We regard � as a finite set. We shall also

use the following sets

natural numbers � � � 0 � 1 � 2 � 3 ������� �
integers � � � ����� ��� 2 ��� 1 � 0 � 1 � 2 ������� �

Booleans � � � T � F �

Two sets A and B are equal, written A � B, if they have the same elements. So, for

example, � 1 � 2 � � � 2 � 1 � . Here, the critical point is whether an object is an element of

a set or not: if we write down the elements of a set, it is irrelevant what order they are

written down in. But we shall need a way of writing down “a set of objects” in which

the order is important.

To see this, think about the map references “1 along and 2 up” and “2 along and 1
up.” These two references are certainly different, both involve the numbers 1 and 2,

but we cannot use the sets � 1 � 2 � and � 2 � 1 � as a mathematical notation for the map

references because the sets are equal. Thus we introduce the idea of a pair to model

this. If A and B are sets, with a 	 A and b 	 B, we shall write � a � b � for the pair of a
and b. The crucial property of pairs is that � a � b � and � a 	 � b 	�� are said to be equal iff

a � a 	 and b � b 	 . We write

� a � b � � � a 	 � b 	 �
to indicate that the two pairs are indeed equal. We could write � 1 � 2 � and � 2 � 1 � for

our map references. Note that the definition of equality of pairs captures the exact

property required of map references. We can also consider n-tuples � a1 ������� � an � and

regard such an n-tuple as equal to another n-tuple � a 	1 ������� � a 	n � iff ai � a 	i for each 1 � i �
n. Note that a pair is a 2-tuple.

The cartesian product of A and B, written2 A � B, is a set given by

A � B
def� � � a � b � � a 	 A and b 	 B � �

For example,

� 1 � 2 ��� � a � b � c � � � � 1 � a ���
� 1 � b ���
� 1 � c ��� � 2 � a �
�
� 2 � b ��� � 2 � c � � �

Examples 1.3.2

(1) � 1 � 2 � 3 � � � x � y � � � 1 � 2 � 3 � x � y � � � x � 1 � y � 3 � 2 � � ����� The written order of the ele-

ments is irrelevant.

2NOTE: In many programming languages, A 	 B is denoted by A 
 B or even � A � B  . The latter is used
in Haskell.
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(2) � a � b �  � b � � � a � .

(3) A  A � � .

(4) P � � 1 � 2 � � � � � 1 � 2 � � � 1 � � � 2 � � � � .

(5) � a ��� � b � � � � a � b � � .

(6) � x � y � � � 2 � 100 � iff x � 2 and y � 100.

1.4 Relations

Definitions 1.4.1 Given sets A and B, a relation R between A and B is a subset R
�

A � B. Informally, R is the set whose elements are pairs � a � b � for which “a is in a rela-

tionship to b”—see Examples 1.4.3. Given a set A, a binary relation R on A is a relation

between A and itself. So, by definition, R is a subset of A � A.

Remark 1.4.2 Note that a relation is a set: it is the set of all pairs for which the first

element of the pair is in a relationship to the second element of the pair. If R
�

A �
B is a relation, it is convenient to write a R b instead of � a � b � 	 R. So, for example,

is_the_father_of is a relation on the set Humans of humans, that is

is_the_father_of
�

Humans � Humans

and if � Ron � Roy � 	 is_the_father_of then we can write instead

Ron is_the_father_of Roy.

Reading the latter statement corresponds much more closely to common parlance.

Note that if � a � b � �	 R then we write a �R b for this.

Example 1.4.3 Being strictly less than is a binary relation, written
�

, on the natural

numbers � . So
� � � � � , and

� � � � 0 � 1 ���
� 0 � 2 ���
� 0 � 3 ���
� 0 � 4 � ����� �
� 1 � 2 ���
� 1 � 3 � ����� �
� 2 � 3 ��������� � �

Thus
�

is the set of pairs � m � n � for which m and n are natural numbers, and m is strictly

less than n. Being less than or equal to is also a binary relation on � , written � . We

have

� � � � 0 � 0 ��� � 0 � 1 ��� � 0 � 2 ��� � 0 � 3 � ������� �
� 1 � 1 ���
� 1 � 2 ��������� � �

Definitions 1.4.4 We will be interested in binary relations which satisfy certain im-

portant properties. Let A be any set and R any binary relation on A. Then

(i) R is reflexive iff for all a 	 A we have a R a;
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(ii) R is symmetric iff for all a � b 	 A, a R b implies b R a;

(iii) R is transitive iff for all a � b � c 	 A, a R b and b R c implies a R c;

(iv) R is anti-symmetric iff for all a � b 	 A, a R b and b R a implies a � b.

Examples 1.4.5 Let A
def� � α � β � γ � be a three element set, and recall the binary rela-

tions
�

and � on � from Example 1.4.3.

(1) R
def� � � α � α ��� � β � β ��� � γ � γ ���
� α � γ � � is reflexive, but

�
is not reflexive.

(2) R
def� � � α � β ���
� β � α ��� � γ � γ � � is symmetric, but � is not.

(3) R
def� � � α � β ���
� β � γ ���
� α � γ � � is transitive, as are

�
and � .

(4) R
def� � � α � β ���
� β � γ ���
� α � γ � � is anti-symmetric. Both

�
and � are anti-symmetric.

(5) Note that R in (1) is also transitive—what other properties hold of the other exam-

ples?

Motivation 1.4.6 Given any set A, the binary relation of equality on A is reflexive,

symmetric and transitive. For if a � b � c 	 A are any elements of A, a � a, if a � b then

b � a, and if a � b and b � c, then a � c. An equivalence relation is any binary relation

which enjoys these three properties. Informally, such a relation can be thought of as

behaving like “equality” or “being the same as”. Later, we will use equivalence rela-

tions to define a notion of equality between programs; two programs will be related

when they have the same execution behaviours, but possibly different codes.

Definitions 1.4.7 An equivalence relation on a set A, denoted by � , is any binary

relation on A which is reflexive, symmetric and transitive. Given any element a of A,

the equivalence class of a, denoted by a, is defined by

a
def� � a 	 � a 	 	 A and a � a 	 � �

So the equivalence class of a is the set of all elements of A which are related to a by

� . Note that if x 	 a then x � a because � is an equivalence relation—check!! We call

any element x of a a representative of a, because the equivalence class of x equals

that of a. We also say that a is represented by any of its elements; in particular, a is

represented by a. We shall write A
�

� for the set of equivalence classes of elements of

A, that is,

A
�

�
def� � a � a 	 A � �

Example 1.4.8 We can define an equivalence relation � on the set � of integers by

setting

� x 	 � � � y 	 � x � y iff x � y is even �
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For example, 3 � 5, 12 � 14, but 100 �� 101. Examples of equivalence classes are:

1 � � ����� ��� 5 ��� 3 ��� 1 � 1 � 3 � 5 ������� � and 4 � � ����� ��� 4 ��� 2 � 0 � 2 � 4 � 6 � 8 ������� �
Examples of representatives of 1 are � 997, 31, 1, indeed any integer not divisible by 2.

Representatives of 4 are 4, � 10000, � 8 and so on. Note that �
�

� is a two element set;

for example

�
�

� � � 1 � 2 � � � 31 � 4 � � �����

Definitions 1.4.9 Let R be a binary relation on a set A. Then there is a binary relation

R � on A which is defined by

� a � b 	 A � a R � b
def� � ai � a � a0 R a1 R a2 ����� an � 1 R an � b � � n �

0 �
� a � b 	 A � a Rt b

def� � ai � a � a0 R a1 R a2 ����� an � 1 R an � b � � n �
1 �

We call R � the reflexive, transitive closure of R. Note that if n � 0 then a � b. We call

Rt the transitive closure of R.

1.5 Functions

1.5.1 Total Functions

We define the set of total functions between sets A and B to be3

�
A � B � tot

def� � f 	 P � A � B � � � a 	 A � � a unique b 	 B �
� a � b � 	 f �
We usually refer to a total function simply as a function. We write f : A � B for f 	�
A � B � tot. If a 	 A and f : A � B then f � a � denotes the unique b 	 B for which � a � b � 	 f . If

also g : B � C is a function, then there is a function denoted by g � f : A � C, which is

defined by � g � f � � a � def� g � f � a � � on each a 	 A. We call g � f the composition of f and g.

Informally, g � f is the function which first applies f and then applies g. The identity

function, written idA : A � A is the function defined by idA � a � def� a on each a 	 A.

1.5.2 Partial Functions

We define the set of partial functions between sets A and B to be

�
A � B � par

def�
� f 	 P � A � B � � � a 	 A � � b � b 	 	 B � � � a � b � 	 f and � a � b 	�� 	 f � implies b � b 	 � �

3If Φ � x  is a proposition involving x, then � a unique x � Φ � x  abbreviates

��� x � Φ � x   and �
	 x � x ��� Φ � x  and Φ � x �  implies x  x � 
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We write f : A � B to mean that f 	 �
A � B � par. If a 	 A and f : A � B either there exists

a unique b 	 B for which � a � b � 	 f , or such a b does not exist. In the former case we

say that “ f � a � is defined” and in this case f � a � denotes the unique b. In the latter case

we say that “ f � a � is undefined”. The subset of A on which f is defined is called the

domain of definition of f . If this is finite, say � a1 ������� � an � , and f � ai � � bi, then we

sometimes write

f � �
a1 �� b1 ������� � an �� bn �

Note that � 	 �
A � B � par satisfies the definition of a partial function, so � : A � B. We say

� is the totally undefined partial function between A and B—why is this?
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Abstract Syntax and Rule Induction

2.1 Inductively Defined Sets

2.1.1 Abstract Syntax Trees

Motivation 2.1.1 Consider conditional expressions. A typical example is

if true then 2 else 3

which will be written as a text string in a program file. However, a computer must

work out that such a string denotes a conditional which is built out of three pieces of

data, namely the Boolean and the two numbers. In a real language, it is the job of the

compiler to extract such information out of textual strings, usually during the early

phases of compilation, namely lexing and parsing. Crudely speaking the compiler

converts the textual (program) string into a parse tree which makes this information

explicit (see examples below). We shall be looking at simple compilation later on, but

for the time being we want to ignore the process of parsing, and write down programs

directly as parse trees. It would be messy to always draw pictures of such trees—thus

we

� develop a simple notation for parse trees, which cuts out the drawing but is

awkward to read; and then

� agree on a way to make the notation more readable—we call this syntactic sugar.

Let us look at an example where l denotes a list. Here is the readable (sugared) nota-

tion: � �
���
�
��� � l � �	�
��� 0 ��� ��� � �
 � l � � ����� � �	� � l � � �

It has the form � �
B �	�
��� E1

��� ��� E2

where, for example, B is ���
�
��� � l � . The conditional (if-then-else) expression requires

three arguments, B, E1 and E2, and to make this clear it is helpful to write it as

�����
 � ���
�
��� � l � � 0 � �
 � l � � ����� � �	� � l � � � � 
 �

and think of the conditional as a constructor which acts on three arguments, to “con-

struct” a new program (you might like to think of a constructor as a function). Now
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we look at a sub-part of the program body, �
 � l � � ����� � �	� � l � � . We can think of � as a

constructor which acts on two arguments, and to make this visually clear, it is conve-

nient to write the latter expression as

� � �
 � l � � ����� � �	� � l � � � �

Finally, looking at one of the sub-parts of this expression, namely �
 � l � , we can think

of �
 � l � as a constructor �
 acting on a single argument, l.

Definitions 2.1.2 Let us make this a little clearer. We shall adopt the following no-

tation for finite trees: If T1, T2, T3 and so on to Tn is a (finite) sequence of finite trees,

then we shall write � � T1 � T2 � T3 ������� � Tn � for the finite tree which has the form

�

� � � �
T1 T2 T3 ����� Tn

Each Ti is itself of the form � 	 � T 	1 � T 	2 � T 	3 ������� � T 	m � . We call � a constructor and say that

� takes n arguments. Any constructor which takes 0 arguments is a leaf node. We

call � the root node of the tree. The roots of the trees Ti are called the children of � .

The constructors are labels for the nodes of the tree. Each of the Ti above is a subtree

of the whole tree—in particular, any leaf node is a subtree. Leaf nodes do not have

children. A proper subtree T 	 of a tree T is any subtree T 	 such that T 	 �� T .

If we say that �����
 is a constructor which takes three arguments, � a constructor

which takes two arguments, and so on, then � 
 � denotes the tree

�����

� �

���
�
��� 0

�
�

� �
l

�
�
 �����

l
�

�	�
�

l
�

Note that in this (finite) tree, we regard each node as a constructor. To do this, we

can think of both l and 0 as constructors which take no arguments!!. These form the

leaves of the tree. We call the root of the tree the outermost constructor, and refer to

trees of this kind as abstract syntax trees. We often refer to an abstract syntax tree by

its outermost constructor—the tree above is a “conditional”.
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2.1.2 Rule Sets

Definitions 2.1.3 Let us first introduce some notation. Consider

statement 1 implies statement 2.

It is sometimes convenient to write this as

statement 1

statement 2

Consider

statement 1 iff statement 2.

It is sometimes convenient to write this as

statement 1
� � � � � � � � �
statement 2

For example, we can write “x � 4 implies x � 6” as

x � 4

x � 6

The usefulness of this notation will soon become clear.

Motivation 2.1.4 We are going to introduce the notion of an inductively defined set.

Such a set is one whose elements are defined using a special technique known as

induction. Before we can do this, we need to define things called rules. We will give

the definitions, and then some examples. We will see that many sets which arise in

the description of programming languages can be defined inductively.

Definitions 2.1.5 Let us fix a set U. A rule R is a pair � H � c � where H
� U is any finite

set, and c 	 U is any element. Note that H might be � , in which case we say that R
is a base rule. If H is non-empty we say R is an inductive rule. In the case that H is

non-empty we might write H � � h1 ������� � hk � where 1 � k. We can write down a base

rule R � � � � c � using the following notation

Base

� R �
c
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and an inductive rule R � � H � c � � � � h1 ������� � hk � � c � as

Inductive

h1 h2 ����� hk � R �
c

Given a set U and a set R of rules based on U, a deduction is a finite tree with nodes

labelled by elements of U such that

� each leaf node label c arises as a base rule � � � c � 	 R
� for any non-leaf node label c, if H is the set of children of c then � H � c � 	 R is an

inductive rule.

We then say that the set inductively defined by R consists of those elements u 	 U
which have a deduction with root node labelled by u.

Examples 2.1.6

(1) Let U be the set � u1 � u2 � u3 � u4 � u5 � u6 � where the ui are six fixed elements of U, and

let R be the set of rules

� R1 � � � � u1 ��� R2 � � � � u3 ��� R3 � � � u1 � u3 � � u4 ��� R4 � � � u1 � u3 � u4 � � u5 � � R5 � � � u2 � � u4 � �

Then a deduction for u5 is given by the tree

u5

� �
u1 u3

�
u4

� �
u1 u3

which is more normally written up-side down and in the following style

R1
u1

R2
u3

R1
u1

R2
u3

R3
u4

R4
u5

(2) A set R of rules for defining the set E
� � of even numbers is R � � R1 � R2 � where

� R1 �
0

e
� R2 �

e � 2
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Note that rule R2 is, strictly speaking, a rule schema, that is e is acting as a variable.

There is a “rule” for each instantiation of e. A deduction of 6 is given by

� R1 �
0

� R2 �
0 � 2

� R2 �
2 � 2

� R2 �
4 � 2

(3) The set I of integer multiples of 3 can be inductively defined by a set of rules R �
� A � B � C � where

� A �
0

i
� B �

i � 3

i
� C �

i � 3

and informally you should think of the symbol i as a variable, that is, � B � and � C � are

rule schemas.

(4) Suppose that Σ is any set, which we think of as an alphabet. Each element l of Σ
is called a letter. We inductively define the set Σ � of words over the alphabet Σ by the

set of rules R def� � 1 � 2 � (so 1 and 2 are just labels for rules!) given by1

�
l 	 Σ � � 1 �

l

w w 	
� 2 �

ww 	

Suppose that Σ def� � a � b � c � . Then a deduction tree for abac is

� 1 �
a

� 1 �
b

� 2 �
ab

� 1 �
a

� 1 �
c

� 2 �
� 2 �

abac

(5) We can use sets of rules to define the language of propositional logic. Let Var be

a set of propositional variables with typical elements written P, Q or R. Then the set

Prpn of propositions of propositional logic is inductively defined by the rules

�
P 	 Var � � A �

P

φ ψ
� � �

φ � ψ

φ ψ
� � �

φ � ψ

φ ψ
� � �

φ � ψ

φ
� � �

� φ

Exercise: Give a deduction for � � P � Q � � � Q � P � � � R.

1In rule (1), � l � Σ � is called a side condition. It means that in reading the rule, l can be any element
of Σ.
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Rule Induction

Let I be inductively defined by a set of rules R . Suppose we wish to show
that a proposition φ � i � holds for all elements i 	 I, that is, we wish to prove

� i 	 I � φ � i � �

Then all we need to do is
� for every base rule b 	 R prove that φ � b � holds; and

� for every inductive rule h1 ����� hk
c 	 R prove that whenever hi 	 I,

� φ � h1 � and φ � h2 � and ����� and φ � hk � � implies φ � c �

We call the propositions φ � h j � inductive hypotheses. We refer to carrying
out the bulleted ( � ) tasks as “verifying property closure”.

Figure 2.1: Rule Induction

2.2 Principles of Induction

Motivation 2.2.1 In this section we see how inductive techniques of proof which the

reader has met before fit into the framework of inductively defined sets. We shall

write φ � x � to denote a proposition about x. For example, if φ � x � def� x
�

2, then φ � 3 � is

true and φ � 0 � is false. If φ � a � is true then we often say that φ � a � holds.

Definitions 2.2.2 We present in Figure 2.1 a useful principle called Rule Induction.

It will be used throughout the course to prove facts about programming languages.

Motivation 2.2.3 The Principle of Mathematical Induction arises as a special case of

Rule Induction. We can regard the set � as inductively defined by the rules

� zero �
0

n
� add1 �

n � 1

Suppose we wish to show that φ � n � holds for all n 	 � , that is � n 	 � � φ � n � . According

to Rule Induction, we need to verify

� property closure for zero, that is φ � 0 � ; and

� property closure for add1, that is for every natural number n, φ � n � implies φ � n � 1 � ,
that is � n 	 � � � φ � n � implies φ � n � 1 � �
and this amounts to precisely what one needs to verify for Mathematical Induction.
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Examples 2.2.4

(1) We can define sets of abstract syntax trees inductively. Let us just give an example.

Let a set of constructors be � � � � ��� � � � . The integers will label leaf nodes, and � ,

� and
�

will take two arguments written with an infix notation. The set of abstract

syntax trees T inductively defined by these constructors is given by

�
z 	 Z �

z

T1 T2

T1 � T2

T1 T2

T1 � T2

T1 T2

T1
� T2

Note that the base rules correspond to leaf nodes. The (parse) tree
�

� �
� 2

� �
55 7

is an element of T . In sugared notation it is written � 55 � 7 � � 2. Show this by giving

a deduction tree. Do not get confused by the fact that the elements of T are defined

by deduction trees—but each element is itself a parse tree!

55 � 7 is a subtree of � 55 � 7 � � 2, as are the leaves 55, 7 and 2. If abstract syntax trees

are used to describe programming language constructs, we often call them program

expressions, and refer to subexpressions.

Remark 2.2.5 You will notice that the BNF grammar

T :: � n � b � T � T � T � T � T � T

“defines” the same set of abstract syntax trees (assuming that � , � and
�

are regarded

as constructors). In this module we will regard such BNF grammars as short hand for

an inductive definition. Given a BNF grammar, there is a corresponding set of rules.

The principle of structural induction is defined to be rule induction as applied to

syntax trees. Make sure you understand that if T is an inductively defined set of syn-

tax trees, to prove � T 	 T � φ � T � we have to prove:

� φ � L � for each leaf node L; and
� assuming φ � T1 � and . . . and φ � Tn � prove φ � C � T1 ������� � Tn � � for each constructor C and

all trees Ti 	 T .

(2) Let Σ � � a � b � c � and let a set2 S of words be defined inductively by the rules

� 1 �
b

� 2 �
c

w
� 3 �

aaw

w w 	
� 4 �

ww 	
2Note that S

� Σ � . So any element of S is a word, but there are some words based on the alphabet Σ
which are not in S.
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Suppose that we wish to prove that every word in S has an even number of occur-

rences of a. Write # � w � for the number of occurrences of a in w, and

φ � w � def� # � w � is even.

We prove that � w 	 S � φ � w � holds, using Rule Induction; thus we need to verify property

closure for each of the rules (1) to (4):

(Rule (1)): # � b � � 0, even. So φ � b � holds.

(Rule (2)): # � c � � 0, even. So φ � c � holds.

(Rule (3)): Suppose that w 	 S is any element and φ � w � holds, that is # � w � is even (this

is the inductive hypothesis). Then # � aaw � � 2 � # � w � which is even, so φ � aaw � holds.

(Rule (4)): Suppose w � w 	 	 S are any elements and # � w � and # � w 	�� are even (these are

the inductive hypotheses). Then so too is # � ww 	 � � # � w � � # � w 	 � .
Thus by Rule Induction we are done: we have � w 	 S � φ � w � .

2.3 Recursively Defined Functions

Definitions 2.3.1 Let I be inductively defined by a set of rules R , and A any set. A

function f : I � A can be defined by

� specifying an element f � b � 	 A for every base rule b 	 R ; and

� specifying f � c � 	 A in terms of f � h1 � 	 A and f � h2 � 	 A .... and f � hk � 	 A for every

inductive rule h1 ��� ��� hk
c 	 R ,

provided that each instance of a rule in R introduces a different element of I—why

do we need this condition? When a function is defined in this way, it is said to be

recursively defined.

