CO3008 Semantics of Programming Languages

-

Chapter 1

B Description of background ideas, and the
module itself.

B Review some mathematics.

-




CO3008 Semantics of Programming Languages

-

Overview: Background Introduction to MC308

B What is a Language?
B Whatis a Programming Language?
B Whatis Syntax?

B Whatis Semantics?

~




CO3008 Semantics of Programming Languages

/ Some Answers \

B Two kinds of language

— Natural language:

e Recognized method of communicating thoughts
and feelings:
e speech, hand signals, sending gifts ...

— Formal language: A rigourously defined “system”
to convey meaning or information.

B We do not have a precise definition of language. Try
looking up language in, say, the Cambridge
Encyclopaedia of Language.

_/




CO3008 Semantics of Programming Languages

4 N

B Programming Languages are formal languages used
to “communicate” with a “computer”.

B Programming languages may be “low level”. They
give direct instructions to the computer (machine
code).

B Programming languages may be “high level”. The
instructions given to the computer are indirect, but
much closer to general concepts understood by the user
(Java, C++, ...).

- _/




CO3008 Semantics of Programming Languages

-

-

B Syntax refers to particular arrangements of “words
and letters” eg David hit the ball or

ift > 2 thenH = “Off”.

B A grammar is a set of rules which can be used to
specify how syntax is created.

B Examples can be seen in automata theory, or
programming manuals.

B Theories of syntax and grammars can be
developed—ideas are used in compiler construction.

~




CO3008 Semantics of Programming Languages

4 N

B Semantics is the study of “meaning”.

B In particular, syntax can be given meaning. The word
run can mean

e execution of a computer program,

e spread of ink on paper, ...

B Programming language syntax can be given a
semantics. We need this to write programes.

- _/




CO3008 Semantics of Programming Languages

-

Semantic descriptions are often informal. Consider
while (expression) command ;

adapted from Kernighan and Ritchie 1978/1988, p 224:
The command is executed repeatedly so long as the value

the expression remains unequal to 0; the expression must

the command.

We want to be more precise, more succinct.

-

have arithmetic or pointer type. The test, including all side
effects from the expression, occurs before each execution of

~

of

_/




CO3008 Semantics of Programming Languages

-

B define fype assignments

P~ P

-

For various languages we shall

B define syntax for programs

High Level view of MC308

P

and types|O |

P ::

Of

or

B compile P to alist of machine instructions

B define operational semantics looking like

PV

B define algorithms to check that P :: ¢; and

~

P—[[P] |




CO3008 Semantics of Programming Languages

-

Overview: Discrete Mathematics

B Logic
B Sets
B Relations

B Functions

We briefly review




CO3008 Semantics of Programming Languages

-

-

B If Pand Q are propositions, we can form new

propositions as follows:

— P implies Q (sometimes written P = Q or P — Q);

— ... see the notes.

— forallx, P (sometimes written VX. P);

B We shall often prove propositions of the form

Logic

~

Vx € X.P(x) where P(x) is a proposition depending on X,

and X is a given set. Eg

vn e N.

2+xn-+1is odd

_/

10



CO3008 Semantics of Programming Languages

-

-

~

Sets

B We assume a set is understood.

B AorBor... often used to denote sets. Write a € A for
element of. If ais not an element of A, we write a & A.

B Union AUB, intersection AN B, should already be
known.

B The cartesian product of A and B is a set given by

A X Bd:ef{(a,b) | ac Aand beB}.

_/

11



CO3008 Semantics of Programming Languages

/ Relations

B A relation Rbetween sets A and Bis a subset

A and A.

instead of (a,b) € R
B Risreflexive iff for alla€ Awe have aRa;

B Ris transitive iff foralla,b,cec A,aRband bRc
implies aRc;

B Forexample< C NxN.

-

~

R C A x B. A binary relation Ron Ais a relation between

B If RC AxBisarelation, it is convenient to write aRb

12



CO3008 Semantics of Programming Languages

-

-

Functions

B You should know what a (total) function f: A — Biis.

B You should know what a partial function f:A — Bis.

B Recall undefinedness and application notation,
composition, and domain of definition.

13



CO3008 Semantics of Programming Languages

4 N

Chapter 2

B Define abstract syntax trees — a bit like parse
trees.

B Explain inductive definitions.

B Explain Rule Induction.

- _/




CO3008 Semantics of Programming Languages

-

-

Overview: Abstract Syntax

B Outline the ideas of concrete syntax (eg programs as
ascii files) and abstract syntax (the parse trees of
programs).

15



CO3008 Semantics of Programming Languages

-

-

~

Abstract and Concrete Syntax
B The text string
If true then 2 else 3

IS concrete syntax.

B A compiler will recognize a conditional expression
(an “if-then-else”) and three data, namely the Boolean
and the two numbers.

B The three data, together with the knowledge that the
string denotes a conditional, make up the semantic

content of the expression.

_/

16



CO3008 Semantics of Programming Languages

/I We can capture this semantic content as a tree

cond

LN
T 2 3

B which can be denoted by the formal notation

cond(T,2,3)

B and informally by the sugared notation

If T then 2else 3

B [exers and parsers transform text programs into parse

trees, sometimes referred to as abstract syntax.

-

_/

17



CO3008 Semantics of Programming Languages

/l Here is another example of sugared tree notation \

if elist(l) then 0 else (hd(l)+sum(ti(l)))

B It has the form if B then E; else E> where, for example,
Biselist(l).

B The abstract syntax tree is

cond(elist(l) , O, +(hd(l),sum(tl(l))))

B Think of the conditional as a constructor which acts
on three arguments (subprograms) to “construct” a new

program.

- _/

18



CO3008 Semantics of Programming Languages

-

B In CO3008 we need to give precise definitions of
abstract syntax trees. An example:

B LetC={l1,lpI3,c1,C2} be aset of constructors, which
are labels tor tree nodes. We can specily a set of finite
trees built from this set by a grammar of the form

T =1 | P | |3 | Cl(T,T) ‘ CZ(T,T,T)

19



CO3008 Semantics of Programming Languages

-

B You need to understand the definitions of

— node

— leaf

— root

— constructor (a label for any node)
— children (of non-leaf nodes)

— subtree

B We also talk about

— subprogram, subexpression

— outermost constructor ( = root label).

20



CO3008 Semantics of Programming Languages

-

-

Overview: Inductively Defined sets

B Specify inductively defined sets; programs, types etc
will be defined this way. BNF grammars are a form of
inductive definition; abstract syntax trees were defined
inductively.

B Define Rule Induction; properties of programs will
be proved using this. It is important.

_/

21



CO3008 Semantics of Programming Languages

-

Example Inductive Definition

Let Var be a set of propositional variables. Then the set
Prpn of propositions of propositional logic is inductively

defined by the rules
¢y
— [P € Var] (A —— (A)
P PAY
¢ y ¢y ¢
— (V) (=) — )
vy o=y -0

Each proposition is created by a deduction ...

-

22



CO3008 Semantics of Programming Languages

-

-

Two More Examples

B Aset R of rules for defining the set E C N of even
numbers is X, = { Ry, Rz } where

e
0 (Ry) o2 (R2)

6 € E iff thereis a deduction of 6.

B Suppose that Z is any set, which we think of as an
alphabet. Each element | of X is letter. We inductively
define the set Z* of words over the alphabet Z by

ey YW,

| ww

23



CO3008 Semantics of Programming Languages

Some Notation for Rules

B Arule Risa pair (H,c) where H is any finite set.

B Note that H might be &, in which case we say that R
is a base rule.

- (R)

C

B [fH isnon-empty (sayH = {hy,...,h¢} where 1 <K)
we say Ris an inductive rule.

hy hy ... hg

(R)

4 N

- _/

24



CO3008 Semantics of Programming Languages

-

-

Inductively Defined Sets

B Given a set of rules, a deduction is a finite tree such
that

— each leaf node label c occurs as a base rule
(@,C) € R

— for any non-leaf node label c, if H is the set of
children of cthen (H,c) € X is an inductive rule.

B The setl| inductively defined by R consists of those
elements e which have a deduction with root node e.

