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Chapter 1

Description of background ideas, and the

module itself.

Review some mathematics.
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Overview: Background Introduction to MC308
� What is a Language?

� What is a Programming Language?

� What is Syntax?

� What is Semantics?
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Some Answers
� Two kinds of language

� Natural language:

� Recognized method of communicating thoughts

and feelings:

� speech, hand signals, sending gifts . . .

� Formal language: A rigourously defined “system”

to convey meaning or information.

� We do not have a precise definition of language. Try

looking up language in, say, the Cambridge

Encyclopaedia of Language.
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� Programming Languages are formal languages used

to “communicate” with a “computer”.

� Programming languages may be “low level”. They

give direct instructions to the computer (machine

code).

� Programming languages may be “high level”. The

instructions given to the computer are indirect, but

much closer to general concepts understood by the user

(Java, C++, . . . ).
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� Syntax refers to particular arrangements of “words

and letters” eg David hit the ball or

if t � 2 then H = “Off”.

� A grammar is a set of rules which can be used to

specify how syntax is created.

� Examples can be seen in automata theory, or

programming manuals.

� Theories of syntax and grammars can be

developed—ideas are used in compiler construction.
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� Semantics is the study of “meaning”.

� In particular, syntax can be given meaning. The word

run can mean

� execution of a computer program,

� spread of ink on paper, . . .

� Programming language syntax can be given a

semantics. We need this to write programs.



CO3008 Semantics of Programming Languages 7

Semantic descriptions are often informal. Consider

while (expression) command ;

adapted from Kernighan and Ritchie 1978/1988, p 224:

The command is executed repeatedly so long as the value of

the expression remains unequal to 0; the expression must

have arithmetic or pointer type. The test, including all side

effects from the expression, occurs before each execution of

the command.

We want to be more precise, more succinct.
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High Level view of MC308

For various languages we shall

� define syntax for programs P and types σ ;

� define type assignments P : : σ ;

� define operational semantics looking like

P � P� or P � V

� define algorithms to check that P : : σ; and

� compile P to a list of machine instructions P� � � � P � � .
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Overview: Discrete Mathematics

We briefly review

� Logic

� Sets

� Relations

� Functions
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Logic
� If P and Q are propositions, we can form new

propositions as follows:

� P implies Q (sometimes written P � Q or P � Q);

� . . . see the notes.

� for all x, P (sometimes written � x � P);

� We shall often prove propositions of the form

� x � X � P � x � where P � x � is a proposition depending on x,

and X is a given set. Eg

� n �� � 2� n � 1 is odd
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Sets
� We assume a set is understood.

� A or B or . . . often used to denote sets. Write a � A for

element of. If a is not an element of A, we write a �� A.

� Union A � B, intersection A � B, should already be

known.

� The cartesian product of A and B is a set given by

A � B
def

�

� � a � b � � a � A and b � B � �
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Relations
� A relation R between sets A and B is a subset

R � A � B. A binary relation R on A is a relation between

A and A.

� If R � A � B is a relation, it is convenient to write a R b

instead of � a � b � � R.

� R is reflexive iff for all a � A we have a R a;

� R is transitive iff for all a � b � c � A, a R b and b R c

implies a R c;

� For example � � � �� .
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Functions

� You should know what a (total) function f :A � B is.

� You should know what a partial function f :A � B is.

� Recall undefinedness and application notation,

composition, and domain of definition.
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Chapter 2

Define abstract syntax trees – a bit like parse

trees.

Explain inductive definitions.

Explain Rule Induction.
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Overview: Abstract Syntax

� Outline the ideas of concrete syntax (eg programs as

ascii files) and abstract syntax (the parse trees of

programs).
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Abstract and Concrete Syntax
� The text string

if true then 2 else 3

is concrete syntax.

� A compiler will recognize a conditional expression

(an “if-then-else”) and three data, namely the Boolean

and the two numbers.

� The three data, together with the knowledge that the

string denotes a conditional, make up the semantic

content of the expression.
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� We can capture this semantic content as a tree

�� � �

� �

T 2

�

3

� which can be denoted by the formal notation

�� � � � T 	 2 	 3 


� and informally by the sugared notation
�� T � � � 2 �� � � 3

� Lexers and parsers transform text programs into parse

trees, sometimes referred to as abstract syntax.
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� Here is another example of sugared tree notation

� � � � � �� � l � � � � � 0 � � � � � � � � l � � �	 
 �� � � l � � �

� It has the form � � B� � � � E1 � � � � E2 where, for example,

B is � � � �� � l � .

� The abstract syntax tree is

�� � � � � � � �� � l � � 0 � � � � � � l � � � 	 
 �� � � l � � � �

� Think of the conditional as a constructor which acts

on three arguments (subprograms) to “construct” a new

program.
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� In CO3008 we need to give precise definitions of

abstract syntax trees. An example:

� Let C �

� l1 � l2 � l3 � c1 � c2 � be a set of constructors, which

are labels for tree nodes. We can specify a set of finite

trees built from this set by a grammar of the form

T :: � l1 � l2 � l3 � c1 � T � T � � c2 � T � T � T �
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� You need to understand the definitions of

� node
� leaf

� root

� constructor (a label for any node)

� children (of non-leaf nodes)

� subtree

� We also talk about

� subprogram, subexpression

� outermost constructor ( = root label).
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Overview: Inductively Defined sets

� Specify inductively defined sets; programs, types etc

will be defined this way. BNF grammars are a form of

inductive definition; abstract syntax trees were defined

inductively.

� Define Rule Induction; properties of programs will

be proved using this. It is important.
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Example Inductive Definition

Let Var be a set of propositional variables. Then the set

Prpn of propositions of propositional logic is inductively

defined by the rules
� P � Var � � A �

P

φ ψ

��� �φ� ψ

φ ψ

��� �φ� ψ

φ ψ

� � �φ � ψ

φ

��� �

� φ

Each proposition is created by a deduction . . .
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Two More Examples
� A set R of rules for defining the set E � � of even

numbers is R �

� R1 � R2 � where

� R1 �

0

e

� R2 �

e � 2

6 � E iff there is a deduction of 6.

� Suppose that Σ is any set, which we think of as an

alphabet. Each element l of Σ is letter. We inductively

define the set Σ� of words over the alphabet Σ by

� l � Σ � � 1 �

l

w w�
� 2 �

ww�
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Some Notation for Rules
� A rule R is a pair � H � c � where H is any finite set.

� Note that H might be � , in which case we say that R

is a base rule.

� R �

c

� If H is non-empty (say H �

� h1 � � � � � hk � where 1 � k)

we say R is an inductive rule.

h1 h2 � � � hk

� R �
c
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Inductively Defined Sets
� Given a set of rules, a deduction is a finite tree such

that

� each leaf node label c occurs as a base rule

� � � c � � R

� for any non-leaf node label c, if H is the set of

children of c then � H � c � � R is an inductive rule.

� The set I inductively defined by R consists of those

elements e which have a deduction with root node e.
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An Abstract Example

Let R be the set of rules � R1 � R2 � R3 � R4 � where

R1 � � � � u1 � � R2 � � � � u3 � � R3 � � � u1 � u3 � � u4 � �

R4 � � � u1 � u3 � u4 � � u5 � R5 � � � u2 � u3 � � u6 �

Then a deduction for u5 is given by

u1 u3

u1 u3

u4

u5

u1 u3

� �

u1 u3 u4

� �

u5

�
The inductively defined set is I �

� u1 � u3 � u4 � u5 �
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Rule Induction

Let I be inductively defined by a set of rules R . Suppose

we wish to show the truth of

� i � I � φ � i �

To do this, it is enough to show

� for every base rule b � R that φ � b � holds; and

� for every inductive rule h1� � � hk
c � R prove that

whenever hi � I,

� φ � h1 � and φ � h2 � and � � � and φ � hk � � implies φ � c �

We call φ � h j � inductive hypotheses. We refer to carrying

out the � tasks as “verifying property closure”.
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Example

Consider the set of trees T defined inductively by

� n � � �

n

T1 T2

� � T1 � T2 �

Let L � T � be the number of leaves in T , and N � T � be the

number of � -nodes of T . We prove

� T � T � L � T � � N � T � � 1

where the functions L � N:T � � are defined recursively by

� L � n � � 1 and L � � � T1 � T2 � � � L � T1 � � L � T2 �

� N � n � � 0 and N � � � T1 � T2 � � � N � T1 � � N � T2 � � 1
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Chapter 3

Describe the programs (syntax) of a simple

imperative language called IMP.