Examples 2.3.2

(1) The factorial function F: � � � is usually defined recursively. We set

� F � 0 � def� 1 and

� � n 	 � � F � n � 1 � def� � n � 1 � 
 F � n � .
Thus F � 3 � � � 2 � 1 � 
 F � 2 � � 3 
 2 
 F � 1 � � 3 
 2 
 1 
 F � 0 � � 3 
 2 
 1 
 1 � 6. Are there are

brackets missing from the previous calculation? If so, insert them.
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Typing of an Imperative Language

3.1 Introduction

Motivation 3.1.1 We shall look at a formal definition of a simple imperative language

which we call � � � . Here we define the syntax of this language and its type system—

in a real programming language, it is the job of the compiler to do type checking.

In Chapter 4 we then describe how programs in the language execute—the so called

operational semantics of ��� � . This corresponds to the run-time of a real language.

The program expressions of the ��� � language comprise integers, Booleans and com-

mands. As our language is imperative, it has a concept of state. Thus ��� � has a col-

lection of (memory) locations which hold data—a state is any particular assignment

of data to (some of) the locations. The commands of the language are “instructions”

for changing the state—just as in any real imperative language.

A configuration in � � � consists of a program expression together with a specified

state—in a real language, this would correspond to a real program and a given ma-

chine (memory) state. If the program expression happens to be a command, the

configuration executes (or runs) by using the information coded by the command

to change the state. The final result of the execution is given by the state at the end of

execution—the details are in Chapter 4.

3.2 The Syntax of Expressions

Definitions 3.2.1 We begin to describe formally the language ��� � . The first step is

to give a definition of the syntax of the language. In this course, syntax will in fact be

abstract syntax—every syntactic object will be a finitely branching tree. Recall page 9.

The syntax of ��� � will be built out of various sets of symbols. These are

� def� � ����� ��� 1 � 0 � 1 ������� � the set of integers;

� def� � T � F � the set of Booleans;

Loc
def� � l1 � l2 ������� � the set of locations;

ICst
def� � n � n 	 � � the set of integer constants;

BCst
def� � b � b 	 � � the set of Boolean constants;

IOpr
def� � � � � � 
 � a fixed, finite set of integer valued operators;

BOpr
def� � � � � ��� ������� � a fixed, finite set of Boolean valued operators.
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We shall let the symbol c range over elements of � � � . Note that the operator symbols

will be regarded as denoting the obvious mathematical functions. For example, � is

the function which takes a pair of integers and returns a truth value. Thus � : � � � �
� is the function given by � m � n � �� m � n, where

m � n �
�

T if m is less than or equal to n

F otherwise

For example, 5 � 2 � F.

Note also that we write c to indicate that the constant c is an ��� � program expression.

Given (for example) 2 and 3 we cannot add these “numbers” until our programming

language �
� � instructs that this may happen: the syntax tree 2 � 3 is not the same

thing as the tree 5! However, when 2 is added to 3 by ��� � , the result is 5, and we shall

write

2 � 3 � 5 �

The set of expression constructors is specified by

Loc � ICst � BCst � IOpr � BOpr � � skip � assign � sequence � cond � while � �

We now define the program expressions of the language ��� � . The set Exp of program

expressions of the language is inductively defined by the grammar

P :: � c constant
� l memory location
� iop � P � P 	 � integer operator
� bop � P � P 	�� boolean operator
� ��� ��� do nothing
� � ��� � � � � l � P 	 � assignment
� � ��� �
���
� � � P � P 	�� conditional
� � ���
 � P � P 	 � P 	 	 � while loop
� 	 �

�
� � � P � P 	 � sequencing

where each program expression is a finite tree, whose nodes are labelled with con-

structors. Note that iop ranges over IOpr and bop ranges over BOpr. Also, op ranges

over IOpr � BOpr. We immediately adopt the following abbreviations (known as syn-

tactic sugar):

� We write P iop P 	 for the finite tree iop � P � P 	 � ;
� P bop P 	 for bop � P � P 	�� ;
� l : � P 	 for � � � �
� � � l � P 	 � ;
� P ; P 	 for � ��� �
���
� � � P � P 	�� ;
�
� �

P �	�
��� P 	 ��� ��� P 	 	 for � ���
 � P � P 	 � P 	 	 � ; and
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� 	 �
�
� � P �� P 	 for 	 �

�
� � � P � P 	�� .

We shall also adopt the following bracketing and scoping conventions:

� Arithmetic operators group to the left. Thus P1 op P2 op P3 abbreviates � P1 op P2 � op
P3 with the expected extension to any finite number of integer expressions.

� Sequencing associates to the right.

Remark 3.2.2 We will usually denote elements of any given set of syntactic objects

by one or two fixed symbols. So for example, P is always used to denote program

expressions, that is, elements of Exp. We shall occasionally also use Q to denote a

program expression.

We shall use brackets as informal punctuation when writing expressions, for example

compare the following two commands:
� �

P �	�
��� P1
��� ��� � P2 ; P3 � �

� �
P �	�
��� P1

��� ��� P2 � ; P3 �

Exercise: draw the syntax trees.

3.3 Type Checking and Inference

Motivation 3.3.1 The time at which types are assigned to expressions, and type er-

rors checked for, varies among languages. Statically typed languages carry out type

checking by static analysis of code at compile-time. Pascal and Haskell are examples

of such languages. This is useful, but the richer the type system, the harder it is to

achieve without putting in a lot of explicit type information—you may have found

that with some of your Haskell programs, you had to add in a type declaration to

make a program compile. Pascal requires much typing information within program

code. Dynamically typed languages carry out type checking at run time.

We shall soon introduce types for ��� � . Let us review some of the basic ideas. Types

appear in many kinds of software system and programming language. Expressions

of the language can be organized using types to try to help reduce program errors.

For example, the operator � should only act on numbers. If a program contains, say,

4 � T , then an error will result. Detecting this kind of error is known as type check-

ing. Such checks can be made both at compile time and run time. However, in this

course, we shall only ever consider compile time checks. This means that we shall

only consider the detection of type errors by looking at the syntax of programs. The

error given above will occur when we try to compile 4 � T .

Types also play other roles. For example, polymorphism, very crudely, means that cer-

tain operators and functions can have more than one type. This allows code re-use;

one does not have to write a new list reversing function for each type of list (integer
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list, Boolean list and so on). We shall return to polymorphism in Chapter 8. Types

also allow for the careful structuring of data, using ADTs and modules.

Given a compiled program, there are two major kinds of run-time error. A trapped

error is one for which execution halts immediately. Examples are dividing by 0 and

calling a top level exception. An untrapped error is one for which execution does not

necessarily halt. An example is accessing data past the end of an array, which one can

do in C! A language is said to be safe if all syntactically legal programs do not yield

certain run-time errors. And one way we can check for this legality is by doing type

checking at compile time. C has types, but is not safe. JAVA was claimed to be safe,

but in 1997 this was shown not to be the case.

If a program expression P can be assigned a type σ we write this as P : : σ and call the

statement a type assignment. A programming language will algorithmically encode1

certain rules for deriving type assignments. In fact, such type assignments are often

inductively defined. Type safety is the property that if P : : σ then certain kinds of

errors can not occur at P’s run-time. Given P and σ, type checking is the process of

checking that P : : σ is valid. Given just P, type inference is the process of trying to

find a type σ for which P : : σ if there is one—the process fails if no such type exists.

Definitions 3.3.2 The types of the language ��� � are given by the grammar

σ :: �
�
� � ��� � ��� � ��� 

We shall define a location environment L to be a finite set of (location, type) pairs.

A pair � l � σ � will be written l : : σ. The types in a location environment are either

�
� �

or � � ��� and the locations are all required to be different. We write a typical location

environment as

L � l1 : :
�
� � ������� � ln : :

�
� � � ln � 1 : : � � ��� ������� � lm : : � � ���

and we leave out the set braces � and � . Given a location environment L , then a pro-

gram expression P built up using only locations which appear in L can (sometimes)

be assigned a type; we write P : : σ to indicate this, and P : : σ is called a type assign-

ment. Such type assignments are defined inductively using the rules in Table 3.1.

Example 3.3.3 We give an example of a deduction of a type assignment, given the

location environment l : :
�
� � � l 	 : :

�
� � .

l : :
�
� � 1 : :

�
� �

l � 1 : : � � ���
D1 D2

D3 D4
� † �

l : � l � 1 ; l 	 : � l 	 
 l : : ��� 
� �

l � 1 �	�
��� l 	 : � 1 ��� ��� � l : � l � 1 ; l 	 : � l 	 
 l � : : ��� 

	 �
�
� � l � 1 �� �

� �
l � 1 �	�
��� l 	 : � 1 ��� ��� � l : � l � 1 ; l 	 : � l 	 
 l � � : : ��� 

1This statement is perhaps overselling the truth with regard to certain languages. The lectures will
give further details.



3.3. Type Checking and Inference 21

[any n ��� ] : : INT

n : : ����� : : TRUE

T : : �
	�	� : : FALSE

F : : �
	�	�

[l : : ������� L] : : INTLOC

l : : ����� [l : : �
	�	��� L] : : BOOLLOC

l : : �
	�	�

P1 : : ����� P2 : : �����
[ iop � IOpr] : : IOP

P1 iop P2 : : �����

P1 : : ����� P2 : : �����
[ bop � BOpr] : : BOP

P1 bop P2 : : �
	�	�

: : SKIP��� ��� : : �����
l : : σ P : : σ �

σ is ����� or �
	�	� � : : ASS

l : � P : : �����

P1 : : ����� P2 : : �����
: : SEQ

P1 ; P2 : : �����

P1 : : �
	�	� P2 : : ����� P3 : : �����
: : COND� � P1 �! �"�� P2 "�� � " P3 : : �����

P1 : : �
	�	� P2 : : �����
: : LOOP#  
��� " P1 ��	 P2 : : �����

Table 3.1: ��� � type assignments P : : σ
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It is an exercise to write down the missing deductions. See the note below, and the

example after it.

�
NOTE 3.3.4 In order to produce the missing deductions, consider the following

situation

�

deduction tree(s)

�
R

P : : σ
in which P : : σ is given. To see which rule R should be, look at the outermost con-

structor of P. This will determine the rule R. For example, look at � † � in Exam-

ple 3.3.3. We have

�

deduction tree(s)

�
R

l : � l � 1 ; l 	 : � l 	 
 l : : ��� 
and the outermost constructor is sequence. Thus rule R is : : SEQ.

Example 3.3.5 Perform type checking for l : � l � 4 : : ���  given L def� l : :
�
� � . We do

this by giving a deduction. The outermost constructor is � � � �
� � , thus the final rule

used must be : : ASS. Working backwards we have

?
??

l : : σ

???
????

l � 4 : : σ
: : ASS

l : � l � 4 : : ��� 

Given L , we must have σ �
�
� � , ?? � : : INTLOC and ? is blank! Further, ???? must be : : IOP.

You can fill in ??? for yourself.

Motivation 3.3.6 Given a location environment L , and a program expression P, there

is a simple algorithm which will infer if P can be assigned a type. If such a type exists

we say P is typable—in this case the algorithm will succeed and given P as input will

return the type as output. If not, the algorithm fails. In a real language, such type

inference is often performed by the compiler. The programmer declares the types

of various locations, corresponding to our L , writes a program P, and compiles the

program. The compilation succeeds if the type inference algorithm succeeds.

Definitions 3.3.7 Given L and P, we shall define a function Φ which given P as input

will either return a type for P, or will return FAIL. It is defined in Table 3.2.
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Φ � T � � �
	�	�
Φ � F � � �
	�	�
Φ � n � � �����
Φ � l � �

�
τ if l : : τ � L � and τ � ����� or �
	�	�
FAIL otherwise

Φ � P1 iop P2 � �
� ����� if Φ � P1 � � ����� and Φ � P2 � � �����

FAIL otherwise

Φ � P1 bop P2 � �
� �
	�	� if Φ � P1 � � ����� and Φ � P2 � � �����

FAIL otherwise

Φ � l : � P � � ���� ����� if Φ � l � � τ and Φ � P � � τ � and τ � ����� or �
	�	�
FAIL otherwise

Φ � P1 ; P2 � �
� ����� if Φ � P1 � � ����� and Φ � P2 � � �����

FAIL otherwise

Φ � � � P1 �! �"�� P2 "�� � " P3 � � �� � ����� if Φ � P1 � � �
	�	� and Φ � P2 � � ����� and

Φ � P3 � � �����
FAIL otherwise

Φ � #  ��� " P1 ��	 P2 � �
� ����� if Φ � P1 � � �
	�	� and Φ � P2 � � �����

FAIL otherwise

Table 3.2: � � � Type Inference based on a given L
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Examples 3.3.8

(1) Let L def� l : :
�
� � � l 	 : : � � ��� . Then the program expression

P
def�

� �
l �	�
��� l : � 3 ��� � � l 	 : � T

will fail type inference at compilation time. To calculate Φ � P � we first calculate Φ � l � .
Note that l : : � � ��� is not an element of L , and so Φ � l � � FAIL. Thus Φ � P � � FAIL.

(2) If we change the first l in P to l 	 and call this new program expression P 	 , then Φ � P 	 �
succeeds with the type ���  . Exercise: check this!



4

Operational Semantics of an Imperative Language

4.1 A Transition Relation

Motivation 4.1.1 Recall that the locations of � � � are elements of some given set Loc.

A state is given by specifying the data which is held in the locations. For us, the data

is simple and only consists of integers and Booleans. Thus a state can be modelled as

a partial function from the set of locations Loc to � . As we have mentioned, a config-

uration is given by a pair � P � s � where P is a program expression and s a state. Such a

configuration can be “executed” or “run”. Informally, the idea is that at run time, the

expression P causes a sequence of small changes to the state s, and at the end of the

run we have a final machine state. Each small change to the state is called a transition

step. A program run consists of a sequence of such transition steps. We shall define

assertions of the form � P � s � � � P 	
� s 	�� which assert that in state s, P executes in one

transition step to P 	 with the state after the computation step being s 	 . Such assertions

comprise a formal operational semantics. We shall also give an operational seman-

tics which shows how expressions can execute “immediately” to produce a final state

(and a program output if the expression is an integer or a Boolean), and show how

this style of operational semantics matches the former “transition step” definition in

an exact way.

Definitions 4.1.2 The set States of states is given by the subset of
�
Loc � � � � � par con-

sisting of those partial functions s with a finite domain of definition dom � s � . If s 	 States
and l 	 Loc and s � l � is defined, we refer to s � l � as “the datum held in l at state s”

or just “the contents of location l”. Typical examples of states are
�
l �� 4 � l 	 �� 5 � ,�

l1 �� 45 � l2 �� T � l3 �� 2 � , and a general (finite) state will look like

s � �
l1 �� c1 ������� � ln �� cn �

If s 	 States, l 	 Loc and c 	 � � � , then there is a state denoted by s � l �� c � : Loc � � � �
which is the partial function defined by

� s � l �� c � � � l 	 � def�
�

c if l 	 � l
s � l 	 � otherwise

for each l 	 	 Loc. We say that state s is updated at l to c. As a simple exercise, if�
l1 �� c1 ������� � ln �� cn � is a general finite state, simplify the updated state

�
l1 �� c1 ������� � ln �� cn � � l �� c �
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Given that L is a location environment, we say that state s is sensible for L if for all

l : : σ in L ,

l 	 dom � s � and s � l � : : σ

where dom � s � is the domain of definition of s.

The elements of the set Exp � States will be known as configurations. We shall induc-

tivley define a binary relation on Exp � States, namely

� � � Exp � States � � � Exp � States �

by the rules in Table 4.1, where we shall write � P1 � s1 � � � P2 � s2 � instead of

� � P1 � s1 ���
� P2 � s2 � � 	 � �

We call � a transition relation, and any instance of a relationship in � is called a

transition step.

Example 4.1.3 Let us write Q for 	 �
�
� � l � 0 �� Q 	 where Q 	 is the command l 	 : � l 	 � 2 ;

l : � l � 1. Suppose that s is a state for which s � l � � 1 and s � l 	 � � 0. Let us write s 	 def� s � l � �� 2 �
and s 	 	 def� s � l � �� 2 � � l �� 0 � � s 	 � l �� 0 � . We give an example of a sequence of configuration

transitions for the language ��� � in Figure 4.1. We also give, as an example, the de-

duction of the transition step � � in Figure 4.2. Of course, each of the transition steps

given in Figure 4.1 have similar deductions to that for � � , but in practice one can

write down (correct) transition steps directly, without formal deduction trees, simply

by understanding the intended meaning of the language ��� � .

Proposition 4.1.4 Let L be a location environment and s1 sensible. The binary rela-

tion � enjoys the following properties:

(i) Suppose that P1 : : σ. Then for any transition � P1 � s1 � � � P2 � s2 � we have P2 : : σ.

Thus the type of P1 is preserved under transitions.

(ii) Further, if σ is either

�
� � or � � ��� , then s1 � s2.

Proof We shall prove

� � P1 � s1 ����� P2 � s2 � � σ � � P1 : : σ implies P2 : : σ �

We have to check property closure for each of the rules defining � . We look at a

couple of examples.

(Property Closure for � LOC) We have to show that l : : σ implies s � l � : : σ for any σ. This

is immediate as s is sensible.
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Rules for integer and Boolean Expressions

�
provided that s � l � is defined ��� LOC� l � s ��� � s � l � � s �

� P1 � s ��� � P2 � s �
� OP1� P1 op P � s ��� � P2 op P � s �

� P1 � s ��� � P2 � s �
� OP2� n op P1 � s ��� � n op P2 � s � � OP3� n1 op n2 � s ��� � n1 op n2 � s �

Rules for Commands� P1 � s ��� � P2 � s �
� ASS1� l : � P1 � s ��� � l : � P2 � s � � ASS2� l : � c � s ��� � ��� ��� � s � l �� c � �

� P1 � s1 ��� � P2 � s2 �
� SEQ1� P1 ; P � s1 ��� � P2 ; P � s2 � � SEQ2� ��� ��� ; P � s ��� � P � s �

� P � s ��� � P 	 � s �
� COND1� � � P �  "�� P1 "�� � " P2 � s ��� � � � P 	 �  "�� P1 "�� � " P2 � s �

� COND2� � � T �! �"�� P1 "�� � " P2 � s ��� � P1 � s �
� COND3� � � F �! �"�� P1 "�� � " P2 � s ��� � P2 � s �

� LOOP� #  ��� " P1 ��	 P2 � s ��� � � � P1 �  "�� � P2 ; #  
��� " P1 � 	 P2 � "�� � " ��� ��� � s �
Table 4.1: Configuration Transitions � P � s � � � P 	 � s 	 � in ��� �
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� Q � s � � � � � l � 0 �! �"�� Q 	 ; Q "�� � " ��� ��� � s �
� � � � 1 � 0 �! �"�� Q 	 ; Q "�� � " ��� ��� � s �
� � � � T �  "�� Q 	 ; Q "�� � " ��� ��� � s �
� � Q 	 ; Q � s �
� � � l 	 : � 0 � 2 ; l : � l � 1 � ; Q � s �
� � � l 	 : � 2 ; l : � l � 1 � ; Q � s �
��� � � ��� ��� ; l : � l � 1 � ; Q � s 	 �
� � l : � l � 1 ; Q � s 	 �
� � l : � 1 � 1 ; Q � s 	 �
� � l : � 0 ; Q � s 	 �
� � ��� ��� ; Q � s 	 	 �
� � Q � s 	 	 �
� � � � l � 0 �! �"�� Q 	 ; Q "�� � " ��� ��� � s 	 	 �
� � � � 0 � 0 �! �"�� Q 	 ; Q "�� � " ��� ��� � s 	 	 �
� � � � F �  "�� Q 	 ; Q "�� � " ��� ��� � s 	 	 �
� � ��� ��� � s 	 	 �

Figure 4.1: A Transition Sequence in ��� �

� ASS2� l 	 : � 2 � s ��� � ��� ��� � s 	 �
� SEQ1� l 	 : � 2 ; l : � l � 1 � s ��� � ��� ��� ; l : � l � 1 � s 	 �

� SEQ1� � l 	 : � 2 ; l : � l � 1 � ; Q � s ��� � � ��� ��� ; l : � l � 1 � ; Q � s 	 �
Figure 4.2: An Example Deduction of a Transition
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(Property Closure for � OP2) The induction hypothesis is

� σ � � P1 : : σ implies P2 : : σ � IH

We have to prove

� σ � � n op P1 : : σ implies n op P2 : : σ � C

Let σ denote any type and suppose that n op P1 : : σ. This can only be deduced from

: : IOP or : : BOP, so the type assignment holds only if σ is

�
� � or � � ��� . We will just look

at case of : : IOP; the other is similar. So we must have n : :
�
� � and P1 : :

�
� � . Using IH

we deduce that P2 : :
�
� � and thus, using : : IOP, that n op P2 : :

�
� � , as required. As σ was

arbitrary, C holds. �

Theorem 4.1.5 The operational semantics of ��� � , as specified by the transition re-

lation � , is deterministic, that is to say that for all program expressions P, P 	 and P 	 	 ,
and states s, s 	 and s 	 	 , if

� P � s ����� P 	 � s 	 � and � P � s ����� P 	 	 � s 	 	 �

then P 	 � P 	 	 and s 	 � s 	 	 .

Proof We can prove this result by Rule Induction. If we write

φ � � � P � s � �
� P 	 � s 	 � � � def�
� � X � x ��� � P � s � ��� X � x � implies � X � P 	 and x � s 	 �

then we can prove that

� � P � s � � � P 	 � s 	 � � φ � � � P � s ���
� P 	 � s 	 � � � � 
 �

holds by using Rule Induction, and this latter statement is equivalent to the statement

of the theorem.