25



CO3008 Semantics of Programming Languages

/ An Abstract Example
Let R be the set of rules { R;, Ry, R3, R4 } where

R1:(@,u1), RZZ(@,U3), R3:({U1,U3},U4),

Rsa = ({u1,U3,Us }, Us) Rs = ({U2,U3 }, Us)

Then a deduction for us is given by

Qhe inductively defined set is | = { uj,us, ug, Us }

_/

26



CO3008 Semantics of Programming Languages

/ Rule Induction

Let | be inductively defined by a set of rules . Suppose
we wish to show the truth of

Viel. |[¢i)

To do this, it is enough to show

— for every base rule ; € X that @(b) holds; and

— for every inductive rule " hk € R prove that
whenever h; € 1,

(p(hy) and @(hp) and ... and @(hy)) implies @(c)

We call ¢(h;) inductive hypotheses. We refer to carrying
Qut the — tasks as “verifying property closure”.

_/

27



CO3008 Semantics of Programming Languages

-

— [n€ Z]
n

VT € 7.

-

Example

Consider the set of trees 7 defined inductively by

T1

+(T1,To)

Let L(T) be the number of leaves in T, and N(T) be the
number of +-nodes of T. We prove

L(T)=N(T)+1

o L(n)=1and L(+(Ty,T2)) = L(T) +L(T2)

e N(n)=0and N(+(T,T2)) = N(T1) + N(T2) + 1

~

where the functions L,N: 7 — N are defined recursively by

_/

28



CO3008 Semantics of Programming Languages

-

Chapter 3

~

B Describe the programs (syntax) of a simple

imperative language called IMP.
B Review and motivate types.
B Give a type system to IMP.

B Describe compile time type checking and
type inference.

_/

29



CO3008 Semantics of Programming Languages

-

-

Overview: Syntax for IMP Programs

B Describe the basic building blocks for programs.

B Specily the program expressions.

B Comment on some grammatical conventions.

30



CO3008 Semantics of Programming Languages

-

2

B
Loc
|Cst
BCst
| Opr
BOpr

def
def
def
def
def
def

def

Program Expressions for IMP

Syntax for IMP built out of elements of the sets

{...,-1,0,1,...}

{T,F}

{11,12,...} (** NB **)
{n|neZ}

{b| beB}

{+,—*}

{=,<,<,...}

31



CO3008 Semantics of Programming Languages

~

LocUICst... UBOpr U { skip, assign, sequence, cond, while }.

the set of expression constructors is specified by

The program expressions are given by

P = c constant
I memory location
iop(P,P) integer operator
assign(l,P’) assignment
cond(P,P',P") while loop
while(P, P) sequencing

32



CO3008 Semantics of Programming Languages

-

-

B We adopt some abbreviations (known as syntactic
sugar):

— We write Piop P’ for iop(P,P’);
— | = P’ fOI‘ aSSign(|7 Pl)’
— P; P for sequence(P,P');

B Bracketing conventions:

— Arithmetic operators group to the left. Thus
P1 op P2 op P3 abbreviates (P1 op P2) op P3

— Sequencing associates to the right.

33



CO3008 Semantics of Programming Languages

-

Overview: Types for IMP Programs

Explain what a type is.

Motivate the uses for types.

Explain some terminology.

Define IMP type checking (compilation checks).

Define IMP type inference.

~

34



CO3008 Semantics of Programming Languages

/ Defining and Motivating Types \

Types in a programming language are

e collections of objects (“sets”), with

e collections of operations acting on these objects.

The type int consists of the collection of integers, together
with operations such as +, —, < and so on. The action of
< might be specified as

(int,int) — bool

- _/

35



CO3008 Semantics of Programming Languages

-

-

~

B Statically typed languages carry out type checking at
compile-time. Needs some explicit type information.

B Uses of types

— Expressions organized to reduce program errors.

— Polymorphism means functions can have many
types. This allows code re-use.

— Types structure data, using ADTs and modules.

_/

36



CO3008 Semantics of Programming Languages

-

-

B Run time errors

— trapped error — execution halts immediately.

— An untrapped error — execution does not
necessarily halt. An example is accessing data past
the end of an array, which one can do in C!

B Alanguage is safe if all syntactically legal programs
do not yield certain run-time errors.

B JAVA was claimed to be safe, but in 1997 this was
shown not to be the case. Proof uses MC 308 methods!

37



CO3008 Semantics of Programming Languages

-

-

~

Technical Definitions

B [fPcan be assigned a type o we write P :: 0 and call
the statement a type assignment.

B Type safety is the property thatif P :: o then certain
kinds of errors can not occur at P’s run-time.

B Given P and o, type checking validates P :: ©.

B Given P, type inference is the process of trying to
find o for which P :: c—the process can fail.

_/

38



CO3008 Semantics of Programming Languages

4 N

Types for IMP

B The types of the language IMP are given by the
gramimar
0 = int|bool|cmd

B A location environment L is a finite set of (location,
type) pairs, with type being just int or bool:

L=Iq:int,... lq:7int, lqpq i2 bool,...,Im i bool

B Given £, then any P whose locations all appear in L
can (sometimes) be assigned a type; we write P :: g to

indicate this.

- _/

39



CO3008 Semantics of Programming Languages

-

[anyne Z] I INT

.. TRUE

n::

Py ::int

I ::inte L]

Int T :: bool

~

P> o int

[ bop € BOpr]

|27 int P, bop P, :: bool

| ;O

P::o

skip :: cmd

Py ::bool Po::cmd P3::cmd

If P1 then P> else P3 :: cmd

-

| =P :

- cmd

P1:: bool P> ::cmd

while P; do P> :: cmd

F :: bool

.. BOP

_/

40



CO3008 Semantics of Programming Languages

-

Example: Deduction of a Type Assignment

int 5:int D3 D4

| >5 :: bool D2 |l:=1—21:I":=I"x] :: cmd

if | >5thenl’":=1else (I:=1+1;1":=1"xl) :: cmd

41



CO3008 Semantics of Programming Languages

-

-

~

B Given £ and P, there is an algorithm which will infer

Type Inference

if P can be assigned a type.

— If such a type exists we say P is typable. The
algorithm will succeed and will output the type.

— If not, the algorithm fails.

B In areal language, such type inference is often
performed by the compiler.

B Given £ and P, we define a function ® which given P

as input will either return a type for P, or will FAIL.

_/

42



CO3008 Semantics of Programming Languages

(D(Pl bOp Pz)

bool

FAIL

bool

FAIL

ifl ;:te L,and T=int or bool

otherwise

if (Py) = int and ®(P,) = int

otherwise

43



CO3008 Semantics of Programming Languages

CD(whiIe Pl do Pz)

-

cmd i P(l) =P(P) =T,
and T =int or bool

FAIL otherwise

cmd  if ®(P1) = bool and ®(P,) = cmd

FAIL otherwise

_/

44



CO3008 Semantics of Programming Languages

/ Chapter 4 \

B Explain how IMP programmes execute—an
operational semantics.

B Show that the type of a program does not
change on execution.

B Show that a program always gives the same
answer when run—IMP is deterministic.

Kl Typed programs don't yield certain errors.

_/

45



CO3008 Semantics of Programming Languages

-

-

Overview: Transition Semantics

B Motivate and define transition semantics—a method
for stating precisely how a program executes.

B Give some examples.

46



CO3008 Semantics of Programming Languages

-

-

States

B A state sis a partial function Loc — ZUB.
B Forexamples=(l;— 4l — T,l3+— 21)

B There is a state denoted by s{l—c} : Loc — Z UB which
is the partial function

def C if ' =1

s(1") otherwise

B We say that state sis updated at | by cC.

47



CO3008 Semantics of Programming Languages

/ Transition Semantics \

Consider the following transition, which models one step in a
program execution

(1:=245,{"—=8)) ~ (I:==7,{"—8))

~s (skip, (I"+— 8,1 — 7))

e The elements of Exp x States will be known as
configurations.

e We shall inductively define a binary relation ~~. We call it
transition relation, and any instance of a relationship in ~
is called a transition step.