Review and motivate types.

Give a type system to IMP.

Describe compile time type checking and

type inference.
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Overview: Syntax for IMP Programs

� Describe the basic building blocks for programs.

� Specify the program expressions.

� Comment on some grammatical conventions.
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Program Expressions for IMP

Syntax for � � built out of elements of the sets

�

def

�

� � � � �
� 1 � 0 � 1 � � � � �

�
def

�

� T � F �

Loc
def

�

� l1 � l2 � � � � � (** NB **)

ICst
def

�

� n � n � � �

BCst
def

�

� b � b � � �

IOpr
def

�

� � �
�

�� �

BOpr
def

�

�
� ��� � � � � � � �
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The set of expression constructors is specified by

Loc � ICst � � � � BOpr � � skip � assign � sequence � cond � while � �

The program expressions are given by

P :: � c constant

� l memory location

� iop � P � P

� � integer operator

� � � � � � � � l � P

� � assignment

� �� � � � P � P

�
� P

� � � while loop

� � � � � � � P � P

� � sequencing
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� We adopt some abbreviations (known as syntactic

sugar):
� We write P iop P� for iop � P � P

� � ;

� l : � P� for � � � � � � � l � P

� � ;

� P ; P� for � � � 	 � � � � � P � P

� � ;

� . . .

� Bracketing conventions:

� Arithmetic operators group to the left. Thus

P1 op P2 op P3 abbreviates � P1 op P2 � op P3

� Sequencing associates to the right.
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Overview: Types for IMP Programs
� Explain what a type is.

� Motivate the uses for types.

� Explain some terminology.

� Define IMP type checking (compilation checks).

� Define IMP type inference.
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Defining and Motivating Types

Types in a programming language are

� collections of objects (“sets”), with

� collections of operations acting on these objects.

The type int consists of the collection of integers, together

with operations such as � , � , � and so on. The action of

� might be specified as

� int � int � � � bool
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� Statically typed languages carry out type checking at

compile-time. Needs some explicit type information.

� Uses of types

� Expressions organized to reduce program errors.

� Polymorphism means functions can have many

types. This allows code re-use.

� Types structure data, using ADTs and modules.
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� Run time errors
� trapped error – execution halts immediately.

� An untrapped error – execution does not

necessarily halt. An example is accessing data past

the end of an array, which one can do in C!

� A language is safe if all syntactically legal programs

do not yield certain run-time errors.

� JAVA was claimed to be safe, but in 1997 this was

shown not to be the case. Proof uses MC 308 methods!
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Technical Definitions
� If P can be assigned a type σ we write P : : σ and call

the statement a type assignment.

� Type safety is the property that if P : : σ then certain

kinds of errors can not occur at P’s run-time.

� Given P and σ, type checking validates P : : σ.

� Given P, type inference is the process of trying to

find σ for which P : : σ—the process can fail.
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Types for IMP
� The types of the language � � are given by the

grammar

σ :: � � � � ��� � � � � � 
 �

� A location environment L is a finite set of (location,

type) pairs, with type being just � � � or� � � � :

L � l1 : : � � � � � � � � ln : : � � � � ln � 1 : :� � � � � � � � � lm : :� � � �

� Given L , then any P whose locations all appear in L
can (sometimes) be assigned a type; we write P : : σ to

indicate this.
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[any n � � ] : : INT

n : : � � 

: : TRUE

T : : � � � � F : : � � � �

� l : : � �  � L �
l : : � � 

P1 : : � �  P2 : : � � 

[ bop � BOpr] : : BOP

P1 bop P2 : : � � � �

�� � � : : �� �

l : : σ P : : σ

l :� P : : �� �

P1 : : � � � � P2 : : �� � P3 : : �� �

�� P1 � � � P2 �� � � P3 : : �� �
P1 : : � � � � P2 : : �� �

	 � �� � P1 � � P2 : : �� �



CO3008 Semantics of Programming Languages 41

Example: Deduction of a Type Assignment

l : : � � � 5 : : � � �

l � 5 : :� � � � D2

D3 D4

l : � l � 1 ; l� : � l� � l : : � 
 �

� � l � 5� � � � l� : � 1 � � � � � l : � l � 1 ; l� : � l� � l � : : � 
 �
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Type Inference
� Given L and P, there is an algorithm which will infer

if P can be assigned a type.

� If such a type exists we say P is typable. The

algorithm will succeed and will output the type.

� If not, the algorithm fails.

� In a real language, such type inference is often

performed by the compiler.

� Given L and P, we define a function Φ which given P

as input will either return a type for P, or will FAIL.
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Φ � T 
 � � � � �

Φ � l 
 �

�
�

�

τ if l : : τ � L 	 and τ� � �  or � � � �

FAIL otherwise

Φ � P1 bop P2 
 �

�
�

�

� � � � if Φ � P1 
 � � �  and Φ � P2 
 � � � 

FAIL otherwise
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Φ � l :� P 
 �

�
�

�
�

�
�

�
�

�

�� � if Φ � l 
 � Φ � P 
 � τ 	

and τ� � �  or � � � �

FAIL otherwise

Φ � 	 � �� � P1 � � P2 
 �

�
�

�

�� � if Φ � P1 
 � � � � � and Φ � P2 
 � �� �

FAIL otherwise
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Chapter 4

Explain how IMP programmes execute—an

operational semantics.

Show that the type of a program does not

change on execution.

Show that a program always gives the same

answer when run—IMP is deterministic.

Typed programs don’t yield certain errors.
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Overview: Transition Semantics

� Motivate and define transition semantics—a method

for stating precisely how a program executes.

� Give some examples.
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States
� A state s is a partial function Loc � � � � .

� For example s � � l1� � 4 � l2� � T � l3� � 21 �

� There is a state denoted by s � l� � c � : Loc � � � � which

is the partial function

� s � l� � c � � � l� � def

�

�
�

c if l� � l

s � l� � otherwise

� We say that state s is updated at l by c.
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Transition Semantics

Consider the following transition, which models one step in a

program execution
� l :� 2 � 5 	 � l

� �� 8 � 
 � � l :� 7 	 � l

� �� 8 � 


� � �� � � 	 � l

� �� 8 	 l �� 7 � 


� The elements of Exp � States will be known as

configurations.

� We shall inductively define a binary relation � . We call it

transition relation, and any instance of a relationship in �

is called a transition step.
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� provided that s � l 
 is defined � � LOC

� l 	 s 
 � � s � l 
 	 s 

� P1 	 s 
 � � P2 	 s 


� OP1

� P1 op P 	 s 
 � � P2 op P 	 s 


� P1 	 s 
 � � P2 	 s 


� OP2

� n op P1 	 s 
 � � n op P2 	 s 


� OP3

� n1 op n2 	 s 
 � � n1 op n2 	 s 


� P1 	 s 
 � � P2 	 s 


� ASS1

� l :� P1 	 s 
 � � l :� P2 	 s 


� ASS2
� l :� c 	 s 
 � � �� � � 	 s � l� � c � 
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� P1 	 s1 
 � � P2 	 s2 


� SEQ1

� P1 ; P 	 s1 
 � � P2 ; P 	 s2 


� SEQ2

� � � � � ; P 	 s 
 � � P 	 s 


� P 	 s 
 � � P

�
	 s 


� COND1

� �� P � � � P1 �� � � P2 	 s 
 � � �� P� � � � P1 �� � � P2 	 s 


� COND2

� �� T � � � P1 �� � � P2 	 s 
 � � P1 	 s 


� LOOP

� 	 � �� � P1 � � P2 	 s 
 � � �� P1 � � � � P2 ; 	 � �� � P1 � � P2 
 �� � � �� � � 	 s 
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Examples of Transitions

A deduction (for any P):

� ASS2

� l� : � 2 � s � � � �� � � � s � l� � � 2 � � � SEQ1

� l� : � 2 ; l : � l � 1 � s � � � �� � � ; l : � l � 1 � s � l� � � 2 � � � SEQ1

� � l� : � 2 ; l : � l � 1 � ; P � s � � � � �� � � ; l : � l � 1 � ; P � s � l� � � 2 � �
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Q is � � � � � l � 0 � � Q� where Q� is l� : � l� � 2 ; l : � l � 1.
� Q � � l �� 1 � l� �� 0 �� � �
	� l � 0 � �� Q� ; Q �� � � �� 	 � � � l �� 1 � l� �� 0 ��

� �
	� 1 � 0 � � � Q� ; Q �� � � �� 	 � � � l �� 1 � l� �� 0 ��

� �
	� T � �� Q� ; Q �� � � �� 	 � � � l �� 1 � l� �� 0 ��

� � �

� � � l� :� 2 ; l :� l� 1� ; Q � � l �� 1 � l� �� 0 � �

� � � �� 	 � ; l :� l� 1� ; Q � � l �� 1 � l� �� 2 ��

� � l :� l� 1 ; Q � � l �� 1 � l� �� 2 � �
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Overview: Properties of the Semantics

� Program types do not change on execution.