We consider property closure for just one rule, say

� P1 � s � � � P2 � s � � ASS1� l : � P1 � s � � � l : � P2 � s �
The inductive hypothesis is φ � � � P1 � s ��� � P2 � s � � � , that is

� � Y � y � � � P1 � s � � � Y � y � implies � Y � P2 and y � s � � IH �

We need to prove φ � � � l : � P1 � s ���
� l : � P2 � s � � � , that is

� � Z � z ��� � l : � P1 � s � ��� Z � z � implies � Z � � l : � P2 � and z � s � � C �
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In order to prove � C � we must choose an arbitrary configuration � P 	 � s 	 � and suppose

that � l : � P1 � s � � � P 	 � s 	 � . We now have to show that P 	 � l : � P2 and s 	 � s. The tran-

sition could only be deduced from � ASS1 (why!?) and so P 	 � � l : � P3 � and s 	 � s for

some P3, where

� P1 � s ��� � P3 � s � �
Hence using � IH � we can deduce P3 � P2 (and s � s !). Thus P 	 � � l : � P2 � and we

already showed that s 	 � s. As � P 	
� s 	�� was arbitrary, we have proved � C � .
Checking property closure of the remaining rules is left as an easy exercise. �

�
NOTE 4.1.6 You may care to compare carefully the above proof with the general

exposition of Rule Induction. Note that � 
 � is

� � � P � s ���
� P 	 � s 	 � �� ��� �
i

	 ��������
I

� φ � � � P � s ��� � P 	 � s 	 � � �� ��� �
φ
�
i �

Definitions 4.1.7 Let us define V :: � c � ��� ��� . One can see from the rules which de-

fine � that for configurations of the form � V � s � there is no configuration � P 	 � s 	 � for

which � V � s ��� � P 	 � s 	 � . These � V � s � configurations have special significance, and will

be called terminal. Think of them as “results and a final state” after the successful

complete execution of a program. We say that any configuration � P � s � is stuck if it

is non-terminal and there is no configuration � P 	
� s 	�� for which � P � s � � � P 	 � s 	�� . The

configuration � l � �
l 	 �� 2 � � is stuck.

Because the transition relation is deterministic (Theorem 4.1.5), given any configura-

tion � P � s � there is a unique sequence of transitions

� P � s � � � P1 � s1 � � � P2 � s2 � � �����

An infinite transition sequence for a configuration � P � s � takes the form

� P � s � � � P1 � s1 � � � P2 � s2 ��� ����� � � Pi � si � � �����

where no configuration � Pi � si � is either terminal or stuck. We sometimes say that

� P � s � loops. A finite transition sequence for a configuration � P � s � takes the form

� P � s � � � P1 � s1 ����� P2 � s2 � � ����� � � Pm � sm � � m �
1 �

If � Pm � sm � is either stuck or terminal we call the transition sequence complete. The

length m of the complete sequence is unique by the determinacy. Finally, whenever

� P � s � � � P 	
� s 	�� we sometimes say that � P � s � has a transition.

Motivation 4.1.8 We shall now show a type safety result using the terminology built

up so far. This is given in Proposition 4.1.11. This result says, in essence, that if one
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takes a successfully compiled program, which for us just means shown to be typeable,

and runs it in a sensible state, then “the program run will not get stuck”. The se-

quence of transitions which models the program run will either be infinite (the pro-

gram loops) or it will be finite and the final configuration will be terminal. Make sure

you understand the intuition behind the notions of terminal and stuck.

Proposition 4.1.9 Fix L and let s be sensible for L . Then if P : : σ is any type assign-

ment, � P � s � is not stuck.

Proof We prove � P : : σ � P � s � is not stuck by Rule Induction for the rules in Ta-

ble 3.1.

(Property Closure for : : LOC) The configuration � l � s � is not stuck as s � l � is defined be-

cause s is sensible.

(Property Closure for : : IOP) The inductive hypotheses are that neither � P1 � s � or � P2 � s �
are stuck, where P1 : :

�
� � and P2 : :

�
� � . We have to prove that � P1 iop P2 � s � is not stuck,

where P1 iop P2 : :
�
� � . The configuration is obviously non-terminal, and thus we need

to show that it has a transition.

If � P1 � s � � � P � s 	 � for some P and s 	 , � OP1 applies so that � P1 iop P2 � s � is not stuck

(check!). The other possibility is that � P1 � s � is terminal, and thus P1 � n for some n as

P1 is of type

�
� � . In this case we examine � P2 � s � in the same way as � P1 � s � . If � P2 � s �

is not terminal, � P1 iop P2 � s � is not stuck (why?). If � P2 � s � is terminal, we must have

P2 � m. In that case � P1 iop P2 � s � is � n iop m � s � which is also not stuck.

It is an exercise to check property closure for the remaining rules. �

Proposition 4.1.10 Fix L . If P : : σ and s is sensible for L , and also � P � s � � � P 	
� s 	 � ,
then s 	 is also sensible.

Proof We prove ��� P � s � � � P 	
� s 	 � � σ � (P : : σ and s sensible) implies s 	 sensible by

rule induction for � . The details are an exercise. �

Proposition 4.1.11 Let L be a location environment, let P : : σ, and let s be sensible

for L . If there is a configuration � P 	
� s 	 � for which � P � s �� � � P 	 � s 	�� , then � P 	
� s 	�� cannot

be stuck (but might be terminal). Thus ��� � is type safe.

Proof This follows easily from Propositions 4.1.9 and 4.1.10. Exercise: check this. �

Example 4.1.12 Let P be 	 �
�
� � T �� � � � � . Then we have

� P � s � � �
� �

T �	�
��� � � � � � ; P � ��� � � � � � � � s �
� � � � ��� ; P � s �
� � P � s �
� �����
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and this cycle repeats forever. Thus � P � s � has an infinite transition sequence.

4.2 An Evaluation Relation

Motivation 4.2.1 We shall now describe an operational semantics for ��� � which, in

the case of integer expressions, specifies how such program expressions can com-

pute directly to integers. The operational semantics has assertions which look like

� P � s � � � n � s � . The idea is that such an assertion corresponds to the configuration

� P � s � making a finite number of transition steps to the configuration � n � s � . A simi-

lar idea applies to Boolean expressions and commands. In Theorem 4.3.2, we clarify

these intuitive ideas precisely.

Definitions 4.2.2 We shall inductively define the set � , where

� � � Exp � States � � � Exp � States �

by the rules in Table 4.2.

Examples 4.2.3

(1) Let us write P for 	 �
�
� � l � 0 �� P 	 where P 	 is the command l 	 : � l 	�� 2 ; l : � l � 1. Sup-

pose that s is a state for which s � l � � 1 and s � l 	 � � 0. A proof of � P � s � � � � � ��� � s � l � �� 2 � � l �� 0 � �
is given in Figure 4.3. It is an exercise to add in the appropriate labels to the deduction

tree, and to fill in T .

(2) Show, by carefully examining deduction trees, that for any commands P1, P2 and

P3, and any states s and s 	 , that

� � P1 ; P2 � ; P3 � s ���� � � � � � s 	 � implies � P1 ; � P2 ; P3 � � s � � � � � � � � s 	 �
(Thus the execution behaviour of (finite) sequences of commands is unchanged by

re-arranging the sequence tree associatively.)

For any Ci, and s and s 	 , suppose that � � P1 ; P2 � ; P3 � s � � � ��� ��� � s 	�� . Then the deduction

tree must take the form

� P1 � s � � � ��� ��� � s2 � � P2 � s2 � � � � � � � � s3 �
� P1 ; P2 � s � ��� � � � � � s3 � � P3 � s3 ���� � � � � � s 	 �

� � P1 ; P2 � ; P3 � s � � � ��� ��� � s 	 �
Then, using � SEQ twice with the evaluations at the leaves of the tree above, we can

deduce that � P1 ; � P2 ; P3 � � s � � � � � � � � s 	�� . The converse direction is similar.
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�
provided l � domain of s ��� LOC� l � s ��� � s � l � � s � � CONST� c � s ��� � c � s �

� P1 � s ��� � n1 � s � � P2 � s ��� � n2 � s �
� OP1� P1 iop P2 � s ��� � n1 iop n2 � s �

� P1 � s ��� � n1 � s � � P2 � s ��� � n2 � s �
� OP2� P1 bop P2 � s ��� � n1 bop n2 � s �

� SKIP� ��� ��� � s ��� � ��� ��� � s �
� P � s ��� � n � s �

� ASS1� l : � P � s ��� � ��� ��� � s � l �� n � � � P � s ��� � b � s �
� ASS2� l : � P � s ��� � ��� ��� � s � l �� b � �

� P1 � s1 ��� � ��� ��� � s2 � � P2 � s2 ��� � ��� ��� � s3 �
� SEQ� P1 ; P2 � s1 ��� � ��� ��� � s3 �

� P � s1 ��� � T � s1 � � P1 � s1 ��� � ��� ��� � s2 �
� COND1� � � P �! �"�� P1 "�� � " P2 � s1 ��� � ��� ��� � s2 �

� P � s1 ��� � F � s1 � � P2 � s1 ��� � ��� ��� � s2 �
� COND2� � � P �! �"�� P1 "�� � " P2 � s1 ��� � ��� ��� � s2 �

� P1 � s1 ��� � T � s1 � � P2 � s1 ��� � ��� ��� � s2 � � #  
��� " P1 ��	 P2 � s2 ��� � ��� ��� � s3 �
� LOOP1� #  
��� " P1 ��	 P2 � s1 ��� � ��� ��� � s3 �

� P1 � s ��� � F � s �
� LOOP2� #  
��� " P1 � 	 P2 � s ��� � ��� ��� � s �

Table 4.2: Evaluation Relation � P � s � � � P � s 	�� in � � �



34 Chapter 4. Operational Semantics of an Imperative Language

D1 D2 D3� P � s ��� � ��� ��� � s � l � �� 2 � � l �� 0 � �
where D1 is � l � s ��� � 1 � s � � 0 � s ��� � 0 � s �� l � 0 � s ��� � T � s �
and D2 is

� l 	 � s ��� � 0 � s � � 2 � s ��� � 2 � s �� l 	 � 2 � s ��� � 2 � s �� l 	 : � l 	 � 2 � s ��� � ��� ��� � s
�
l � �� 2 � � T� l : � l � 1 � s

�
l � �� 2 � ��� � ��� ��� � s

�
l � �� 2 � � l �� 0 � �� l 	 : � l 	 � 2 ; l : � l � 1 � s ��� � ��� ��� � s � l � �� 2 � � l �� 0 � �

and D3 is

� l � s
�
l � �� 2 � � l �� 0 � ��� � 0 � s

�
l � �� 2 � � l �� 0 � � � 0 � s

�
l � �� 2 � � l �� 0 � ��� � 0 � s

�
l � �� 2 � � l �� 0 � �� l � 0 � s � l � �� 2 � � l �� 0 � ��� � F � s � l � �� 2 � � l �� 0 � �� P � s � l � �� 2 � � l �� 0 � ��� � ��� ��� � s � l � �� 2 � � l �� 0 � �

Figure 4.3: An Example Deduction of an Evaluation
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(3) A student tries to do the previous problem using Rule Induction. She formulates

the following proposition

� x � � y � � z � P � � x ; y � ; z and V � ��� ��� implies � x ; � y ; z � � s � ��� � � � � � s 	�� �
about the evaluation relation, which if proved (by Rule Induction) for all � P � s � �
� V � s 	 � implies the result of the previous problem. This is correct—can you explain

why?

4.3 A Mutual Correctness Proof

Motivation 4.3.1 We shall now show that the transition and evaluation semantics are

equivalent, in the sense that if a configuration runs in a finite number of transition

steps to a terminal configuration, then the configuration also evaluates to the same

terminal configuration.

Theorem 4.3.2 For any configuration � P � s � and terminal configuration � V � s 	 � ,

� P � s ��� � � V � s 	 � iff � P � s � ��� V � s 	 �

where � � denotes reflexive, transitive closure of � .

Proof We break the proof into three parts:

(a) Prove � P � s � � � V � s 	 � implies � P � s ��� � � V � s 	�� by Rule Induction.

(b) Prove by Rule Induction for � that

� P � s ����� P 	 � s 	 � and � P 	 � s 	 � � � V � s 	 	 � implies � P � s � � � V � s 	 	 �

(c) Use (b) to deduce � P � s ��� � � V � s 	�� implies � P � s � ��� V � s 	�� .

(a) We shall prove by Rule Induction that

� � P � s � � � V � s 	 � � P � s ��� � � V � s 	 �

We shall just check the property closure of rule � � LOOP1 � . Suppose that the appropri-

ate properties hold of the hypotheses, that is we have

� P1 � s1 � � � � T � s1 � � H1 �

� P2 � s1 ��� � � ��� ��� � s2 � � H2 �
� 	 �

�
� � P1

�� P2 � s2 ��� � � � � � � � s3 � � H3 �
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We need to prove that

� 	 �
�
� � P1

�� P2 � s1 � � � � � � ��� � s3 � � C �

Let us write Q for 	 �
�
� � P1

�� P2. Then

� Q � s1 � � �
� �

P1
�	�
��� P2 ; Q ��� � � � � � � � s1 � � � LOOP �

� � �
� �

T �	�
��� P2 ; Q ��� � � � � � � � s1 � � H1 � and zero or more uses of � � COND1 �
� � P2 ; Q � s1 � � � COND2 �
� � � � � � � ; Q � s2 � � H2 � and zero or more uses of � � SEQ1 �
� � Q � s2 � � � SEQ2 �
� � � � � � � � s3 � � H3 �

which proves (C). NB: Why “zero or more” uses?

(b) We shall prove by Rule Induction for � that

� � P � s ����� P 	 � s 	 � � � � V � s 	 	 � � � P 	
� s 	 � ��� V � s 	 	 � implies � P � s � � � V � s 	 	 �

Let us just consider property closure for the rule � � LOOP � . Pick any � V � s 	 	 � and sup-

pose that

�
� �

P1
�	�
��� � P2 ; Q � ��� ��� ��� ��� � s � ��� V � s 	 	 � � 1 �

We need to show that

� Q � s � � � V � s 	 	 � � 2 �
But (1) can hold only if it has been deduced either from � � COND1 � or � � COND2 � . In

either case V must be � � � � . We consider the two cases:

� Case � � COND1 � � : (1) was deduced from the hypotheses

� P1 � s � � � T � s � � 3 �

and

� P2 ; Q � s � � � � � � � � s 	 	 � � 4 �
where the latter assertion is deduced using � � SEQ � from the hypotheses

� P2 � s � � � � � � � � s 	 � � 5 �

and

� Q � s 	 � ��� ��� ��� � s 	 	 � � 6 �
for some state s 	 . If we apply ( � LOOP1 � to (3), (5) and (6) we obtain (2).
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� Case � � COND2 � � : (1) was deduced from the hypotheses

� P1 � s � � � F � s � � 7 �

and

� � � ��� � s � � � ��� ��� � s 	 	 � � 8 �
But (8) can only be deduced using � � SKIP � so that s � s 	 	 and then � � LOOP2 � applied to

(7) yields (2) as required.

(c) Exercise: complete the final proof step.

�

Example 4.3.3 See Theorem 4.3.2, part (b). We verify property closure for the rule

� COND1.

The induction hypothesis IH is

� � V � s 	 � � � P 	 � s � � � V � s 	 � implies � P � s � ��� V � s 	 �

We need to prove that

� � V � s 	 � � �
� �

P 	 �	�
��� P1
��� � � P2 � s � � � V � s 	 � implies �

� �
P �	�
��� P1

��� ��� P2 � s � � � V � s 	 �

Let � V � s 	 � denote any terminal configuration, and suppose that

�
� �

P 	 �	�
��� P1
��� ��� P2 � s � � � V � s 	 �

This must have been deduced from either � COND1 or � COND2. We give the details for

� COND1. In this case, we must have � P 	 � s � � � T � s � and � P1 � s � � � V � s 	 � . Thus by IH,

� P � s � ��� T � s � , and using � COND1 again we get

�
� �

P �	�
��� P1
��� � � P2 � s � � � V � s 	 �

as required. You can fill in the details for the other case � COND2.
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The CSS Machine

5.1 Architecture of the CSS Machine

Motivation 5.1.1 We have seen that an operational semantics gives a useful model of

��� � , and while this situtation is fine for a theoretical examination of ��� � , we would

like to have a more direct, computational method for evaluating configurations. We

provide just that in this chapter, by defining an abstract machine which executes via

single step re-write rules.

Definitions 5.1.2 In order to define the CSS machine, we first need a few preliminary

definitions. The CSS machine consists of rules for transforming CSS configurations.

Each configuration is composed of code which is executed, a stack which consists of

a list of integers or Booleans, and a state which is the same as for ��� � .

A CSS code C is a “list” which is produced by the following grammars:

ins :: � PUSH � c � � FETCH � l � � OP � op � � SKIP � STO � l � � BR � C � C � � LOOP � C � C �
C :: � � � ins � ins : C

where op is any operator, l is any location and c is any constant. The objects ins are

CSS instructions. A stack σ is produced by the grammar

σ :: ��� � c � c : σ

where c is any integer or Boolean. A state s is indeed an ��� � state. We shall write � to

indicate an empty code or stack. We shall also abbreviate C : � to C and σ : � to σ.

A CSS configuration is a triple � C � σ � s � whose components are defined as above. A

CSS transition takes the form

� C1 � σ1 � s1 � � � � � C2 � σ2 � s2 �
and indicates a relationship between CSS configurations. Thus � � � is a binary rela-

tion on the set of all CSS configurations. This binary relation is defined inductively

by a set of rules, each rule having the form

R
� C1 � σ1 � s1 � � � � � C2 � σ2 � s2 �

that is, every rule has no hypotheses. We call such a binary relation as � � � which is

inductively defined by rules with no hypotheses a re-write relation. The CSS re-writes

are defined in Table 5.1, where each rule R is written

C1 σ1 s1 � � � C2 σ2 s2
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PUSH � c � : C σ s � � � C c : σ s

FETCH � l � : C σ s � � � C s � l � : σ s

OP � op � : C n1 : n2 : σ s � � � C n1 op n2 : σ s

SKIP : C σ s � � � C σ s

STO � l � : C c : σ s � � � C σ s
�
l �� c �

BR � C1 � C2 � : C T : σ s � � � P1 : C σ s

BR � C1 � C2 � : C F : σ s � � � P2 : C σ s

LOOP � C1 � C2 � : C σ s � � � C1 : BR � C2 : LOOP � C1 � C2 � � SKIP � : C σ s

Table 5.1: The CSS Re-Writes

Remark 5.1.3 You may like to compare such re-write rules with the transition steps

of � � � which we met in Chapter 4. They are similar, except that any individual re-

write does not require justifying via a deduction tree, because by definition a re-write

step is defined by a rule with empty hypotheses.

κ0 � � � κ1 � � � κ2 � � � κ3 � � � κ4 ����� � � � κn

..........
no tree

..
..

..
..

..

κi � � � κi � 1

Rewrite Rules (Abstract Machine)

� deduction tree� �deduction tree� �deduction tree� �deduction tree�
γ0 � γ1 � γ2 � γ3 � ����� � γn

Transition Semantics

In this informal picture, κ denotes a typical CSS configuration, and γ a typical ��� �
configuration.

Motivation 5.1.4 We shall now compile ��� � program expressions into CSS codes.

We shall assume that any given program expression has already been through the

type checking phase of compilation. We shall define a function
� �
� � � :Exp � CSScodes

which takes a CSS program expression and turns it into CSS code.
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� �
c � � def� PUSH � c �
� �
l � � def� FETCH � l �

� �
P1 op P2 � � def� � �

P2 � � :
� �
P1 � � : OP � op �

� �
l : � P � � def� � �

P � � : STO � l �
� � ��� ��� � � def� SKIP

� �
P1 ; P2 � � def� � �

P1 � � :
� �
P2 � �� � � � P �! �"�� P1 "�� � " P2 � � def� � �

P � � : BR � � �P1 � � � � � P2 � � �� � #  ��� " P1 ��	 P2 � � def� LOOP � � � P1 � � � � �P2 � � �
Table 5.2: Compiling � � � into CSS Code

Definitions 5.1.5 The function
� �
� � � :Exp � CSScodes is specified by the clauses in Ta-

ble 5.2.

5.2 Correctness of the CSS Machine

Motivation 5.2.1 We prove that the CSS machine is correct for our operational se-

mantics. This means that whenever we execute an expression according to the se-

mantics in Chapter 4, the result matches that of the CSS machine, and vice versa. We

make this precise in the following theorem:

Theorem 5.2.2 For all n 	 � , b 	 � , P1 : :
�
� � , P2 : : � � ��� , P3 : : ���  and s � s1 � s2 	 States we

have
� P1 � s � � � n � s � iff

� �
P1 � � � s � � � t

� n s

� P2 � s � � � b � s � iff
� �
P2 � � � s � � � t

� b s

� P3 � s1 � � � � � ��� � s2 � iff
� �
P3 � � � s1 � � � t

� � s2

where � � � t denotes the transitive closure of � � � .

Proof See Appendix A �

5.3 CSS Executions

Examples 5.3.1
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(1) Let s be a state for which s � l � � 6. Execute 10 � l on the CSS machine.

First, compile the program.

� �
10 � l � � � FETCH � l � : PUSH � 10 � : OP � � �

Then

FETCH � l � : PUSH � 10 � : OP � � � � s � � � PUSH � 10 � : OP � � � 6 s

� � � OP � � � 10 : 6 s

� � � � 4 s

(2) Let s be a state for which s � l � � 1. Run the program

� �
l

�
0 �	�
��� l : � l � 1 ��� ��� ��� ��� .