- /

48



CO3008 Semantics of Programming Languages

-

| provided that s(1) is defined |~~LoOC

(I,8) ~(s(l),s)

(P1,8) ~ (P2, 8)

~~>0Pq
(PLopP,s)~ (P2opP,s)

(P17 S) ~ (P27 S)
~~>0P2

(nopPy,s) ~ (nop P2, s) (npopny,s)~ (NLopny, s)

(P17 S) ~ (P27 S)
~~>ASS1

(I:'=Py,8) ~ (I:=P5, 9) (I:=c, s) ~ (skip, S{i-sc})

-

~

~~>0P3

~~>ASS2

_/

49



CO3008 Semantics of Programming Languages

50

-

(Plv Sl) ~ (P27 SQ)
(P1;P,s1) ~ (P2; P, )

~>SEQ2

TSR (skip P, s) o (P, )

(P,s)~ (P, s)

D

~~COND1

(if Pthen Py else P2, S) ~ (if P’ then Py else P, S)

D

~~>COND2
(if T then Py else P, ) ~~ (P1,9)

(while P1 do P2, S) ~ (if P1 then (P2 ; while P; do P») else skip, S)

-

~~LOOP

~

_/




CO3008 Semantics of Programming Languages

-

Examples of Transitions

A deduction (for any P):

-

, : ~~>ASS?
(I":=2,8) ~ (skip, S{l'—2})
~~SEQ
(I"'=2;1:=1—-1,s) ~ (skip; l:=1 -1, s{»2}) '
((I":=2;1:=1-1);P,s) [~] ((skip; I:=1=1); P, s{r~2})

~+SEQ1

51

_/




CO3008 Semantics of Programming Languages

(Q, (I —1,I" = 0))

/Qiswhilel>QdoQ’whereQ’isI’::I’+g;I::I—i. \

(if | > Othen Q' ; Qelse skip, (I — 1,I" — 0))
(if 1 > Othen Q' ; Qelse skip, (I — 11" — 0))

(if T then Q' ; Qelse skip, (I — 1,1 — 0))

(I":=2;1'=1-1);Q,{(I—211"—0))
((skip; 1:=1-21);Q, (I — 11" — 2))
(I=1-1;Q,(I—~11"—2)

52



CO3008 Semantics of Programming Languages

-

-

Overview: Properties of the Semantics

B Program types do not change on execution.

B IMP is deterministic—the final result of a program
run is unique; and in fact the “stages” of the run are
unique.

53



CO3008 Semantics of Programming Languages

-

-

Type Preservation

B Given £, sis sensible for Lifforalll :: oin L

e S(l) is defined (all locations initialized), and
o S(l) :: o (the type of data stored in a location maiches

the type of the location).

B Take £ and sensible s;. Then ~ satisfies

— LetP1 :: 0. Then for any (P1, 1) ~ (P2, S2) we have
P> . 0.

— Further, if o is either int or bool, then 51 = $,.

_/

54



CO3008 Semantics of Programming Languages

-

Proving Type Preservation

V(P1,81)~ (P2,s) |Vo. (P1::0implies Py :: 0)

We have to check property closure for each of the rules
defining ~~. We look at a couple of examples.

(Property Closure for ~~ roc) We have to show that
| -2 o implies §(I) :: o for any 0. This is immediate as sis
sensible.

-

_/

55



CO3008 Semantics of Programming Languages

-

(Property Closure for ~~ opry) The induction hypothesis is
Vo. (P1::oimplies Py :: 0) TH

(Plv S) ~ (P27 S)

~~0P2
(D op Py, S) M (DOp P2, S)

We have to prove

Vo. (nopP;p::oimpliesnopPs:: 0) C

-

56



CO3008 Semantics of Programming Languages

-

If

then

-

IMP 1s Deterministic

The operational semantics of IMP is deterministic:

(P,s) ~ (P, 9) and (P,s)~ (P",d)

P=P' and d=¢

57



CO3008 Semantics of Programming Languages

-

Proof of Determinism

We can prove this result by Rule Induction. We show

V(P,s)~ (P, 9)

V(X,Xx), (P,s)~ (X,x)implies (X=P and x=795)

58



CO3008 Semantics of Programming Languages

-

We consider property closure for

(Plv S) N (P27 S)
(| Z:P;L,S) ~ (| Z:P2,S)

~~>ASS1

The inductive hypothesis TH is
V(Y,y), (P1,9) ~(Y,y) implies (Y=P;and y=5)

We need to prove the conclusion C

-

V(Z,2), (I:=P1,s)~(Z,z) implies (Z=(I:=P2) and z=

S)

_/

59



CO3008 Semantics of Programming Languages

-

-

Overview: IMP Is Type Safe

B We describe some special programs;
B we describe some special kinds of transitions, and

B use the ideas to show IMP is type sate.

60



CO3008 Semantics of Programming Languages

-

-

Different Kinds of Transitions

B We define V ::= c| skip.

B (V,s)configurations are called terminal. They
indicate “proper” termination of program runs.

B Any configuration (P, s) is stuck if P is non-terminal
and there is no (P’, §) for which (P, s) ~ (P, 9).

B WARNING: Note that any terminal configuration has
no transition.

_/

61



CO3008 Semantics of Programming Languages

-

-

B Given any configuration (P, s) there is a unique
sequence of transitions

(P7 S) — (Pla Sl) 2 (PZ, 52) .
B An infinite transition sequence takes the form

(P,s) = (P1,81) ~ (P2,%) ~ ...~ (Pi, §) ~ ...

where no configuration (P;, §) is terminal or stuck.

62



CO3008 Semantics of Programming Languages

-

-

~

B A finite transition sequence for a configuration
(P, s) takes the form

(P,s) =(P1,s1) » (P2,%) ~ ...~ (Pm, Sn) (m>1)

B If (Py, sym) is either stuck or terminal we call the
transition sequence complete.

B Make up lots of examples of these ideas!!

63



CO3008 Semantics of Programming Languages

-

-

Some Results about IMP Type Safety

B Letsbesensible for L. Thenif P :: g is any type
assignment, (P, S) is not stuck.

B Ifalso (P,s) ~ (P, ), then s is also sensible.

B If(P,s)~* (P, 9), then (P, s) cannot be stuck (but
might be terminal). Thus IMP is fype safe.

This follows from the two results above—why?

_/

64



CO3008 Semantics of Programming Languages

-

type assignments.

(Property Closure for :: iop)

are stuck, where P71 :: intand P> :: int.
We have to prove that (P1iop P2, s) is not stuck, where
P1iop P> :: int.

Let’s work this on the board . ..

-

~

We prove VP :: g| (P, s) is not stuck |by Rule Induction on

The inductive hypotheses are that neither (Py, S) or (P2, S)

65



CO3008 Semantics of Programming Languages

/We prove, for a given L,

~

V (P, s)~ (P, d)|Vo. (p:oand ssensible) impliess sensible

by rule induction for ~.

We check property closure for

~~>ASS?2
(I:=c,s) ~ (skip, S{l—c})
S{l—c} is sensible, that is

B Alllocations in £ are in the domain of definition of
S{l—c}.

B VI':: tin £ wehave s{i~c}(l') :: T.

-

Suppose sis sensible, and | :=c :: 0. We need to verify that

_/

66



CO3008 Semantics of Programming Languages

-

-

Overview: Evaluation Relations

B We describe a semantics which tells us

“immediately” the final result of a program run.

B We show how this connects with transitions.

67



CO3008 Semantics of Programming Languages

-

Consider the following evaluation relationship

An Evaluation Relation

(V=T ;1:=4+1, () I (skip, {I' = T,1 —5))
The idea is
Starting program || final result

We describe an operational semantics which has
assertions which look like

(P,s){ (n,s) and (P, s1)  (skip, )

-

68



CO3008 Semantics of Programming Languages

-

~

| provided | € domain of s]{Loc

(1,9 4 (s(l),s)

(P1,8) 4 (n1,8) (P2,8) { (N2, 9)

Jop;
(P1bopP2,s) |} (npbopny,s)
(P,9)d(n,9) (P,s){(b,9)
JASSy {JASS?
(I'=P,s) | (skip, S{i~n}) (I:'=P,s) | (skip, S{i~b})

(P1,s1) { (skip, 82) (P2, s2) I (skip, s3)
(Pl . Pz, Sl) l} (Skip, 53)

JSEQ

- _/

69



CO3008 Semantics of Programming Languages

-

(P,s1) 4 (E,s1) (P2,s1) U (skip, s2)
(if P then Py else P2, 51) | (skip, S)

{/COND>

(P1,s1) 4 (T,5) (P2,s1) | (skip, s2) (while P1do P2, sp) | (skip, s3)

(while Py do P2, 51) I} (skip, S3)

(P17 S) ll (E7 S)
(while P1 do P2, s) |} (skip, S)

{JLOOP2

70




CO3008 Semantics of Programming Languages

-

and

Example Evaluations

We derive deductions for

((3+2)%6,8) 4 (30,9)

(whilel =1dol:=1-1, (I — 1)) | (skip, {| — 0})

71



CO3008 Semantics of Programming Languages

-

(V,9),

-

A Mutual Correctness Proof

For any configuration (P, s) and terminal configuration

(P,s) ~* (V,s) iff (P,s){(V,9)

where ~~* denotes reflexive, transitive closure of ~-.