� IMP is deterministic—the final result of a program

run is unique; and in fact the “stages” of the run are

unique.
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Type Preservation
� Given L , s is sensible for L if for all l : : σ in L

� s(l) is defined (all locations initialized), and

� s � l � : : σ (the type of data stored in a location matches

the type of the location).

� Take L and sensible s1. Then � satisfies

� Let P1 : : σ. Then for any � P1 � s1 � � � P2 � s2 � we have

P2 : : σ.

� Further, if σ is either � � � or� � � � , then s1 � s2.
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Proving Type Preservation
� � P1 � s1 � � � P2 � s2 � � σ � � P1 : : σ implies P2 : : σ �

We have to check property closure for each of the rules

defining � . We look at a couple of examples.

(Property Closure for � LOC) We have to show that

l : : σ implies s � l � : : σ for any σ. This is immediate as s is

sensible.
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(Property Closure for � OP2) The induction hypothesis is

� σ � � P1 : : σ implies P2 : : σ � IH

� P1 � s � � � P2 � s � � OP2

� n op P1 � s � � � n op P2 � s �

We have to prove

� σ � � n op P1 : : σ implies n op P2 : : σ � C
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IMP is Deterministic

The operational semantics of � � is deterministic:

If

� P � s � � � P� � s� � and � P � s � � � P� �
� s� � �

then

P� � P� � and s� � s� �
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Proof of Determinism

We can prove this result by Rule Induction. We show

� � P � s � � � P� � s� �

� � X � x � � � P � s � � � X � x � implies � X � P� and x � s� �
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We consider property closure for

� P1 � s � � � P2 � s � � ASS1

� l : � P1 � s � � � l : � P2 � s �

The inductive hypothesis IH is

� � Y � y � � � P1 � s � � � Y � y � implies � Y � P2 and y � s �

We need to prove the conclusion C

� � Z � z � � � l : � P1 � s � � � Z � z � implies � Z � � l : � P2 � and z � s �
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Overview: IMP is Type Safe

� We describe some special programs;

� we describe some special kinds of transitions, and

� use the ideas to show IMP is type safe.
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Different Kinds of Transitions
� We define V :: � c � �� � � .

� � V � s � configurations are called terminal. They

indicate “proper” termination of program runs.

� Any configuration � P � s � is stuck if P is non-terminal

and there is no � P� � s� � for which � P � s � � � P� � s� � .

� WARNING: Note that any terminal configuration has

no transition.
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� Given any configuration � P � s � there is a unique

sequence of transitions

� P � s � � � P1 � s1 � � � P2 � s2 � � � � �

� An infinite transition sequence takes the form

� P � s � � � P1 � s1 � � � P2 � s2 � � � � � � � Pi � si � � � � �

where no configuration � Pi � si � is terminal or stuck.
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� A finite transition sequence for a configuration

� P � s � takes the form

� P � s � � � P1 � s1 � � � P2 � s2 � � � � � � � Pm � sm � � m � 1 �

� If � Pm � sm � is either stuck or terminal we call the

transition sequence complete.

� Make up lots of examples of these ideas!!
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Some Results about IMP Type Safety

� Let s be sensible for L . Then if P : : σ is any type

assignment, � P � s � is not stuck.

� If also � P � s � � � P� � s� � , then s� is also sensible.

� If � P � s � � � � P� � s� � , then � P� � s� � cannot be stuck (but

might be terminal). Thus � � is type safe.

This follows from the two results above—why?
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We prove � P : : σ � P � s � is not stuck by Rule Induction on

type assignments.

(Property Closure for : : IOP)

The inductive hypotheses are that neither � P1 � s � or � P2 � s �

are stuck, where P1 : : � � � and P2 : : � � � .

We have to prove that � P1 iop P2 � s � is not stuck, where

P1 iop P2 : : � � � .

Let’s work this on the board . . .
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We prove, for a given L ,
� � P � s � � � P� � s� � � σ � (P ::σ and s sensible) implies s� sensible

by rule induction for � .

We check property closure for

� ASS2

� l : � c � s � � � �� � � � s � l� � c � �

Suppose s is sensible, and l : � c : : σ. We need to verify that

s � l� � c � is sensible, that is

� All locations in L are in the domain of definition of

s � l� � c � .

� � l� : : τ in L we have s � l� � c � � l� � : : τ.
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Overview: Evaluation Relations

� We describe a semantics which tells us

“immediately” the final result of a program run.

� We show how this connects with transitions.



CO3008 Semantics of Programming Languages 68

An Evaluation Relation

Consider the following evaluation relationship

� l� : � T ; l : � 4 � 1 � � � � � � �� � � � � l

� � � T � l� � 5 � �

The idea is

Starting program � final result

We describe an operational semantics which has

assertions which look like

� P � s � � � n � s � and � P � s1 � � � �� � � � s2 �
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� provided l � domain of s �� LOC

� l 	 s 
 � � s � l 
 	 s 


� P1 	 s 
 � � n1 	 s 
 � P2 	 s 
 � � n2 	 s 

� OP2

� P1 bop P2 	 s 
 � � n1 bop n2 	 s 


� P 	 s 
 � � n 	 s 


� ASS1

� l :� P 	 s 
 � � � � � � 	 s � l� � n � 


� P 	 s 
 � � b 	 s 


� ASS2

� l :� P 	 s 
 � � � � � � 	 s � l� � b � 


� P1 	 s1 
 � � �� � � 	 s2 
 � P2 	 s2 
 � � �� � � 	 s3 

� SEQ

� P1 ; P2 	 s1 
 � � �� � � 	 s3 
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� P 	 s1 
 � � F 	 s1 
 � P2 	 s1 
 � � � � � � 	 s2 

� COND2

� �� P � � � P1 �� � � P2 	 s1 
 � � �� � � 	 s2 


� P1 	 s1 
 � � T 	 s1 
 � P2 	 s1 
 � � �� � � 	 s2 
 � 	 � �� � P1 � � P2 	 s2 
 � � � � � � 	 s3 


� 	 � �� � P1 � � P2 	 s1 
 � � �� � � 	 s3 


� P1 	 s 
 � � F 	 s 


� LOOP2

� 	 � �� � P1 � � P2 	 s 
 � � �� � � 	 s 
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Example Evaluations

We derive deductions for

� � 3 � 2 �� 6 � s � � � 30 � s �

and

� � � � � � l � 1 � � l : � l � 1 � � l� � 1 � � � � �� � � � � l� � 0 � �
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A Mutual Correctness Proof

For any configuration � P � s � and terminal configuration

� V � s� � ,

� P � s � � � � V � s� � iff � P � s � � � V � s� �

where � � denotes reflexive, transitive closure of � .



CO3008 Semantics of Programming Languages 73

We break the proof into three parts:
� Prove � P � s � � � V � s� � implies � P � s � � � � V � s� � by Rule

Induction.