First compile

� � � �
l

�
0 �	�
��� l : � l � 1 ��� � � � � � � � �
� � �

l
�

0 � � : BR � � � l : � l � 1 � � � � � � � ��� � � �
� PUSH � 0 � : FETCH � l � :

�
: BR � PUSH � 1 � : FETCH � l � : OP � � � : STO � l �
� SKIP �

Then

PUSH � 0 � : FETCH � l � :
�

: BR � PUSH � 1 � : FETCH � l � : OP � � � : STO � l �
� SKIP � � s

� � � FETCH � l � :
�

: BR � PUSH � 1 � : FETCH � l � : OP � � � : STO � l � � SKIP � 0 s

� � � �
: BR � PUSH � 1 � : FETCH � l � : OP � � � : STO � l � � SKIP � 1 : 0 s

� � � BR � PUSH � 1 � : FETCH � l � : OP � � � : STO � l � � SKIP � T s

� � � PUSH � 1 � : FETCH � l � : OP � � � : STO � l � � s

� � � FETCH � l � : OP � � � : STO � l � 1 s

� � � OP � � � : STO � l � 1 : 1 s

� � � STO � l � 0 s

� � � � � s � l �� 0 �
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Typing of Functional Languages

6.1 Introduction

Motivation 6.1.1 In this chapter we turn our attention to functional programming

languages. Such languages provide a syntax of expressions in which one can write

down functions directly, without having to think about how to code them as com-

mands acting on a state. In fact the simple functional languages we meet here do not

have any kind of state: a program is an expression which potentially denotes a value

which can be returned to the programmer. In this chapter we shall study the syntax

and type system of a simple functional programming language. Before we begin the

details, let us look at some examples. Figure 6.1 gives an example of an identifier envi-

ronment. This gives the types of various constant and function identifiers. Figure 6.2

declares the meanings of the identifiers. Most of this should be clear, but we give

a few explanatory comments. (We shall assume that readers have some familiarity

with (the datatypes of) functions, pairs and lists. If not, consult the course notes for

MC 103, 104 and 2081.) If σ1 and σ2 are any types (for example, base types

�
� � or � � ��� )

then
�
σ1 � is the type of σ1-lists, and � σ1 � σ2 � is the type of pairs whose first element is

of type σ1 and second of type σ2. The empty list is written as �
�
� . If E2 denotes a list

of type
�
σ � , and E1 is of type σ, then E1 : E2 is the list whose head is E1 and tail is E2.

Recall also that all well-formed lists are built up from �
�
� using :. Thus, for example,

� 2 : 4 : �
�
� � T � : : � �

�
� � � � � � � � � . Expressions of type σ1 � σ2 are functions with input type

σ1 and output type σ2. If E1 : : σ1 � σ2 and E2 : : σ1 then we write E1 E2 for the ap-

plication of the function E1 to the input E2. Look at the function g. Its type is given

as Int -> Int -> Int which is sugar for Int -> (Int -> Int). If 4 :: Int, then we

can apply g to this integer to get g 4 :: Int -> Int. g 4 is a itself a function which

takes integers as inputs, and yields an integer output. Thus (g 4) 6 evaluates to an

integer, namely 4+6 = 10. As a further example, (h 4) 6 :: Int -> Int, and ((h 4)

6) 1 = 4 + 6 + 1 = 11.

6.2 Types and Expressions for
����� e

Motivation 6.2.1 We begin by defining the types and expressions of a simple lan-

guage called ��� � e . Every expression of the language can be thought of as a data-

value (as against, say, a command) and the language executes by simplifying com-

plex expressions to much simpler expressions. The simpler expressions are returned

1It is not essential to have taken MC 208
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cst :: Int
f :: Int -> Int
g :: Int -> Int -> Int
h :: Int -> Int -> Int -> Int
empty_list :: [Int]
l1 :: [Int]
l2 :: [Int]
h :: Int
t :: Int
p :: (Int,Int)
fst :: (Int,Int) -> Int
length :: [Bool] -> Int
map :: (Int -> Bool) -> [Int] -> [Bool]

Note that function types associate to the right. Thus

Int -> Int -> Int abbreviates Int -> (Int -> Int)
Int -> Int -> Int -> Int abbreviates Int -> (Int -> (Int -> Int))

Figure 6.1: An example of an Identifier Environment

cst = 76 -- definition of constant cst
f x = x
g x y = x+y
h x y z = x+y+z -- definition of function identifier h
l1 = 5:(6:(8:(4:(nil)))) -- a list
l2 = 5:6:8:4:nil -- the same list
h = hd (5:6:8:4:nil) -- head of list
t = tl (5:6:8:4:nil) -- tail of list
p = (3,4) -- definition of constant p
fst (x,y) = x
length l = if elist(l) then 0 else (1 + length t)
map f l = if elist(l) then nil else (f h) : (map f t)

Note that function application associates to the left—thus g x y is sugar for (g x) y
and h x y z is sugar for ((h x) y) z.
The function length calculates the length of a list l of Booleans, and map applies a function
f :: Int -> Bool to each element of a list l. Note also that l1 = l2.

Figure 6.2: An example of an Identifier Declaration
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as output to the programmer.

A functional language contains expressions whose abstract syntax trees are of the

form � �
� E1 � E2 � . The idea is that E1 denotes a function, and that E2 is the input or

argument for the function. We say that the expression � �
� E1 � E2 � is E1 applied to E2.

As we have seen, its sugared form is E1 E2.

Definitions 6.2.2 The types of the language ��� � e are (the syntax trees) given induc-

tively (exercise: what are the rules?) by the grammar

σ :: �
�
� � � � � ��� � σ � σ � � σ � σ � � �

σ �
We shall write Type for the set of types. Thus � ��� e contains the types of integers,

Booleans, (higher order) functions, (binary) cartesian products and lists. We shall

write

σ1 � σ2 � σ3 � ����� � σn � σ

for

σ1 � � σ2 � � σ3 � � ����� � � σn � σ � ����� � � � �
Thus for example σ1 � σ2 � σ3 means σ1 � � σ2 � σ3 � .
Let Var be a fixed set of variables. We shall also need a fixed set of identifiers, with

typical elements denoted by � , � and � . These symbols will be used to define con-

stants and higher order functions in ��� � e —compare

� xy � x � y in ��� � e to f x y = x+y in Haskell.

The sugared expressions of the functional language ����� e are given inductively by

the grammar

E :: � x variables
� c integer or Boolean constant
� � constant identifier
� � function identifier
� E1 iop E2 integer valued operator on integers
� E1 bop E2 Boolean valued operator on integers
�

� �
E1

�	�
��� E2
��� ��� E3 conditional

� � E1 � E2 � pairing
�

�
��� � E � first projection

� ���
 � E � second projection
� E1 E2 function application
� �

�
�
σ empty list

� �
 � E � head of list
� �	� � E � tail of list
� E1 : E2 cons for lists
� ���

�
��� � E � Boolean test for empty list
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Examples 6.2.3

(1)
� � � � ��� � � � ��� � �

�
� � �

�
� � �

�
� � � is sugar for

� � � � ��� � � � � � � � �
�
� � � �

�
� � �

�
� � � � �

(2) � �
�
� � �

�
� � � �

�
� � �

�
� � � � �

�
� � �

�
� � � � � � � � is sugar for

� �
�
� � �

�
� � � � �

�
� � �

�
� � � � � � �

�
� � �

�
� � � � � � ��� �

Remark 6.2.4 We shall adopt a few conventions to make expressions more readable:

� In general, we shall write our “formal” syntax in an informal manner, using brackets

“(” and “)” to disambiguate where appropriate—recall that in Pascal and Haskell one

can add such brackets to structure programs. So for example, if we apply E2 to E3 to

get E2 E3, and then apply E1 to the latter expression, we write this as E1 � E2 E3 � .
� E1E2E3 ����� En is shorthand for � ����� � � E1E2 � E3 � ����� � En. We say that application asso-

ciates to the left. For example, E1E2E3 is short for � E1 E2 � E3. Note that if we made

the tree structure of applications explicit, rather than using the sugared notation

E E 	 instead of, say, � �
� E � E 	 � where � �

is a tree constructor, then � E1 E2 � E3 would be

a shorthand notation for the tree denoted by � �
� � �

� E1 � E2 ��� E3 � . Exercise: make sure

you understand why function types associate to the right, and function applications

to the left.

� The integer valued integer operators also associate to the left; thus we will write (for

example) n � m � l to mean � n � m � � l, with the obvious extension to a finite number

of integer constants.

� The cons constructor associates to the right. So, for example, we shall write E1 : E2 :
E3 for E1 : � E2 : E3 � . This is what one would expect—the “head of the list” is appended

to the “tail of the list”. (Recall that lists such as
�
1 � 4 � 6 � , which one often finds in real

languages, would correspond to the ����� e list 1 : 4 : 6 : �
�
������� ).

� Exercise: Try writing out each of the general expression forms as finite trees, using

tree constructors such as �����
� for the cons operation.

Definitions 6.2.5 The variable x occurs in the expression x op 3 op x. In fact, it oc-

curs twice. For an expression E and a variable v we shall assume that it is clear what

v occurs in E means. We do not give a formal definition. We shall also talk of the

identifiers which occur (or appear) in E.

If E and E1 ������� � En are expressions, then E
�
E1 ������� � En

�
x1 ������� � xn � denotes the expression

E with Ei simultaneously replacing xi for each 1 � i � n. (We omit the proof that the

finite tree E
�
E1 ������� � En

�
x1 ������� � xn � is indeed an expression).

Examples 6.2.6 Examples of expressions and substitutions are

(1) x
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(2) �
 � 2 : 4 : �
�
� ����� �

(3) f � gy � where f � g � y 	 Var.

(4) b : T : F : �
�
���������

(5) � 23

(6) � xy : 2 : z : �
�
� � � � � 2 � 3 � z �

x � y � z � � � � 2 � 3 � : 2 : z : �
�
�

(7) � x � y � z � � y � x �
x � y � � 3 � y �

x � y � � y � 3 � z

(8) � x � y � z � � x �
y � � u � 4 �

x � z � � u � u � 4

(9) Exercise: work out � x � y � z � � z � 1 � 4 �
x � z � and then � � x � y � z � � z � 1

�
x � � � 4 �

z � . What

happens? Did you expect this?

(10) � 2 � 4 
 � 7 � is sugar for � � 2 � � 4 
 � 7 �
(11)

� � � � 2 
 � 7 � � 4 
 � 7 ���
� 3 
 6 � 5 � � 6 � is sugar for

� � � � � 2 
 � 7 � � � 4 
 � 7 ���
� � 3 
 6 � � 5 � � 6 �

Motivation 6.2.7 Recall discussions about type checking and inference from Chap-

ter 3. In this chapter, we will build programs out of identifiers and variables, and in

order to help construct sensible programs we shall first assign types to such identi-

fiers and variables, much as we assigned types to locations in ��� � .

Definitions 6.2.8 A context Γ is a finite set of (variable, type) pairs, where the type is

a ��� � e type, and the variables are required to be distinct so that one does not assign

two different types to the same variable. So for example Γ � � � x1 � σ1 ��������� �
� xn � σn � � . We

usually write a typical pair � x � σ � as x : : σ, and a typical context as

Γ � x1 : : σ1 ������� � xn : : σn �

Note that a context is by definition a set, so the order of the xi : : σi does not matter

and we omit curly braces simply to cut down on notation. We write Γ � Γ 	 def� Γ � Γ 	 and

Γ � x : : σ def� Γ � � x : : σ � .

An identifier type is a type of the form σ1 � σ2 � σ3 � ����� � σk � σ where k is a

natural number and σ is NOT a function type. If k is 0 then the type is simply σ. You

should think of such an identifier type as typing information for an identifier. If k � 0
then the identifier is called a constant. If k � 0 then the identifier is called a function;

the identifier will represent a function that takes a maximum of k inputs with types

σi and gives an output of type σ. Of course the identifier can take less than k inputs

to yield another function–compare (h 4) 5 in Figure 6.2 where h has k � 3. We shall

denote identifier types by the Greek letter ι.
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An identifier environment is specified by a finite set of (identifier, identifier type)

pairs, with a typical identifier environment being denoted by

I � � 1 : : ι1 ������� � � m : : ιm �

We say that ιi is the identifier type of � i.

We shall say that a variable x appears in a context Γ if x : : σ 	 Γ for some type σ. Thus

z appears in x : :
�
� � � y : :

�
� � ��� � � z : :

�
� � �

�
� � . We shall similarly say that a type appears

in a context, and use similar conventions for identifier environments.

Example 6.2.9 A simple example of an identifier environment is

I def� � � �
: : �

�
� � �

�
� � � � � � � � � � � � � � � � ���
� : :

�
� � �

�
� �

Note that �
�
� � �

�
� � � � � � � � � � � � � � � is the identifier type of � � �

. Another simple exam-

ple of an identifier environment is

�
� �
� : : �

�
� � �

�
� � � �

�
� � .

Motivation 6.2.10 Given a context Γ of typed variables, and an identifier environ-

ment I , we can build up expressions E which use only variables and identifiers which

appear in Γ and I . This is how we usually write (functional) programs: we first declare

constants and types, possibly also functions and types, and then write our program

E which uses these data. We shall define judgements of the form Γ � E : : σ which

should be understood as follows: given an identifier environment I , and a context Γ,

then the expression E is well formed and has type σ. Given I and Γ, we say that E is

assigned the type σ. We call Γ � E : : σ a type assignment relation.

Definitions 6.2.11 Given any identifier environment I , we shall inductively define a

type assignment (ternary) relation which takes the form Γ � E : : σ using the rules in

Table 6.1.

Remark 6.2.12 Let I be an identifier environment. Note that if Γ � E : : σ, then I
and Γ may contain identifiers and variables which do not appear in E. For example if

I def� � : :
�
� � �

�
� � then

x : :
�
� � � y : :

�
� � � z : :

�
� � � � x : :

�
� �

is a valid type assignment. The motto is “just because we declared some variables or

identifiers, does not mean we need to program with them”.

Note also that the second part of the next proposition says that “given any type as-

signment, we can add identifiers to the identifier environment, and variables to the

context, without changing the type of E.” Sometimes this is called weakening.
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� where x : : σ � Γ � : : VAR

Γ � x : : σ
: : INT

Γ � n : : �����

: : TRUE

Γ � T : : �
	�	� : : FALSE

Γ � F : : �
	�	�

Γ � E1 : : ����� Γ � E2 : : �����
: : OP1

Γ � E1 iop E2 : : �����

Γ � E1 : : ����� Γ � E2 : : �����
: : OP2

Γ � E1 bop E2 : : �
	�	�

Γ � E1 : : �
	�	� Γ � E2 : : σ Γ � E3 : : σ
: : COND

Γ � � � E1 �  "�� E2 "�� � " E3 : : σ

Γ � E1 : : σ2
� σ1 Γ � E2 : : σ2

: : AP

Γ � E1 E2 : : σ1

Γ � E1 : : σ1 Γ � E2 : : σ2
: : PAIR

Γ � � E1 � E2 � : : � σ1 � σ2 �
Γ � E : : � σ1 � σ2 �

: : FST

Γ � � � � � E � : : σ1

Γ � E : : � σ1 � σ2 �
: : SND

Γ � � ��� � E � : : σ2

� where � : : ι � I � : : IDR

Γ ��� : : ι

: : NIL

Γ � � ��� σ : :
�
σ �

Γ � E1 : : σ Γ � E2 : :
�
σ �

: : CONS

Γ � E1 : E2 : :
�
σ �

Γ � E : :
�
σ �

: : HD

Γ �  � � E � : : σ

Γ � E : :
�
σ �

: : TL

Γ � �!� � E � : :
�
σ �

Γ � E : :
�
σ �

: : ELIST

Γ � "�� � � � � E � : : �
	�	�

Table 6.1: Type Assignment Relation Γ � E : : σ in ��� � e
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Proposition 6.2.13 Let I be an identifier environment. If Γ � E : : σ, then the iden-

tifiers which appear in E appear in I , and the variables which appear in E appear in

Γ.

Suppose that I � I 	 is an identifier environment, that Γ � Γ 	 is a context, and that Γ � E : :
σ given just I . Then in fact Γ � Γ 	 � E : : σ is also a derivable type assignment for I � I 	 .

Proof Follows by a simple Rule Induction for Table 6.1. Exercise! �

Proposition 6.2.14 Given an identifier environment I , a context Γ and an expression

E, if there is a type σ for which Γ � E : : σ, then such a type is unique. Thus ����� e is

monomorphic—see Chapter 8.

Proof We can prove this using Rule Induction for Table 6.1. In fact we verify that

� � Γ � E : : σ1 � � � σ2 � � Γ � E : : σ2 implies σ1 � σ2 � �
We check property closure for the rule HD: The inductive hypothesis is that

� σ2 � � Γ � E : : σ2 implies
�
σ � � σ2 �

where Γ � E : :
�
σ � . We wish to prove that

� σ2 � � Γ � �
 � E � : : σ2 implies σ � σ2 � � † �
where Γ � �
 � E � : : σ.

Let τ be arbitrary, where Γ � �
 � E � : : τ. Then we must have Γ � E : :
�
τ � . From the

inductive hypothesis we see that
�
σ � � �

τ � . It follows that σ � τ as required. As τ was

arbitrary, � † � is proved.

Property closure of the remaining rules is left as an exercise. �

Examples 6.2.15

(1) We give a deduction of the following type assignment x : : � � ��� � � � 2 � 6 � x � : : � � ���
where

�
: : � � � ��� � � � ��� � � � � ��� .

D

x : : � � ��� � 2 : :
�
� � x : : � � ��� � 6 : :

�
� �

x : : � � ��� � 2 � 6 : : � � ��� x : : � � ��� � x : : � � ���

x : : � � � � � � 2 � 6 � x � : : � � � ��� � � � ��� �
x : : � � � � � � � 2 � 6 � x � : : � � � �

where D is

x : : � � ��� � �
: : � � � ��� � � � ��� � � � � ���
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(2) With I as in Example 6.2.9, we have

x : :
�
� � � y : :

�
� � � z : :

�
� � � � � �

���
� � x : y : z : �
�
������� � : :

� � � � �

(3) Let I be � 	 �
�����
� �  : :

� � � � � �
�
� � � �

�
� � �

�
� � � . Then we have

y : :
� � � � � � x : :

�
� � � � 	 �

� ���
� �  yx : : �
�
� � �

�
� � �

(4) We have

� �
� �

T �	�
���
�
��� � � 2 : �

�
������� � �

�
������� � � ��� ��� � 2 : 6 : �

�
������� � : :

� � � � �

(5) (See Proposition 6.2.13.) Suppose that Γ � E : : σ. Let var � E � be the set of variables

which occur in E, and var � Γ � be the set of variables which are declared in the context

Γ. We explain carefully, but informally, why it is always the case that var � E � �
var � Γ � .

The following amounts to an informal description of a proof by rule induction that

� Γ � E : : σ var � E � �
var � Γ �

Base rules: In : : VAR, it is a condition that if Γ � x : : σ, then x : : σ appears in Γ. Thus

certainly var � x � � � x � �
var � Γ � . In each rule which introduces either a constant or an

identifier, clearly var � c � � � and var � � � � � , and of course � �
var � Γ � for any context

Γ. In all other rules, the inductive hypotheses would state that for any Γ � Ei : : σi we

have var � Ei � � Γ where i 	 � 1 ����� n � and n is the number of type assignments appearing

as assumptions in the rule. The variables appearing in the expression in the conclu-

sion of the rule must be var � E1 � � var � E2 � � ����� � var � En � and appealing to the inductive

hypotheses this is a subset of var � Γ � , as required.

6.3 Function Declarations and Programs for
��� � e

Motivation 6.3.1 An identifier declaration is a method for declaring that identifiers

have certain meanings. We look at two examples:

We begin by specifying an identifier environment, such as

�
� �
� : : �

�
� � �

�
� � � �

�
� � or� � � : :

�
� � �

�
� � or � : : � � � � . Then to declare that

�
� �
� is a function which takes a pair

of integers and adds them, we write

�
� �
� x �

�
��� � x � � ���
 � x � . To declare that

� � � denotes

the factorial function, we would like
� � � x �

� �
x � � 1 �	�
��� 1 ��� � � x 


� � � � x � 1 �

And to declare that � denotes T we write � � T .

Thus in general, if � is a function identifier, we might write � x � E where E is an ex-

pression which denotes “the result” of applying � to x. In ��� � e , we are able to specify
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statements such as � x � E and � � E 	 which are regarded as preliminary data to writ-

ing a program—we declare the definitions of certain functions and constants. The

language is then able to provide the user with identifiers � whose action is specified

by the expression E. Each occurrence of � in program code executes using its declared

definition. This is exactly like Haskell.

In general, an identifier declaration will specify the action of a finite number of func-

tion identifiers, and moreover the definitions can be mutually recursive—each iden-

tifier may be defined in terms of itself or indeed the others. Note that the factorial

function given above is defined recursively: the identifier

� � � actually appears in the

expression which gives “the result” of the function.

A program in ����� e is an expression in which there are no variables and each of the

identifiers appearing in the expression have been declared. The idea is that a pro-

gram is an expression in which there is no “missing data” and thus the expression

can be “evaluated” as it stands. A value is an “evaluated program”. It is an expression

which often has a particularly simple form, such as an integer, or a list of integers,

and thus is a sensible item of data to return to a user. Functions without arguments

are also values. We now make all of these ideas precise.