72



CO3008 Semantics of Programming Languages

-

We break the proof into three parts:

— Prove (P,s) | (V,s) implies (P, s) ~* (V,s) by Rule
Induction.

— Prove by Rule Induction for ~~ that

(P,s)~ (P,9) | (V,s) implies (P,s) | (V,s")

— Use previous results to deduce

(P,s) ~*(V,s) implies (P,s) | (V,9)

-

73



CO3008 Semantics of Programming Languages

74

-

-

V(P,s) | (V,9)

We shall prove by Rule Induction that

(P, ) ~* (V,s)

(P1,81) ~" (T, s1)

(P2,s1) ~

* (skip, )

(while P1 do P2, sp) ~™ (skip, S3)

We need to prove that

(Whi|e P11 do P>, Sl) ¥ (Skip, 83) (C)

—~~ o~~~
L I I
wWw NN
—_— ~—




CO3008 Semantics of Programming Languages

-

Let us write Q for while P; do P>. Then
(Q,s1) ~» (if P1then Py ; Qelseskip, s1)
~* (if T then P2 ; Qelse skip, S1)
~  (P2;Q,91)
~* (skip; Q, %)
~ Q)

~*  (skip, S3)

which proves (C).

-

~

(~ LooP)

(H1) & (~ CONDy)
(~ COND)

(H2) & (~ sEQq)
(~ sEQ2)

(H3)

75



CO3008 Semantics of Programming Languages

-

V(P,s)~ (P, Ss).

N

~

We shall prove by Rule Induction for ~~ that

vV(iV,s). (P,s) | (V,s) implies (P,s) | (V, 5"

Let us just consider property closure for the rule (~ Loor). Pick
any (V, s’) and suppose that

(if P1 then (P2 ; Q) else skip, s) || (V, &) (1)

We need to show that

(Q,9) I (V,s") (2)

But (1) can hold only if it has been deduced either from ({} cOND;)

or ({} conDy). In either case V must be skip.

9

76



CO3008 Semantics of Programming Languages

-

Chapter 5

~

-

B Describe the CSS machine, which executes

compiled IMP programs.

B Show how to compile IMP programs to CSS

instruction sequences.

B Give some example executions.

_/

77



CO3008 Semantics of Programming Languages

-

Motivating the CSS Machine

An operational semantics gives a useful model of

evaluating configurations.

If P |°V, how do we effectively compute V from P? The
transition relation is not quite right.

It is easy for humans to see that
3+2)<6 ~  5<6

but establishing this involves a deduction tree...

-

IMIP—we seek a more direct, “computational” method for

~

_/

78



CO3008 Semantics of Programming Languages

~

We seek a way of taking a program P, and mechanically
producing the value V:

P=Ph—~P—~P—..—>B=V

“Mechanically produce” can be made precise using a
relation P — P’ defined by a set of rules in which there are
no hypotheses. Such rules are called re-writes:

N+MmM~m+n

Establishing P — P’ will not require the construction of a

deduction tree:
\_ %




CO3008 Semantics of Programming Languages

-

Pol—>P1I—>P2I—>P3I—>P4...I—>V

Rewrite Rules (Abstract Machine)

\dedUCUOH tri/ \iﬁlductmn trﬁ/ \deductlon tree

P~

Transition Semantics

/

80



CO3008 Semantics of Programming Languages

/ An Example
Let s(I) = 6. Execute 10 — | on the CSS machine.
First, compile the program.

[10—1] = FeTCH(I) : PUSH(10) : OP(—)
Then

FETCH(I) : PUSH(10) : OP(—) || . || S

(o)
w

— | PUSH(10) : OP(—)

— | OP(—) || 10:6 || S

— . |4 |S




CO3008 Semantics of Programming Languages

-

-

Defining the CSS Machine

B ACSS codeCisa “list”:
INS = PUSH(c) | FETCH(Il) | OP(0op) | SKIP
| sTO(I) | BR(C,C) | LOOP(C,C)
C == .|ins|ins:C
The objects insare CSS instructions.
B A stack ois produced by the grammar

o:=.|c|c:0O

~

82



CO3008 Semantics of Programming Languages

-

-

~

B ACSS configuration is a triple (C, g, s).

B ACSS transition takes the form

(Clao-lasl) — (C27 02732)

B Defined inductively by a set of rules, each rule having

the form
R

(Clao-lvsl) — (C27 02782)

B We call a binary relation (such as —) which is
inductively defined by rules with no hypotheses a
re-write relation.

_/

83



CO3008 Semantics of Programming Languages

-

PUSH(c):C | a|ls| — |C|c:a]|s
FETCH(l):C | o|s| = |C| s(l):o|s
OP(op):C|ni:np:o|s| — |C|ingopn:0
SKIP:C|o|s| — |C|lO|S
STO():Clc:a|s| —> |C| gl S{lc}
BR(C1,C):C||E:0|s| — |CG:C|a|s
LOOP(C1,Cp):C | 0| S| >

Ci: BR(CZ : LOOP(Cl,Cz),SK“D) Cllo

84



CO3008 Semantics of Programming Languages

-

[skip]

[P1; P2

[if P then Py else Py

[while Py do P,

PUSH(C)

FETCH(I)

[P2]] - [[P1] : oP(op)
[P] : sTo(1)

SKIP

[Pa]] - [P2]

[P - BR([P4]; [P2]])

LOOP ([P}, [[P2])

85



CO3008 Semantics of Programming Languages

/ An Example Execution \

Execute | :=2;1":=5x*| on the CSS machine. First, compile
the program.

PUSH(2) : STO(l) : FETCH(I) : PUSH(5) : OP(x) : STO(I)

Then

PUSH(2) : STO(I) : FETCH(I) : PUSH(5) : OP(x) : STO(I")

— ¥

(I = 2,I"— 10)

o Y

86



CO3008 Semantics of Programming Languages

-

Chapter 6

~

-

B Motivate a language in which we can write
higher order functions.

B Describe its types.
B Describe its expression syntax.
B Outline a type assignment system.

B Explain how to write simple programes.

_/

87



CO3008 Semantics of Programming Languages

-

-

Overview: Motivating and Defining FUN

B Give a broad outline of FUN.

B Define its syntax and type system.

B Explain some technical conventions and definitions.

_/

88



CO3008 Semantics of Programming Languages

-

Examples of FUN Declarations
cst :: Int
cst = 76
f Int -> Int
f x =X
g:: Int ->1Int -> Int
g Xy = Xty
h:: Int ->1Int ->1Int -> Int
h Xy z = Xty+z

-

~

89



CO3008 Semantics of Programming Languages

-

enpty list :: [Int]
empty list = nil

11 :: [Int]
|11 =5:(6:(8:(4:(nil))))

12 .. [Int]

|12 = 5:6:8:4:ni |

h :: Int

h =hd (5:6:8:4:nil)

90



CO3008 Semantics of Programming Languages

91

-

P
f st

length ::
map

P
fst (x,Vy)
| ength |

mp f |

-

(Int,Int)

. (Int,Int) -> Int

[Bool] -> Int

.. (Int ->Bool) ->[Int] -> [Bool]

(3,4)
= X

=1f elist(l) then O else (1 + length t)
=1f elist(l) then nil else (f h) :

(mep f t)

_/




CO3008 Semantics of Programming Languages

/ FUN Types \

B The types of FUN® are
0o == int|bool|0o— 0| (0,0)]||O]
We shall write Type for the set of types.
B We shall write
0,—>02—~03— ... —>0n—0

for
01— (02 = (03— (... > (Oh — 0)...))).

K Thus for example 01 — 02 — 03 means 0; — (02 — 03)./

92



CO3008 Semantics of Programming Languages

-

-

FUN Expressions

X variables

K constant identifier

F function identifier

fst(E) first projection

E.Eo function application

tI(E) tail of list

Ei:E> cons for lists

elist(E) Boolean test for empty list

Bracketing conventions apply ...