� Prove by Rule Induction for � that

� P � s � � � P� � s� � � � V � s� � � implies � P � s � � � V � s� � �

� Use previous results to deduce

� P � s � � � � V � s� � implies � P � s � � � V � s� �
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We shall prove by Rule Induction that

� � P � s � � � V � s� � � P � s � � � � V � s� �

� P1 � s1 � � � � T � s1 � � H1 �

� P2 � s1 � � � � �� � � � s2 � � H2 �

� � � � � � P1 � � P2 � s2 � � � � �� � � � s3 � � H3 �

We need to prove that

� � � � � � P1 � � P2 � s1 � � � � �� � � � s3 � � C �
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Let us write Q for 	 � �� � P1 � � P2. Then
� Q 	 s1 
 � � �� P1 � � � P2 ; Q �� � � �� � � 	 s1 
 � � LOOP 


� �

� �� T � � � P2 ; Q �� � � � � � � 	 s1 
 � H1 
 & � � COND1 


� � P2 ; Q 	 s1 
 � � COND2 


� �

� � � � � ; Q 	 s2 
 � H2 
 & � � SEQ1 


� � Q 	 s2 
 � � SEQ2 


� �

� � � � � 	 s3 
 � H3 


which proves (C).
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We shall prove by Rule Induction for � that
� � P 	 s 
 � � P

�
	 s�


�� � � V 	 s� �

 � � P

�
	 s�


 � � V 	 s� �

 implies � P 	 s 
 � � V 	 s� �



Let us just consider property closure for the rule � � LOOP 
 . Pick

any � V 	 s� �

 and suppose that

� �� P1 � � � � P2 ; Q 
 �� � � � � � � 	 s 
 � � V 	 s� �

 � 1 


We need to show that
� Q 	 s 
 � � V 	 s� �

 � 2 


But (1) can hold only if it has been deduced either from � � COND1 


or � � COND2 
 . In either case V must be �� � � .
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Chapter 5

Describe the CSS machine, which executes

compiled IMP programs.

Show how to compile IMP programs to CSS

instruction sequences.

Give some example executions.
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Motivating the CSS Machine

An operational semantics gives a useful model of

� � —we seek a more direct, “computational” method for

evaluating configurations.

If P � e V, how do we effectively compute V from P? The

transition relation is not quite right.

It is easy for humans to see that

� 3 � 2 � � 6 � 5 � 6

but establishing this involves a deduction tree . . .
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We seek a way of taking a program P, and mechanically

producing the value V :

P � P0� � P1� � P2� � � � �� � Pn � V

“Mechanically produce” can be made precise using a

relation P� � P� defined by a set of rules in which there are

no hypotheses. Such rules are called re-writes:

n � m � m � n

Establishing P� � P� will not require the construction of a

deduction tree:
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P0� � P1� � P2� � P3� � P4 � � �� � V

Rewrite Rules (Abstract Machine)

�

deduction tree

� �
deduction tree

� �

deduction tree

�

P0 � P1 � P2 � � � � � V

Transition Semantics
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An Example

Let s � l � � 6. Execute 10 � l on the CSS machine.

First, compile the program.
� � 10 � l � � � FETCH � l � : PUSH � 10 � : OP � � �

Then

FETCH � l � : PUSH � 10 � : OP � � � � s

� � � PUSH � 10 � : OP � � � 6 s

� � � OP � � � 10 : 6 s

� � � � 4 s
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Defining the CSS Machine
� A CSS code C is a “list”:

ins ::� PUSH � c 
 �

FETCH � l 
 �

OP � op 
 �

SKIP

�

STO � l 
 �

BR � C 	 C 
 �

LOOP � C 	 C 


C ::� �

�

ins

�

ins : C

The objects ins are CSS instructions.

� A stack σ is produced by the grammar

σ ::� �

�

c

�

c : σ
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� A CSS configuration is a triple � C � σ � s � .
� A CSS transition takes the form

� C1 � σ1 � s1 �� � � � C2 � σ2 � s2 �

� Defined inductively by a set of rules, each rule having

the form
R

� C1 � σ1 � s1 �� � � � C2 � σ2 � s2 �

� We call a binary relation (such as� � � ) which is

inductively defined by rules with no hypotheses a

re-write relation.
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PUSH � c 
 : C σ s ��� � C c : σ s

FETCH � l 
 : C σ s ��� � C s � l 
 : σ s

OP � op 
 : C n1 : n2 : σ s ��� � C n1 op n2 : σ s

SKIP : C σ s ��� � C σ s

STO � l 
 : C c : σ s ��� � C σ s � l� � c �

BR � C1 	 C2 
 : C F : σ s ��� � C2 : C σ s

LOOP � C1 	 C2 
 : C σ s ��� �

C1 : BR � C2 : LOOP � C1 	 C2 
 	 SKIP 
 : C σ s
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� � c � � def

� PUSH � c �

� � l � � def

� FETCH � l �

� � P1 op P2 � � def

� � � P2 � � : � � P1 � � : OP � op �

� � l : � P � � def

� � � P � � : STO � l �

� � �� � � � � def

� SKIP

� � P1 ; P2 � � def

� � � P1 � � : � � P2 � �

� � � � P� � � � P1 � � � � P2 � � def
� � � P � � : BR � � � P1 � � � � � P2 � � �

� � � � � � � P1 � � P2 � � def

� LOOP � � � P1 � � � � � P2 � � �
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An Example Execution

Execute l : � 2 ; l� : � 5� l on the CSS machine. First, compile

the program.

� � l : � 2 ; l� : � 5� l � � �
PUSH � 2 � : STO � l � : FETCH � l � : PUSH � 5 � : OP �� � : STO � l� �

Then

PUSH � 2 � : STO � l � : FETCH � l � : PUSH � 5 � : OP �� � : STO � l� � � �

� � � �

� � � l� � 2 � l

� � � 10 �
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Chapter 6

Motivate a language in which we can write

higher order functions.

Describe its types.

Describe its expression syntax.

Outline a type assignment system.

Explain how to write simple programs.
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Overview: Motivating and Defining FUN

� Give a broad outline of FUN.

� Define its syntax and type system.

� Explain some technical conventions and definitions.
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Examples of FUN Declarations

cst :: Int

cst = 76

f :: Int -> Int

f x = x

g :: Int -> Int -> Int

g x y = x+y

h :: Int -> Int -> Int -> Int

h x y z = x+y+z
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empty_list :: [Int]

empty_list = nil

l1 :: [Int]

l1 = 5:(6:(8:(4:(nil))))

l2 :: [Int]

l2 = 5:6:8:4:nil

h :: Int

h = hd (5:6:8:4:nil)
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p :: (Int,Int)

fst :: (Int,Int) -> Int

length :: [Bool] -> Int

map :: (Int -> Bool) -> [Int] -> [Bool]

p = (3,4)

fst (x,y) = x

length l = if elist(l) then 0 else (1 + length t)

map f l = if elist(l) then nil else (f h) : (map f t)
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FUN Types
� The types of � �� e are

σ :: � � � � ��� � � � � σ � σ � � σ � σ � � � σ �

We shall write Type for the set of types.

� We shall write

σ1 � σ2 � σ3 � � � � � σn � σ

for

σ1 � � σ2 � � σ3 � � � � � � � σn � σ � � � � � � � �

Thus for example σ1 � σ2 � σ3 means σ1 � � σ2 � σ3 � .
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FUN Expressions

E ::� x variables

�

� constant identifier
�

� function identifier

�

� �  � E 
 first projection

�

E1 E2 function application

�

� � E 
 tail of list

�

E1 : E2 cons for lists

�

�� � �  � E 
 Boolean test for empty list

Bracketing conventions apply . . .
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Substitution (for next chapter)
� The variable x occurs in the expression x op 3 op x.

� If E and E1 � � � � � En are expressions, then

E � E1 � � � � � En �

x1 � � � � � xn � denotes the expression E with Ei

simultaneously replacing xi for each 1 � i � n.

� Eg

� u � x � y � 6 � � 2 � x � z �

u � y � x � � 2 � z � x � 6
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Overview: FUN Type System
� Show how to declare the types of variables and

identifiers; an identifier is (the name of) a constant or

function.

� Define a type assignment system.

� Give some examples.

� Verify that FUN is monomorphic—each program has

a unique type.
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Contexts
� When we write a FUN program, we shall declare the

types of variables, for example

x : : � � � � y : :� � � � � z : :� � � �

� A context takes the form

Γ � x1 : : σ1 � � � � � xn : : σn �

� Thus a context specifies type declarations for

variables. The variables must be distinct.
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Environments
� When we write a FUN program, we want to declare

the types of constants and functions.