Definitions 6.3.2 Let I � � 1 : : ι1 ������� � � m : : ιm be a given, fixed, identifier environment

for which

ι j � σ j1 � σ j2 � σ j3 � ����� � σ jk j � σ j � � j 	 � 1 ������� � m � �

Then an identifier declaration decI consists of the following data:

� 1 x11 ����� x1k1 � E � 1
� 2 x21 ����� x2k2 � E � 2

...
� j x j1 ����� x jk j � E � j

...
� m xm1 ����� xmkm � E � m

We define a program expression P to be any expression for which no variables occur

in P. A program in ����� e is a judgement of the form

decI in P

where decI is a given identifier declaration and the program expression P satisfies a

type assignment of the form

� � P : : σ
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and the declarations in decI satisfy

x11 : : σ11 ������� � x1k1 : : σ1k1 � E � 1 : : σ1

x21 : : σ21 ������� � x2k2 : : σ2k2 � E � 2 : : σ2
...

x j1 : : σ j1 ������� � x jk j : : σ jk j � E � j : : σ j
...

xm1 : : σm1 ������� � xmkm : : σmkm � E � m : : σm

Note that the data which are specified in decI just consist of the declarations � j
�
x � E � j ;

the type assignments just need to hold of the specified E � j . In practice, such type

checking will be taken care of by the compiler—recall page 19. We shall sometimes

abbreviate the jth type assignment to Γ � j � E � j : : σ j. We call the expression E � j the

definitional body of � j. Note that the type assignments force each of the variables in

� x j1 ������� � x jk j � to be distinct (for each j 	 � 1 ������� � m � ). We may sometimes simply refer

to P as a program, when no confusion can arise from this. We call σ the type of the

program decI in P (and sometimes just say σ is the type of P). The program type will

normally be inferred from the given decI and P—see page 23.

Examples 6.3.3

(1) Let I � � 1 : :
� � � � � �

�
� � �

�
� � � � 2 : :

�
� � �

�
� � � � 3 : : � � ��� . Then an example of an identifier

declaration decI is
� 1x11x12 � �
 � �	� � �	� � x11 � � � � � 2x12

� 2x21 � x21 
 x21

� 3 � T

Note that here we labelled the variables with subscripts to match the general defini-

tion of identifier declaration—in future we will not bother to do this. It is easy to see

that the declaration is well defined: for example x21 : :
�
� � � x21 
 x21 : :

�
� � .

(2) Let I be � : :
�
� � �

�
� � �

�
� � �

�
� � . Then we have a declaration decI

� xyz � x � y � z

where of course x : :
�
� � � y : :

�
� � � z : :

�
� � � x � y � z : :

�
� � .

(3) The next few examples are all programs

� x �
� �

x � 1 �	�
��� 1 ��� ��� x 
 � � x � 1 � in � 4

(4)

� 1 xyz �
� �

x � 1 �	�
��� y ��� ��� z

� 2 x � � 1 x1 � x 
 � 2 � x � 1 � �

�
in � 2 4
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(5) �
� x �

� �
x � 0 �	�
��� T ��� �����  � x � 1 �

�  x �
� �

x � 0 �	�
��� F ��� ���
�
� � x � 1 �

�
in

�
� 12

Note that

�
� and �  are defined by mutual recursion, and that they only correctly

determine the evenness or oddness of non-negative integers. How would you correct

this deficiency?

(6) � x � � x in � � 3 : �
�
� ����� � is a program which does not evaluate to a value; the pro-

gram loops—see Chapter 7.
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Operational Semantics of Functional Languages

7.1 Operational Semantics for
� � � e

Motivation 7.1.1 The operational semantics of � ��� e gives rules for proving that a

program P evaluates to a value V within a given identifier declaration decI . For any

given identifier declaration, we write this as P � e V , and a trivial example is, say, 3 �
4 � 10 � e 17 or �
 � 2 : �

�
������� � � e 2.

This is an eager or call-by-value language. This means that when expressions are

evaluated, their arguments (or sub-expressions) are fully evaluated before the whole

expression is evaluated. We give a couple of examples:

Let � xy � x � y. We would expect � � 2 
 3 � � 4 
 5 � � e 26. But how do we reach this value?

The first possibility is call-by-value evaluation. First we calculate the first argument

to get � 6 � 4 
 5 � , then the second to get � 620. Having got the values of the function ar-

guments, we call the function to get 6 � 20, which evaluates to 26. The second possi-

bility is that the function is evaluated first to give � 2 
 3 � � � 4 
 5 � and then we continue

to get 6 � � 4 
 5 � and 6 � 20. This is called call-by-name evaluation, and is dealt with in

Section 7.2.

In evaluating a function application � P1P2 we first compute values for P1 and P2, say

V1 and V2, and then evaluate � V1V2. In evaluating a pair � P1 � P2 � , we compute values

for P1 and P2, say V1 and V2, giving a final value of � V1 � V2 � . A similar idea applies to

lists.

Definitions 7.1.2 Let decI be a identifier declaration. A value expression is any ex-

pression V which can be produced by the following grammar

V :: � c � �
�
�
σ � � V � V � � �

�
V � V : V

where c is any Boolean or integer, σ is any type, and
�
V abbreviates V1 V2 ����� Vl � 1 Vl

where 0 � l � k, and k is the maximum number of inputs taken by � . A value is any

value expression for which decI in V is a valid ����� e program. Note that constants �
are not values. Note also that l is strictly less than k, and that if k � 1 then �

�
V denotes

� .

Definitions 7.1.3 We shall define an evaluation relation whose judgements will take

the form

P � e V
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where P and V are respectively a program expression and value expression whose

function identifiers appear in an identifier declaration decI . The rules for inductively

generating these judgements are given by the rules in Table 7.1.

Remark 7.1.4 You may find the definition of �
�
V as a value expression rather odd. In

fact, there is good reason for the definition. The basic idea behind the definition of

a value is that “values are those expressions which are as fully evaluated as possible,

according to the call-by-value execution strategy”. This explains why �
�
V is indeed a

value expression; a small example will clarify:

Suppose that

� : :
�
� � �

�
� � �

�
� � �

�
� � �

and that P1 and P2 are integer programs, which compute to the values n1 and n2. Then

� P1 is not a value, because the language is eager. It will evaluate to � n1. But this latter

expression cannot be evaluated any further—informally, the function � cannot itself

be called until it is applied to three integer arguments. Thus � n1 is a value. Giving it

the argument P2, we have a program � n1 P2 which evaluates to the value � n1 n2. Again,

we have a value, as the expression cannot be computed any further. Finally, however,

we can supply a third argument to � n1 n2 giving � n1 n2 P3. This evaluates to � n1 n2 n3,

and at last � has its full quota of three arguments—thus the latter expression is not a

value as we can now compute the function � using rule � e
FID.

Examples 7.1.5

(1) Let I def� �
: :

�
� � �

�
� � � � : :

�
� � be an identifier environment. Suppose also that decI

is �
x � x 
 2

� � 3

We prove that
�

� � e 6. To do this, we produce a deduction tree. First note that the

program being evaluated is an application, that
�

is a value, but � is not a value. So

the rule used in the final deduction step must be rule AP, hence we need to show that
� � e �

�
V (easy: take � to be

�
with the

�
V “empty”), that � � e V for some V which is easy,

as we can guess that V must be 3, and that
�

V � e 6. The latter must be a conclusion of

FID and so we now need to show that � x 
 2 � � V �
x � � e 6. This is also easy following from

OP. Putting this altogether we get

VAL� � e �

VAL

3 � e 3
CID

� � e 3

VAL

3 � e 3
VAL

2 � e 2
OP

� x 
 2 � � 3 �
x � � 3 
 2 � e 6

FID�
3 � e 6

AP�
� � e 6
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� e
VAL

V � e V

P1 � e m P2 � e n
� e

OP

P1 op P2 � e m op n

P1 � e T P2 � e V
� e

COND1� � P1 �! �"�� P2 "�� � " P3 � e V

P1 � e F P3 � e V
� e

COND2� � P1 �! �"�� P2 "�� � " P3 � e V

P1 � e V1 P2 � e V2
� e

PAIR� P1 � P2 ��� e � V1 � V2 �
P � e � V1 � V2 �

� e
FST� � � � P ��� e V1

P � e � V1 � V2 �
� e

SND� ��� � P ��� e V2

�
P1 � e ���V P2 � e V2

���V V2 � e V

where either P1 or P2 is not a value � e
AP

P1 P2 � e V

E � �V1 ������� � Vk j � x1 ������� � xk � � e V � � �x � E � declared in decI � � e
FID� V1 ����� Vk � e V

E � � e V �
	 � E � declared in decI � � e
CID	

� e V

P � e V : V 	
� e

HD �� � P ��� e V

P � e V : V 	
� e

TL� � � P ��� e V 	

P1 � e V P2 � e V 	
� e

CONS

P1 : P2 � e V : V 	

P � e �
��� σ
� e

ELIST1"�� � � � � P ��� e T

P � e V : V 	
� e

ELIST2"�� � � � � P ��� e F

Table 7.1: Evaluation Relation P � e V in � ��� e
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(2) Suppose that

� : :
�
� � �

�
� � �

�
� � �

�
� � where � xyz � x � y � z

Then the expressions � 2 and � 23 are (programs and) values. � 23 � 4 � 1 � is a program,

but not a value: the function � takes a maximum of three inputs, and can now be eval-

uated. Note that � 23 is sugar for � � 2 � 3 and that � 23 � 4 � 1 � is sugar for the expression

� � � 2 � 3 � � 4 � 1 � . In Definitions 7.1.2, k � 3, and in � 23 we have
�
V � 23 and l � 2 � 3.

We can prove that

� 23 � 4 � 1 �� e 10

where � xyz � x � y � z as follows:

� e
VAL

� 23 � e � 23

4 � e 4 1 � e 1

4 � 1 � e 5 T
� e

AP

� 23 � 4 � 1 � � e 10

where T is the tree

2 � e 2 3 � e 3

2 � 3 � e 5 5 � e 5

2 � 3 � 5 � e 10
� � � � � � � � � � � � � � � � � � � � � � � � � �

� x � y � z � � 2 � 3 � 5 �
x � y � z � � e 10

� e
FID

� 235 � e 10

It is an exercise to fill in the missing labels on the rules, and missing brackets.

(3) Let
�

x � x � 2.

Prove that �
 � � 3 : �
�
� � � e 5. To do this, we derive a deduction tree:

VAL�
�
� � e �

�
�

VAL

3 � e 3
VAL

2 � e 2
OP

� x � 2 � � 3 �
x � � 3 � 2 � e 5

FID�
3 � e 5

CONS�
3 : �

�
� � e 5 : �

�
�

HD�
 � � 3 : �
�
� � � e 5

(4) Consider the program � ��� � � x � 1 � � ��� � � x in
�
��� � � 3 � � ��� � � 0 � � . If we attempt to prove
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that this program evaluates to a value V , the deduction tree takes the form:

3 � e V

...

1 � � ��� � � 0 � e V 	
� ��� � � 0 � e V 	

� 3 � � ��� � � 0 � � e � V � V 	 ��
��� � � 3 � � � � � � 0 � � � e V

for some value V 	 . It is easy to see that no finite deduction exists, and so there is no

value V for which

�
��� � � 3 � � ��� � � 0 � �� e V . Informally, we cannot take the first component

of the pair without first evaluating its sub-expressions, as ����� e is eager. Compare

this evaluation to the execution of the same program in the lazy ����� l on page 61.

Motivation 7.1.6 We shall now prove two results about the language ��� � e . The first

is that evaluation is deterministic: when we evaluate a program, if this results in a

value, that value is unique. We shall also prove that the type of the value is the same

as that of the original program.

Theorem 7.1.7 Let decI be a identifier declaration. The evaluation relation for ��� � e

is deterministic in the sense that if a program evaluates to a value, that value is

unique. More precisely, for all P, V1 and V2, if

P � e V1 and P � e V2

then V1 � V2.

Proof We prove by Rule Induction that

� P � e V1 � � V2 � � P � e V2 implies V1 � V2 �

To do this we apply rule induction: we have to verify property closure for the rules in

Figure 7.1.

(Closure under COND2): The inductive hypotheses are

H1 for all V 	 , if P1 � e V 	 then F � V 	 , and

H2 for all V 	 , if P3 � e V 	 then V � V 	 .

We have to prove that

C for any V 	 , if

� �
P1

�	�
��� P2
��� ��� P3 � e V 	 then V � V 	 .
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Pick an arbitrary V 	 for which

� �
P1

�	�
��� P2
��� � � P3 � e V 	 —(*). Now (*) could be deduced

from an application of either COND1 or COND2. If it were the former, then P1 � e T . So

using H1, we would have F � T , a contradiction. Hence (*) must be a conclusion to

an instance of COND2, say
P1 � e F P3 � e V 	� �

P1
�	�
��� P2

��� � � P3 � e V 	
Hence P3 � e V 	 for some program P3. But using H2, it follows that V � V 	 as required.

�

Motivation 7.1.8 We shall now show that if a program is evaluated, then the resulting

value has the same type as the original program. This is stated precisely in Theo-

rem 7.1.10. However, the proof will require the following lemma in order to deal with

the rule � e
FID.

Lemma 7.1.9 Suppose that we have Γ � x1 : : σ1 ������� � xn : : σn � E : : σ and that Γ � Pi : : σi

for i 	 � 1 ������� � n � . Then Γ � E
�
P1 ������� � Pn

�
x1 ������� � xn � : : σ.

Proof Essentially the proof is a Rule Induction on the derivation of the type assign-

ment for E. However, to set things up properly, we have to jiggle the data around.

Let us pick arbitrary type assignments Γ � Pi : : σi where i 	 � 1 ������� � n � , and pick arbi-

trary x1 ������� � xn.

We then show by Rule Induction that

� ∆ � E : : σ � � ∆ � Γ � x1 : : σ1 ������� � xn : : σn � implies Γ � E
�
P1 ������� � Pn

�
x1 ������� � xn � : : σ

where ∆ denotes a context.

We look at property closure for the (base) rule

� where x : : σ 	 ∆ � : : VAR

∆ � x : : σ

Suppose that ∆ � Γ � x1 : : σ1 ������� � xn : : σn. Then either x : : σ 	 Γ, or x : : σ is equal to one

of the xi : : σi. In the first case,

x
�
P1 ������� � Pn

�
x1 ������� � xn � � x

But certainly Γ � x : : σ by assumption! In the second case, x
�
P1 ������� � Pn

�
x1 ������� � xn � � Pi

as x � xi from the assumption. But certainly Γ � Pi : : σ as σ � σi. This completes the

work for rule : : VAR.

The remaining property closures are left as exercises. �
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Theorem 7.1.10 Evaluating a program decI in P does not alter its type. More pre-

cisely,

� � � P : : σ and P � e V � implies � � V : : σ

for any P, V , σ and I . The conservation of type during program evaluation is called

subject reduction.

Proof We prove by Rule Induction that

� P � e V � � σ � � � P : : σ implies � � V : : σ � �

The proof is an exercise. �

7.2 Operational Semantics for
� � � l

Definitions 7.2.1 The language ��� � l is identical to ����� e , except that it has a lazy

operational semantics. We explain below exactly what this means. The expressions,

contexts, identifier environments, identifier declarations and type assignments of

��� � l are exactly the same as for ��� � e . In a nutshell, we can say that the definition of

the relationships Γ � E : : σ for � ��� l is specified by the rules in Table 6.1.

Motivation 7.2.2 The operational semantics of � ��� l is lazy or call-by-name. This

means that certain expressions can be evaluated before their subexpressions are com-

puted. This method of computation applies to identifiers, pairs and lists. This has the

advantage that if any of the subexpressions are not required in the computation of the

expression, then no time is lost evaluating the subexpression. Lazy refers to the fact

that the language does not bother to compute subexpressions if it does not need to.

The definition of program is the same as before. We shall need a different notion of

value in ����� l . We give the new definition of value, and then give the lazy operational

semantics of ����� l .

Definitions 7.2.3 Let decI be a identifier declaration. A value expression is any ex-

pression V which can be produced by the following grammar

V :: � c � �
�
�
σ � � P � P � � �

�
P � P : P

where c is any Boolean or integer, σ is any type, P is any program expression, and
�
P is

of the form P1 P2 ����� Pl � 1 Pl where 0 � l � k, and k is the maximum number of inputs

taken by � . Note that l is strictly less than k. A value is any value expression for which

decI in V is a valid ��� � l program.



7.2. Operational Semantics for � � � l 61

Definitions 7.2.4 We shall define an evaluation relation whose judgements will take

the form

P � l V

where P and V are respectively a program expression and value expression whose

identifiers appear in an identifier declaration decI . The rules for inductively generat-

ing these judgements are given by the rules in Table 7.2.

Motivation 7.2.5 You should note that the rules in Figure 7.2 yield a lazy operational

semantics for functions and lists. In general, lazy means that “subterms of programs

are only computed if absolutely necessary”. For a general program of the form

P � C � E1 � E2 ������� � En �
where C is a program constructor, we only evaluate those Ei to values necessary for

the evaluation of P. We illustrate by example:

Consider PP 	 . Let us write this as the finite tree � �
� P� P 	 � (as originally defined) where� �

is the tree constructor. In order to evaluate � �
� P� P 	�� , we must evaluate P to a func-

tion expression, say �
�
P, but we do not evaluate the arguments

�
P. But now we are

lazy!! We do not bother to evaluate P 	 before passing it to �
�
P. Either � �

�
P � P 	 is a value,

or, if not, the next step of the computation is to evaluate E �
� �
P � P 	 � �

x � x � . If this expres-

sion evaluates to a value, say V , then so too does � �
� P � P 	 � . Now look at rule AP, and see

how it captures our intended operational semantics!

The same idea applies to lists. Look at rules HD and TL.Consider P : P 	 , that is �����
� � P � P 	 �
where � ���
� is the program constructor. We regard this as a fully evaluated program—

very lazy!! We only compute the subterms P or P 	 if they are extracted by taking a

head or tail. Thus to evaluate �
 � P � , we first evaluate the list P to a value of the form
�����
� � P1 � P2 � , but then we only bother (lazy) to evaluate P1 to a value, say V . Thus �
 � P �
evaluates to V , and there is no need to evaluate P2.

Examples 7.2.6

(1) We can prove that

� 23 � 4 � 1 �� e 10

where � xyz � x � y � z as follows: as follows:

2 � l 2 3 � l 3

2 � 3 � l 5

4 � l 4 1 � l 1

4 � 1 � l 5

2 � 3 � � 4 � 1 � � l 10
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� x � y � z � � 2 � 3 � � 4 � 1 � �
x � y � z � � l 10

� l
FID

� 23 � 4 � 1 �� l 10
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� l
VAL

V � l V

P1 � l m P2 � l n
� l

OP

P1 op P2 � l m op n

P1 � l T P2 � l V
� l

COND1� � P1 �! �"�� P2 "�� � " P3 � l V

P1 � l F P3 � l V
� l

COND2� � P1 �! �"�� P2 "�� � " P3 � l V

P � l � P1 � P2 � P1 � l V
� l

FST� � � � P ��� l V

P � l � P1 � P2 � P2 � l V
� l

SND� ��� � P ��� l V

�
P1 � l � �P � �PP2 � l V

where P1 is not a value � l
AP

P1 P2 � l V

E � �P1 ������� � Pk � x1 ������� � xk � � l V � � �x � E � declared in decI � � l
FID� P1 ����� Pk � l V

E � � l V �
	 � E � declared in decI � � l
CID	

� l V

P1 � l P2 : P3 P2 � l V
� l

HD � � P1 ��� l V

P1 � l P2 : P3 P3 � l V
� l

TL� � � P1 ��� l V

P � l � ��� σ
� l

ELIST1"�� � � � � P ��� l T

P1 � l P2 : P3
� l

ELIST2"�� � � � � P1 ��� l F

Table 7.2: Evaluation Relation P � l V in ����� l
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It is an exercise to fill in the missing labels on the rules.

(2) Recall Examples 7.1.5. Consider the program � ��� � � x � 1 � � ��� � � x in
�
��� � � 3 � � ��� � � 0 � �

once again. Let us try to see if this program evaluates to a value, say V . Working the

rules in Table 7.2 backwards, there must be P1 and P2 and rules R and R 	 such that we

have
R

� 3 � � � � � � 0 � � l � P1 � P2 �
R 	

P1 � l V
� l

FST
�
��� � � 3 � � ��� � � 0 � �� l V

and clearly we have a valid (finite) deduction tree when P1 is 3, P2 is � ��� � � 0, V is 3 and

R and R 	 are both instances of � l
VAL. In the lazy language, we can extract the first

component of a pair without having first to compute the second component.

(3) Let I be � : :
�
� � � � � � � � , and decI be � x � x : � � x � 2 � . Then there is a program

decI in �
 � �	� � � 1 � � . We prove that �
 � �	� � � 1 � � � l 3.

� l
VAL

1 : � � 1 � 2 �� l 1 : � � 1 � 2 �
� l

FID

� 1 � l 1 : � � 1 � 2 � T
�	� � � 1 � � l � 1 � 2 � : � � � 1 � 2 � � 2 �

1 � l 1 2 � l 2

1 � 2 � l 3
�
 � �	� � � 1 � � � l 3

where T is the tree

� l
VAL

� 1 � 2 � : � � � 1 � 2 � � 2 � � l � 1 � 2 � : � � � 1 � 2 � � 2 �
� � 1 � 2 � � l � 1 � 2 � : � � � 1 � 2 � � 2 �

It is an exercise to check this deduction tree is correct, adding in the labels for the

rules. Why might we call � 1 the lazy list of odd numbers? Try evaluating � 1 using the

eager semantics. What happens?

Theorem 7.2.7 ����� l is monomorphic, deterministic, and satisfies subject reduc-

tion.

Proof The proofs of these facts are basically the same as for ��� � e and are omitted.