93



CO3008 Semantics of Programming Languages

-

-

Substitution (for next chapter)

B The variable x occurs in the expression x op 3 op X.

B IfEandE;,..., E,are expressions, then
E[E1,...,En/X1,...,Xn] denotes the expression E with E;
simultaneously replacing x; for each 1 <i <n.

B Eg

(U+X+y+6)[2,% 2/u,y,X| =2+2+X+6

94



CO3008 Semantics of Programming Languages

-

-

~

Overview: FUN Type System

B Show how to declare the types of variables and
identifiers; an identifier is (the name of) a constant or
function.

B Define a type assignment system.
B Give some examples.

B Verify that FUN is monomorphic—each program has
a unique type.

_/

95



CO3008 Semantics of Programming Languages

-

-

~

Contexts

B When we write a FUN program, we shall declare the
types of variables, for example

X ::int,y :: bool,z :: bool

B A context takes the form

[ =X1:.01,...,%X . Op.

B Thus a context specifies type declarations for
variables. The variables must be distinct.

96



CO3008 Semantics of Programming Languages

-

-

~

Environments

B When we write a FUN program, we want to declare
the types of constants and functions.

B Asimple example of an identifier environment is
maxint :: int,negate :: bool — bool

B and another is plus :: (int,int) — int
B and another is

K :: bool, map :: (int — int) — [int] — [int], suc :: int — int

_/

97



CO3008 Semantics of Programming Languages

-

-

B An identifier type looks like
01 — O2 — 03 — ... — Ok — O where kis a natural
number and ¢ is NOT a function type.

B If k=0 then the identifier is called a constant.
B Ifk > 0then the identifier is called a function.

B An identifier environment looks like

98



CO3008 Semantics of Programming Languages

-

-

Example Type Assignments

B With the previous identifier environment
X :iint,y iiint,z o intE mapsuc(X:Yy:Z:niljy) :: [int]
B We have

@ = if T then fst((2 : nilint, nilint)) else (2: 6 : niljne) =3 [int]

99



CO3008 Semantics of Programming Languages 100

4 N

Inductively Defining Type Assignments

Start with an identifier environment and a context. Then

(wherex::o€l) ::var — 11 INT
[FX::0 [[Fn::int

[FE7:int THE> . iInt
r|—E1iOpE2 Lont

.. OP1




CO3008 Semantics of Programming Languages

-

[FE1::00—>01 T FHFE>:: O

;AP
[FE1Ep i1 01
FI—E::(Gl,GZ)::FST (wherel :: 1€ 1)
M+ fst(E) :: 01 P
| - [FE1::0 THE:: [0]
[ Fnilg @ [O] MFEp:Ep it O]

-

.. IDR

.. CONS

_/

101



CO3008 Semantics of Programming Languages

-

FUN is Monomorphic

Given I, andE, if there is a type ¢ for whichT -E :: o,
then such a type is unique.

We verity

V(IFFE::01). |Voo. (THE::ozimplies o1 = 02).

using Rule Induction. We check property closure for the
rule Hp:

-

_/

102



CO3008 Semantics of Programming Languages

-

The inductive hypothesis is
Vop, (I'FE :: o2 implies [o] = 02)
wherel FE :: [0].

F-E::|O]
Fhd(E) :: 0

.. HD

We wish to prove that
Voo, (F'Fhd(E) :: oo implies 0 = 0y)

where " - hd(E) :: o.

-

(T)

103



CO3008 Semantics of Programming Languages

-

-

Overview: Function Declarations and Programs

B Show how to code up functions.
B Define what makes up a FUN program.

B Give some examples.

~

104



CO3008 Semantics of Programming Languages 105

4 N

Introducing Function Declarations

B To declare plus can write plusx = fst(X) + snd(X).

B To declare fac

facx=if Xx==1then 1 else X*fac(x—1)

B And to declare that b denotes T we write b =T.

B In FUN°®, can specify

K=E Fx=FE Gxy=FE"...




CO3008 Semantics of Programming Languages 106

4 N

An Example Declaration

Let I =11 :: [int] = int — int, |2 :: int — int, I3 :: bool. Then
an example of an identifier declaration dec; is

1y = hd(ii(1))) 4 Iy

[oX = Xx%xX
I3 = T
lsUVW = U+V+W




CO3008 Semantics of Programming Languages 107

4 N

Defining Declarations

Let I =11 ::14,...,ln :: Imwhere for example
lj=01 > 02—03— ... > 0k—0j. (je{l,...,m})

Then an identifier declaration dec; consists of
| X1... Xk = E.l.

foreach je{1,...,m}

- _/




CO3008 Semantics of Programming Languages

declaration dec; is

and that

-

/ An Example Program

FXYy = X+7-y

K = 10

Let I =F :: int — int — int,K :: int. Then an identifier

An example of a program is|dec; in F81 <K

dFF3 <K :: bool

X:ioint,ylintEX4+7—y::int and

gFK ::int

~

. Note that

_/

108



CO3008 Semantics of Programming Languages

-

dec[

X1 i

Programs

In P where gFP:: 0

and the declarations in dec; satisty

O1,...,Xk - GkFE” .. O]

~

A program expression P is any expression containing no
variables. A program in FUNF® is a judgement of the form

109



CO3008 Semantics of Programming Languages

-

-

Gl

Example Programs

Fx=if x<1thenlelse XxxF(x—1)

R
Fixyz = iftx<lthenyelsez

%
Fox = Fix1l(xxFa(x—1)) J
code to sort | in G(3:

In F4

N Fgé

110



CO3008 Semantics of Programming Languages 111

/ Chapter 7 \

B Explain call-by-value (eager) and
call-by-need (lazy) function calling methods.

B Give FUN an eager and lazy evaluation style
operational semantics.

B Prove properties such as determinism.

B Extend the language to give local

K declarations. /




CO3008 Semantics of Programming Languages

-

-

Overview: Programs and Values

B I1ookat the notion of evaluation order.

~

B Define values, which are the results of eager program

executions.
B Define an eager evaluation semantics: P ||° V.

B Give some examples.

112



CO3008 Semantics of Programming Languages 113

4 N

Evaluation Orders

B The operational semantics of FUN® says when a
program P evaluates to a value V. It is like the IMP
evaluation semantics.

B Write this in general as P ||° V, and examples are

3+4+100°17 and  hd(2: nilin) J°2




CO3008 Semantics of Programming Languages

-

B Let Fxy=x+4y. We would expect F (2x3) (4x5) |° 26.

B We could
e evaluate 2x3to get value 6yielding F6(4x5),

e then evaluate 4«5 to get value 20 yielding F 620.

B We then call the function to get 6+ 20, which evaluates to

26. This is call-by-value or eager evaluation.

B Or the function could be called first yielding (2% 3) + (4% 5)
and then we continue to get 6+ (4+5) and 6+ 20 and 26. This

is called call-by-name or lazy evaluation.

B The order of evaluation is different.

_/

114



CO3008 Semantics of Programming Languages 115

4 N

Defining and Explaining (Eager) Values

B Letdec; be aidentifier declaration, with typical typing
F::01—>0,—>03— ... >0k—0
A value expression is any expression V produced by
Vi=c|nilg | (V,V)|EFV|V:V

where V abbreviates V; V- ... V,_1V; and 0 < | < k, and kis the
maximum number of inputs taken by F. CARE!!!

B Note that constants K are not values. Note also that | is
strictly less than k, and that if k = 1 then FV denotes F.

- /




CO3008 Semantics of Programming Languages 116

B A value is any value expression for which dec; in V
is a valid FUN® program.

B SupposethatF :: int — int — int — int and that P1 {}° 2
and P, |®5 and P3 ||° 7 with P; not values. Then

P V P \4
F F25P3

FP1 | F2 F257 |14

F2Py|F25 FP1P2 P3| 14

B Ofcourse F Py P> P3 |J°14.