� A simple example of an identifier environment is


 �� � � � : : � � � � � � � � � � : :� � � � � � � � �

� and another is � �	 � : : � � � � � � � � � � � � �

� and another is

� : :� � � � � 
 � � : : � � � � � � � � � � � � � � � � � � � � � � � 	 � : : � � � � � � �
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� An identifier type looks like

σ1 � σ2 � σ3 � � � � � σk � σ where k is a natural

number and σ is NOT a function type.

� If k � 0 then the identifier is called a constant.

� If k � 0 then the identifier is called a function.

� An identifier environment looks like

I �

� 1 : : ι1 � � � � � � m : : ιm �
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Example Type Assignments

� With the previous identifier environment

x : : � � � � y : : � � � � z : : � � � � 
 � � �	 � � x : y : z : � � � �� � � : : � � � � �

� We have

� � � � T� � � � � �� � � 2 : � � � �� � � � � � �� � � � � � � � � 2 : 6 : � � � �� � � : : � � � � �
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Inductively Defining Type Assignments

Start with an identifier environment and a context. Then
� where x : : σ � Γ � : : VAR

Γ � x : : σ
: : INT

Γ � n : : � � �

Γ � E1 : : � � � Γ � E2 : : � � �

: : OP1
Γ � E1 iop E2 : : � � �
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Γ � E1 : : σ2 � σ1 Γ � E2 : : σ2
: : AP

Γ � E1 E2 : : σ1

Γ � E : : � σ1 � σ2 �
: : FST

Γ � � �� � E � : : σ1

� where � : : ι � I � : : IDR

Γ � � : : ι

: : NIL

Γ � � � � σ : : � σ �

Γ � E1 : : σ Γ � E2 : : � σ �

: : CONS

Γ � E1 : E2 : : � σ �
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FUN is Monomorphic

Given I , Γ and E, if there is a type σ for which Γ � E : : σ,

then such a type is unique.

We verify

� � Γ � E : : σ1 � � � σ2 � � Γ � E : : σ2 implies σ1 � σ2 � �

using Rule Induction. We check property closure for the

rule HD:
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The inductive hypothesis is

� σ2 � � Γ � E : : σ2 implies � σ � � σ2 �

where Γ � E : : � σ � .

Γ � E : : � σ �

: : HD

Γ � � � � E � : : σ

We wish to prove that

� σ2 � � Γ � � � � E � : : σ2 implies σ � σ2 � � † �

where Γ � � � � E � : : σ.
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Overview: Function Declarations and Programs

� Show how to code up functions.

� Define what makes up a FUN program.

� Give some examples.
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Introducing Function Declarations
� To declare � �	 � can write � �	 � x � � �� � x � � � � � � x � .

� To declare � � �

� � � x � � � x � � 1� � � � 1 � � � � x� � � � � x � 1 �

� And to declare that� denotes T we write� � T.

� In � �� e , can specify

� � E � x � E� � xy � E� � � � �
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An Example Declaration

Let I �

� 1 : : � � � � � � � � � � � � � � � 2 : : � � � � � � � � � 3 : :� � � � . Then

an example of an identifier declaration decI is

� 1 l y � � � �� � �� � � l � � � � � 2 y
� 2x � x� x

� 3 � T

� 4 u v w � u � v � w
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Defining Declarations

Let I �

� 1 : : ι1 � � � � � � m : : ιm where for example

ι j � σ1 � σ2 � σ3 � � � � � σk � σ j � � j � � 1 � � � � � m � �

Then an identifier declaration decI consists of

...
� j x1 � � � xk � E

� j

...

for each j � � 1 � � � � � m �



CO3008 Semantics of Programming Languages 108

An Example Program

Let I � � : : � � � � � � � � � � � � � : : � � � . Then an identifier

declaration decI is

� x y � x � 7 � y

� � 10

An example of a program is decI in � 81 � � . Note that
� � � 8 � � : :� � � �

and that

x : : � � � � y : : � � � � x � 7 � y : : � � � and � � � : : � � �
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Programs

A program expression P is any expression containing no

variables. A program in � �� e is a judgement of the form

decI in P where � � P : : σ

and the declarations in decI satisfy

...

x1 : : σ1 � � � � � xk : : σk � E

� j : : σ j
...
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Example Programs

� x � � � x � 1� � � � 1 � � � � x� � � x � 1 � in � 4
� 1 xyz � � � x � 1� � � � y � � � � z

� 2 x � � 1 x1 � x� � 2 � x � 1 � �
�

�
�

�

in � 2 4

� l � code to sort l in � � 3 : 6 : � 2 : 8 : � � � �
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Chapter 7

Explain call-by-value (eager) and

call-by-need (lazy) function calling methods.

Give FUN an eager and lazy evaluation style

operational semantics.

Prove properties such as determinism.

Extend the language to give local

declarations.
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Overview: Programs and Values
� Look at the notion of evaluation order.

� Define values, which are the results of eager program

executions.

� Define an eager evaluation semantics: P � e V.

� Give some examples.
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Evaluation Orders

� The operational semantics of � �� e says when a

program P evaluates to a value V. It is like the IMP

evaluation semantics.

� Write this in general as P � e V, and examples are

3 � 4 � 10 � e 17 and � � � 2 : � � � �� � � � e 2
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� Let � xy� x � y. We would expect � � 2 � 3 
 � 4 � 5 
 �

e 26.
� We could

� evaluate 2 � 3 to get value 6 yielding � 6 � 4 � 5 
 ,

� then evaluate 4 � 5 to get value 20 yielding � 620.

� We then call the function to get 6 � 20, which evaluates to

26. This is call-by-value or eager evaluation.

� Or the function could be called first yielding � 2 � 3 
 � � 4 � 5 


and then we continue to get 6 � � 4 � 5 
 and 6 � 20 and 26. This

is called call-by-name or lazy evaluation.

� The order of evaluation is different.



CO3008 Semantics of Programming Languages 115

Defining and Explaining (Eager) Values
� Let decI be a identifier declaration, with typical typing

� : : σ1 � σ2 � σ3 � � � � � σk � σ

A value expression is any expression V produced by

V ::� c

�

� �� σ

� � V 	 V 
 �

�
�

V

�

V : V

where

�

V abbreviates V1 V2� � � Vl� 1 Vl and 0 � l � k, and k is the

maximum number of inputs taken by � . CARE!!!

� Note that constants � are not values. Note also that l is

strictly less than k, and that if k� 1 then �

�

V denotes � .
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� A value is any value expression for which decI in V

is a valid � �� e program.
� Suppose that � : : � � � � � � � � � � � � � � � and that P1 � e 2

and P2 � e 5 and P3 � e 7 with Pi not values. Then

P V
�

� P1 � 2

� 2 P2 � 2 5

P V

� 2 5 P3

� 2 5 7 14

� P1 P2 P3 14

� Of course � P1 P2 P3 � e 14.
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�

eVAL

V �

e V

P1 �

e m P2 �

e n

�

eOP

P1 op P2 �

e m op n

P1 �

e T P2 �

e V

�

eCOND1

	� P1 � �� P2 �� � � P3 �
e V

P1 �

e F P3 �

e V

�

eCOND2

	� P1 � �� P2 �� � � P3 �

e V

P1 �
e V1 P2 �

e V2

�

ePAIR

� P1 � P2� �
e � V1 � V2�

P �

e � V1 � V2�
�

eFST

� �  � P� �

e V1

P �

e � V1 � V2�
�

eSND

�� � � P� �

e V2
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�
�

�

P1 �

e �
�

V P2 �

e V2 �
�

V V2 �

e V

where either P1 or P2 is not a value

�

eAP

P1 P2 �

e V

E � � V1 � � � � � Vk j� x1 � � � � � xk � �

e V

� �
�x� E � declared in decI � �

eFID

� V1 � � � Vk �

e V

E 	 �

e V

��
 � E 	 declared in decI � �

eCID


 �

e V
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P �

e� 	 � σ

�

eNIL

� � P� �
e� 	 � σ

P �

e V : V�
�

eHD

� � � P� �

e V

P �

e V : V�
�

eTL

� � P� �

e V�

P1 �

e V P2 �

e V�
�

eCONS

P1 : P2 �

e V : V�

P �

e� 	 � σ

�

eELIST1

�� 	 �  � P� �

e T

P �

e V : V�
�

eELIST2

�� 	 �  � P� �

e F
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Examples of Evaluations

Suppose that decI is

� x � x� 2

� � 3

VAL

� �

e

�

VAL

3�

e 3
CID

� �

e 3

VAL

3�

e 3
VAL

2�

e 2
OP

� x � 2 
 � 3 � x � � 3 � 2�

e 6
FID

� 3�

e 6
AP

� � �

e 6



CO3008 Semantics of Programming Languages 121

VAL

� � 	 � 
 �

e

� � 	 � 


SND

� � � � � � 	 � 
 
 �

e

� D

VAL

4�

e 4
VAL

2�

e 2
OP

4 � 2�

e 8
FID

� 4�

e 8
AP

� � � � � � 	 � 
 
 4�

e 8
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Let
� : : � � � � � � � � � � � � � � � where � xyz � x � y � z

� � 2 and � 23 are (programs and) values.