�

Example 7.2.8 The following is a typical example of the more difficult part of an

examination question:

Suppose we are given the function environment

I def� � : :
�
� � �

�
� � � �

: :
�
� � �

�
� � �

�
� �
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and the declaration decI

� x �
� �

x � � 0 �	�
��� 0 ��� ��� �
x � 0 � x �

�
x y �

� �
x � � 0 �	�
��� 1 ��� ��� �

� �
y � � 0 �	�
��� � 1 ��� � � � � x � 1 � � y � 1 � �

1. Use Mathematical Induction to prove that

� n
�

1 � �
n � n � e 1

Hint: You may assume that
�

1 � n � e 1 for any n
�

1

2. For each z 	 � , state what integer you think the program � z evaluates to when

z � 0, z � 0 and z � 0.

3. Suppose that we consider the language ����� e in which the only Boolean valued

arithmetic operator is � � (test for equality). Give a function declaration of the

form

� � x y � E � � which computes x � y for x and y of type

�
� � .

Here is an answer:

1. We prove � n
�

1 � φ � n � where

φ � n � def� � r
�

1 � � n � r � e 1

Note that φ � 1 � is the given assumption (which is easily provable!). Now let n
�

1
be arbitrary; we assume φ � n � and prove φ � n � 1 � . To show the latter, let k

�
1 be

arbitrary, and consider:

n � 1 � e n � 1 0 � e 0

n � 1 � � 0 � e F

� k � e � k 0 � e 0

� k � � 0 � e F T� �
� k � � 0 �	�
��� � 1 ��� ��� � � n � 1 � 1 � � � k � 1 �� e 1� �

n � 1 � � 0 �	�
��� 1 ��� ��� �
� �
� k � � 0 �	�
��� � 1 ��� ��� � � n � 1 � 1 � � � k � 1 � � � e 1

�
n � 1 � k � e 1

where T is

��� e �
n � 1

� e n � 1 1
� e 1

n � 1 � 1
� e n

�
n
� e � n

� � n � 1 � 1  � e � n

� k
� e � k 1

� e 1

� k � 1
� e � k � 1

T �
�

n � k � 1
� e 1

� � n � 1 � 1  ��� k � 1  � e 1
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and the deduction tree T 	 exists by appeal to the inductive hypothesis φ � n � , tak-

ing r to be k � 1. Clearly k � 1
�

1 and � � k � 1 � � � k � 1. As k
�

1 was arbitrary, the

above trees show that φ � n � 1 � holds. As n was itself arbitrary, we have verified

� n
�

1 � φ � n � implies φ � n � 1 �

So by induction we have � n
�

1 � � r
�

1 � � n � r � e 1 and the desired result follows

from this.

2. If z
�

1 then � z � e 1 and � � z � e � 1. Also � 0 � e 0.

3. Define E � � to be

� � x � y � � � � 1

7.3 Function Abstraction and Locality

Motivation 7.3.1 So far, each function we have defined has had a name, typically � .

We can define programs which act as functions, without being explicitly named by

an identifier. The expression

�
� x � x � 2 is a program whose intended meaning is the

function which “adds 2”. We can apply the function to an input, writing �
�
� x � x � 2 � 4.

This expression will evaluate to 4 � 2 (and thus to 6). If we wrote � x � x � 2 in an

identifier declaration, then � and

�
� x � x � 2 would be interchangeable. In practical

programming, it is often convenient to code a function directly, without bothering to

give it a name via an identifier.

It is also useful to be able to make local declarations. Suppose that E2 is some code

in which the expression E1 appears many times. We could cut the code down by

declaring � � E1 and using � for E1 in E2. However, is is also useful to be able to do

this without naming E1 globally, which is what the would happen if we declared � .

The syntax � ��� x � E1

�
� E2 achieves this.

We shall now consider the language ��� � e extended with these two new kinds of ex-

pressions.

Definitions 7.3.2 We extend the expression grammar for � � � e with the following two

clauses:

E :: � ����� �
�
� x � E � � ��� x � E

�
� E

We call

�
� x � E a function abstraction and � ��� x � E1

�
� E2 a local declaration. The type

assignment rules are given in Table 7.3.
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Γ � E1 : : σ Γ � E2

�
E1 � x � : : σ 	

: : LET

Γ � � " � x � E1 ��� E2 : : σ 	

Γ � x : : σ � E : : τ
: : ABS

Γ � � � x � E : : σ � τ

Table 7.3: Extending the Type Assignment Relation Γ � E : : σ in ����� e

Remark 7.3.3 We shall adopt a few conventions to make terms more readable: We

take function abstraction

�
� x � E to mean

�
� x � � E � . Thus we can write

�
� x �

�
� y � y � 2 in-

stead of the more clumsy

�
� x � �

�
� y � � y � 2 � � . We call E the body of

�
� x � E.

Examples 7.3.4 Examples of new expressions are

(1)

�
� x � x (the identity function—why?);

(2) f � gy � ;
(3)

�
� f �

�
� g � f g4; and

(4) � ��� x � 4
�
� � ��� y � T

�
� � x � y � .

7.3.1 Free and Bound Variables

Motivation 7.3.5 The intended meaning of

�
� x � x � 2 is the function which adds 2 to its

argument. What about

�
� y � y � 2? Well, it too should be a function which adds 2. The

name of the variable used to form such a expression is not relevant to the intended

meaning of the expression—the variables x and y are said to be bound. However,

the expressions x � 2 and y � 2 are certainly different—the value of each expression

is respectively 2 added to x and 2 added to y, so the values will only be the same if

x � y. Here, the variables x and y are said to be free. Why do we need to study free and

bound variables? Let us look at an example. Suppose that E1 and E2 are expressions.

If one thinks of E1 as a functional program, and the free occurrences of a variable x in

E1 as places at which new code could be executed, we might consider replacing the

variable x by E2. Such a replacement is called a substitution. We can try to substitute

an expression E2 for free occurrences of x in E1 simply by replacing each free x with

E2; this will produce a new expression which will be denoted E1
�
E2

�
x � . For example,

�
� �

x �	�
��� 4 ��� � � 5 � � 1 � � 2
�
x � denotes the expression

� �
1 � � 2 �	�
��� 4 ��� � � 5.

But there is a problem lurking! Let us write f
def�

�
� x � E1. Given any expression E2, the

intended meaning of f E2 is E1
�
E2

�
x � . Thus if E1 is x � y, then f E2 � � x � y � � E2

�
x � �

E2 � y. So if E
def�

�
� x � x � y, the intended meaning of E is “the function with adds y”. We

can try substituting the expression x for the occurrence of y in E. Now, E
�
x

�
y � ought

to be “the function which adds x”. But in fact E
�
x

�
y � is clearly the expression

�
� x � x � x,
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which is the function which doubles an integer input! The problem arises because

when the variable x is substituted for the free variable y in

�
� x � x � y, x becomes a bound

variable.

Note that the expressions

�
� x � x � y and

�
� z � z � y can be regarded as “the same” in the

sense that the intended meaning of each expression is the “function which adds” y.

When we attempted to substitute x for the free y in

�
� x � x � y, we noted that x would

become bound. But if the intended meaning of

�
� z � z � y is the same as

�
� x � x � y, what

about substituting x for y in

�
� z � z � y to get

�
� z � z � x? The latter expression is indeed

what we were after—“the function which adds x”. Informally we say that we re-name

the bound variable x in

�
� x � x � y as a new variable z so that when x is substituted for y

it does not become bound.

Definitions 7.3.6 We say that an expression E 	 is the scope of v in an expression of

the form

�
� v � E 	 . We call such an occurrence of v a scoping variable. The syntax tree

for

�
� v � E 	 looks like this �

�
� �

scoping variable � � v E 	 � � scope

In � ��� v � E1

�
� E2, the scope of v is E2. Exercise: draw the tree. We also call such a v a

scoping variable.

Now suppose that x is a variable which does occur in an expression E—of course x
may occur more than once, possibly many times. Each occurrence of x (in E) is either

free or bound. We say that an occurrence of x is bound in E if and only if the occur-

rence of x in E is in a subexpression of the form

�
� x � E 	 or � ��� x � E1

�
� E2. A consequence

of this definition is that an occurrence of x in E is bound just in case

(i) the occurrence is a scoping variable;

(ii) the occurrence occurs within the scope of a scoping occurrence of x.

If there is an occurrence of x in such E 	 or E2 then we sometimes say that this bound

occurrence of x has been captured by the scoping x. An occurrence of x in E is free iff

the occurrence of x is not bound. Before reading on, take a look at Examples 7.3.7.

We shall write var � E � for the set of all variables which occur in E. We can give a re-

cursive definition of the set var � E � which is obvious and omitted (cf the definition of

fvar � E � which follows). We write fvar � E � for the set of variables which have free occur-

rences in E. We can define this recursively by the following (obvious!) clauses:

� fvar � x � def� � x � ;

� fvar � c � def� � ;
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� fvar � E1 op E2 � def� fvar � E1 � � fvar � E2 � ;
� fvar �

� �
E1

�	�
��� E2
��� ��� E3 � def� fvar � E1 � � fvar � E2 � � fvar � E3 � ;

� fvar �
�
� x � E � def� fvar � E �  � x � ; occurrences of x in E are captured by the scope of

�
� x,

and hence are not free;

� fvar � E1 E2 � def� fvar � E1 � � fvar � E2 � ;
� fvar � �

�
� � def� � ;

� fvar � �
 � E � � def� fvar � E � ;
� fvar � �	� � E � � def� fvar � E � ;
� fvar � E1 : E2 � def� fvar � E1 � � fvar � E2 � ;
� fvar � ���

�
��� � E � � def� fvar � E � ; and

� fvar � � ��� x � E1

�
� E2 � def� fvar � E1 � � � fvar � E2 �  � x � � .

We leave the (easy) recursive definition of the set bvar � E � of the set of variables with

bound occurrences in E to the reader.

Examples 7.3.7 u � v is the scope of u in

�
� x � �

�
� u � u � v � z. Example subexpressions are

z and

�
� u � u � v �

The underlined occurrences are scoping variables. If N
def�

�
� x � xxyxzx then the under-

lined x is one of five occurrences of x in N.

Warning: Note that a variable may occur both free and bound in a expression. Here

are some examples:

(1)� �
� x � � 2 � �	�
��� �

�
� y � y � ��� ��� �

�
� z � z x y �

free

�

bound

�

bound

�

bound

�

bound

�

free

�

free

�

Here, the set of free variables is � x � y � and the set of bound variables is � y � z � . We

could say that the second occurrence of z in the conditional has been captured by the

scoping occurrence of z.

(2)

�
�
� x � x � �

�
� y � y x �

bound

�

bound

�

bound

�

bound

�

free

�

Here, the set of free variables is � x � and the set of bound variables is � x � y � .
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(3) In

�
� v � � � ��� z � z � x � y

�
� z � 4 � v � the first and last v are bound, the first and third z

are bound but the second is free, and the x and y are free. What are the (occurrences

of) scoping variables?

7.3.2 Substitution of Terms

Definitions 7.3.8 Given E1 and E2 and v, we define the expression E1
�
E2

�
v � to be “the”

expression resulting from replacing all free occurrences of v in E1 by the expression

E2, renaming bound variables as necessary to avoid capture. Note that we have written

“the” above, as different expressions will result if we rename variables in different

ways.

Examples 7.3.9 Informal examples are

�
�
� x � x � y � � 2 �

y � �
�
� x � x � 2

�
�
� x � x � y � � x �

y � �
�
� x 	 � x 	 � x

� � ��� x � y � 4
�
� x � z � 7 � � u � v

�
z � � � ��� x � y � 4

�
� x � � u � v � � 7

� � ��� x � y � 4
�
� x � z � 7 � � u � y

�
z � � � ��� x � y � 4

�
� x � � u � y � � 7

� � ��� x � z � 4 � x
�
� x � z � 7 � � x � y

�
z � � � ��� x 	 � � x � y � � 4 � x

�
� x 	 � � x � y � � 7

� � v1 � 2 � : � v3v2 � �
�
10

�
v2 � � � v1 � 2 � : � v3 10 �

� � ��� u � u
�
� u � 7 � � 7 �

u � � � ��� u � 7
�
� u � 7

In the second example, the substituted x will appear in the scope of the scoping x, so

we rename (to x 	 ) any bound x to avoid capture. In the fifth example, the substituted

x will appear in the scope of the scoping x, so we rename (to x 	 ) any bound x to avoid

capture. In the final example, just the second occurrence of u in � ��� u � u
�
� u � 7 is free.

Remark 7.3.10 Let us return to the renaming problem. In the previous example,

should �
�
� x � x � y � � x �

y � be

�
� x 	 � x 	 � x or

�
� z � z � x or ����� ? We ought really to make a unique

choice for the renamed variable. However, we have seen that as far as the semantics

of expressions is concerned, the choice is not too critical: we saw that the two expres-

sions

�
� x � x � y and

�
� z � z � y have the same intended meaning, namely that they both

represent the function which adds y.

For these reasons, we shall regard expressions which differ only in the names of their

bound variables as equivalent. In fact, to be precise, the idea that two expressions

differ only in their bound variables is an equivalence relation on Exp. We should then

work the rest of this course using α-equivalence classes of expressions instead of sim-

ple expressions. However, we will gloss over these technical complications in the rest

of MC 308.
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P1 � e � � x � E P2 � e V 	 E
�
V 	 � x � � e V

� e
AA

P1 P2 � e V

E1 � e V1 E2

�
V1 � x � � e V

� e
LET� " � x � E1 ��� E2 � e V

Table 7.4: Extending the Evaluation Relation

7.3.3 Extending the Operational Semantics

Definitions 7.3.11 An operational semantics for function abstractions and local dec-

larations is given in Table 7.4. We only consider an eager semantics.

Examples 7.3.12

(1) Give the set of free variables, and set of bound variables, for each of the following

expressions:

1.

�
� f �

�
� x � f � f � x 
 7 � �

2. � ��� l � u : v : �
�
�
�
� f � f l �

3. � ��� f �
�
� x � x � y

�
� � ��� u � x : �

�
�
�
� � f � �
 � u � � � z �

Answer

1. � , � x � f � .

2. � f � u � v � , � l � .

3. � x � y � z � , � x � u � f � .

(2) Prove that �
�
� z � z 
 2 � 3 � e 6. To do this, we produce a deduction tree. First note

that the program being evaluated is an application. So it must arise by the rule AA,

hence we need to show that

�
� z � z 
 2 � e

�
� x � E for some x and E, that 3 � e V 	 for some

V 	 , and that E
�
V 	 �

x � � e 6. The first of these is easy, being an instance of VAL with x � z
and E � z 
 2. The second must be also an instance of VAL with V 	 � 3, and the third,

namely 3 
 2 � e 6, is also easy following from OP. Putting this altogether we get

VAL
�
� z � z 
 2 � e

�
� z � z 
 2

VAL

3 � e 3

VAL

3 � e 3
VAL

2 � e 2
OP

� z 
 2 � � 3 �
z � � 3 
 2 � e 6

AA

�
�
� z � z 
 2 � 3 � e 6

(3) Prove that �
 � �
�
� x � x � 2 � 3 : �

�
� � � e 5. To do this, we derive a deduction tree:
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VAL���
x � x � 2

� e ���
x � x � 2

VAL

3
� e 3

VAL

3
� e 3

VAL

2
� e 2

OP

� x � 2  � 3 � x �  3 � 2
� e 5

AA

� ��� x � x � 2  3 � e 5
VAL����� � e �����

CONS

� ��� x � x � 2  3 :
����� � e 5 :

�����
HD	�
 � � ��� x � x � 2  3 :

�����  � e 5

(4) Let Γ def� h : : � � X � Y � � Y � � X �
�
� � � x : : X. We show that

Γ � � ��� f �
�
� g � gx

�
� � h f � x : :

�
� �

with the following deduction

D D1

Γ � � ��� f �
�
� g � gx

�
� � h f � x : :

�
� �

where D is

Γ � g : : X � Y � g : : X � Y Γ � g : : X � Y � x : : X

Γ � g : : X � Y � gx : : Y

Γ �
�
� g � gx : : � X � Y � � Y

and where D1 is

Γ � h : : � � X � Y � � Y � � X �
�
� � D

Γ � h �
�
� g � gx � : : X �

�
� � Γ � x : : X

Γ � � h �
�
� g � gx � � x : :

�
� �
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Type Checking and Inference

8.1 Introduction

Motivation 8.1.1 A language is strongly typed if every legal expression has at least

one type. A strongly typed language is monomorphic if every legal expression has

a unique type (for example Pascal). A strongly typed language is polymorphic if a

legal expression can have several types (for example Standard ML and Haskell). As an

example, the list reversing function rev might have type

rev :: [X] -> [X]

The idea is that X is a type variable which denotes any type; and [X] denotes the type

of lists whose data elements have type X. In this chapter we shall study type inference

in a language called ��� ��� . We shall be able to study some of the formal properties

of types and type inference. Common forms of polymorphism are

� Overloading: The same symbol is used to denote (finitely many) functions, imple-

mented by different algorithms—context determines which is meant.

� Parametric: One expression belongs to a (usually infinite) family of structurally re-

lated types. A parametrically polymorphic procedure is given by a single algorithm

which may be applied to arguments which possess different, but structurally simi-

lar, types. This minimizes duplication of code. Type expressions involve parameters,

that is, type variables. Haskell enjoys parametric polymorphism. The function rev

:: [X] -> [X] is an example of parametric polymorphism; all lists have the same

structure, being either empty, or having a head and tail.

� Implicit: This is a particular form of parametric polymorphism, and we meet it later

on.

8.2 The Types and Expressions of � � � �

Definitions 8.2.1 Let us write TyVar for a countably infinite set of type variables

� V1 � V2 � V3 ������� � . We shall often write X, Y , Z, U, W etc for type variables. The set Type
of types of ��� � � is inductively specified by the grammar

σ :: � X �
�
� � � � � ��� � σ � σ � � σ � σ � � �

σ �



8.3. Type Assignment Examples 73

We shall write TV � σ � for the set of type variables appearing in σ. The rules for deriving

type assignments are exactly those in Figure 6.1. The expressions of ��� � � are those

of the extended language in the last chapter.

8.3 Type Assignment Examples

Motivation 8.3.1 Suppose that you are asked, given some Γ, E and σ, to prove that

Γ � E : : σ. This is another instance of type checking. So, you have to give a deduction

of Γ � E : : σ using the rules in Figure 6.1. To figure out the deduction tree, suppose

that the tree has the general form

�

deduction tree

�
: :R

Γ � E : : σ
where : :R was the final rule used in the deduction. Which rule is : :R? To see this, look

at the expression E. You will then see that only one of the rules in Figure 6.1 applies,

and this will allow you to work out what the hypotheses of the rule : :R must be. You

can then continue to work backwards until the deduction tree is complete. In the

examples, any typing rule : : ? is written as just ? to save space.

Examples 8.3.2

(1) Prove that � T : �
�
� : :

�
� � ��� � .

We produce a deduction tree for this type assignment. The expression is a list, so this

typing assertion must have been deduced using the rule CONS. It is clear what the (two)

hypotheses of CONS must be; and it is also clear that the two hypotheses are deduced

using instances of base rules (such as � T : : � � ��� , an instance of TRUE where Γ � � ):

TRUE

� T : : � � ���
NIL

� �
�
� : :

�
� � � � �

CONS

� T : �
�
� : :

�
� � � � �

(2) Show that Γ �
�
� x � � 0 : x � : :

� � � � � � � � � � � for any context Γ.

We produce a deduction tree: note that the expression is a function, so the final rule

used in the deduction must be ABS, where E � 0 : x, and σ � τ � � � � � � .

INT

Γ � x : :
� � � � � � 0 : :

�
� � VAR

Γ � x : :
� � � � � � x : :

� � � � �
CONS

Γ � x : :
� � � � � � 0 : x : :

� � � � �
ABS

Γ �
�
� x � � 0 : x � : :

� � � � � � � � � � �
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(3) Prove that T : 2 : �
�
� is not typable in ������� in any context Γ.

To do this, we try to derive a deduction tree, starting out with an arbitrary context Γ.

The last rule applied must have been CONS, with E1 � T and E2 � 2 : �
�
� and so there has

to be a type, say σ, for which the expression has type
�
σ � . We produce the deduction

tree:

TRUE

Γ � T : : σ

INT

Γ � 2 : : σ
NIL

Γ � �
�
� : :

�
σ �

CONS

Γ � 2 : �
�
� : :

�
σ �

CONS

Γ � T : 2 : �
�
� : :

�
σ �

It follows that σ �
�
� � and σ � � � ��� and this cannot be. So no typing for T : 2 : �

�
� exists.

(4) Show that �
 � y : 3 � is not typable in ������� in any context Γ.

Working backwards we have:

VAR

Γ � y : : σ
INT

Γ � 3 : :
�
σ �

CONS

Γ � y : 3 : :
�
σ �

HD

Γ � �
 � y : 3 � : : σ

Looking at the rule INT (which must be used to type 3) we must have

�
� � � �

σ � , a con-

tradiction. So the expression cannot be typable.

(5) Show that in ��� ��� we have �
�
� x � � x : �

�
� � : : X � �

X � where X is a type variable.

To do this, we note that a unique rule from Figure 6.1 must be used to derive the

typing assertion, and it has to be ABS. A careful inspection shows us that we have

Γ � � , E � x : �
�
� , σ � X and τ � �

X � . From this we can see that the hypothesis of ABS

must be x : : X � x : �
�
� : :

�
X � . The rest of the backward steps are equally easy, and we

simply give the final tree:

VAR

x : : X � x : : X
NIL

x : : X � �
�
� : :

�
X �

CONS

x : : X � x : �
�
� : :

�
X �

ABS

�
�
� x � � x : �

�
� � : : X � �

X �
(6) Show that �

�
� f � � f �

�
� � T � : : � � X � � Y � � � Y � � � ��� � .