- _/




CO3008 Semantics of Programming Languages

”

P,y®m P2{°n

JEVAL eop
VeV P, op P2 € mopn
PLU°T Poy®V PLU°F P3y°V
J®COND¢
if P1 then Py else P3 ||°V if P1 then Py else P3 {|°V

Pp°V1 P2°V;

(P1,P2) 4° (V1,V2)

JEPAIR

PU®(V1,V2) PU®(V1,V2)
JCEST JESND
fSt(P) Ue V1 snd(P) l}e Vo

J®COND>

117



CO3008 Semantics of Programming Languages

”

P, ISFV P, |8V, FVV, eV

where either P, or P> is not a value
AP

PPy |°V

EF[Va, .., Vig /X0 -, X 42V

[FX = Er declared in dec;| {}°FID
FVi... Vi [V

Ex °V

[K = Ex declared in dec;| {°CID
K [|eV

118



CO3008 Semantics of Programming Languages

”

P 1€ nilg PV :V PUeVv:V

J°NIL |®HD
tI(P) € nilg hd(P) |}V tI(P) eV’

P °V Py %V

{J°CONS
Pi:Py|fV:V
P 4 nilg PUeV:V
JCELIST1 JCELIST2
elist(P) ¢ T elist(P) ¢ F

119



CO3008 Semantics of Programming Languages

/

~

Examples of Evaluations
Suppose that dec; is
GX = Xx*x2
K = 3
VAL VAL
31°3 2]°2
VAL OoPpP
34°3 (x*2)[3/X] =3%2|°6
VAL CID FID
GI®G K3 G3{°6
AP
GK|°6

120



CO3008 Semantics of Programming Languages 121

4 N

VAL VAL
41°4 2|°2
VAL OP
(F,G) 4° (F,G) 4x21°8
SND FID
snd((F,G)) 4°G D G4|°8

AP




CO3008 Semantics of Programming Languages 122

4 N

Let

F:.int—>int—int—int where FXyz=x+Yy+z
B F2andF23are (programs and) values.
B F23(4+1)isaprogram, but not a value

B Note that F23is sugar for (F2)3 and that F23(4+1)
is sugar for ((F2)3)(4+1).

B In the Definitions of values, k = 3, and in F 23 we have
V=23andl =2<3.

- _/




CO3008 Semantics of Programming Languages 123

4 N

We can prove that

F23(4+1) €10

where FxXyz= x+y+ zas follows:

41°4 14°1
€ vaL
F23 J°F23 44+1]°5 T
€ ap
F23(4+1) §°10

- _/




CO3008 Semantics of Programming Languages

-

where T is the tree

21°2 31°3
2+31°5 50°5
2+3+50°10
(X+y+2)[2,3,5/%,y,2 410
J®FD
F2351°10

124



CO3008 Semantics of Programming Languages

-

-

Overview: FUN Properties of Eager Evaluation

B Explain and define determinism.

B Explain and define subject reduction, that is,
preservation of types during program execution.

~

125



CO3008 Semantics of Programming Languages

/ Properties of FUN

B The evaluation relation for FUNF is deterministic.
More precisely, for all P, V1 and V5, if

P Ue Vi and P Ue Vo
then V1 = Vo. (Thus ||°is a partial function.)

B Evaluating a program dec; in P does not alter its
type. More precisely,

(@FP::oand PJ®V) implies @+FV: o

forany P, V, 0 and I. The conservation of type during
K program evaluation is called subject reduction.

_/

126



CO3008 Semantics of Programming Languages 127

4 N

Proving Determinism

To prove determinism, we prove by Rule Induction that

VP Ue V1. |VVo. (P Ue Vo implies V1= Vz)

See the board ...

- _/




CO3008 Semantics of Programming Languages 128

4 N

Proving Subject Reduction

We prove by Rule Induction that given dec; in P

VPI®V. |Vo(@FP::oc implies @FV::o0).

The tricky rule is

Er[V1,..., Vig /X1, %] U5V
FV1...Vi eV

[FX = Ef declared in dec;] {°FD

Suppose that & - FV1...Vk :: 0 where 0 is any type. Then
we need to prove @ -V :: 0. By the induction hypothesis,
we just need to prove & Eg[V1,..., Vi, /X1,..., X 1 O.

- _/




CO3008 Semantics of Programming Languages 129

4 N

Overview: Programs and (Lazy) Values

B Define values, which are the results of program
executions.

B Define a lazy evaluation semantics: P ||' V.

B Give some examples.

- _/




CO3008 Semantics of Programming Languages 130

/ Defining and Explaining Values \

B Letdec; be aidentifier declaration, with typical
typing
F::00,—>0)—>03— ... >0k—0O

A value expression is any expression V produced by the
grammar

Vi=c|nilg | (P,P)|FP|P:P

where P abbreviates P{P> ... Pj_1P, and 0 <| < k, and k
is the maximum number of inputs taken by F.

B A value is any value expression for which dec; in V
K is a valid FUN' program. /




CO3008 Semantics of Programming Languages

”

PI (P,P2) PV
U'BsT

fst(P) ' V

PLU'FP FPP |V

where either P; or P> is not a value
U'ap

P1Py ' Vv
Er[P1,. .., Pu/X1,-- %] 'V

[FX = Er declared in dec;] |J'FID
FPi...P 'V

P Y P:Ps PV

'uD
hd(Py) §' V

131



CO3008 Semantics of Programming Languages

4 N

Examples of Evaluations

Let I be F :: int — [int], and dec; be Fx=x: F (x4 2). Then
there is a program dec; in hd(tl(F1)). We prove that
hd(tI(F1)) 4' 3

' var

L:F(1+2) W 1:F(1+2)
U Fip

F1U'1:F(1+2) T
t(FL) I (1+2):F((L+2)+2) T
hd(tl(F1)) 4'3

132



CO3008 Semantics of Programming Languages

-

T

(1+2):F((1+2)+2) ' (1+2):F((1+2)+2)

' vaL

F(L+2)§' (1+2):F((1+2)+2)

-

133



CO3008 Semantics of Programming Languages

-

this programme to a value V

R R
(3,large0) ' (P1,P2) PV

UV st
fst((3,large0)) | V

for which we must have P; = 3, P> = large0, V=3 and R
and R are both instances of |}' var.

-

~

Let largex=1+largex in fst((3,large0)). We try to evaluate

_/

134



CO3008 Semantics of Programming Languages

-

-

B Explain unnamed functions and local definitions.

Overview: Locality

B Describe free and bound variables.

B Extend the syntax of FUN, and its operational

semantics.

B Give some examples.

135



CO3008 Semantics of Programming Languages 136

4 N

Motivating Functions and Locality

B We can define unnamed functions. The expression
fnxX.X+2

is a program whose intended meaning is the function
which “adds 2”. But it is not (necessarily) named by an
identifer.

B (fnx.x+2)4 will evaluate to 4+ 2 (and thus to 6).

- _/




CO3008 Semantics of Programming Languages 137

4 N

B IfFx=x+2thenF and fnx.x+ 2 would be
interchangeable. F is the name of the function.

B The syntaxlet Xx= Ej in E, gives local declarations. For
example let X=5in X+ Y+ X

B We explain “local” with the next example:

letXx=7in (X,let X="5in X+ Yy+X)




CO3008 Semantics of Programming Languages 138

4 N

Syntax and Type Assignments

E:=...|fnxE|letx=EinE

B We call fnx.E a function abstraction. We call E the
body of fnx.E.

B We call let x=E; in E> alocal declaration.

[FEy::0 THEE/X :: 0 [X::oFE::1
LET ABS
[Hletx=E1inEy:: 0 F-fXE::0—T

- _/




CO3008 Semantics of Programming Languages

-

-

Conventions and Examples

fnX.E means fnx.(E)
let X=Ej in E; means let x=Ej in (Ep)
Thus fnx.fny.y+2 =fnx.(fny.(y+2))

fnX.fny.X4+y+2=fnx.(fny.((X+Yy)+2))

letXx=4inlety=Tin (X,y) =letx=4in (lety=Tin (X,y))

_/

139



CO3008 Semantics of Programming Languages 140

/ Motivating Free and Bound Variables \

. def : : : ..
B Write F = fnXx.E;. Given any expression Ep, in a transition

semantics
F Eg > El[Ez/X]

Thus if E; is X+ Y, then
def
FEz v (X+Y)[E2/X] = E2+Yy

and the intended meaning of F = fnx.x+yis “the function
with adds y”.