� � 23 � 4 � 1 � is a program, but not a value

� Note that � 23 is sugar for � � 2 � 3 and that � 23 � 4 � 1 �

is sugar for � � � 2 � 3 � � 4 � 1 � .

� In the Definitions of values, k � 3, and in � 23 we have

�

V � 23 and l � 2� 3.
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We can prove that

� 23 � 4 � 1 � � e 10

where � xyz � x � y � z as follows:

� e
VAL

� 23 � e

� 23

4 � e 4 1 � e 1

4 � 1 � e 5 T

� e
AP

� 23 � 4 � 1 � � e 10
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where T is the tree

2 � e 2 3 � e 3

2 � 3 � e 5 5 � e 5

2 � 3 � 5 � e 10

� � � � � � � � � � � � � � � � � � � � � � � � � �

� x � y � z � � 2 � 3 � 5 �

x � y � z � � e 10

� e
FID

� 235 � e 10
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Overview: FUN Properties of Eager Evaluation

� Explain and define determinism.

� Explain and define subject reduction, that is,

preservation of types during program execution.
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Properties of FUN
� The evaluation relation for � �� e is deterministic.

More precisely, for all P, V1 and V2, if

P � e V1 and P � e V2

then V1 � V2. (Thus � e is a partial function.)

� Evaluating a program decI in P does not alter its

type. More precisely,

� � � P : : σ and P � e V � implies � � V : : σ

for any P, V, σ and I . The conservation of type during

program evaluation is called subject reduction.
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Proving Determinism

To prove determinism, we prove by Rule Induction that

� P � e V1 � � V2 � � P � e V2 implies V1 � V2 �

See the board . . .
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Proving Subject Reduction

We prove by Rule Induction that given decI in P
� P � e V � � σ � � � P : : σ implies � � V : : σ � �

The tricky rule is

E

� � V1 � � � � � Vk j �

x1 � � � � � xk � � e V

� �
�x � E

�

declared in decI � � e
FID

� V1 � � � Vk � e V

Suppose that � � � V1 � � � Vk : : σ where σ is any type. Then

we need to prove � � V : : σ. By the induction hypothesis,

we just need to prove � � E

� � V1 � � � � � Vk j �

x1 � � � � � xk � : : σ.



CO3008 Semantics of Programming Languages 129

Overview: Programs and (Lazy) Values

� Define values, which are the results of program

executions.

� Define a lazy evaluation semantics: P � l V.

� Give some examples.
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Defining and Explaining Values
� Let decI be a identifier declaration, with typical

typing

� : : σ1 � σ2 � σ3 � � � � � σk � σ

A value expression is any expression V produced by the

grammar

V :: � c � � � � σ � � P � P � � �
�

P � P : P

where

�

P abbreviates P1 P2 � � � Pl� 1 Pl and 0 � l� k, and k

is the maximum number of inputs taken by � .

� A value is any value expression for which decI in V

is a valid � �� l program.
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P �

l � P1 � P2� P1 �

l V

�

lFST

� �  � P� �

l V

�
�

�
P1 �

l �
�

P �
�

PP2 �

l V

where either P1 or P2 is not a value

�

lAP

P1 P2 �

l V

E � � P1 � � � � � Pk� x1 � � � � � xk � �
l V

� �
�x� E � declared in decI � �

lFID

� P1 � � � Pk �

l V

P1 �

l P2 : P3 P2 �
l V

�

lHD

� � � P1� �

l V
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Examples of Evaluations

Let I be � : : � � � � � � � � � , and decI be � x � x : � � x � 2 � . Then

there is a program decI in � � �� � � � 1 � � . We prove that

� � �� � � � 1 � � � l 3.

� l
VAL

1 : � � 1 � 2 � � l 1 : � � 1 � 2 � � l
FID

� 1 � l 1 : � � 1 � 2 � T1

� � � � 1 � � l � 1 � 2 � : � � � 1 � 2 � � 2 � T2

� � �� � � � 1 � � � l 3
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T2

1 � l 1 2 � l 2

1 � 2 � l 3

T1

� l
VAL

� 1 � 2 � : � � � 1 � 2 � � 2 � � l � 1 � 2 � : � � � 1 � 2 � � 2 �

� � 1 � 2 � � l � 1 � 2 � : � � � 1 � 2 � � 2 �
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Let � �� � � x � 1 � � �� � � x in � �� � � 3 � � �� � � 0 � � . We try to evaluate

this programme to a value V

R

� 3 � � �� � � 0 � � l � P1 � P2 �

R�

P1 � l V

� l
FST

� �� � � 3 � � �� � � 0 � � � l V

for which we must have P1 � 3, P2 � � �� � � 0, V � 3 and R

and R� are both instances of � l
VAL.
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Overview: Locality
� Explain unnamed functions and local definitions.

� Describe free and bound variables.

� Extend the syntax of FUN, and its operational

semantics.

� Give some examples.
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Motivating Functions and Locality
� We can define unnamed functions. The expression

� � x � x � 2

is a program whose intended meaning is the function

which “adds 2”. But it is not (necessarily) named by an

identifer.

� � � � x � x � 2 � 4 will evaluate to 4 � 2 (and thus to 6).
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� If � x � x � 2 then � and � � x � x � 2 would be

interchangeable. � is the name of the function.

� The syntax � � � x � E1 � � E2 gives local declarations. For

example � � � x � 5 � � x � y � x.

� We explain “local” with the next example:

� � � x � 7 � � � x � � � � x � 5 � � x � y � x �
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Syntax and Type Assignments

E :: � � � � � � � x � E � � � � x � E � � E

� We call � � x � E a function abstraction. We call E the

body of � � x � E.

� We call � � � x � E1 � � E2 a local declaration.

Γ � E1 : : σ Γ � E2 � E1 �

x � : : σ�
LET

Γ � � � � x � E1 � � E2 : : σ�

Γ � x : : σ � E : : τ
ABS

Γ � � � x � E : : σ � τ
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Conventions and Examples
� � � x � E means � � x � � E �

� � � � x � E1 � � E2 means � � � x � E1 � � � E2 �

� Thus � � x � � � y � y � 2 = � � x � � � � y � � y � 2 � �

� � � x � � � y � x � y � 2 = � � x � � � � y � � � x � y � � 2 � �

�
� � � x � 4 � � � � � y � T � � � x � y � � � � � x � 4 � � � � � � y � T � � � x � y � �
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Motivating Free and Bound Variables
� Write F

def� � � x� E1. Given any expression E2, in a transition

semantics

F E2 � E1 � E2 � x �

Thus if E1 is x � y, then

F E2 � � x � y 
 � E2 � x �

def� E2 � y

and the intended meaning of F � � � x� x � y is “the function

with adds y”.

� E � x � y � ought to be “the function which adds x”. But in fact

E � x � y � is clearly the expression � � x� x � x, which is the function

which doubles an integer input!



CO3008 Semantics of Programming Languages 141

� We say that the substituted x falls in the scope of the

scoping x.
� The expressions � � x � x � y and � � x� � x� � y can be

regarded as “the same”. We say that x and x� are bound,

and y is free.