VAR

f : :
�
X � � Y � f : :

�
X � � Y

NIL

f : :
�
X � � Y � �

�
� : :

�
X ��

AP

f : :
�
X � � Y � f �

�
� : : Y

TRUE

f : :
�
X � � Y � T : : � � ���

PAIR

f : :
�
X � � Y � � f �

�
� � T � : : � Y � � � ��� �

ABS

�
�
� f � � f �

�
� � T � : : � � X � � Y � � � Y � � � ��� �
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(7) Show that �
�
� f �

�
� x � f � f x � : : � X � X � � X � X. Writing Γ for f : : X � X � x : : X we

have
VAR

Γ � f : : X � X
VAR

Γ � x : : X
AP

Γ � f x : : X
VAR

Γ � f : : X � X
AP

Γ � f � f x � : : X
ABS

f : : X � X �
�
� x � f � f x � : : X � X

ABS

�
�
� f �

�
� x � f � f x � : : � X � X � � X � X

(8) Show that �
�
� f � f y � y is not typable for any context of the form y : : τ. (Note that y is

the only free variable).

We suppose, for a contradiction, that the expression is typeable. Let us call this type

σ1, say. We have:

VAR

y : : τ � f : : σ2 � f : : σ3 � σ1

VAR

y : : τ � f : : σ2 � y : : σ3
AP

y : : τ � f : : σ2 � f y : : σ1
ABS

y : : τ �
�
� f � f y : : σ2 � σ1 D

AP

y : : τ � �
�
� f � f y � y : : σ1

where D is
VAR

y : : τ � y : : σ2

You should be familiar with producing deduction trees by now! For example, suppose

we had worked back to the hypothesis y : : τ � f : : σ2 � f y : : σ1 of ABS. f y is an appli-

cation, so must have been deduced from rule AP. f y has type σ1, hence rule AP tells us

that f must have type σ3 � σ1 and y has type σ3 for some type σ3. But the final rules at

the top must be instances of VAR. So we must have σ2 � σ3 � σ1 and τ � σ3 and τ � σ2.

Thus we deduce σ3 � σ1 � σ3 and this cannot be. So the expression is not typable.

(9) Show that given I def� � ��� : :
�
X � �

�
� � then � ��� l �

� �
���
�
��� � l � �	�
��� 0 ��� ��� � 1 � � ��� � �	� � l � � � is

a valid declaration. Thus we need to prove that

l : :
�
X � �

� �
���
�
��� � l � �	�
��� 0 ��� ��� � 1 � � ��� �	� � l � � : :

�
� �

Exercise!

8.4 Type Substitutions

Motivation 8.4.1 It is easy to see that there are expressions of ������� which are not

typable. It is also possible for an expression to have exactly one type, for example

� 1 : : σ holds only for σ �
�
� � . However, if an expression in which there are no free
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variables is typable, it usually has many types. For example, �
�
� x � x : : σ � σ holds for

any type σ. However, in � ����� , of all the types that can be assigned to an expression,

there is a most general one, in the sense that all other assigned types are instances of

the most general type. We call this the principal type. The principal type of

�
� x � x is

X � X; any type σ � σ is obtained by taking X to be σ. We now make all this precise,

and give a number of results about ������� type inference:

Definitions 8.4.2 We call S a type substitution if it is a (possibly empty) finite set of

(type-variable,type) pairs in which all the variables are distinct. We will write a typical

S in the form
�
X1 �� σ1 ������� � Xn �� σn � . We write the empty type substitution as

� � . If τ
is any type, we shall write S � τ � to denote the type τ in which any occurrence of Xi is

changed to σi. Thus

�
X1 �� σ1 ������� � Xn �� σn � � τ � def� τ

�
σ1 ������� � σn

�
X1 ������� � Xn � and

� � � τ � def� τ

We will define equality of type substitutions in a similar way to function equality,

namely

S � S 	 iff � τ � S � τ � � S 	 � τ � � † �
Note that there are no variable binding operations on type variables. We say that σ
generalises σ 	 if there exists a type substitution S for which σ 	 � S � σ � , and say that σ 	
is an instance of σ. Given substitutions S1 and S2 there is a substitution S1 � S2 whose

action on any type τ is given by � S1 � S2 � � τ � � S1 � S2 � τ � � . We call S1 � S2 a composition

of S1 and S2. Note that this just describes how S1 � S2 acts on a type, and does not give

S1 � S2 as an explicit set of pairs. To show that S1 � S2 actually exists, we should describe

it as such a set—see the examples below. If S
def� �

V �� σ � X1 �� σ1 ������� � Xn �� σn � then we

define SV to be
�
X1 �� σ1 ������� � Xn �� σn � and also

� � V to be
� � .

In ��� � � , if � � P : : σ, the type σ assigned to the expression P is principal if σ gener-

alises any other type which can be assigned to P. The principal type of

�
� x � x is X � X.

Note that the principal type is unique up to a consistent renaming of variables. An-

other principal type for

�
� x � x is V � V .

Examples 8.4.3

(1) Define S
def� �

X �� U � Y �� � � ��� � . Let σ def� � X � Y � Z � and Γ def� x : : X � y : : Y � Z. Then

S � σ � � � U � � � ��� � Z � and S � Γ � � x : : S � X � � y : : S � Y � Z � � x : : U � y : : � � � � � Z

(2) Note that � X � Y � � Z generalises � � � � ��� � � Y � �
�
� � for

� � � � ��� � � Y � �
�
� � � S � � � X � Y � � Z � �

where S
def� �

X �� �
� � ��� � � Z ��

�
� � �
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(3) It follows from the definitions that (for example)
�
X �� X � � � � . Think of some other

examples of type substitutions which are equal, but not specified by the same sets.

(4) As mentioned above, the definition of composition of type substitutions does not

describe S1 � S2 as an explicit set of pairs. It is possible to calculate compositions ex-

plicitly, with a little thought. Consider
�
X ��

�
� � � Y �� X � �

�
Z ��

�
� � � . This substitution

changes any occurrence of Z to

�
� � , then at the same time any X to

�
� � and any Y to X.

Thus the composition is �
X ��

�
� � � Y �� X � Z ��

�
� � �

Now consider
�
X ��

�
� � � Y �� X � �

�
Y ��

�
� � � . Any Y will change to

�
� � . Then any X changes

to

�
� � , but there are no Ys left. Thus the composition is

�
X ��

�
� � � Y ��

�
� � �

(5) Check that

�
X �� � � � � � Y �� X � �

�
Z �� Y � � �

X �� � � ��� � Y �� X � Z �� X �
(6) Check that

�
X �� � � ��� � Y �� U � �

�
Y �� X � Z �� Y � � �

Y �� � � ��� � X �� � � ��� � Z �� U �
(7) Check that

�
X ��

�
� � � Y �� X � �

�
X �� � X � Y ��� U �� � U � Y � � � �

X �� �
�
� � � X ��� Y �� X � U �� � U � X � �

(8) As an exercise, try to write down a formula which gives

�
Y1 �� τ1 ������� � Ym �� τm � �

�
X1 �� σ1 ������� � Xn �� σn �

as a set of pairs. Note that there might be several answers but each answer will be

equal according to †. Note that this requires care, because some of the Y js may well

be Xis.

8.5 Local Polymorphism in � � � �

Motivation 8.5.1 The LET rule permits different occurrences of x in E2 to have different

implicit types in a local declaration � ��� x � E1

�
� E2. Thus, E1 can be used polymorphi-

cally in the body E2. This idea is best explained by example.

Example 8.5.2 We first note that �
�
� x � x : : X � X:

D � X �
���� VAR

x : : X � x : : X
ABS

�
�
� x � x : : X � X
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Note that replacing X by any type σ in D � X � yields a deduction D � σ � for �
�
� x � x : : σ �

σ. Hence

D1

�� �
D � � � ��� �

�
2 � TRUE

� T : : � � ���
AP

� �
�
� x � x � T : : � � ���

and

D2

�� �
D � � X � �

�
3 � NIL

� �
�
� : :

�
X �

AP

� �
�
� x � x � �

�
� : :

�
X �

Putting things together we get

D1 D2
PAIR

� � �
�
� x � x � T �
�

�
� x � x � �

�
� � : : � � � ��� � � X � �

Note that � f T � f �
�
� � � �

�
� x � x � �

f � � � �
�
� x � x � T �
�

�
� x � x � �

�
� � . So we have

D � Y �
D1 D2

� � f T � f �
�
� � � �

�
� x � x � �

f � : : � � � ��� � � X � �
LET

� � ��� f � �
�
� x � x �

�
� � f T � f �

�
� � : : � � � ��� � � X � �

If we look at the above deduction of

� � ��� f��������
1 �

� �
�
� x � x �

�
� � f��������

2 �
T � f��������

3 �

�
�
� � : : � � � ��� � � X � �

then we can observe that the occurrence of f labelled (2) has implicit type � � ��� � � � � �
and that labelled � 3 � has implicit type

�
X � � �

X � . Now, the principal type of

�
� x � x is

Y � Y and both of the implicit types of f are substitution instances of this principal

type, with S � �
Y �� � � � � � and S � �

Y �� �
X � � , respectively.

Motivation 8.5.3 We can summarize the last example by noting that Variables which

are bound in local declarations (such as f above) can have polymorphic instances in

the body of the declaration.

It is only possible for bound variables to possess polymorphic instances. Now, �������
has one other variable binding operation, that found in function abstractions

�
� x � E.

Can such bound variables have polymorphic instances within the scope of

�
� x ab-

stractions? The answer is in fact no. An example illustrates this.

Examples 8.5.4

(1) Show that the implicit type of f in � � ��� f �
�
� x � x

�
� f 3 : :

�
� � is

�
� � �

�
� � .
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The deduction tree must look like

T1

�
�
� x � x : : σ

T2

� �
�
� x � x � 3 : :

�
� �

LET

� � ��� f �
�
� x � x

�
� f 3 : :

�
� �

(for some σ) and it is easy to produce the remainder of the deduction tree T2 to obtain

�
�
� x � x : :

�
� � �

�
� � . This is the implicit type of f (and of course we can take σ to be this

type—what is T1?).

(2)

�
� f � � f T � f �

�
� � is not typable (in the empty context) in ��� � � .

To see this, we derive a possible deduction tree.

D

VAR

f : : σ2 � f : : σ7 � σ5

NIL

f : : σ2 � �
�
� : : σ7 � �

σ8 �
AP

f : : σ2 � f �
�
� : : σ5

f : : σ2 � � f T � f �
�
� � : : σ3 � � σ4 � σ5 �

ABS

�
�
� f � � f T � f �

�
� � : : σ1 � σ2 � σ3

where D is

VAR

f : : σ2 � f : : σ6 � σ4

TRUE

f : : σ2 � T : : σ6 � � � � �
AP

f : : σ2 � f T : : σ4

We conclude from the two instances of VAR that σ2 � �
σ8 � � σ5 and σ2 � � � � � � σ4

so that
�
σ8 � � � � ��� , a contradiction. (Also σ5 � σ4 but this does not tell us anything

useful).

8.6 A Type Inference Algorithm

Motivation 8.6.1 Given a program expression P with no free variables, how do we

calculate or infer its principal type, or show that it does not have one? There is an

algorithm (due to Hindley; Damas-Milner) which will compute this. This algorithm

bears some resemblance to that given in Chapter 3, but is complicated by the fact

that we now have type variables and higher order functions. In order to illustrate it,

we shall restrict attention to a fragment of � ����� . Let us give the definition of the

restricted language, and then the algorithm itself.

Definitions 8.6.2 The types and expressions are given by

σ :: �
�
� � � X � σ � σ

E :: � n � E iop E �
�
� x � E � E E � � ��� x � E

�
� E
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MGU � σ � σ � � ��� here σ is any type

MGU � X � Y � � � X �� Y � here X and Y are distinct variables

MGU � X � σ � � �� � here σ is either ����� or a function type

� X �� σ � if X �� TV � σ �
FAIL otherwise

MGU � σ � X � � �� � here σ is either ����� or a function type

� X �� σ � if X �� TV � σ �
FAIL otherwise

MGU � σ1
� σ2 � τ1

� τ2 � � S2 � S1

where

σ1 � σ2 � τ1 � τ2 are any types

S1
def� MGU � σ1 � τ1 �

S2
def� MGU � S1 � σ2 � � S1 � τ2 � �

FAIL otherwise

MGU � ����� � σ � τ � � FAIL here σ � τ are any types

MGU � σ � τ � ����� � � FAIL here σ � τ are any types

Table 8.1: The Most General Unifier Algorithm

Suppose that σ and τ are any two types. We say that these types are unifiable if there

exists a type substitution S for which S � σ � � S � τ � . Also, a most general unifer is a

unifier for which, given another unifer S 	 , there exists T for which S 	 � T � S. We can

define a function MGU which given σ and τ will return a most general unifier if there

is one, or will otherwise FAIL. We define this by specifying the possible cases for the

input in Table 8.1.

A typing for the judgement

x1 : : σ1 ������� � xn : : σn � E †

is a pair � S � τ � for which

x1 : : S � σ1 � ������� � xn : : S � σn � � E : : τ

may be deduced using the � ����� type assignment rules. Such a typing is said to be

principal if given any other � S 	 � τ 	 � there is some T for which S 	 � T � S and τ 	 � T � τ � .
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There is a type inference function Φ which given any input of the form † will either

return a principal typing, or FAIL if there is none. To define it, we need a little more

notation. Given a context Γ � x1 : : σ1 ������� � xn : : σn let us write (by abusing notation)

TV � Γ � for the set

TV � σ1 � � ����� � TV � σn �
We shall also write S � Γ � to mean

x1 : : S � σ1 � ������� � xn : : S � σn �

and we define S � � � def� � . The function Φ is given in Table 8.2.

Examples 8.6.3

(1) We claimed that the principal type of

�
� x � x is X � X . We have

Φ � � �
�
� x � x � � � SV � S � V � � τ �

where

� S � τ � � Φ � x : : V � x � � � � � � V � �

Thus Φ � � �
�
� x � x � � � � � V � � � � V � � V � � � � � � V � V � . So, up to a renaming of type vari-

ables, the principal type is V � V .

(2) We calculate Φ � x : : X �
�
� f � f x � . This is � SV � S � V � � τ � where

� S � τ � � Φ � x : : X � f : : V � f x � � � S3
U

� S2 � S1 � S3 � U � �

where

� S1 � τ1 � � Φ � x : : X � f : : V � f � � � � � � V �

and

� S2 � τ2 � � Φ � x : : X � f : : V � x � � � � � � X �

and

S3 � MGU � V � X � U � � �
V �� � X � U � � U �	 � � � � V � � X � � � V � X �

Therefore � S � τ � � � �
V �� � X � U � � � U � and so Φ � x : : X �

�
� f � f x � � � � � �
� X � U � � U � .
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Φ � x1 : : σ1 ������� xn : : σn � xi � � � ��� � σi �
Φ � x1 : : σ1 ������� xn : : σn � y � � FAIL whenever

�
i � y �� xi

Φ � Γ � n � � � ��� � ����� �
Φ � Γ � E1 iop E2 � � � S4 � S3 � S2 � S1 � S4 � τ2 � �

where� S1 � τ1 � � Φ � Γ � E1 �
S2 � MGU � τ1 � ����� �� S3 � τ2 � � Φ � � S2 � S1 � Γ � E2 �
S4 � MGU � τ2 � ����� �

Φ � Γ � � � x � E � � � SV � S � V � � τ �
where� S � τ � � Φ � Γ � x:V � E �
V �� TV � Γ �

Φ � Γ � E1 E2 � � � S3
V � S2 � S1 � S3 � V � �

where� S1 � τ1 � � Φ � Γ � E1 �� S2 � τ2 � � Φ � S1 � Γ � � E2 �
S3 � MGU � S2 � τ1 � � τ2

� V �
V �� TV � S2 � τ1 � � or TV � τ2 �

Note the clause V �� TV � S2 � τ1 � � or TV � τ2 � . When computing Φ, we

should first calculate S2, τ1 and τ2, and then, knowing what type vari-
ables they contain, choose V accordingly. In practise, however, we

can select the variable V first, and then when computing S2, τ1 and

τ2, make sure there are no variable clashes. This does need care!!

Φ � Γ � � " � x � E1 ��� E2 � � � S2 � S1 � τ2 �
where� S1 � τ1 � � Φ � Γ � E1 �� S2 � τ2 � � Φ � S1 � Γ � � E2

�
E1 � x � �

Table 8.2: The Type Inference Algorithm for �������
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(3)

Φ � � � � ��� x � 4
�
�
�
� f �

�
� g � f � gx � � � � S2 � S1 � τ2 �

where
� S1 � τ1 � � Φ � � � 4 � � � � � �

�
� � �

� S2 � τ2 � � Φ � S1 � � � �
�
� f �

�
� g � f � g4 � � � � SV � S � V � � τ �

where

� S � τ � � Φ � f : : V �
�
� g � f � g4 � � � � S 	 V � � S 	 � V 	 � � τ 	 � V 	 �	 � V �

where

� S 	 � τ 	 � � Φ � f : : V � g : : V 	 � f � g4 � � � � A3
U

� A2 � A1 � A3 � U � �

where

� A1 � σ1 � � Φ � f : : V � g : : V 	 � f � � � � � � V �

and

� A2 � σ2 � � Φ � f : : V � g : : V 	 � g4 � � � B3
U �

� B2 � B1 � B3 � U 	 � �

and

A3 � MGU � A2 � σ1 � � σ2 � U � U �	 TV � A2 � σ1 � � � TV � σ2 �

where

� B1 � ρ1 � � Φ � f : : V � g : : V 	 � g � � � � � � V 	 �

and

� B2 � ρ2 � � Φ � f : : V � g : : V 	 � 4 � � � � � �
�
� � �

and

B3 � MGU � V 	 �
�
� � � U 	 � � �

V 	 �� �
�
� � � U 	 � � where U 	 �	 � V 	 �

�
� � �

Therefore
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� A2 � σ2 � � � �
V 	 �� �

�
� � � U 	 � � � U 	 �

and

A3 � MGU � V � U 	 � U � � �
V �� � U 	 � U � � where U �	 � V � U 	 �

Therefore

� S 	 � τ 	 � � � �
V �� � U 	 � U ��� V 	 �� �

�
� � � U 	 � � � U �

and

� S � τ � � � �
V �� � U 	 � U � � � �

�
� � � U 	 � � U �

Therefore

� S2 � S1 � τ2 � � � � � �
� U 	 � U � � �
�
� � � U 	 � � U �

and thus the principal type of � ��� x � 4
�
�
�
� f �

�
� g � f � gx � is � U 	 � U � � �

�
� � � U 	�� � U



9

The SECD Machine

9.1 Why Introduce the SECD Machine?

Motivation 9.1.1 We have seen how to define an evaluation relation � e for the lan-

guage ����� e . If in fact P � e V , how do we effectively compute V from P? We could

try defining a transition relation in a similar style to that for ��� � . Given a program

P, it would be fairly easy for a human to give the complete transition sequence for P.

However, this does require a careful scrutiny of the rules which define � : It is one

thing to observe the rules and find, through a process of inspection, the unique P 	 for

which P � P 	 . It is quite another to take P and effectively compute P 	 .
For example, while with practice seeing that

� 3 � 2 � � 6 � 5 � 6

is easy (for humans!) one must not forget that proving this actually involves produc-

ing a deduction tree

3 � 2 � 5

� 3 � 2 � � 6 � 5 � 6

� 
 �

Ultimately, we seek a formal execution mechanism which can take a program P, and

mechanically produce the value V of P:

P � P0 �� P1 �� P2 �� ����� �� V

Now, “mechanically produce” can be made precise by saying that we require a rela-

tion P �� P 	 between programs, which is defined by a set of rules in which there are no

hypotheses. Such rules are called re-writes (see Chapter 5). Thus establishing P �� P 	
will not require the construction of a deduction tree, as is the case with � (which we

illustrated with (*)):

�
deduction tree

�
P � P 	

An evaluation semantics, � e, is very much an opposite to the notion of a rewrite rela-

tion �� . To show that P � e V requires a “large” proof search for a deduction tree, and

completely suppresses any notion of “mechanistic evaluation” of P to V . However, � e

is more useful for proving general properties of programs. We illustrate these ideas in

Figure 9.1.
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P0
�� P1

�� P2
�� P3

�� P4 ����� �� V

Rewrite Rules (Abstract Machine)

� deduction tree� �deduction tree� �deduction tree� �deduction tree�
P0 � P1 � P2 � P3 � ����� � V

Transition Semantics

�

deduction tree

�

P � e V

Evaluation Semantics

Figure 9.1: Illustrating Three Kinds of Operational Semantics
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We will define a “machine”, the SECD machine, which will “mechanically compute”

certain programs to values, using rewrite rules. Landin invented the SECD machine.

Originally, it was developed as an interpreter for a programming language based

upon lambda terms and function applications. SECD machines can be implemented

directly on silicon. The original evaluation strategy was eager. There are lazy evalua-

tion strategies for SECD machines, but such machines are slow.

In this chapter we shall show how to perform such mechanical computations for a

fragment of the language � ��� e . The terms of this language fragment are given by the

grammar

E :: � x � c � E E �
�
� x � E � E op E

and the definition of program is just as in Chapter 6 but using this restricted set of

terms. The reason for making this restriction is simply to illustrate the SECD ma-

chine, without being cluttered by too many computation rules which deal with the

various kinds of program which normally appear in ����� e .

�
NOTE 9.1.2 The SECD machine has an environment which maps variables to

expressions. This is slightly different from our previous use of “typing” environ-

ments. As the SECD terminology is established, we stick with it. Note also that E
is used to denote SECD environments, and thus we denote expressions by M.

9.2 The Definition of the SECD Machine

Motivation 9.2.1 Before we outline the structure of the SECD machine, we introduce

the notion of a closure. Consider �
�
� x �

�
� y � � x � y � � 35 � �

�
� y � � 3 � y � � 5. The transition

involves the substitution of 3 for the free variable x in

�
� y � � x � y � . The SECD machine

implements substitution via an environment which records the values of variables.