B E[x/y| ought to be “the function which adds x”. But in fact
E[x/y| is clearly the expression fnx.x+ X, which is the function
which doubles an integer input! J

-




CO3008 Semantics of Programming Languages 141

4 N

B We say that the substituted x falls in the scope of the
scoping X.

B The expressions fnx.x+Yyand fnX'.X' +y can be
regarded as “the same”. We say that x and x’ are bound,
and yis free.

B Note that

(fnx.X+y)[X/y] = fnx' . X +x

B We re-name the bound variable xin fnx.X+Yy as a new
variable X’ so that when x is substituted for y it does not
become bound.

- _/




CO3008 Semantics of Programming Languages

-

-

Definitions of Free and Bound Variables

B The syntax tree for fnv.E’ looks like this

fn
PN

~

scoping variable — \ = +— scope

B Inletv=E;in Ep, the scope of vis E>. We also call
such a v a scoping variable.

_/

142



CO3008 Semantics of Programming Languages 143

4 D

B Suppose xdoes occur in E. Each occurrence of x (in E)
is either free or bound (but not both!!).

B We say that an occurrence of X is bound if and only if
the occurrence of X is in a subexpression of the form

e fnx E or

e let X= Ejin E; where the occurrence is in Eo.

B Thus an occurrence of X in E is bound just in case

— the occurrence is a scoping variable;

— the occurrence occurs within the scope of a
scoping occurrence of X.

_/




CO3008 Semantics of Programming Languages 144

4 N

B If there is an occurrence of x in such E’ or E> then we
sometimes say that this bound occurrence of x has been
captured by the scoping x.

B An occurrence of xin E is free iff the occurrence of x
is not bound.

- _/




CO3008 Semantics of Programming Languages

-

”

Substitution Examples

(fnxx+y)[2/y] = faxx+2
(fnxx+y)[x/y] = fnxX.X+Xx
(letx=y+4inXx+z+7)[u+v/zl = letx=y+4inx+(u+v)+7
(letx=y+4inx+z+7)[u+y/z] = letx=y+4inx+(u+y)+7
(letx=2z4+4—XinX+z2+7)[X+Yy/7 =

let X = (X+Y)+4—XinX + (X+y)+7
(letu=uinu+7)[7/u = letu=7inu+7

145



CO3008 Semantics of Programming Languages

-

Extending the Eager Semantics

P, USfaxE P, eV EV//X |V

°an
PPy J°V

E1 ~Ue V1 Ez[Vl/X] lLeV
let X = Ej in E5 |8V

JCLET

146



CO3008 Semantics of Programming Languages

4 N

An Example

VAL VAL
3°3 2°2
OP
? 7?7 (x+2)[3/4=3+2y°5
VAL AA
nil Y° nil (fax.x+2)3°5
CONS
(fax.x+2)3: nil Y5 : nil
HD

hd((fnx.x+2)3: nil) °5

147



CO3008 Semantics of Programming Languages

-

Chapter 8

-

B Give overview of polymorphism.

B Introduce type variables into FUN®,
B Give examples of type assignments.
B Explain local polymorphism.

B Explain the polymorphic type inference
algorithm.

_/

148



CO3008 Semantics of Programming Languages

-

B Explain different kinds of polymorphism.

B Give examples of type assignment deductions.

-

~

Overview: Simple Type Deductions with Variables

149



CO3008 Semantics of Programming Languages 150

4 N

Varieties of Type System

B Alanguage is strongly typed if every legal expression
has at least one type.

B A strongly typed language is monomorphic if every
legal expression has a unique type (for example Pascal).

B A strongly typed language is polymorphic if a legal
expression can have several types (for example
Standard ML and Haskell and Java).

- _/




CO3008 Semantics of Programming Languages 151

4 N

B Overloading: The same symbol is used to denote
(finitely many) functions, implemented by different
algorithmes.

B Parametric: One expression belongs to a family of
structurally related types. The expression encodes one
algorithm which works at each type in the family. An
example is list sorting.

B Implicit: This is a particular form of parametric
polymorphism, and we meet it later on.

- _/




CO3008 Semantics of Programming Languages 152

/ PFUN Type System \
B The set Typeof types of PFUN is inductively
specified by the grammar
o .= Xlint|bool|o— 0| (0,0)||0]

B Each type is a finite tree. Two types are equal if the
trees are identical. Examples on the board.

B We shall write TV(0) for the set of type variables
appearing in O.

B The rules for deriving type assignments are as before.

Kl PFUN expressions are from the extended language. /




CO3008 Semantics of Programming Languages

-

Examples of Type Assignment Deductions

Prove that T : nil :: [bool].

TRUE NIL
=T :: bool = nil :: [bool]

=T :nil :: [bool]

CONS

153



CO3008 Semantics of Programming Languages 154

4 N

Show that " - fnx.(0:X) :: [int] — |int] for any contextI".

We produce a deduction tree: note that the expression is a
function, so the final rule used in the deduction must be

aBs, where E=0:x, and 0 =1 = [int].
INT VAR
[,x:: [int]-0::int X [int] =X [int]
[,x o [int] FO:x:: [int]
[Ffnx.(0:x) :: [int] — [int]

CONS

ABS




CO3008 Semantics of Programming Languages

Show that hd(y: 3) is not typable in PFUN in any context .

Working backwards we have:

VAR INT
[Fy::o -3:: 0]
CONS
[Fy:3::|0]
HD
FFhd(y:3) :: 0

Looking at the rule int (which must be used to type 3) we
must have int = 0], a contradiction. So the expression
cannot be typable.

- _/

155



CO3008 Semantics of Programming Languages 156

4 N

Show that - fn f.( nil, T) :: ([X] = Y) — (Y, bool).

VAR
froX]=>YHf[X]=Y

NIL

f i [X]—=YFEnil:: [X] A
fooX]=>YHFfnil:2Y D
f:o[X|=YHF(fnil;T) :: (Y,bool)
Ffn f.(fnil,T) 2 ([X] =Y) — (Y, bool)

PAIR

ABS




CO3008 Semantics of Programming Languages 157

/Show that (fn f.fy)yis not typable for any context of the \
formy :: 1. (Note that yis the only free variable).

We suppose, for a contradiction, that the expression is
typeable. Let us call this type 01, say. We have:

VAR VAR
y..t,fiiooFfii03—>01 y..T,f:iooFy 03

AP
y..tT,fiioFfy:i o

ABS
y.:tHfnf.fy:: 00— 01 D

AP

y. Tt (fnf.fy)y:: 01

where D is

VAR

yiiTkYy 0o

- _/




CO3008 Semantics of Programming Languages 158

4 N

Motivating Type Substitutions

B 6+ T hasno type.
B 1:: oholdsonlyforo=int.
B However, - fnx.X :: 0 — o holds for any type o.

B In PFUN, of all the types that can be assigned to an
expression, there is a “most general” one: all other types
are instances of it. We call this the principal type.

B The principal type of fnx.xis X — X; any type ¢ — 0 is
obtained by substituting o for X.

- _/




CO3008 Semantics of Programming Languages

/ Type Substitutions \

B Define S¥ (X U,Y — bool). Let 6 & (X,Y — 2).
Then
S{o} = (U,bool — Z)

B Sa type substitution if it is a (possibly empty) finite
set of (type-variable,type) pairs in which all the
type-variables are distinct.

B We will write a typical Sin the form

<X1+—>01,...,an—>on>

K We write the empty type substitution as (). /

159



CO3008 Semantics of Programming Languages 160

4 N

B Iftisany type, we shall write S{1} to denote the type
T in which any occurrence of X; is changed to oj. Thus

def
(X1 01,..., Xn— o) {t} = 1]01,...,0n/X1,..., Xn]

B We will define equality of type substitutions in a
similar way to function equality, namely

S=S iff vi. S{1} =S{1}




CO3008 Semantics of Programming Languages 161

4 N

B Given substitutions §; and S we define the effect of
the substitution S; - $ by setting (S - $){1} e S{S{t}}.

Warning!! A type substitution is a set of
(type-variable,type) pairs. What set is S; - $?

m Ifs¥ (V+— 0,X1— 01,..., Xy — Op) then we define o
to be (X1 — 04,...,Xn — 0,) and also ()Y to be ().

- _/




CO3008 Semantics of Programming Languages 162

4 N

B o generalises 0’ if there exists a type substitution S
for which

o’ = S{o}

and say that ¢’ is an instance of o.

B InPFUN,if o+ P :: o, the type o assigned to the
expression P is principal if 0 generalises any other type
which can be assigned to P.

B The principal type of fnx.xis X — X. Note that the
principal type is unique up to a consistent renaming of
variables. Another principal type for fnx.xisV — V.

- _/




CO3008 Semantics of Programming Languages

/ Type Substitution Examples

r®y.. X,y :: Y —=Z. Then
S{o} = (U,bool — Z)
and

S{Ft=x::S{XLhy::S{Y—>Z}=x::U,y:: bool - Z

B Note that (X,Y) — Z generalises (|bool],Y) — int for
([bool],Y) —int = S{((X,Y) = 2)}

L where S® (X i [bool],Z s int)

~

B Define S¥ (X U,Y — bool). Letg & (X,Y = Z) and

_/

163



CO3008 Semantics of Programming Languages 164

4 N

B It follows from the definitions that (X — X) = ().

B The definition of composition of type substitutions
does not describe S; - S as an explicit set of pairs.
Consider (X — int,Y — X) - (Z — int). The composition is

(X int,Y = X,Z — int)
B Now consider (X — int,Y — X) - (Y — int). The

composition is
(X int,Y — int)

- _/




CO3008 Semantics of Programming Languages

-

-

|
(X bool, Y — X) - (Z+—Y) = (X bool, Y = X, Z+— X)
|

(X bool,Y = U) - (Y= X, Z—Y)
= (Y — bool, X — bool,Z — U)

B As an exercise, try to write down a formula for

<Y1I—>T1,...,le—>'[m>-<X1I—>O'1,...,an—>0'n>

165



CO3008 Semantics of Programming Languages 166

4 N

Local Polymorphism in PFUN

B The ter rule permits different occurrences of X in E»
to have different implicit types in a local declaration
let X = E; in Eo.

B Thus, E; can be used polymorphically in the body Eo».

B Thisideais best explained by example....

- _/




CO3008 Semantics of Programming Languages

-

y

-

VAR
X 1 bool X :: bool
@1< ABS TRUE
~fnX.X :: bool — bool =T :: bool
AP
\ = (fnx.X) T :: bool
and
( VAR
X[ X FEx:[X]
@2< ABS ) NIL
Ffnx.x o [X] — [X] = nil 22 [X]
AP
\ = (fnx.X) nil :: [X]
and
Dr Do
PAIR
= ((fnx.X) T, (fnx.X) nil) :: (bool, [X])

_/

167



CO3008 Semantics of Programming Languages

-

Dy Do
Xt YEX:: YVAR F ((fnx.X) T, (fnx.X) nil) :: (bool, [X])
Ffaxx::Y =Y ABS = (fT, fnil)[(fnx.X)/f] :: (bool,[X])
Hlet f = (fnx.X)in (fT, fnil) :: (bool, [X])

LET

168




CO3008 Semantics of Programming Languages 169

4 N

B In the above deduction of

- let = (fnX.X) in ( T, f nil) :: (bool, [X])

f f
~~ ~— O~~~
(1) (2) (3)
e occurrence of f labelled (2) has implicit type bool — bool

e occurrence of f labelled (3) has implicit type [X] — [X].
B The principal type of fnx.xisY —Y

B The implicit types of f are substitution instances of this
principal type,

e (2)with S= (Y > bool)

e (3)and S= (Y~ [X])

- /




CO3008 Semantics of Programming Languages 170

4 N

Can Function Abstractions Yield Implicit Poly’'m?

B [tis only possible for bound variables to possess
polymorphic instances.

B PFUN has one other variable binding operation, that
found in function abstractions fn x.E.

B Can such bound variables have polymorphic
instances within the scope of fnx abstractions?

B The answer is in fact no. An example illustrates this.

- _/




CO3008 Semantics of Programming Languages 171

4 N

fn f.(f T, f nil) is not typable (in the empty context).

VAR NIL
f:ioo-f 07— 05 f :: o2k nil ;1 07 = 03]
AP
D f:iookfnil :: o5y
f o2 (fT, fnil) :: 03 =(04,05)
ABS
Ffnf.(fT, fnil) :: 01 =02 — 03
where D is
VAR TRUE
f:rooH T ::06—04 f::o0FT:: 05 =bool

AP
fiioofT 04

- _/




CO3008 Semantics of Programming Languages 172

4 N

A Type Inference Algorithm

The types and expressions are now just given by

o = int|X|o—0O
E n|EiopE |fnxE|EE|letx=EinE

B o and 1 are unifiable if we can find Sfor which
S{o} = S{t}. We call Sa unifier.

B Sis a most general unifer if, given another unifer S,
there exists T for whichS =TS

- _/




CO3008 Semantics of Programming Languages 173

4 N

MGU(o,0) = () here O is any type

MGU(X,Y)

(X+—=Y) here X and Y are distinct

here O is either int or a function type
MGU(X,0) = (X+— o) ifX¢gTV(o)
FAIL otherwise

here O is either int or a function type

(X+—0) itX¢gTV(o)

FAIL otherwise
\_ %

MGU (g, X)




CO3008 Semantics of Programming Languages 174

4 N

MGU(O’1—>O'2,T1—>T2) — 8281

where

Oj, Tj any types

S o MGU (01, 11)

S € MGU(S1{02},S1{12})
FAIL otherwise

MGU (int,0 — 1) FAIL here 0,T any types

MGU (o — T,int) FAIL here 0, T any types

- _/




CO3008 Semantics of Programming Languages 175

/ B A typing for the judgement \
X1 .. 01,...,%y .. OnFE T
is a pair (S 1) for which
X1 :: S{o1},... % s S{optFE T

B Such a typing is said to be principal if given any
other (S, 1")there is some T for which S = T- Sand
U =T{t}.

B There is a type inference function ® which given any
input of the form T will either return a principal typing,
or FAIL if there is none. To define ® we need more

K notation. /




CO3008 Semantics of Programming Languages

-

Given a context ' =Xz :: O1,...,%Xy ;. Op let us write (by
abusing notation) TV(I") for the set

TV(o1)U...UTV(0p)

We shall also write S{I' } to mean

X1 1t S{o1},..., % 2 S{0on}

and we define S{@'} 2.

-

~

176



CO3008 Semantics of Programming Languages

-

O(M-EriopEy) = (%--S-S,S4{12})
where
(S1,T1) =D(I - Ey)
S = MGU(1y,int)

St = MGU(12,int)

P(X1 i1 O1,...% i OnkX) = ((),0)
D(Xq 1 01,...% i 0OpkYy) = FAIL  (Vi. X #Y)
®o(FEn) = ({,int)

($3,12) = P((S-S) - Ep)

~

_/

177



CO3008 Semantics of Programming Languages 178

4 N
O FfxE) = (9,5{V}—1)

where

(ST)=d(IM,x:VFE)

VZTV(l)

OI-EE) = (S-S 5,%{V})
where
(S1,T1) = P(I - Eq)
(S,12) =P (S{l'} - E)
S =MGU(S{t1}, 12 > V)
V & TV(S{t11}) or TV(12)




CO3008 Semantics of Programming Languages 179

4 N

Ol Fletx=E1inE) = (£ S,T2)
where
(S1,11) = D(T - Ey)
(S,12) = DO(SU{I'} - E2[E1/X])

- _/




CO3008 Semantics of Programming Languages

/ Examples

We claimed that the principal type of fnx.xis X — X. We
have

P faxx) = (S',S{V} = 1)
where

(ST)=d(x:: VEX) =({),V).

to a renaming of type variables, the principal type is

Q—w.

~

Thus ®(2 - fnx.x) = (()V, ) {V} = V) = ((),V = V). So, up

_/

180



CO3008 Semantics of Programming Languages 181

/We calculate ®(x :: X F fn f.fx). Thisis (SY,S{V} — 1)
where

(ST)=P(x:: X, i VEx)=(AY - Ar- A, Az{U})
where

(A, T1) =P(x:: X, f i V)

(> V)

and

(A, T2) =P(x:: X, f 12 VEX) = ((),X)




CO3008 Semantics of Programming Languages

-

and

Az=MGU(V,X—=>U)=(V— (X—=U))

Ug{OVEX)=1{V,X}

Therefore (S1) = ((V — (X— U)),U) and so

P(x:: XEfnf.fx)=(),(X—=U)—U)

182