� Note that
� � � x � x � y � � x �

y � � � � x� � x� � x

� We re-name the bound variable x in � � x � x � y as a new

variable x� so that when x is substituted for y it does not

become bound.
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Definitions of Free and Bound Variables
� The syntax tree for � � v � E� looks like this

� �

� �

scoping variable � � v E� � � scope

� In � � � v � E1 � � E2, the scope of v is E2. We also call

such a v a scoping variable.
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� Suppose x does occur in E. Each occurrence of x (in E)

is either free or bound (but not both!!).
� We say that an occurrence of x is bound if and only if

the occurrence of x is in a subexpression of the form

� � � x � E� or

� � � � x � E1 � � E2 where the occurrence is in E2.

� Thus an occurrence of x in E is bound just in case

� the occurrence is a scoping variable;

� the occurrence occurs within the scope of a

scoping occurrence of x.
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� If there is an occurrence of x in such E� or E2 then we

sometimes say that this bound occurrence of x has been

captured by the scoping x.

� An occurrence of x in E is free iff the occurrence of x

is not bound.



CO3008 Semantics of Programming Languages 145

Substitution Examples

�� � x � x � y� � 2� y � � � � x � x � 2

�� � x � x � y� � x� y � � � � x� � x� � x

�� �  x� y � 4	 � x � z � 7� � u � v� z � � � �  x� y � 4	 � x � � u � v� � 7

�� �  x� y � 4	 � x � z � 7� � u � y� z � � � �  x� y � 4	 � x � � u � y� � 7

�� �  x� z � 4� x	 � x � z � 7� � x � y� z � �

� �  x� � � x � y� � 4� x	 � x� � � x � y� � 7

�� �  u� u	 � u � 7� � 7� u � � � �  u� 7	 � u � 7
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Extending the Eager Semantics

P1 � e � � x � E P2 � e V� E � V�
�

x � � e V

� e
AA

P1 P2 � e V

E1 � e V1 E2 � V1 �

x � � e V

� e
LET

� � � x � E1 � � E2 � e V
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An Example

VAL

� � � � e � � �

? ?

VAL

3 � e 3
VAL

2 � e 2
OP

� x � 2 � � 3 �

x � � 3 � 2 � e 5
AA

� � � x � x � 2 � 3 � e 5
CONS

� � � x � x � 2 � 3 : � � � � e 5 : � � �

HD

� � � � � � x � x � 2 � 3 : � � � � � e 5
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Chapter 8

Give overview of polymorphism.

Introduce type variables into �

e .

Give examples of type assignments.

Explain local polymorphism.

Explain the polymorphic type inference

algorithm.
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Overview: Simple Type Deductions with Variables

� Explain different kinds of polymorphism.

� Give examples of type assignment deductions.
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Varieties of Type System
� A language is strongly typed if every legal expression

has at least one type.

� A strongly typed language is monomorphic if every

legal expression has a unique type (for example Pascal).

� A strongly typed language is polymorphic if a legal

expression can have several types (for example

Standard ML and Haskell and Java).
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� Overloading: The same symbol is used to denote

(finitely many) functions, implemented by different

algorithms.

� Parametric: One expression belongs to a family of

structurally related types. The expression encodes one

algorithm which works at each type in the family. An

example is list sorting.

� Implicit: This is a particular form of parametric

polymorphism, and we meet it later on.
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PFUN Type System
� The set Type of types of � � �� is inductively

specified by the grammar

σ :: � X � � � � ��� � � � � σ � σ � � σ � σ � � � σ �

� Each type is a finite tree. Two types are equal if the

trees are identical. Examples on the board.

� We shall write TV � σ � for the set of type variables

appearing in σ.

� The rules for deriving type assignments are as before.

� � � �� expressions are from the extended language.
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Examples of Type Assignment Deductions

Prove that � T : � � � : : �� � � � � .

TRUE

� T : :� � � �

NIL

� � � � : : �� � � � �

CONS

� T : � � � : : �� � � � �



CO3008 Semantics of Programming Languages 154

Show that Γ � � � x � � 0 : x � : : � � � � � � � � � � � for any context Γ.

We produce a deduction tree: note that the expression is a

function, so the final rule used in the deduction must be

ABS, where E � 0 : x, and σ � τ � � � � � � .

INT

Γ � x : : � � � � � � 0 : : � � �

VAR

Γ � x : : � � � � � � x : : � � � � �

CONS

Γ � x : : � � � � � � 0 : x : : � � � � �

ABS

Γ � � � x � � 0 : x � : : � � � � � � � � � � �
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Show that � � � y : 3 � is not typable in � � �� in any context Γ.

Working backwards we have:

VAR

Γ � y : : σ
INT

Γ � 3 : : � σ �

CONS

Γ � y : 3 : : � σ �

HD

Γ � � � � y : 3 � : : σ

Looking at the rule INT (which must be used to type 3) we

must have � � � � � σ � , a contradiction. So the expression

cannot be typable.
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Show that � � � f � � f � � � � T � : : � � X � � Y � � � Y �� � � � � .

VAR

f : : � X � � Y � f : : � X � � Y

NIL

f : : � X � � Y � � � � : : � X ��

AP

f : : � X � � Y � f � � � : : Y D
PAIR

f : : � X � � Y � � f � � � � T � : : � Y �� � � � �

ABS

� � � f � � f � � � � T � : : � � X � � Y � � � Y �� � � � �
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Show that � � � f � f y � y is not typable for any context of the

form y : : τ. (Note that y is the only free variable).

We suppose, for a contradiction, that the expression is

typeable. Let us call this type σ1, say. We have:

VAR

y : : τ � f : : σ2� f : : σ3 � σ1

VAR

y : : τ � f : : σ2� y : : σ3
AP

y : : τ � f : : σ2� f y : : σ1
ABS

y : : τ� � � f � f y : : σ2 � σ1 D
AP

y : : τ� �� � f � f y� y : : σ1

where D is
VAR

y : : τ � y : : σ2
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Motivating Type Substitutions
� 6 � T has no type.

� 1 : : σ holds only for σ � � � � .

� However, � � � x � x : : σ � σ holds for any type σ.

� In � � �� , of all the types that can be assigned to an

expression, there is a “most general” one: all other types

are instances of it. We call this the principal type.

� The principal type of � � x � x is X � X; any type σ � σ is

obtained by substituting σ for X.
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Type Substitutions
� Define S

def

� � X� � U � Y� � � � � � � . Let σ def

� � X � Y � Z � .

Then

S � σ �
� � U �� � � � � Z �

� S a type substitution if it is a (possibly empty) finite

set of (type-variable,type) pairs in which all the

type-variables are distinct.

� We will write a typical S in the form

� X1� � σ1 � � � � � Xn� � σn �
We write the empty type substitution as � � .
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� If τ is any type, we shall write S � τ � to denote the type

τ in which any occurrence of Xi is changed to σi. Thus

� X1� � σ1 � � � � � Xn� � σn � � τ �

def

� τ � σ1 � � � � � σn �

X1 � � � � � Xn �

� We will define equality of type substitutions in a

similar way to function equality, namely

S � S� iff � τ � S � τ �
� S�

� τ �
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� Given substitutions S1 and S2 we define the effect of

the substitution S1 � S2 by setting � S1 � S2 � � τ �

def

� S1 � S2 � τ � � .

Warning!! A type substitution is a set of

(type-variable,type) pairs. What set is S1 � S2?

� If S
def

� � V� � σ � X1� � σ1 � � � � � Xn� � σn � then we define SV

to be � X1� � σ1 � � � � � Xn� � σn � and also � �

V to be � � .
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� σ generalises σ� if there exists a type substitution S

for which

σ� � S � σ �

and say that σ� is an instance of σ.

� In � � �� , if � � P : : σ, the type σ assigned to the

expression P is principal if σ generalises any other type

which can be assigned to P.

� The principal type of � � x � x is X � X. Note that the

principal type is unique up to a consistent renaming of

variables. Another principal type for � � x � x is V � V.