The SECD machine represents �
�
� x �

�
� y � � x � y � � 3, that is �

�
� y � � x � y � � � 3 �

x � , as a closure,

which is a triple consisting of the bound variable, the scope, and the current environ-

ment:
� � � � y � x � y � x � 3 �

bound variable

�

function scope

�

environment

�

A closure stores data representing a function (plus current environment). When the

SECD machine applies this particular function value to the argument 5, it restores

the environment to x � 3, adds the binding y � 5, and evaluates x � y in this updated

environment.

The SECD machine has a typical configuration � S � E � C � D � consisting of four compo-

nents:
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(i) The stack S is a (possibly empty) list consisting of constants and closures. The

empty list is denoted by � .

(ii) Let the symbol a denote either a constant c or a closure. The environment E takes

the form x1 � a1 : ����� : xn � an, meaning that the variables x1 ������� � xn currently have the

values a1 ������� � an respectively. The environment may be empty � � � .
(iii) The control C is a list of commands. A command is either a term of the restricted

language, an operator op, or the word ����� .

(iv) The dump D is either empty � � � or is another machine configuration � S � E � C � D 	 � .
So a typical dump looks like

� S1 � E1 � C1 �
� S2 � E2 � C2 ������� � Sn � En � Cn ��� � ����� � �

It is essentially a list of triples � S1 � E1 � C1 � �
� S2 � E2 � C2 ��������� �
� Sn � En � Cn � and serves as the

function call stack.

Definitions 9.2.2 Let us write SECD machine configurations as arrays:

S Stack � S
E Environment � E
C Control � C
D Dump � D

To evaluate the (restricted) ����� e program P, the machine begins execution in the

initial configuration, where P is in the Control and all other components are empty:

S �
E �
C P
D �

Note that the SECD machine described here is an interpreter. The program is exe-

cuted directly, and is not compiled, as was the case for the CSS machine.h

If the control is non-empty, then its first command triggers a configuration rewrite,

whereby the SECD machine changes to a new configuration. The rewrites are deter-

ministic, and are determined by the element at the head of the Control list. Here are

the possible rewrites:

A constant is pushed onto the stack:

S S
E E
C c : C
D D

cst� � �
S c : S
E E
C C
D D
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The value of a variable is taken from the environment and pushed onto the stack. If

the variable is x and E contains x � a then a is pushed:

S S
E E
C x : C
D D

var� � �
S a : S
E E
C C
D D

An operator term is replaced by code to compute the arguments:

S S
E E
C M1 op M2 : C
D D

optm� � �
S S
E E
C M2 : M1 : op : C
D D

An operator op is computed:

S c : c 	 : S
E E
C op : C
D D

op� � �
S c op c 	 : S
E E
C C
D D

An abstraction is converted to a closure and then pushed onto the stack:

S S
E E
C

�
� x � M : C

D D

abs� � �
S � � � � x � M � E � : S
E E
C C
D D

A function application is replaced by code to compute the argument and the function

with an explicit ����� instruction:

S S
E E
C M1 M2 : C
D D

fapp� � �
S S
E E
C M2 : M1 : ����� : C
D D

The closure � � � � x � M � E 	 � is called by creating a new configuration to evaluate M in the

environment E 	 , extended with a binding for the argument. The old configuration is

saved in the dump:

S � � � � x � M � E 	�� : a : S
E E
C ����� : C
D D

clo� � �
S �
E x � a : E 	
C M
D � S � E � C � D �
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The function call terminates in a configuration where the Control is empty but the

Dump is not. To return from the function, the machine restores the configuration

� S � E � C � D � from the Dump, then pushes a onto the stack:

S a
E E 	
C �
D � S � E � C � D �

res� � �
S a : S
E E
C C
D D

The result of the evaluation, say a, is obtained from a final configuration where the

Control and Dump are empty, and a is the sole value on the stack:

S a
E �
C �
D �

9.3 Example Evaluations

Examples 9.3.1

(1) Use the SECD machine to calculate �
�
� y � y � 2 � 4.

S �
E �
C �

�
� y � y � 2 � 4

D �

fapp� � �
S �
E �
C 4 :

�
� y � y � 2 : �����

D �

cst� � �
S 4
E �
C

�
� y � y � 2 : �����

D �

abs� � �

S � � � � y � y � 2 � � � : 4
E �
C ��� �
D �

clo� � �
S �
E y � 4
C y � 2
D � � ��� ��� ��� �

optm� � �
S �
E y � 4
C 2 : y : �
D � � ��� ��� � � �

cst� � �

S 2
E y � 4
C y : �
D � � ��� ��� ��� �

var� � �
S 4 : 2
E y � 4
C �
D � � ��� ��� ��� �

op� � �
S 6
E y � 4
C �
D � � ��� ��� � � �

res� � �
S 6
E �
C �
D �

Hence

�
� y � � y � 2 � 4 � e 6.

(2) Use the SECD machine to calculate �
�
� x � x � 3 � 5.

S �
E �
C �

�
� x � x � 3 � 5

D �

optm� � �
S �
E �
C 5 : �

�
� x � x � 3 : �

D �

cst� � �
S 5
E �
C �

�
� x � x � 3 : �

D �

fapp� � �
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S 5
E �
C 3 :

�
� x � x : � � � : �

D �

cst� � �
S 3 : 5
E �
C

�
� x � x : ��� � : �

D �

abs� � �

S � � � � x � x ��� � : 3 : 5
E �
C � � � : �
D �

clo� � �
S �
E x � 3
C x
D � 5 ��� � � ��� �

var� � �
S 3
E x � 3
C �
D � 5 ��� ��� ��� �

res� � �

S 3 : 5
E �
C �
D �

op� � �
S F
E �
C �
D �

Hence �
�
� x � x � 3 � 5 � e F .
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Correctness of the CSS Machine

A.1 A proof of Correctness

Motivation A.1.1 In the appendix we give a proof of correctness for the interpreted

CSS machine. It works just like the machine defined earlier, but programs are exe-

cuted directly and are not compiled. THE PROOF IS NOT EXAMINABLE.

Definitions A.1.2 We make slight changes to the previous definitions. A CSS code C
is a list which is produced by the following grammars:

ins :: � P � op � STO � x � � BR � P1 � P2 � C :: � �
�
� � ins : C

where P is any � � � expression, op is any operator, x is any variable and P1 and P2 are

any two commands. The objects ins are CSS instructions. A stack σ is produced by

the grammar

σ :: � �
�
� � c : σ

where c is any integer or Boolean. A state s is indeed an ��� � state. We shall write �
instead of �

�
� for the empty code or stack list.

The CSS re-writes are defined in Table A.1, where each rule R is written

C1 σ1 s1 � � � C2 σ2 s2

Motivation A.1.3 We prove that the CSS machine is correct for our operational se-

mantics. This means that whenever we execute an expression according to the se-

mantics in Chapter 4, the result matches that of the CSS machine, and vice versa. We

make this precise in the following theorem:

Theorem A.1.4 For all n 	 � , b 	 � , P1 : :
�
� � , P2 : : � � ��� , P3 : : ���  and s � s1 � s2 	 States

we have

� P1 � s � � � n � s � iff P1 � s � � � t � n s

� P2 � s � � � b � s � iff P2 � s � � � t � b s

� P3 � s1 � � � � � ��� � s2 � iff P3 � s1 � � � t � � s2

where � � � t denotes the transitive closure of � � � .
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n : C σ s � � � C n : σ s

P1 op P2 : C σ s � � � P2 : P1 : op : C σ s

x : C σ s � � � C s � x � : σ s

op : C n1 : n2 : σ s � � � C n1 op n2 : σ s

T : C σ s � � � C T : σ s

F : C σ s � � � C F : σ s

��� ��� : C σ s � � � C σ s

x : � P : C σ s � � � P : STO � x � : C σ s

STO � x � : C n : σ s � � � C σ s
�
x �� n �� P1 ; P2 � : C σ s � � � P1 : P2 : C σ s

� � P �! �"�� P1 "�� � " P2 : C σ s � � � P : BR � P1 � P2 � : C σ s

BR � P1 � P2 � : C T : σ s � � � P1 : C σ s

BR � P1 � P2 � : C F : σ s � � � P2 : C σ s

#  
��� " P1 � 	 P2 : C σ s � � � P1 : BR � � P2 ; #  
��� " P1 � 	 P2 � � ��� ��� � : C σ s

Table A.1: The CSS Re-Writes
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Motivation A.1.5 The proof method for Theorem A.1.4 is as follows: For the � � im-

plication(s) we use Rule Induction for � . For the
� � implication(s) we use Mathe-

matical Induction on k, where of course κ � � � t κ 	 iff for some k 	 � ,

κ � κ1 � � � κ2 � � � ����� � � � κk � κ 	 �
If it is not immediately clear to you how Mathematical Induction will be used, then

look ahead to page 98. We shall need a few preliminary results before we can prove

the theorem.

Lemma A.1.6 The CSS machine re-writes are deterministic, that is each CSS config-

uration re-writes to a unique CSS configuration:

More precisely, if

C σ s � � � C1 σ1 s1 and C σ s � � � C2 σ2 s2

then C1 � C2, σ1 � σ2 and s1 � s2.

Proof This follows from inspecting the definition of � � � : given any C σ s , either

there is no transition (the configuration is stuck), or there is only one transition which

is valid. �

Lemma A.1.7 Given any sequence of CSS re-writes, we can (uniformly) extend both

the code and stack of each configuration, without affecting the execution of the orig-

inal code and stack:

For any codes Ci, stacks σi, states si and k 	 � ,

C1 σ1 s1 � � � k C2 σ2 s2

implies
C1 : C3 σ1 : σ3 s1 � � � k C2 : C3 σ2 : σ3 s2

where we define � � � 0 to be the identity binary relation on the set of all CSS configu-

rations, and of course � � � 1 means just � � � ; and we write C : C 	 to mean that the list C
is appended to the list C 	 .

Proof We use induction on k 	 � , that is we prove φ � k � holds for all k 	 � where φ � k �
is the assertion that

for all appropriate codes, stacks and states

C1 σ1 s1
� � � k C2 σ2 s2

implies
C1 : C3 σ1 : σ3 s1

� � � k C2 : C3 σ2 : σ3 s2 �



A.1. A proof of Correctness 95

(Proof of φ � 0 � ): This is trivially true (why?).

(Proof of for all k0 	 � , φ � k � k � k0 implies φ � k0 � 1 � ): Let k0 be arbitrary and assume (in-

ductively) that φ � k � holds for all k � k0. We prove φ � k0 � 1 � from these assumptions.

Spelling this out, we shall show that if

for all codes, stacks and states,

C1 σ1 s1 � � � k C2 σ2 s2

implies

C1 : C3 σ1 : σ3 s1 � � � k C2 : C3 σ2 : σ3 s2

holds for each k � k0, then

for all codes, stacks and states,

C1 σ1 s1 � � � k0 � 1 C2 σ2 s2

implies

C1 : C3 σ1 : σ3 s1 � � � k0 � 1 C2 : C3 σ2 : σ3 s2 �

Let us choose arbitrary codes, stacks and states for which

C1 σ1 s1 � � � k0 � 1 C2 σ2 s2

We now consider the possible forms that C1 can take; here we just give a couple of

cases:

(Case C1 is � ): We have to prove that

� σ1 s1 � � � k0 � 1 C2 σ2 s2

implies

� : C3 σ1 : σ3 s1 � � � k0 � 1 C2 : C3 σ2 : σ3 s2

But there are no transitions from a configuration with empty code. Thus the above

implication asserts that “false implies ??” which is true. (Ask if you are confused by

this).

(Case C1 is n : C1): Suppose that we have

n : C1 σ1 s1 � � � k0 � 1 C2 σ2 s2

We need to prove that

n : C1 : C3 σ1 : σ3 s1 � � � k0 � 1 C2 : C3 σ2 : σ3 s2 � 1 �
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By Lemma A.1.6 we must have1

n : C1 σ1 s1 � � � 1 C1 n : σ1 s1 � � � k0 C2 σ2 s2

and so by induction (k0 � k0 !!)

C1 : C3 n : σ1 : σ3 s1 � � � k0 C2 : C3 σ2 : σ3 s2 � 2 �
But

n : C1 : C3 σ1 : σ3 s1 � � � 1 C1 : C3 n : σ1 : σ3 s1 � 3 �
and then (2) and (3) prove (1) as required.

(Case C1 is BR � P1 � P2 � : C1): Assume that2

BR � P1 � P2 � : C1 T : σ1 s1 � � � k0 � 1 C2 σ2 s2

We need to prove that

BR � P1 � P2 � : C1 : C3 T : σ1 : σ3 s1 � � � k0 � 1 C2 : C3 σ2 : σ3 s2 � 4 �
Now

BR � P1 � P2 � : C1 T : σ1 s1 � � � 1 P1 : C1 σ1 s1

and so by induction we have

P1 : C1 : C3 σ1 : σ3 s1 � � � k0 C2 : C3 σ2 : σ3 s2 � 5 �
But

BR � P1 � P2 � : C1 : C3 T : σ1 : σ3 s1 � � � 1 P1 : C1 : C3 σ1 : σ3 s1 � 6 �
and then (5) and (6) imply (4) as required. We omit the remaining cases. �

Lemma A.1.8 Given a sequence of re-writes in which the code of the first configura-

tion takes the form of two appended codes, then each of these codes may be executed

separately:

For all k 	 � , and

for all appropriate codes, stacks and states, if

C1 : C2 σ s � � � k � σ 	 	 s 	 	

then there is a stack and state σ 	 and s 	 , and k1 � k2 � � for which

C1 σ s � � � k1 � σ 	 s 	

C2 σ 	 s 	 � � � k2 � σ 	 	 s 	 	

where k1 � k2 � k.

1All we are saying here is that any sequence of re-write steps must have a unique form. We often
use determinism of � � �

in the next few pages, without always quoting Lemma A.1.6.
2Given that the code begins with the instruction BR � P1 � P2  and we know that there is a valid re-

write, the stack must begin with T .
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Proof We use Mathematical Induction on k; let φ � k � denote the property of k given

in the above box.

(Proof of φ � 0 � ): This is trivially true (why?).

(Proof of for all k0 	 � , φ � k � k � k0 implies φ � k0 � 1 � ): Let k0 be arbitrary and assume (in-

ductively) that φ � k � holds for all k � k0. We prove φ � k0 � 1 � from these assumptions.

Let us choose arbitrary codes, stacks and states for which

C1 : C2 σ s � � � k0 � 1 � σ 	 	 s 	 	
and then consider the possible forms that C1 can take.

(Case C1 is 	 �
�
� � P1

�� P2 : C1):

We suppose that

	 �
�
� � P1

�� P2 : C1 : C2 σ s � � � k0 � 1 � σ 	 	 s 	 	
and hence by Lemma A.1.6

	 �
�
� � P1

�� P2 : C1 : C2 σ s

� � � 1 P1 : BR � � P2 ; 	 �
�
� � P1

�� P2 ��� � � ��� � : C1 : C2 σ s

� � � k0 � σ 	 	 s 	 	
So as k0 � k0 (!), by induction we have k1 � k2 where k0 � k1 � k2 and σ 	 and s 	 such that

P1 : BR � � P2 ; 	 �
�
� � P1

�� P2 ��� � � � � � : C1 σ s � � � k1 � σ 	 s 	 � 1 �
and

C2 σ 	 s 	 � � � k2 � σ 	 	 s 	 	 � 2 �
But

	 �
�
� � P1

�� P2 : C1 σ s � � � 1 P1 : BR � � P2 ; 	 �
�
� � P1

�� P2 � � ��� ��� � : C1 σ s � 3 �
and so we are done using (1) with (3), and (2). The other cases are left as exercises. �

Lemma A.1.9 For all appropriate codes, stacks, states and natural numbers,

P : :
�
� � and P σ s � � � k � σ 	 s 	 implies

s � s 	 and σ 	 � n : σ some n 	�� and P � s � � � k � n s

and

P : : � � ��� and P σ s � � � k � σ 	 s 	 implies

s � s 	 and σ 	 � b : σ some b 	 � and P � s � � � k � b s

Proof A lengthy, trivial Structural Induction. �



98 Appendix A. Correctness of the CSS Machine

Proving Theorem A.1.4

Let us now give the proof of the correctness theorem:

Proof ( � � ): We use Rule Induction for � , together with a case analysis on the types.

If the type is

�
� � , only the rules for operators can be used in the deduction of the eval-

uation. We show property closure for just one example rule:

(Case � OP1): The inductive hypotheses (where Pi : :
�
� � ) are

P1 � s � � � t � n1 s and P2 � s � � � t � n2 s

Then we have

P1 op P2 � s � � � P2 : P1 : op � s

by Lemma A.1.7 and inductive hypotheses � � � t P1 : op n2 s

by Lemma A.1.7 and inductive hypotheses � � � t op n1 : n2 s

� � � � n1 op n2 s

as required. We leave the reader to verify property closure of the remaining rules.

(
� � ): We prove each of the three right to left implications separately, by Mathemati-

cal Induction. Note that the first is:

for all P : :
�
� � � n � s � P � s � � � t � n s implies � P � s � � � n � s � �

But this statement is logically equivalent to

for all k � for all P : :
�
� � � n � s � P � s � � � k � n s implies � P � s � � � n � s �

which you should check!! We prove the latter assertion by induction on k 	 � , letting

φ � k � denote the boxed proposition:

(Proof of φ � 0 � ): This is trivially true (why?).

(Proof of for all k0 	 � , φ � k � k � k0 implies φ � k0 � 1 � ): Suppose that for some arbitrary k0,

P : :
�
� � , n and s

P � s � � � k0 � 1 � n s � 
 �
and then we prove � P � s � ��� n � s � by considering cases on P.

(Case P is m): If m �� n then � 
 � is false, so the implication is true. If m � n, note that as

� n � s � � � n � s � there is nothing to prove.

(Case P is P1 op P2): Suppose that

P1 op P2 � s � � � k0 � 1 � n s
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and so

P2 : P1 : op � s � � � k0 � n s �
Using Lemmas A.1.8 and A.1.9 we have, noting P2 : :

�
� � , that

P2 � s � � � k1 � n2 s

P1 : op n2 s � � � k2 � n s

where k1 � k2 � k0, and repeating for the latter transition we get

P1 n2 s � � � k21 � n1 : n2 s

op n1 : n2 s � � � k22 � n s � 1 �
where k21 � k22 � k2. So as k1 � k0, by Induction we deduce that � P2 � s ��� � n2 � s � , and

from Lemma A.1.9 that

P1 � s � � � k21 � n1 s �

Also, as k21 � k0, we have Inductively that � P1 � s � � � n1 � s � and hence

� P1 op P2 � s � � � n1 op n2 � s � �

But from Lemma A.1.6 and � 1 � we see that n1 op n2 � n and we are done.

We omit the remaining cases.

Note that the second right to left implication (dealing with Boolean expressions) in-

volves just the same proof technique.

The third right to left implication is (equivalent to):

for all k �
for all P : : ����� � s � s 	 P � s � � � k � σ s 	 implies σ � � and � P � s ��� � ��� ��� � s 	 �

which you should check!! We prove the latter assertion by induction on k 	 � , letting

φ � k � denote the boxed proposition:

(Proof of φ � 0 � ): This is trivially true (why?).

(Proof of for all k0 	 � , φ � k � k � k0 implies φ � k0 � 1 � ): Choose arbitrary k0 	 � . We shall

show that if

for all P : : ���  � s � s 	 �
P � s � � � k � σ s 	 implies σ � � and � P � s � � � � � � � � s 	 �

for all k � k0, then

for all P : : ���  � s � s 	 �
P � s � � � k0 � 1 � σ s 	 implies σ � � and � P � s ���� � � � � � s 	��
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Pick arbitrary P : : ���  and σ and s � s 	 and suppose that

P � s � � � k0 � 1 � σ s 	

We consider cases for P:

(Case P is x : � P): Using Lemma A.1.6, we must have

x : � P � s � � � 1 P : STO � x � � s � � � k0 � σ s 	

and so by Lemmas A.1.8 and A.1.9 (and the typing rules)

P � s � � � k1 � c s

STO � x � c s � � � k2 � σ s 	 � 1 �

where k1 � k2 � k0. By determinism for (1) we have σ � � and s � x �� c � � s 	 . By the first

right to left implication for integer expressions (proved above) we have � P � s ���� c � s � .
Hence � x : � P � s � � � � � � � � s � x �� c � � , and as s � x �� c � � s 	 we are done. NB this case did not

make use of the inductive hypotheses φ � k � k � k0 !

(Case P is P ; P 	 ): Do this as an exercise!

The remaining cases are omitted. �

A.2 CSS Executions

Examples A.2.1

(1) Let s be a state for which s � x � � 6. Then we have

10 � x � s � � � x : 10 : � � s

� � � 10 : � 6 s

� � � � 10 : 6 s

� � � � 4 s

where we have written � for both empty list and subtraction—care!
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(2) Let s be a state for which s � x � � 1. Then we have
� �

x
�

0 �	�
��� x : � x � 1 ��� ��� ��� ��� � s � � � x
�

0 : BR � x : � x � 1 � ��� ��� � � s

� � � 0 : x
�

: BR � x : � x � 1 � � � ��� � � s

� � � x :
�

: BR � x : � x � 1 � � � � � � 0 s

� � � �
: BR � x : � x � 1 � � � � � � 1 : 0 s

� � � BR � x : � x � 1 � � � ��� � T s

� � � x : � x � 1 � s

� � � x � 1 : STO � x � � s

� � � 1 : x : � : STO � x � � s

� � � x : � : STO � x � 1 s

� � � � : STO � x � 1 : 1 s

� � � STO � x � 0 s

� � � � � s � x �� 0 �
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