CO3008 Semantics of Programming Languages 163

Type Substitution Examples
� Define S

def

� � X� � U � Y� � � � � � � . Let σ def

� � X � Y � Z � and

Γ def

� x : : X � y : : Y � Z. Then

S � σ �
� � U �� � � � � Z �

and

S � Γ �
� x : : S � X � � y : : S � Y � Z �
� x : : U � y : :� � � � � Z

� Note that � X � Y � � Z generalises � �� � � � � � Y � � � � � for

� �� � � � � � Y � � � � � � S � � � X � Y � � Z � �

where S
def

� � X� � �� � � � � � Z� � � � � �
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� It follows from the definitions that � X� � X � � � � .
� The definition of composition of type substitutions

does not describe S1 � S2 as an explicit set of pairs.

Consider � X� � � � � � Y� � X � � � Z� � � � � � . The composition is

� X� � � � � � Y� � X � Z� � � � � �

� Now consider � X� � � � � � Y� � X � � � Y� � � � � � . The

composition is

� X� � � � � � Y� � � � � �
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�

� X� � � � � � � Y� � X � � � Z� � Y � � � X� � � � � � � Y� � X � Z� � X �

�

� X� � � � � � � Y� � U � � � Y� � X � Z� � Y �

� � Y� � � � � � � X� � � � � � � Z� � U �

� As an exercise, try to write down a formula for

� Y1� � τ1 � � � � � Ym� � τm � � � X1� � σ1 � � � � � Xn� � σn �
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Local Polymorphism in � �

� The LET rule permits different occurrences of x in E2

to have different implicit types in a local declaration

� � � x � E1 � � E2.

� Thus, E1 can be used polymorphically in the body E2.

� This idea is best explained by example . . .
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D1
�

�
�

�
�

�
�

�

VAR

x : :� � � � � x : :� � � �

ABS

� � � x � x : :� � � � � � � � �

TRUE

� T : :� � � �

AP

� � � � x � x � T : :� � � �

and

D2

�
�

�
�

�
�

�
�

VAR

x : : � X � � x : : � X �
ABS

� � � x � x : : � X � � � X �

NIL

� � � � : : � X �

AP

� � � � x � x � � � � : : � X �

and
D1 D2

PAIR

� � � � � x � x � T � � � � x � x � � � � � : : �� � � � � � X � �
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VAR

x : : Y � x : : Y
ABS

� � � x � x : : Y � Y

D1 D2

� � � � � x � x � T � � � � x � x � � � � � : : �� � � � � � X � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � f T � f � � � � � � � � x � x � �

f � : : �� � � � � � X � �

LET

� � � � f � � � � x � x � � � � f T � f � � � � : : �� � � � � � X � �
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� In the above deduction of

� � �  f

� �� �
� 1 �

� � � � x� x 
 � � � f

� �� �
� 2 �

T 	 f

� �� �
� 3 �

� �� 
 : : � � � � � 	 � X � 


� occurrence of f labelled (2) has implicit type � � � � � � � � �

� occurrence of f labelled � 3 
 has implicit type � X � � � X � .

� The principal type of � � x� x is Y � Y

� The implicit types of f are substitution instances of this

principal type,

� (2) with S� � Y �� � � � � �

� (3) and S� � Y �� � X � �
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Can Function Abstractions Yield Implicit Poly’m?
� It is only possible for bound variables to possess

polymorphic instances.

� � � �� has one other variable binding operation, that

found in function abstractions � � x � E.

� Can such bound variables have polymorphic

instances within the scope of � � x abstractions?

� The answer is in fact no. An example illustrates this.
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� � f � � f T � f � � � � is not typable (in the empty context).

D

VAR

f : : σ2� f : : σ7 � σ5

NIL

f : : σ2� �� � : : σ7 � � σ8 �

AP

f : : σ2� f �� � : : σ5

f : : σ2� � f T � f �� � � : : σ3 � � σ4 � σ5 �

ABS
� � � f	 � f T � f �� � � : : σ1 � σ2 � σ3

where D is

VAR

f : : σ2 � f : : σ6 � σ4

TRUE

f : : σ2 � T : : σ6 � � � � �

AP

f : : σ2 � f T : : σ4
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A Type Inference Algorithm

The types and expressions are now just given by

σ :: � � � � � X � σ � σ

E :: � n � E iop E � � � x � E � E E � � � � x � E � � E

� σ and τ are unifiable if we can find S for which

S � σ �
� S � τ � . We call S a unifier.

� S is a most general unifer if, given another unifer S� ,

there exists T for which S� � T � S.
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MGU � σ � σ � � � � here σ is any type

MGU � X � Y � � � X� � Y � here X and Y are distinct

MGU � X � σ � �

�
�

�
�

�
�

here σ is either � � � or a function type

� X� � σ � if X �� TV � σ �

FAIL otherwise

MGU � σ � X � �

�
�

�
�

�
�

here σ is either � � � or a function type

� X� � σ � if X �� TV � σ �
FAIL otherwise



CO3008 Semantics of Programming Languages 174

MGU � σ1 � σ2 � τ1 � τ2 � � S2 � S1

where

σi � τi any types

S1
def

� MGU � σ1 � τ1 �

S2
def

� MGU � S1 � σ2 � � S1 � τ2 � �

FAIL otherwise

MGU � � � � � σ � τ � � FAIL here σ � τ any types

MGU � σ � τ � � � � � � FAIL here σ � τ any types
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� A typing for the judgement

x1 : : σ1 � � � � � xn : : σn � E †

is a pair � S � τ � for which

x1 : : S � σ1 � � � � � � xn : : S � σn � � E : : τ

� Such a typing is said to be principal if given any

other � S�
� τ� � there is some T for which S� � T � S and

τ� � T � τ � .

� There is a type inference function Φ which given any

input of the form † will either return a principal typing,

or FAIL if there is none. To define Φ we need more

notation.
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Given a context Γ � x1 : : σ1 � � � � � xn : : σn let us write (by

abusing notation) TV � Γ � for the set

TV � σ1 � � � � � � TV � σn �

We shall also write S � Γ � to mean

x1 : : S � σ1 � � � � � � xn : : S � σn �

and we define S � � �

def

� � .
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Φ � x1 : : σ1 � � � � xn : : σn � xi � � � � � � σi �

Φ � x1 : : σ1 � � � � xn : : σn � y � � FAIL � � i � xi �
� y �

Φ � Γ � n � � � � � � � � � �

Φ � Γ � E1 iop E2 � � � S4 � S3 � S2 � S1 � S4 � τ2 � �

where

� S1 � τ1 � � Φ � Γ � E1 �

S2 � MGU � τ1 � � � � �

� S3 � τ2 � � Φ � � S2 � S1 � Γ � E2 �

S4 � MGU � τ2 � � � � �
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Φ � Γ � � � x � E � � � SV

� S � V � � τ �

where

� S � τ � � Φ � Γ � x:V � E �

V �� TV � Γ �

Φ � Γ � E1 E2 � � � S3
V

� S2 � S1 � S3 � V � �

where

� S1 � τ1 � � Φ � Γ � E1 �

� S2 � τ2 � � Φ � S1 � Γ � � E2 �

S3 � MGU � S2 � τ1 � � τ2 � V �

V �� TV � S2 � τ1 � � or TV � τ2 �
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Φ � Γ � � � � x � E1 � � E2 � � � S2 � S1 � τ2 �

where

� S1 � τ1 � � Φ � Γ � E1 �

� S2 � τ2 � � Φ � S1 � Γ � � E2 � E1 �

x � �
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Examples

We claimed that the principal type of � � x � x is X � X . We

have

Φ � � � � � x � x � � � SV

� S � V � � τ �

where

� S � τ � � Φ � x : : V � x � � � � � � V � �

Thus Φ � � � � � x � x � � � � �

V

� � � � V � � V � � � � � � V � V � . So, up

to a renaming of type variables, the principal type is

V � V.
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We calculate Φ � x : : X � � � f � f x � . This is � SV

� S � V � � τ �

where
� S � τ � � Φ � x : : X � f : : V � f x � � � A3

U

� A2 � A1 � A3 � U � �

where

� A1 � τ1 � � Φ � x : : X � f : : V � f � � � � � � V �

and

� A2 � τ2 � � Φ � x : : X � f : : V � x � � � � � � X �
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and

A3 � MGU � V � X � U � � � V� � � X � U � �

U �� � � � � V � � X �
�

� V � X �

Therefore � S � τ � � � � V� � � X � U � � � U � and so

Φ � x : : X � � � f � f x � � � � � � � X � U � � U �


