
Programming Metalogicswith aFixpoint TypeRoy Louis CroleofChurchill College, Cambridge

Revised version of a dissertation submitted for the degree ofDoctor of Philosophy in the University of CambridgeJanuary 1992c
 Roy Louis Crole

To my parents

AbstractThis University of Cambridge Computer Laboratory Technical Report is a revisedversion of my Ph.D. thesis. The report is essentially the same as my original thesiswhich was completed in July 1991, with corrections and alterations as suggested bymy Ph.D. examiners,Dr. J.M.E. Hyland,Department of Pure Mathematics and Mathematical Statistics,Cambridge,EnglandandProf. E. Moggi,Dip. di Matematica,Univ. di Genova,Italy.I have also made some modi�cations which I personally think improves the present-ation of my original thesis. Any errors which remain are my sole responsibility.Summary of ContentsA programming metalogic is a formal system into which programming languages canbe translated and given meaning. The translation should both re
ect the structureof the language and make it easy to prove properties of programs. This thesisdevelops certain metalogics using techniques of category theory and treats recursionin a new way.The notion of a category with �xpoint object is de�ned. Corresponding to thiscategorical structure there are type theoretic equational rules which will be presentin all of the metalogics considered. These rules de�ne the �xpoint type which willallow the interpretation of recursive declarations. With these core notions FIXcategories are de�ned. These are the categorical equivalent of an equational logicwhich can be viewed as a very basic programming metalogic. Recursion is treatedboth syntactically and categorically.The expressive power of the equational logic is increased by embedding it in an intu-itionistic predicate calculus, giving rise to the FIX logic. This contains propositionsabout the evaluation of computations to values and an induction principle which isi

derived from the de�nition of a �xpoint object as an initial algebra. The categoricalstructure which accompanies the FIX logic is de�ned, called a FIX hyperdoctrine,and certain existence and disjunction properties of FIX are stated. A particularFIX hyperdoctrine is constructed and used in the proof of the above properties.PCF-style languages are translated into the FIX logic and computational adequacyresults are proved. Two languages are studied: Both are similar to PCF exceptone has call by value recursive function declarations and the other higher orderconditionals.A dependently typed equational logic containing a �xpoint type and a universaltype is given together with its related categorical structure, namely a FIX categorywith attributes. A representation theorem for Scott predomains is proved, whichgives rise to a concrete example of such a FIX category with attributes. Recursivedomain equations give rise to endofunctions on the universal type; using the �xpointtype we may solve for �xpoints of such endofunctions and thus obtain a solution ofthe original domain equation as the type coded by the �xpoint.

ii

AcknowledgementsI would like to begin by expressing my heartfelt thanks to Andrew Pitts who hasbeen my thesis supervisor for the past two and a half years. I am indebted to himfor his patient guidance and support, without which this work would never havebeen possible. I do not recall a situation where he was not willing to discuss myresearch and his encouragement has been unfailing.I have had many useful conversations with Andrew Gordon. He has always beenwilling to talk about my work and his computational intuitions have been invaluable.Additionally he has given me more time than I deserve towards sorting out how thecomputers work. Eike Ritter has discussed some of this thesis in depth and muchof it in general; his unfailing enthusiasm has been a source of inspiration. Thanksare also due to Glynn Winskel who was my original supervisor. He gave usefuldirections to the literature and provided funding which allowed me to visit him in�Arhus University, Denmark during December 1988.I have had fruitful discussions with the following people: Nick Benton, RichardBoulton, Juanito Camilleri, Thomas Forster, Martin Hyland, Bart Jacobs, EugenioMoggi, Valeria de Paiva, Wesley Phoa, Dominic Verity and Michael White. Inparticular I wish to thank the members (drawn from both the Computer Laborat-ory and the Department of Pure Mathematics) of the CLICS Club in Cambridgewho since early 1990 have met regularly to discuss Categorical Logic In ComputerScience. They have provided a most stimulating and open research environment.I would like to thank Tom Melham for providing LATEX macros for thesis layout andPaul Taylor for commutative diagram and prooftree packages. John Van Tassel andJohn Harrison helped me to see my thesis without printing it and to make my X-terminal more user friendly than it would otherwise have been.Thanks are also due to the SERC who provided a grant in the form of a ResearchStudentship and to the ESPRIT CLICS Basic Research Action. Additionally, theCambridge University Computer Laboratory and Churchill College were generouswith their aid towards conference expenses.During the Michaelmas term of 1990 I was given the opportunity to deliver a 16lecture course on \Categories, Equational Logic and Typed Lambda Calculi." Thiswas an enlightening experience; I hope that those who attended the lectures learntas much as I did. I am grateful to Roger Needham and Andrew Pitts for allowingme to give this course.
iii

iv

Contents
0 Categorical Logic in Computer Science 10.1 Introduction . 10.2 A Thesis Summary . 20.3 Foundation and Notation . 5I The FIX= Logic 91 Strong Monads and Let Categories 111.1 Introduction . 111.2 Monads and Tensorial Strengths . 111.3 The De�nition of a Let Category 121.4 Why Let Categories? . 162 The FIX= Logical System 192.1 Review of the Computational Let Calculus 192.2 Extensions of the System MLT . 192.3 Fixpoint Objects . 202.4 The Internal Logic Corresponding to a Fixpoint Object 232.5 The Equational Logic FIX= . 243 Categorical Semantics of the FIX= Logic 313.1 FIX Categories . 313.2 Categorical Semantics of FIX= . 323.3 Interpretations of Computation Types and the Fixpoint Type . . . 353.4 The Categorical Logic Correspondence 403.5 De�nability of Fixpoints . 413.6 Functional Completeness . 453.7 Further Results about FIX Categories and FIX= Theories 483.8 Gluing for Let Cartesian Closed Categories 50v

II The FIX Logic 574 The FIX Logical System 594.1 Why Introduce the FIX Logic? . 594.2 The Predicate Logic FIX . 604.3 Adjoint Style Formulation of the FIX Logic 664.4 Extensions of FIX . 714.5 Further Results about the FIX Logic 725 Categorical Semantics of the FIX Logic 775.1 FIX Hyperdoctrines . 775.2 Categorical Semantics of FIX . 815.3 The Categorical Logic Correspondence 845.4 The Logical Relations Hyperdoctrine 865.5 Proving Existence and Disjunction Properties 965.6 Proving Standardness of the Natural Number Type 986 Applications of the FIX Logic 996.1 Introduction . 996.2 The Language QL . 996.3 Translation of QL into the FIX Logic 1026.4 Adequacy Results for QL . 1036.5 A Further PCF style language, HPCF 1066.6 Translation of HPCF into the FIX Logic 1096.7 Adequacy Results for HPCF . 1106.8 An Alternative Translation of Fixpoints 112III The FIX�= Logic 1157 Representations of Scott Predomains 1177.1 Scott Domains and Information Systems 1177.2 Scott Predomains and Preinformation Systems 1177.3 Equivalence of the Categories PInSys and Ppd 1207.4 The Large !cpo of Presystems . 1257.5 Categorical Constructions in PInSys 1267.6 The Small !cpo of Presystems . 1307.7 Some Miscellaneous Results . 1318 The FIX�= Logical System 133vi

8.1 The Dependently Typed Equational Logic FIX�= 1338.2 Recursive Types via Fixpoint Objects 1399 Categorical Semantics of the FIX�= Logic 1419.1 Categories for Modelling Dependent Type Theories 1419.2 FIX Categories with Attributes . 1429.3 Categorical Semantics of FIX�= . 14910 Prospects for Further Research 15710.1 Loose Ends and Future Tasks . 15710.2 Final Conclusions . 160

vii

viii

Chapter 0Categorical Logic in Computer Science0.1 IntroductionDuring the late 1960's and early 1970's Scott and Strachey, researchers in the Uni-versity of Oxford, became concerned with the methods used to de�ne programminglanguages, or perhaps we should say the lack of methods. At the time, the de-scription of a language was essentially operational in nature and to some extentlanguage de�nitions were virtually synonymous with actual implementations. Verylittle research concerning underlying mathematical theories of programming hadbeen undertaken. In the mid 1960's, Landin noted connections between the � cal-culus, a formalism developed by logicians for representing functions, and certainconstructs which appear in programming languages. Landin used the formal theoryof the � calculus to guide the construction of a machine for evaluating programs[Lan64]. It is interesting to note that Landin comments \This paper is a contribu-tion to the `theory' of the activity of using computers." Indeed, Landin observedthat the reduction rules of the � calculus resemble certain operational reductions ofcommands and expressions in programming languages and his work was one of the�rst formal treatments of the theory of operational speci�cations of programminglanguages.Scott and Strachey wanted to move away from operational speci�cations of lan-guages and instead attempt to develop a denotational approach which concentratedmore on the intended meaning of a language. A simple example of their idea is il-lustrated by the concept of natural number. Di�erent languages can be used tospecify natural numbers, for example octal, decimal, roman, but in each case weare really concerned with what is denoted (a natural number) and not how thenatural number is represented. The �rst examples of denotational speci�cations ofprogram fragments were worked out by Scott and Strachey; see [Sco70b], [Sco70a]and [SS71]. In pursuing the notion of mathematical models of programming lan-guages, the question of what constitutes such a model of the � calculus arose. The� calculus allows syntactic expressions (which represent functions) to be applied tothemselves. It was clear that a mathematical model should interpret such function-representing expressions as some form of set-theoretic function; and to model selfapplication certain sets would have to contain their own function space. Scott real-ised that such a construction was possible by imposing certain conditions on thekind of function which was allowed in the model; see [Sco69a] and [Sco71]. Forfurther examples of denotational semantics see [Sco82], [Str74] and [SW74].Once the foundations of operational and denotational semantics had been laid down,1

other researchers took up the task of attempting more formal treatments of pro-gramming semantics. It became clear that formal semantics would be necessary toensure that programs really behaved as they were supposed to. The semantics couldbe used to reason about programs; in particular to prove that a program satis�es itsspeci�cation. Plotkin investigated di�erent kinds of operational semantics of the �calculus [Plo75] and also the connections with denotational semantics [Plo77], andwent on to clarify many issues which had arisen from both his work and the workof others: see [Plo81a] and [Plo81b].As programs became larger and more intricate, the task of proving programs correctbecame much more di�cult. One solution to this problem was the idea of a pro-gramming metalogic which is a formal logical system in which it is possible to givemeaning to other programming languages. The programming metalogic will usuallyhave a very rich type structure and powerful rules for reasoning and will be used togive meaning to a programming language by translating the source code into themetalogic. This translation should preserve the structure of the original language,thereby allowing properties of source programs to be proven by showing the prop-erty holds in the metalogic. A proof in the metalogic should be substantially easierthan a direct proof using the semantics of the original language.This thesis presents three such programming metalogics and describes some simpleapplications. Each of the metalogics deals with recursively de�ned declarationsin a novel way, introducing a new type called the �xpoint type; see [CP90]. The�rst of these metalogics is a simple equational logic which is an extension of thecomputational let calculus [Mog89b]; the latter is a formal system for program-ming semantics which separates the notions of computation and value. The secondmetalogic is a predicate logic which subsumes the original equational logic via anequality predicate. It is ideally suited to reasoning about languages presented inthe natural semantics style [Kah88]. The third metalogic is a dependently typedequational logic containing a type universe: we use this to solve domain equations.The solution of a domain equation can be regarded as a recursively de�ned type;equivalently we may regard the equation as determining an endofunction on thetype universe. We can �nd a �xpoint of such a function using the �xpoint type andthe solution to the domain equation is the type represented by the �xpoint.Categorical logic is the study of connections between formal logical systems andcategory theory. As we have remarked, logics can be used to give meaning toprogramming languages. Category theory can be used to guide the design of suchmetalogics and also to give a uniform presentation of their semantics. Often it iseasier to prove a property of a metalogic by categorical means and then translatethe results into statements about the metalogic. The techniques of categorical logicwill be used throughout this thesis.0.2 A Thesis SummaryThis thesis divides into three parts. 2

� Part I A simple equational metalogic is described which builds upon the com-putational let calculus. This system will form a basic core for the metalogicsdescribed in Part II and Part III.� Part II The equational metalogic of Part I is strengthened to a predicatemetalogic and we give some simple applications.� Part III A dependently typed equational logic containing a type universe isgiven; this is used to solve domain equations.Part IChapter 1We begin by giving a brief review of some basic category theory which will be usedthroughout this thesis, aiming to set up notation for monads, tensorial strengthsand let categories. We also provide a few elementary examples of let categorieswhich illustrate their use in computer science. For some background in categoricallogic see [Law69] and [MR77].Chapter 2We review the computational let calculus and motivate both its uses and also theform in which it is usually presented. This leads to a discussion of suitable extensionsand in particular to the �xpoint type: see [NPS90] for some background in typetheory. In the presence of a �xpoint type certain endofunctions must have �xpoints.We introduce a categorical de�nition of the concept of �xpoint type, namely a�xpoint object in a let category. In such categories, morphisms of certain kinds areguaranteed to have �xpoints. This leads to the internal logic of �xpoint objects andfrom this we describe an extension of the computational � calculus which, amongother things, contains the logic of a �xpoint object. This system is referred to asthe FIX= logic.Chapter 3We de�ne FIX categories and prove the usual categorical logic correspondencebetween such categorical structures and FIX=. We show that FIX categories are,in a precise sense, the most general structures for interpreting FIX=. We discuss�xpoints both in FIX= and in FIX categories and move on to show that FIX cat-egories are functionally complete. Finally we carry out a gluing construction for letcategories which will be used to prove a result about equality of ground terms inFIX=.
3

Part IIChapter 4The language FIX= captures certain computational features through an equationaltheory: we increase its expressiveness by embedding FIX= in a predicate logiccalled FIX. We de�ne the notion of a FIX theory and show that the pure FIXlogical system has a formulation in which some of the rules assume an adjoint form.The chapter �nishes with a number of results about FIX, some of which will beput to use later on, together with the statements of three theorems concerning themetalogical properties of FIX.Chapter 5We de�ne a FIX hyperdoctrine, which is the categorical counterpart of the FIXlogic, and give a concrete example. The next task is to give a formal statementof the categorical logic correspondence for FIX hyperdoctrines and the FIX logic.With a view to using this correspondence to prove the metalogical properties statedin Chapter 4, we de�ne the \logical relations hyperdoctrine;" the proofs make useof its internal logic.Chapter 6We investigate how well suited the FIX logic is for analysing two small program-ming languages. Both of these languages are based on Plotkin's PCF. We givetranslations of both static and dynamic semantics into the pure FIX logic and proveadequacy results which show that the translations we give preserve the structureand properties of the source languages.Part IIIChapter 7We extend the notion of information system to provide a representation theoremfor Scott predomains; the latter have properties similar to Scott domains but donot necessarily possess a least element. To e�ect this, the classical de�nition ofinformation system is altered in a simple way, giving rise to preinformation systems.We present canonical constructions of products, coproducts and lifting, along withpartial function space, in the category of preinformation systems.Chapter 8We aim to develop a logic in which there is both a universal type and a �xpoint type.Domain equations can then be solved by considering the endofunctions which willbe induced on the universal type. The FIX= equational logic forms the backbone of4

the system introduced here, namely FIX�=. We describe the syntax and logical rulesof FIX�= which is a dependently typed equational logic and introduce the notion ofa FIX�= theory.Chapter 9A general categorical structure for dependently typed equational theories is re-viewed, namely categories with attributes. We then de�ne a FIX category withattributes; such structures will be used to model FIX�= theories. Having done this,we give a concrete example of a FIX category with attributes and move on to con-sider the general categorical semantics of FIX�=. We �nish this chapter with somebasic results about such semantics.Chapter 10We consider what has been achieved, the prospects for further research and drawour conclusions together.0.3 Foundation and NotationFoundations of Category TheoryThroughout this thesis, if we say \let C be a category" we shall mean that wehave speci�ed interpretations of the statements \A is an object of C" and \f isa morphism of C," along with interpretations of \identity morphism," \domain,"\codomain" and \composition." There will be no assumptions as to whether thecollections of objects or morphisms of C form a set. We shall only impose restrictionson collections when it is prudent to do so. In such cases, we shall refer to the notionsof small and locally small categories as appropriate and think of such conceptswithin a given model of set theory.Martin-L�of's Theory of Arities and ExpressionsWe shall use the theory of arities and expressions due to Martin-L�of to present theobject level syntax in this thesis; to do this we make the following de�nition:De�nition 0.3.1 An abstract syntax signature � is a pair of sets (GAr,Con)where the elements of GAr are called ground arities and the elements of Con arecalled constants. Regarding the ground arities as the ground types for a simplytyped � calculus, we refer to the simple types as arities. The constants are assumedto be tagged with an arity.With these data, we can regard the abstract syntax signature � as a signature inthe conventional sense for a (type tagged) simply typed � calculus with constants.5

De�nition 0.3.2 Given an abstract syntax signature �, an abstract syntax isthe collection of ��� equivalence classes of terms of the simply typed � calculusgenerated from � and we shall refer to this calculus as the meta � calculus. We shallcall individual classes expressions of the abstract syntax and refer to the variablesof this simply typed � calculus as metavariables. Abstraction of an expression ewill be denoted by u:e where u is a metavariable, substitution for a metavariableby e[e0=u] and application by e(e0). A multiple application e1(e2) : : : (en) will bedenoted by e1(e2; : : : ; en) and fv(e) is the set of free metavariables of e.Roughly, we shall view the syntax of object level languages as certain expressionsof an abstract syntax. Usually, the set GAr will consist of elements such as termor type. The constants Con will consist of the function symbols arising froma given signature for an object level language, together with a countably in�niteset of object level variables. The arity of the function symbols is speci�ed forthe particular object level language being considered; likewise for the object levelvariables. Then the raw syntax of an object level language will be de�ned as closedexpressions of an abstract syntax. Thus variable binding will take place only in themeta � calculus and substitution of object level terms will become application inthe meta � calculus. An exposition of the theory of arities and expressions can befound in [Cro90] or [NPS90].Notational Conventions(1) As a general convention, we shall omit typing information from morphisms,functors etc. For example, if we speak of a natural transformation � (between apair of bifunctors) which has components �(A;B) with domain A�TB and codomainT (A� B), then we shall often denote these data by� :A� TB ! T (A� B)rather than �(A;B):A� TB ! T (A�B):When using commutative diagrams, we shall place just enough typing informationon the morphisms to make the picture unambiguous.(2) Throughout this document, we shall use rules of the formHypothesisConclusionwhere \Hypothesis" and \Conclusion" are syntactic expressions. In any such rulewe assume that both \Hypothesis" and \Conclusion" are well formed.(3) If we are given a list of expressions E1; : : : ; En, we will often abbreviate such alist by ~E.(4) When discussing object level languages presented using an abstract syntax,we shall not introduce formal syntactic classes to distinguish between object level6

variables and metavariables, but instead rely on the context of usage to make thedistinction. For example, if M and N are expressions of an abstract syntax, for anexpression of the form M [N=x] to be meaningful, x must be a metavariable.

7

8

Part IThe FIX= Logic

9

Chapter 1Strong Monads and Let Categories1.1 IntroductionChapter 1 contains a review of some of the basic category theory which will beused throughout this thesis. The account is by no means comprehensive; it is notintended to be. We simply de�ne some of the fundamental concepts which arerelatively new to computer science and which form the backbone of almost all ofthe categorical structures which arise in this work. A standard reference for basiccategory theory is [Mac71]; additional material on monads which is particularlyrelevant can be found in [Man76] and [Kel82]. Those readers who are familiar withthe original works on monads, strengths and enriched category theory will see thatsome of our basic notation is di�erent from that used in the references. However,as our story unfolds, we hope that the choice of notation will be seen to be bothappropriate and useful.1.2 Monads and Tensorial StrengthsDe�nition 1.2.1 Let C be a category. Recall that a monad over C is a triple(T; �; �) where T : C ! C is an endofunctor, �: IdC ! T is a natural transformationcalled the unit of the monad, �:T 2 ! T is a natural transformation called themultiplication of the monad and these data satisfy the equations IdT = � � �T ,IdT = � � T� (referred to by Monad�) and � � T� = � � �T (referred to by Monad�).We shall often speak just of the monad T .De�nition 1.2.2 Let C be a category with �nite products and let (T; �; �) bea monad over C. The monad T is said to possess a tensorial strength if there is anatural transformation � with components�(A;B):A� TB �! T (A�B)which satisfy the equational identities represented by the following commutativediagrams, where i and j denote obvious canonical isomorphisms:
11

1� TA � - T (1� A)@@@@@j R TA?T iTensor1
A� B id� �- A� TB@@@@@� RT (A�B)?�Tensor2(A� B)� TC � - T ((A� B)� C)

A� (B � TC)i? id� �- A� T (B � C) �- T (A� (B � C))?TjTensor3A� T 2B �- T (A� TB) T�- T 2(A� B)
A� TBid� �? � - T (A� B)?�Tensor4A strong monad (T; �) is a monad T for which there is a given choice of tensorialstrength � . When no confusion can arise we refer to a strong monad T .1.3 The De�nition of a Let CategoryTwo De�nitions of a Let CategoryWe begin by making the following de�nition:De�nition 1.3.1 A let category is speci�ed by a category C with �nite products,over which there is a strong monad T:We can give an alternative de�nition of let category, which will prove to be of greatvalue to us when we study the equational logic of these categories.De�nition 1.3.2 A let category is speci�ed by a category C with �nite productswhich enjoys the following properties: 12

� For each object A in C, there is an object TA;� for each object A in C, there is a morphism �A:A! TA; and� for each morphism f :A�B ! TC, there is a morphism lift(f):A�TB ! TC;such that the following conditions are satis�ed:lift(g(f � idB)) = lift(g)(f � idTB) LiftSwhere f :A! A0, g:A0 �B ! TC;lift(f)(idA � �B) = f LiftBwhere f :A� B ! TC; lift(�B�2) = �02 LiftHwhere �2:A� B ! B, andlift(lift(g)h�1; fi) = lift(g)h�01; lift(f)i LiftAwhere f :A� B ! TC, g:A� C ! TD:We shall refer to the operation f 7! lift(f) as lifting.It will be useful to work with a derived operation on morphisms of C which we shallrefer to as the let operation. We shall write f 7! let(f) for this. Take projections�1: 1� A! A �2: 1� TA! TA:Then the let operation is speci�ed byA f�! TBTA ��12�! 1� TA lift(f�1)�! TBThis de�nition leads immediately to the following lemmas:Lemma 1.3.3 Suppose we are given a let category in the sense of De�nition1.3.2. Then given morphisms f :A! TB and g:B ! TC the following equationalidentities hold: let(f)� = f LetBlet(�) = id LetHlet(let(g)f) = let(g)let(f) LetAProof A trivial calculation. 2Lemma 1.3.4 Suppose we are given a let category in the sense of De�nition1.3.2. Given morphisms f :A! TB and g:C � B ! TD, thenlift(g)(id� let(f)) = lift(lift(g)(id� f))Proof Immediate from the de�nitions. 213

Equivalence of the De�nitionsThe previous de�nitions of let categories are equivalent in the following way:Lemma 1.3.5 Given a let category C according to De�nition 1.3.1 (De�nition1.3.2), then C has the structure of De�nition 1.3.2 (De�nition 1.3.1).Proof Suppose we are given a category C with the structure of De�nition 1.3.1.We show C has the structure of De�nition 1.3.2. De�nitions of the operation T andmorphisms �A are clear. The lifting operation is de�ned byA� B f�! TCA� TB ��! T (A�B) Tf�! T 2C ��! TCNow we have to check that our de�nition of lifting satis�es the necessary equations.Although this is essentially routine manipulation we supply the critical details; ineach case we give the recipe for transforming the left-hand side of an equation tothe right-hand side. LiftS follows from the naturality of � and the functoriality ofT . LiftB follows from Tensor2, the naturality of � and Monad�, thusA� B f - TC	�����id� � @@@@@idRA� TB �- T (A�B)�? Tf - T 2C�? � - TCLiftH follows from functoriality of T , Monad�, naturality of � and Tensor1. To showLiftA use functoriality of T followed by Monad� and the naturality of �. Then weneed commutativity ofA� TB � - T (A� B)@@@@@h�A; �iR (�) 	�����T h�A; idiA� T (A� B) �- T (A� (A� B))	�����id� Tf @@@@@T (id� f) RA� T 2C
h�A; T f � �i? � - T (A� TC)?T h�A; fi

14

where the commutativity of (�) follows fromA� TB � - T (A� B)
(A� A)� TB�� id? � - T ((A� A)�B))?T (�� id)
A� (A� TB)i? id� �- A� T (A� B) �- T (A� (A�B))?Tjwith the lower square an instance of Tensor3. Finally apply Tensor4 to get theresult.Conversely, suppose we are given a category C with the structure of De�nition 1.3.2.We give the recipe for showing C also has the structure of De�nition 1.3.1. Theaction of the monad T on objects and the components of the natural transformation� are clear. The de�nition of the monad T on morphisms is given byA f�! BTA let(�Bf)�! TBThe component of the natural transformation � at A is let(idTA) and the componentof � at A and B is lift(�A�B). We omit the routine details which verify that(T; �; �; �) is a strong monad. 2We have the following corollary:Corollary 1.3.6 Given a category C over which there is a monad T , then C canbe considered endowed with the following structure: for objects A and B of C andmorphism f :A ! TB there are morphisms �A:A ! TA and operations A 7! TA,f 7! let(f), where the latter operation is de�ned byA f�! TBTA ��Tf�! TBThese data satisfy equations LetB, LetH, LetA.Conversely, given a category C endowed with such a structure, we can de�ne amonad T by f :A! Blet(�Bf):TA! TBThe components of � are clear and the component of � at A is let(idTA). 2Remark 1.3.7 The let operation arising from a monad T over a category C isclosely allied to the construction of the Kleisli category Kl(C) where compositionin Kl(C) is given by (f; g) 7! let(g)f . 15

1.4 Why Let Categories?Motivating IdeasA fundamental slogan for the categorical semantics of programming languages is:\types are interpreted as objects in a category and terms are interpreted as morph-isms." Of course, for complicated languages this basic idea is adapted in manyways, but it is a good starting point. It has been known for some time now thatformal systems correspond in a precise way to certain kinds of categorical structure,for example � calculi (which are the theoretical backbone of functional program-ming languages) are the internal languages of cartesian closed categories and thecartesian closed categories provide a notion of syntax-independent presentations of� calculi.While functional languages are based on the principles of the � calculus, the basicreduction strategies of � calculi such as � and � do not elegantly distinguish betweencertain kinds of operational semantics such as call-by-name and call-by-value. Forexample, there is a notion of call-by-value strategy in � calculi where we considervalues to be those expressions of the formal system which are not applications. �reduction is then restricted to instances where the operand is a value. The naiveformal system which captures this notion of call-by-value is a little ad-hoc: for anaccount see [Plo75].Thus it might be reasonable to develop a formal system which separates the notionsof computation and value: this is exactly what strong monads do for us, but in theworld of semantics. Given a let category C, if an object A models a type � thenthe object TA models computations of values of type �. This will be more clear ifillustrated by example.Examples Of Let CategoriesOur examples will be over the category Set ; they are lifted from [Mog89b].Partial ComputationsGiven a type �, a partial computation of type � can be thought of as a programwhich either terminates yielding a value of type �, or which does not terminate. Ifvalues of type � are denoted by the set A, then we can denote the partial compu-tations with values of type � by the coproduct A+ f�g: Thus we have:1. Operation on objects A 7! A+ f�g:2. Function �A def= i:A! A+ f�g the left coproduct insertion (with right inser-tion j).
16

3. Given a function f :A� B ! C + f�g then we de�ne lift(f) bylift(f)(a; s) def= (f(a; b) if s = i(b)j(�) otherwiseCorresponding to this let category, there is a strong monad with�A: (A+ f�g) + f�g ! A+ f�gde�ned by �A(s) def= (r if s = i(r); r 2 A+ f�gj(�) otherwiseand tensorial strength�(A;B):A� (B + f�g)! (A� B) + f�gde�ned by �(A;B)(a; s) def= (i(a; b) if s = i(b)j(�) otherwiseThe intuitive meaning of the monad multiplication � is that a partial computationP 0 of a partial computation P is de�ned when both P 0 and P are (with resultgiven by composition of P 0 and P), and is otherwise unde�ned. The strength �takes a pair consisting of a value and a partial computation and returns a partialcomputation, say P . If the original partial computation is de�ned, then so is P ,with expected value. If the original computation is unde�ned, then so is P .Computations which Raise ExceptionsLet E be a set which models certain exceptions. Then if the set A models values(of some type say �) we might consider the following (categorical) model:1. Operation on sets A 7! A + E:2. Function �A def= i:A! A + E the left coproduct insertion.3. Given a function f :A� B ! (C + E) then we de�ne lift(f) bylift(f)(a; s) def= (f(a; b) if s = i(b)j(e) if s = j(e)The intuitive explanation of this example is similar to that for partial computations.
17

Computations with Side E�ects in a Store SSuppose that we are considering a model for an imperative language where the setS is to model some set of states. One such model is:1. Operation on sets A 7! S) (A� S):2. Function �A:A ! S) (A � S) such that given a 2 A and s 2 S then�A(a)(s) def= (a; s):3. Given a function f :A� B ! (S) (C � S)) then we de�ne lift(f) bylift(f)(a; t) def= s 7! f(a; �1(ts))(�2(ts)):The intuitive meaning of the corresponding monad multiplication � is to say thata computation which takes a state s and yields a computation c with side e�ect(i.e. new state) s0 may be regarded as a computation which takes a state s andreturns the value and state which are the result of the computation c on the values0: The strength � says that a value a and a computation c may be regarded as acomputation which takes a state s and yields a pair of values, namely a and thevalue arising from cs, together with the state arising from cs:Non-Deterministic ComputationsGiven a set A modeling values of type � we might model non-deterministic com-putations of type � via sets of possible results, namely P(A): A suitable modelis: 1. Operation on sets A 7! P(A):2. Function �A:A! P(A) such that given a 2 A then �A(a) def= fag.3. Given a function f :A� B ! P(C) then lift(f) is de�ned bylift(f)(a; B0) def= [ff(a; b0) j b0 2 B0g:We regard the denotation of a non-deterministic computation as the collection ofall possible outputs. Any value can be trivially regarded as a non-deterministiccomputation. Finally, given a value and some non-deterministic computation wecan think of the pair as a non-deterministic computation.
18

Chapter 2The FIX= Logical System2.1 Review of the Computational Let CalculusThe computational let calculus1 was introduced by Moggi [Mog89a]. Roughly, it isa formal system which embodies the idea of separating computations from valuesand is the syntactic analogue of the notion of let category. We make a formaldistinction between the elements of a type � and computations of elements of thattype; the latter are grouped into a new type T�. We shall refer to a type of theform T� as a computation type. Moggi's computational let calculus contains thefollowing formation rules:� typeT� type M :�Val(M):T� E:T� [x:�]F (x):T�Let (E; F):T�These rules, together with the usual rules for unit type and binary product typeconstitute the term forming rules for the computational let calculus, which we shalldenote by MLT . Intuitively, Val(M) is the valueM regarded as a trivial computationwhich immediately evaluates to itself. The term Let (E; F) denotes the computationwhich �rstly tries to evaluate E to some value M :� and then proceeds to evaluateF (M). These intended meanings are captured by three equational axioms:Let (Val(M); F) = F (M);Let (E; x:Val(x)) = E;Let (Let (E; F); G) = Let (E; x:Let (F (x); G)):2.2 Extensions of the System MLTThe Basic Formal System MLTThe reader may be wondering why the most fundamental equational logic which wediscuss, namely MLT , is assumed to contain unit and binary product types alongwith computation types. When considering practical computational issues, it willbe useful to deal with algebraic terms (i.e. terms with a �nite number of objectlevel variables). According to the basic principle of categorical semantics (for an1What we are calling the computational let calculus, Moggi refers to as the computationalmetalanguage. 19

account of this see [Cro90]), we shall need a category with at least �nite productsto interpret algebraic terms. However, it can be shown [Pit95] that this is exactlythe structure which we need to interpret a unit type and binary product type. Thusit makes little sense to exclude unit and binary product types and terms from thelogic; and we gain some uniformity when considering details of the correspondencebetween the syntax of the logic and corresponding categorical structure.The Use of MLT and its ExtensionsAt least one of our tasks is to push forward the development of a versatile and gen-eral purpose metalogic for semantics of programming and computation languages.We can view the computational let calculus (and its extensions) as a formal metalan-guage in which to translate the syntax and rules of other languages; for related workin this area the reader is referred to [Pit91].In this thesis we shall consider various extensions of MLT . What extensions wouldbe worthwhile investigating? At present, we have unit and binary product types,together with computation types. Additionally, some notion of function type will beessential for interpreting functional programming and computation languages. Theequational logic MLT extended by function types is usually called the computational� calculus and denoted �MLT . We refer the reader to [Mog89a] and [Pit91].Some other fundamental datatypes are natural numbers, booleans and coproducts.As discussed in Chapter 0, we shall introduce a new type called the �xpoint type.It will be interesting to study how the �xpoint type interacts with certain othertypes. For our purposes it will be convenient to study a calculus which, in additionto the �xpoint type, contains a null type, unit type, binary (co)product types andfunction type, along with a type of natural numbers. We are aiming to developa constructive logic for reasoning about programming languages in general andrecursive computations in particular: the logic arising from the terms and equationsassociated with the types just listed provides a good foundation on which to build.2.3 Fixpoint ObjectsWe de�ne the notion of a �xpoint object in a suitably structured category. Thisconcept is due to Pitts; see also [CP90] and [CP92].De�nition 2.3.1 Given a category C with �nite products, the C indexed categoryC(�) is speci�ed by:� The objects of CC are those of C,� CC(A;B) def= C(C �A;B) where composition of g and h in CC is hh�; gi in C,� Ck(A) def= A and Ck(g) def= g(k � id);where k:C 0 ! C in C and A g! B h! D in CC .20

Note that given a let category C there is an indexed endofunctor T (�) on C(�) whereTC(A) def= TA and TC(g) def= lift(�g): With this we make the following de�nition:De�nition 2.3.2 In a let category C a �xpoint object is speci�ed by the followingdata� An initial T (�) algebra whose structure map in the �bre CC is the morphismC � T
 �! T
 �!
 in C. Thus given a morphism f :TA ! A in CC , thereis a unique morphism it(f):
 ! A in CC for which the following diagramcommutes: C � T
 id� �- C �

C � TAh�C ; lift(� � it(f))i? f - A?it(f)� A global element !: 1 ! T
 which gives rise to an equaliser diagram of theform 1 ! - T
 �� -id - T
:The de�nition of a �xpoint object (which we shall abbreviate to FPO) is reminiscentof a natural numbers object (NNO). Recall that the de�nition of a NNO in acategory with �nite products takes a particularly simple form when the ambientcategory is cartesian closed. Indeed we have theLemma 2.3.3 In a let ccc C a FPO is speci�ed by� An initial T algebra with structure map �:T
!
.� A global element !: 1! T
 which is the equaliser of �� and idT
 (exactly asin De�nition 2.3.2).Proof See Page 48; we shall use the internal logic of let ccc's to prove this result.2The usual category-theoretic considerations imply that the structure constituting aFPO is determined uniquely up to isomorphism, within the given let category, bythe above properties. One should note also that �, being the structure morphismfor the initial algebra of an endofunctor, is itself an isomorphism.

21

Some Examples of Fixpoint ObjectsA domain-theoretic example of a let ccc with FPO is the category !Cpo, whoseobjects are posets possessing joins of countably in�nite chains, and whose morph-isms are Scott continuous functions. We will refer to the objects as !cpos. Theoperation of adjoining a least element to an !cpo D to give the lifted !cpoD? = f[d] j d 2 Dg [f?ggives a strong monad on !Cpo. There is a FPO in !Cpo; namely
 = f0 < 1 < : : : < >g;which is equipped with structure map �:
? !
 where � is the continuous function�(e) def= 8><>: 0 if e = ?n + 1 if e = [n]> if e = [>]and ! def= [>] 2
?: Some other monads on !Cpo that Moggi [Mog89b] points outas arising in denotational semantics also possess �xpoint objects. For example theexceptions monad T (D) = (D+E)? (with E some �xed discrete !cpo of exceptions)and the side-e�ects monad T (D) = S) (D�S)? (with S some �xed discrete !cpoof states) both possess �xpoint objects. We illustrate for the case of the exceptionsmonad when E is the terminal object 1 def= f�g of !Cpo. The FPO has an underlyingset
 def= f>; (n; a); (n+ 1; b) j n 2 Ngwith order given by > a top element, (n; a) � (n + 1; b), and (n; a) � (n + 1; a),along with structure map �: (
 + 1)? !
 where � is the continuous function�(e) def= 8>>>>>><>>>>>>: (0; a) if e = ?(1; b) if e = [�](n+ 1; a) if e = [(n; a)](n+ 2; b) if e = [(n + 1; b)]> if e = [>]and ! def= [>] 2
?: This follows from the general theory for solving recursive domainequations over !Cpo enriched categories as presented in [SP82]. For suppose thatT is an !Cpo enriched (strong) monad on !Cpo (where !Cpo is regarded as asymmetric monoidal category via �nite products and is enriched over itself) andthat T maps !cpos to pointed !cpos (i.e. !cpos with least elements). To obtaina �xpoint object for such a T , one constructs the initial �xed object for T in thecategory of pointed !cpos and embedding-projection pairs by iterating T startingat the one element !cpo, yielding an isomorphism � : T (
) �=
. Then (
; �) isan initial algebra for T : !Cpo ! !Cpo, and dually (
; ��1) is a �nal coalgebrafor that functor: This follows from the limit-colimit coincidence for !Cpo enrichedcategories. The initial algebra property gives us the the �rst part of the de�nitionof �xpoint object; and Freyd has observed that the second part of De�nition 2.3.2is implied by the coalgebra property. We record this latter observation as a lemma.22

Lemma 2.3.4 Given a let ccc, suppose that � : T
!
 is an initial algebra forthe functor T (so that in particular, � is an isomorphism). Suppose further that��1 :
! T
 is a �nal coalgebra for T . Then there is a global element ! : 1! T
making
; �; ! a �xpoint object for T .Proof The �nal coalgebra property means that for any g : A ! TA there is aunique morphism ĝ : A!
 satisfying ��1ĝ = T (ĝ)g.De�ne ! : 1! T
 to be ��1�̂1. From the de�ning property of �̂1 and the naturalityof � we get ! = ��1�̂1 = T (�̂1)�1 = �
�̂1 = (�
�)!:If f : A ! T
 is any other morphism satisfying f = (�
�)f , we have to see thatf = ! !. But from f = (�
�)f and the naturality of � one has��1(�f) = f = �
(�f) = T (�f)�AHence by the uniqueness part of the coalgebra property, �f = �̂A and thus f =��1�A. The same argument applies equally well with ! ! for f . Therefore f =��1�A = ! !. 22.4 The Internal Logic Corresponding to a Fix-point ObjectIt is well known that there is a natural correspondence between let categories Cand MLT theories [Mog89b]. Given such a C, the corresponding computational letcalculus is often referred to as the (equational) internal logic of the category C. It ispossible to extend the calculus MLT to capture syntactically the notion of a FPO.This will entail adding a type �x , called the �xpoint type, to MLT together withcertain term forming and equality rules. We present these rules here in an informalnatural deduction style:!:T�x E:T�x�(E): �x [x:T�]F (x):� N : �xIt�(F;N):�! = Val(�(!)) E = Val(�(E))E = ![x:T�]F (x):� E:T�xIt�(F; �(E)) = F (Let (E; n:Val(It�(F; n))))[x:T�]F (x):� [n: �x]G(n):� [e:T�x]G(�(e)) = F (Let (e; n:Val(G(n)))) N : �xG(N) = It�(F;N)23

The type �x is so called because in its presence we are always able to form �xpointsof certain terms; correspondingly, in a let category with FPO, we are always guar-anteed the existence of �xpoints of certain morphisms. We will leave the precisedetails until after we have de�ned a formal system which contains the equationalrules for the �xpoint type.2.5 The Equational Logic FIX=In Section 2.2 we discussed some appropriate extensions to MLT . The most basic ofthese was the addition of function types, resulting in the computational � calculus�MLT . Adding a �xpoint type �x , coproduct types � + � and a natural numbertype nat to the computational � calculus �MLT , we arrive at a system FIX= whichextends G�odel's system T [Gir89]. FIX= admits sound translations of Plotkin'sPCF [Plo77] and we shall return to the topic of PCF translations in Chapter 6. Wenow formally de�ne FIX=.Signatures for FIX=De�nition 2.5.1 A FIX= signature, denoted by Sg; is speci�ed by:� A collection of types. The types are built up in the following way. We are givena collection of basic ground types, together with the distinguished ground typesunit ; null; nat ; and �x : The types are now speci�ed by the following grammar:� ::=
 j �� � j �+ � j �) � j T�where
 denotes any ground type.� A collection of basic function symbols, together with the following distin-guished function symbols: hi; h�;�i; Fst; Snd; Inl�; Inr�; fg�; f�;�g; ��;App; Val; Let ; O; Suc; ItNat; !; �; It�:� A sorting for each of the basic function symbols, which is a list of n+1 typesand will be written: f :�1; : : : ; �n ! �n+1:In the case that n is zero, we shall write f :�:We say that f is an n-ary basicfunction symbol when its sorting consists of n+ 1 types.Given such a FIX= signature, we de�ne from this an abstract syntax signature� = (GAr;Con): The collection of ground arities, GAr, is simply the one elementset ftermg. The collection of constants Con consists of the basic function symbolswhich have arity termn ! term whenever the sorting of f consists of n+1 types,a countably in�nite set of object level variables which have arity term, togetherwith the distinguished function symbols. The distinguished function symbols whichwill represent the simply typed � calculus, �nite products and natural numbers have24

their usual arities. The remaining distinguished function symbols have the followingarities:1. !:term2. fg�; Inl�; Inr�;Val; �:term! term3. Let :term! (term! term)! term4. It�: (term! term)! term! term5. f�;�g: (term! term)! (term! term)! term! termAssociated with a FIX= signature is a collection of raw FIX= terms. When noconfusion can arise we shall refer to these just as raw terms. The raw terms are theclosed expressions of the abstract syntax generated from � with arity term.Remark 2.5.2 We make the following abbreviations: Write FM for App(F;M)and FN(M) for ItNat(F;N;M).Terms in Context for FIX=A context, �, is a �nite list of (variable, type) pairs written[x1:�1; : : : ; xn:�n]where the object level variables x1; : : : ; xn are distinct. An empty context will bedenoted by white space. We will use the (self explanatory) notation �; x:� and�;�0 for the concatenation of contexts, (where of course x does not occur in �) andwill write � � �0 to mean that � is a sub-list of �0. We shall write� `M :�for the judgement that given the context �, the raw FIX= term M is well formedand has type �. In such cases the raw term M will be referred to as a FIX= termin context. These judgements are generated by the following rules:Variables�; x:�;�0 ` x:�Basic Function Symbols� `M1:�1; : : : ;Mn:�n� ` f(M1; : : : ;Mn):�where f is any function symbol with sorting f :�1; : : : ; �n ! �25

Unit Terms� ` hi: unitNull Terms� `M :null� ` fg�(M):�Binary Product Terms� `M :� � ` N :�� ` hM;Ni:� � � � ` P :�� �� ` Fst(P):� � ` P :�� �� ` Snd(P):�Binary Coproduct Terms� `M :�� ` Inl�(M):� + � � ` N :�� ` Inr�(N):� + ��; x:� ` F (x):
 �; y:� ` G(y):
 � ` C:�+ �� ` fF;Gg(C):
Function Terms�; x:� ` F (x):�� ` ��(F):�) � � ` F :�) � � `M :�� ` FM :�Computation Terms� `M :�� ` Val(M):T� � ` E:T� �; x:� ` F (x):T�� ` Let (E;F):T�Natural Number Terms� ` O:nat � `M :nat� ` Suc(M):nat� `M :� �; x:� ` F (x):� � ` N :nat� ` FN (M):�Fixpoint Terms� ` !:T�x � ` E:T�x� ` �(E):�x �; x:T� ` F (x):� � ` N :�x� ` It�(F;N):�Remark 2.5.3 The usual rules for weakening of contexts, and substitution ofraw terms for object level variables, are derivable from the above rules by simplestructural induction. 26

Equational Theories for FIX=A FIX= equation in context takes the form� `M =M 0:�where M;M 0 are raw FIX= terms satisfying � ` M :� and � ` M 0:�. A FIX=theory, Th, is speci�ed by a FIX= signature, together with a speci�c collection ofequations in context, which are called the axioms of Th. The collection of theoremsof Th is the least collection of equations in context which contains the axioms ofTh, and is closed under the following rules:Function Symbol CongruenceEvery function symbol is required to be a congruenceWeakening� `M =M 0:��0 `M =M 0:� where � � �0.Equational Logic� `M :�� `M =M :� � `M =M 0:�� `M 0 =M :� � `M =M 0:� � `M 0 =M 00:�� `M =M 00:�Unit Equations� `M : unit� `M = hi: unitNull Equations�; x:null ` F (x):� � `M :null� ` F (M) = fg�(M):�Binary Product Equations� `M :� � ` N :�� ` Fst(hM;Ni) =M :� � `M :� � ` N :�� ` Snd(hM;Ni) = N :�� ` P :�� �� ` hFst(P);Snd(P)i = P :�� �
27

Binary Coproduct Equations�; x:� ` F (x):
 �; y:� ` G(y):
 � `M :�� ` fF;Gg(Inl�(M)) = F (M):
�; x:� ` F (x):
 �; y:� ` G(y):
 � ` N :�� ` fF;Gg(Inr�(N)) = G(N):
�; z:� + � ` H(z):
 � ` C:�+ �� ` fu:H(Inl�(u)); v:H(Inr�(v))g(C) = H(C):
Function Equations�; x:� ` F (x):� � `M :�� ` ��(F)M = F (M):� � `M :�) �� ` ��(u:Mu) =M :�) �Computation Equations� `M :� �; x:� ` F (x):T�� ` Let (Val(M); F) = F (M):T� � ` E:T�� ` Let (E; x:Val(x)) = E:T�� ` E:T� �; x:� ` F (x):T� �; y:� ` G(y):T
� ` Let (Let (E;F); G) = Let (E; u:Let (F (u); G)):T
Mono Condition� ` Val(M) = Val(M 0):T�� `M =M 0:�Natural Number Equations� `M :� �; x:� ` F (x):�� ` FO(M) =M :�� `M :� �; x:� ` F (x):� � ` N :nat� ` F Suc(N)(M) = F (FN (M)):�� � ` N :nat � ` G(O) =M :��; x:� ` F (x):� �; n:nat ` G(Suc(n)) = F (G(n)):nat �; n:nat ` G(n):�� ` G(N) = FN (M):�Fixpoint Equations� ` ! = Val(�(!)):T�x � ` E = Val(�(E)):T�x� ` E = !:T�x�; x:T� ` F (x):� � ` E:T�x� ` It�(F; �(E)) = F (Let (E;n:Val(It�(F; n)))):�� � ` N :�x �; x:T� ` F (x):��; e:T�x ` G(�(e)) = F (Let (e; n:Val(G(n)))):� �; n:�x ` G(n):�� ` G(N) = It�(F;N):�28

The usual rule for substitution is derivable from the above rules. More precisely wehaveLemma 2.5.4 The rule�; x:� ` N(x) = N 0(x): � � `M =M 0:�� ` N(M) = N 0(M 0): �is derivable from the rules given on Page 27.Proof Use Function Symbol Congruence to deduce � ` ��(N)M = ��(N 0)M 0: �.The result follows. 2Remark 2.5.5 The Mono Condition is the syntactic requirement which capturesthe idea that values may be trivially regarded as computations which evaluateimmediately to themselves. Note also that there are no side conditions on any ofthe extensionality rules due to the fact that object level variables are regarded asconstants in the meta � calculus.

29

30

Chapter 3Categorical Semantics of the FIX= Logic3.1 FIX CategoriesDe�nition 3.1.1 A FIX category is a let ccc which is endowed with �nite cop-roducts, FPO, NNO and for which the components of the unit of the monad aremonics.Imposing the condition that the unit components are monic captures semanticallythe idea that a value may be trivially regarded as a computation. Note also thatto specify a FIX category we take a �xed choice of strong monad.The syntax of FIX=, in particular Null and Binary Coproduct Terms and Equations,will be interpreted in FIX categories. In order to interpret such syntax soundly, theFIX category must have stable �nite coproducts i.e. the functor C � (�) mustpreserve �nite coproducts. This is automatic: any FIX category is cartesian closedand so C � (�) has a right adjoint.De�nition 3.1.2 A FIX category morphism F : C ! D is a monad morphism(F; i) between the underlying monads for which F preserves the categorical structureup to isomorphism, and each i is a natural isomorphism.Remark 3.1.3 Note that the operation on objects A 7! TA is not a categoricalproperty of the FIX category; as noted above there is a �xed choice of strong monad.Thus to be given a FIX category morphism F : (C; T)! (D; S) means for each objectA in C we are given an isomorphism iA:FTA �= SFA which is compatible with theremaining structure. For example, suppose we are given a morphism f :A�B ! TCin C. Then there is a morphism g:FA� FB �= F (A�B) Ff�! FTC iC�! SFC anda morphism h:FA�FTB �= F (A�TB) F (lift(f))�! FTC for which, by de�nition, thefollowing diagram commutes:FA� SFB lift(g)- SFC
FA� FTBid� iB6 h - FTC6iCThe (categorical) isomorphisms are, of course, the canonical ones, arising fromthe categorical property of \having (speci�ed) binary products" together with thede�nition of �nite product preserving functor.31

An example of such a FIX category is !Cpo. Note that the forgetful functor from!Cpo to Set re
ects monics.3.2 Categorical Semantics of FIX=Structures for FIX= SignaturesLet Sg be a FIX= signature. A structure, M, in a FIX category C is speci�ed bythe following data:� An object [[
]] for each basic ground type
 of Sg; and� for each basic function symbol f :�1; : : : ; �n ! �, a morphism in C of theform [[f]]: [[�1]]� : : :� [[�n]]! [[�]]:Interpretation of the FIX= TypesGiven a structure M we shall now show how to interpret the syntax of FIX= in aFIX category C. The types are interpreted as objects in the category, where theinterpretation of a type � is denoted by [[�]]: We make the following de�nitionDe�nition 3.2.1 The interpretation of a type � is given by:� [[unit]] def= 1 where 1 is the terminal object.� [[null]] def= 0 where 0 is the initial object.� [[nat]] def= N where N is the NNO.� [[�x]] def=
 where
 is the FPO.� [[�� �]] def= [[�]]� [[�]]:� [[� + �]] def= [[�]] + [[�]]:� [[�) �]] def= [[�]]) [[�]]:� [[T�]] def= T [[�]]:
32

Interpretation of the FIX= Terms in ContextGiven a context � = [x1:�1; : : : ; xn:�n] let [[�]] def= [[�1]]� : : :� [[�n]]: Then for eachcontext �, raw term M and type � for which � ` M :� is a valid judgement, weinterpret this by giving a morphism[[� `M :�]]: [[�]]! [[�]]:Note that when � ` M :� is a valid judgement, because the type � is uniquelydetermined by M and �, we will abbreviate [[� `M :�]] to just [[�:M]]; and to [[M]]if � is empty.De�nition 3.2.2 The semantics of terms in context is de�ned by a structuralinduction on terms:� [[�; x:�;�0:x]] def= �: [[�]]� [[�]]� [[�0]]! [[�]].� Let f :�1; : : : ; �n ! � be a basic function symbol; then[[�:f(M1; : : : ;Mn)]] def= [[f]]h[[�: ~M]]i: [[�]]! [[�1]]� : : :� [[�n]]! [[�]].� [[�:hi]] def=!: [[�]]! 1.� [[�:fg�(M)]] def=![[�:M]]: [[�]]! 0! [[�]].� [[�:hM;Ni]] def= h[[�:M]]; [[�:N]]i: [[�]] ! [[�]]� [[�]].� [[�:Fst(P)]] def= �[[�:P]]: [[�]]! [[�]]� [[�]]! [[�]].� [[�:Snd(P)]] def= �[[�:P]]: [[�]]! [[�]]� [[�]]! [[�]].� [[�:fF;Gg(C)]] def= f[[�; x:�:F (x)]]; [[�; y: �:G(y)]]ghid; [[�:C]]i: [[�]]! [[�]]� ([[�]] + [[�]])! [[
]].� [[�:Inl�(M)]] def= i[[�:M]]: [[�]] ! [[�]]! [[�]] + [[�]].� [[�:Inr�(N)]] def= j[[�:N]]: [[�]]! [[�]]! [[�]] + [[�]].� [[�:��(F)]] def= cur([[�; x:�:F (x)]]): [[�]]! ([[�]]) [[�]]).� [[�:FM]] def= aph[[�:F]]; [[�:M]]i: [[�]] ! ([[�]]) [[�]])� [[�]]! [[�]].� [[�:Val(M)]] def= �[[�:M]]: [[�]]! [[�]]! T [[�]].� [[�:Let (E; F)]] def= lift([[�; x:�:F (x)]])hid; [[�:E]]i: [[�]]! [[�]]� T [[�]]! T [[�]].� [[�:O]] def= 0!: [[�]]! 1! N .� [[�:Suc(N)]] def= s[[�:N]]: [[�]]! N ! N .33

� [[�:FN(M)]] def= hhid; [[�:N]]i: [[�]]! [[�]] �N ! [[�]]where h is the unique morphism arising from the universal property of theNNO together with the morphism[[�; x:�:F (x)]]hid; [[�:M]]i: [[�]]! [[�]] � [[�]]! [[�]]:� [[�:!]] def= !!: [[�]]! 1! T
.� [[�:�(E)]] def= �[[�:E]]: [[�]]! T
!
.� [[�:It�(F;N)]] def= hhid; [[�:N]]i: [[�]]! [[�]]�
! [[�]]where h is the unique morphism arising from the universal property of theFPO together with the morphism[[�; x:T�:F (x)]]: [[�]]� T [[�]]! [[�]]:This completes the de�nition of the categorical interpretations of the terms in con-text.Models of FIX= TheoriesA structure M in C for a signature Sg satis�es an equation in context � ` M =M 0:� if [[�:M]] and [[�:M 0]] are equal morphisms in C. Given a FIX= theory, Th,then M is called a model of the FIX= theory if it satis�es all of the axioms of Th.The Substitution LemmaLemma 3.2.3 The categorical semantics interprets the substitution of a term fora variable in a term via composition in the category. More precisely, if � ` Mi:�ifor i = 1; : : : ; n and also �0 ` N(x1; : : : ; xn): � where �0 = [x1:�1; : : : ; xn:�n], wehave [[�:N(~M)]] = [[�0:N(~x)]] � h[[�:M1]]; : : : ; [[�:Mn]]i:Proof The proof is a routine induction on the structure of N . Note that inSection 3.3 we shall investigate the most general interpretation of the syntax ofa FIX= theory subject to the requirement that substitution of syntax is modelledby composition of morphisms; this, in essence, supplies the details of the proof forterms N of computation or �xpoint type. 2The Soundness TheoremThe most important property of modelsM of FIX= theories is that any theorem ofa theory must be satis�ed by M. Indeed we have the34

Theorem 3.2.4 [\FIX= Soundness"] Let C be a FIX category, Th a FIX= theory,and M a model of Th in C. Then M satis�es any equation in context which is atheorem of Th:Proof We have to check that the rules for deriving equations in context are closedwith respect to satisfaction by M. The details are omitted. 23.3 Interpretations of Computation Types andthe Fixpoint TypeThe interpretation of most of the syntax of a FIX= theory is perfectly standardand well understood. However, the interpretation of computation types and the�xpoint type is relatively new. Thus we shall show that our interpretations are themost general we could hope for, given the proviso that substitution of terms in thesyntax is to be modelled by composition of morphisms in the category theory. Letus suppose that we are given a FIX= signature Sg and a FIX category C.Modelling the TypesThe interpretation of the computation types T� is forced. As noted on Page 31,the operation A 7! TA is not a categorical property of the FIX category, but isspeci�ed as part of the de�nition. Thus we interpret the type T� by the object[[T�]] def= T [[�]]: As for the type �x , we shall, for the time being, interpret it as anunde�ned object
:Modelling Terms in Context of Computation TypeConsider the rules � `M :�� ` Val(M):T� � ` E:T� �; x:� ` F (x):T�� ` Let (E; F):T�In the syntax, substitution must commute with term formation. We model substi-tution of terms, in the syntax, via composition of the interpreting morphisms in thecategory C. Thus, to interpret the �rst rule, we need a natural transformation�: C(�; A)! C(�; TA):Using the Yoneda Lemma, we have a bijection[Cop;Set](C(�; A); C(�; TA)) �= C(A; TA);and in particular the action of the components �C arise by post-composition witha morphism f :A! TA: By de�nition, this morphism f will be �A: To summarise,[[�:Val(M):T�]] def= �[[�]][[�:M]]:35

Similarly, to interpret the second rule, we shall need a natural transformation whichhas components �C : C(C; TA)� C(C � A; TB) - C(C; TB):If we apply naturality to a morphism hid; gi:C �! C � TA we �nd that�(g; f) = �(�2; f(�1 � idA))hid; giwhere �1:C � TA! C and �2:C � TA! TA: Thus we can soundly interpret thesecond rule with a natural transformation which has components�C : C(C � A; TB) - C(C � TA; TB):Given a morphism f :C �A! TB we shall denote the e�ect of the components of� by f 7! f �: Combining our results, we are led to the following de�nition[[� ` Let (E; F)]] def= f �hid; ei;where by structural induction we already have[[�; x:�:F (x)]] = f[[�:E]] = e:Modelling Equations in Context of Computation TypeProposition 3.3.1 In order to soundly model the computation type equationswe need exactly the structure of a let category.Proof Recall De�nition 1.3.1. We established above the necessity of the existenceof the function (�)�: C(C � A; TB) - C(C � TA; TB)which is natural in C. This amounts to asking that(f(g � id))� = f �(g � id)where f :C � A! TB and g:C 0 ! C: This is precisely LiftS.The computation type equations are� ` Let (Val(M); F) = F (M) (3.1)� ` Let (E; u:Val(u)) = E (3.2)� ` Let (Let (E; F); G) = Let (E; u:Let (F (u); G)) (3.3)Working through the details, in order to soundly interpret equation 3.1 we needf �(id� �)hid;mi = fhid;mi (3.4)36

where f :C � A ! TB and m:C ! A: For this, it is clearly su�cient to ask thatLiftB holds. For necessity, take�1:C � A! A �2:C � A! C:Then we have f = f(�2 � id)hid; �1iusing an instance of 3.4 = (f(�2 � id))�(id� �)hid; �1iusing naturality of (�)� = f �(�2 � id)(id� �)hid; �1i= f �(id� �):In order to soundly interpret equation 3.2 we need(��1)�hid; ei = e (3.5)where e:C ! TA and �1:C � A ! A: It is su�cient for LiftH to hold. Fornecessity, take �2:C � TA! TA �3:C � TA! C�4: (C � TA)� A! A:Then we have (��1)� = (��1)�(�3 � id)hid; �2ifrom naturality of (�)� = (��1(�3 � id))�hid; �2i= (��4)�hid; �2iusing an instance of 3.5 = �2as required.Finally, in order to model equation 3.3 soundly, we need to ask thatg�(id� f �)hid; hid; eii = ((g(�1 � id))�hid; fi)�hid; ei (3.6)where �1:C � A! C f :C � A! TBg:C � B ! TD e:C ! TA:Now consider the projection morphisms�2:C � TA! C �3:C � TA! TA�4: (C � TA)� A! (C � TA):Using naturality of (�)� the equation 3.6 becomesg�(id� f �)hid; hid; eii = (g�h�1; fi)�hid; ei: (3.7)
37

It is certainly su�cient for equation LiftA to hold. Indeed, it is also necessary, aswe now show: (g�h�1; fi)� = (g�h�1; fi)�(�2 � id)hid; �3iusing naturality of (�)� = (g�h�1; fi(�2 � id))�hid; �3i= (g�h�2�4; f(�2 � id)i)�hid; �3i= ((g(�2 � id))�h�4; f(�2 � id)i)�hid; �3iusing equation 3.7 = (g(�2 � id))�(id� (f(�2 � id))�)hid; hid; �3ii= g�(id� f �)(�2 � (�2 � id))hid; hid; �3ii= g�h�2; f �i: 2Modelling Terms in Context of Fixpoint TypeConsider the rules� ` !:T�x � ` E:T�x� ` �(E): �x �; x:T� ` F (x):� � ` N : �x� ` It�(F;N):�To interpret the �rst rule, we shall need a global element of T
: (Remember thatfor the time being,
 is just some arbitrary object of a let category). So we have[[�:!]] def= !!: [[�]]! 1! T
:To interpret the second rule, with the usual assumptions about the way we shallmodel substitution, we shall need a natural transformation�: C(�; T
)! C(�;
):Using the Yoneda Lemma, the e�ect of the components �C arise by post-compositionwith a morphism �:T
!
: Thus we have[[�:�(E)]] def= �e;where, by structural induction we already have [[�:E]] = e:To interpret the third rule, we shall need a natural transformation with components�C : C(C � TA;A)� C(C;
) - C(C;A)Applying naturality to hid; ni:C ! C �
; we get�(f; n) = �(f(�1 � id); �2)hid; niwhere �1:C �
 ! C and �2:C �
 !
: Thus we can soundly model the thirdrule with a natural transformation which has components�C : C(C � TA;A) - C(C �
; A);38

and we shall write f 7! f � for the e�ect of this function. Thus we are led to setting[[�:It(F;N)]] def= f �hid; ni;where we already have [[�; x:T�:F (x)]] = f[[�:N]] = n:Modelling Equations in Context of Fixpoint TypeProposition 3.3.2 In order to soundly model the �xpoint type equations, weshall need exactly a let category C which is endowed with a FPO.Proof The �xpoint type equations are� ` ! = Val(�(!)) (3.8)� ` E = Val(�(E)) � � ` E = ! (3.9)�; e ` G(�(e))=F (Let (e; n:Val(G(n)))) � � ` G(N) = It�(F;N) (3.10)� ` It�(F; �(E)) = F (Let (E; n:Val(It�(F; n)))) (3.11)It is easy to see that for the sound modelling of 3.8 and 3.9 it is necessary andsu�cient that the triple (!; �;
) forms part of the equaliser diagram of De�nition2.3.2 of a FPO.Note that in the FIX logic, (modulo rules for which we have soundness), rule 3.10is equivalent to�; e ` G(�(e)) = F (Let (e; n:Val(G(n)))) � �; n ` G(n) = It�(F; n) (3.12)In order to soundly model 3.12 we see it is necessary thatg(id� �) = fh�1; lift(�g)i (�)g = f �where f :C � TA ! A, g:C �
 ! A and �1:C � T
 ! C; su�ciency of theuniqueness requirement of a FPO is immediate.Finally, we look at the structure needed to soundly model 3.11. Put�2:C � T
! T
 �3:C �
! C �4:C �
!
:Working through the details we shall needf �(id� �)hid; ei = fhid; lift(�(f(�3 � id))�hid; �4i)hid; eii (3.13)where e:C ! T
. However, we can appeal to (�) to deduce that (f(�3 � id))� =f �(�3 � id); thus 3.13 reduces tof �(id� �)hid; ei = fhid; lift(�f �)hid; eii: (3.14)39

The universal property of a FPO is certainly su�cient to ensure that 3.14 holds.To see that it is also necessary, note thatfh�1; lift(�f �)i = f(�1 � id)hid; lift(�f �(�1 � id))hid; �2ii= f(�1 � id)hid; lift(�(f(�1 � id))�)hid; �2iiusing an instance of 3:14 = (f(�1 � id))�(id� �)hid; �2i= f �(�1 � id)(id� �)hid; �2i= f �(id� �):Finally note that the universal property of a FPO ensures
 and � are determinedup to isomorphism. 23.4 The Categorical Logic CorrespondenceNow we have all the ingredients to describe the usual categorical logic correspond-ence for FIX= theories and FIX categories.Proposition 3.4.1 Given a FIX category C, we can de�ne a certain FIX= theory,which we denote by Th(C):Proof The basic ground types are the objects of C. For each morphismf :A1 � : : :� An �! Bin C there is a basic function symbol f :A1; : : : ; An �! B. There is clearly acanonical structure G for this signature in C. The terms of the theory are thengenerated up according to the rules on Page 27. The axioms of Th(C) are speci�edby � `M = N :� is an axiom of Th(C) i� [[�:M]]G = [[�:N]]G: 2Proposition 3.4.2 For each FIX= theory, Th; over some signature, Sg; we canconstruct a syntactic FIX category which we denote by C(Th):Proof� The objects of C(Th) are the types of the signature Sg:� The morphisms with domain � and codomain � are speci�ed byC(Th)(�; �) def= fM(x) j x:� `M(x): � g= �;where the equivalence relation � is de�ned byM(x) �M 0(y) i� x:� `M(x) =M 0(x): �:40

Composition is given by the usual substitution of terms; it is a tedious but straight-forward task to check that this does de�ne a FIX category. 2Theorem 3.4.3 Given a FIX category C, then there is an equivalence of FIXcategories Eq : C(Th(C)) ' C : Eq�1where Eq and Eq�1 are FIX category morphisms.Proof De�ne Eq and Eq�1 by setting� Eq(�) def= [[�]]G and Eq�1(A) def= A on objects, and� Eq(M(x)) def= [[x:M(x)]]G and Eq�1(f) def= f(x) on morphisms.Note that Eq is well de�ned by appealing to Theorem 3.2.4. That we have anequivalence of categories via inverse FIX category morphisms is a lengthy calculationwhich is omitted. 23.5 De�nability of FixpointsFixpoints in FIX=The �xpoint type is so called because in its presence one can always de�ne �xpointterms at all types of the form �) T�. We make this precise in the next proposition:Proposition 3.5.1 [\Fixpoint De�nability"] In the presence of a �xpoint object,one may de�ne expressions Y�;� of the meta � calculus with arity term ! termfor which given a FIX term in context � ` F : (�) T�)) �) T� we may derive� ` Y�;�(F):�) T� and � ` FY�;�(F) = Y�;�(F):�) T�:Proof We de�ne Y�;� by giving the representativeY�;�(f) def= It�)T�(e:��(x:Let (e; y:fyx)); �(!)):It is easy to see that the �rst judgement is derivable. For the second let us putG def= e:��(x:Let (e; y:fyx)). ThenY�;�(F) = It�)T�(e:��(x:Let (e; y:Fyx)); �(!))= ��(x:Let (Let (!; n:Val(It�)T�(G; n))); y:Fyx))= ��(x:Let (Let (Val(�(!)); n:Val(It�)T�(G; n))); y:Fyx))= ��(x:F It�)T�(G; �(!))x)= FY�;�(F): 241

Fixpoints in !CpoUsing the categorical logic correspondence we can easily see that in a FIX category�xpoints of certain morphisms always exist. In order to illustrate this we applythe categorical equivalent of Proposition 3.5.1 on Fixpoint De�nability to the FIXcategory !Cpo.Suppose that D is an !cpo and that D? is its lifting. Write [D;D?] for the con-tinuous maps from D to D?. Then it is well known that any continuous map�: [D;D?]! [D;D?]has a least �xpoint. Now the categorical version of Proposition 3.5.1 on FixpointDe�nability says that a �xpoint of � should be given by it(�)(>) where we notethat in !Cpo it is the case that ! def= [>], > = �([>]) and it(�) arises as the uniquemediating morphism of the following diagram
? � -

[D;D?]?it(�)?? �?- [D;D?]?it(�)It is easy to see, using the commutativity of the diagram, that given n 2
=f>gwe have it(�)(n) = �n(?) and that from the continuity of it(�)it(�)(>) = _n2N �n(?):Thus it(�)(>) is exactly the least �xpoint of � with respect to the order on [D;D?];of course the argument above is really the proof that !Cpo has a FPO.A Category without a Fixpoint ObjectIt is not always the case that a concrete category of domains has a FPO even thoughthe morphisms between lifted domains may be guaranteed to have �xpoints.De�nition 3.5.2 Let OnCPO be the category which has� objects posets possessing suprema of all chains and� morphisms monotone set functions; (we will call them maps).It is easy to see that this category is indeed a let ccc when we regard the liftingfunctor as giving rise to a strong monad. It is the case that all maps f :D? ! D?

42

have a least �xpoint. For given any such map f , de�ne for any ordinal � the elementf�(?) by f 0(?) = ?f�+1(?) = f(f�(?))f�(?) = _�<� f�(?) where � is a limit ordinal:This is a good de�nition. The only thing that is not trivial is the existence of f�(?):the set ff�(?) j � < �g must be a chain. But a simple trans�nite induction showsthat � � �0 < � implies f�(?) � f�0(?): Next note that there is some ordinal � forwhich f�(?) is a least �xpoint of f . Suppose this were not the case. By appealingto Hartog's Lemma, we can �nd a least ordinal (say
) whose cardinality is strictlygreater than the cardinality of the domain of f , say jD?j. Using the hypothesis, itmust be the case that the cardinality of ff�(?) j � �
g is strictly greater thanjD?j, a contradiction.Proposition 3.5.3 The let ccc OnCPO does not possess a �xpoint object.Proof As OnCPO is cartesian closed we may appeal to Lemma 2.3.3.Let us suppose that the �xpoint object
 exists in OnCPO. We write i:
 ,!
?; n 7! [n] for the (monic) component of the unit of the lifting monad at
.From the equaliser condition of the �xpoint object, i�:
? !
? has a unique �x-point (which is not bottom), say [>] 2
?: From remarks above there is an ordinal� for which (i�)�(?) = [>]; note that � > 1.We write �1 for �(?), ��+1 for �[��] and �� for W�<� ��; note that each supremumexists.The ordinals !+2 and !+1 are objects of OnCPO; we take ! def= f1; 2; : : :g. De�nea map f : (! + 2)? ! ! + 2 by settingf(x) def= 8>>><>>>: 1 if x = ?n+ 1 if x = [n]! if x = [!]! + 1 if x = [! + 1]and a map fr: (! + 1)?! ! + 1 to be f with restricted (co)domain.Consider the diagram
? � -
(1)(! + 1)?~fr?? fr- ! + 1?~fr(2)(! + 2)?j?? f - ! + 2?j43

(1) commutes using the universal property of a FPO, (2) trivially. Similarly, thereis ~f :
! ! + 2 making
? � -
(3)(! + 2)?~f?? f - ! + 2?~fcommute. From uniqueness, ~f = j ~fr. We shall now consider the cases when � isstrictly less than, or greater than, !. In the latter case we obtain a contradictionby de�ning a map di�erent from ~f which makes (3) commute.(Case 1 < � < !): By chasing (1) we see that for any �nite ordinal k, ~fr(�k) = k.From the de�nition of � it is easy to see that �� = >. Chasing (1) at [>] 2
? weget � = ~fr(>) = ~fr�([>]) = fr ~fr?([>]) = fr([~fr(>)]) = � + 1a contradiction. Hence we must have(Case ! � �): Certainly �k � �! for any �nite ordinal k, and so k = ~fr(�k) �~fr(�!). Hence ~fr(�!) = !. As �� = > we have ! = ~fr(�!) � ~fr(>) and so~fr(>) = !:De�ne a function F :
! ! + 2 byF (n) def= (! + 1 if > � n~f(n) otherwiseNote that F (>) = !+1 and ~f(>) = j ~fr(>) = !, that is F 6= ~f . It is the case thatF is monotone:1. On elements of
 not greater than >, F is monotone for ~f is.2. If > � n � n0 in
 then F (n) = F (n0).3. If n � n0 in
 where n0 is greater than > but n is not, then F (n) � ! + 1 =F (n0):Finally, F makes the square (3) commute.1. Clearly �1 � > and �1 is not >. So F�(?) = ~f(�1) = 1 = fF?(?):2. Suppose [n] 2
? and n is greater than >. Then > = �([>]) � �([n]). SoF�([n]) = ! + 1 = f([F (n)]) = fF?([n]):3. Suppose [n] 2
? and n is not greater than >. Then �([n]) is not greaterthan >, for if so, as � is an isomorphism, [>] = ��1(>) � [n] and this is notso. Hence,F�([n]) = ~f(�([n])) = f(~f?([n])) = f([~f(n)]) = f([F (n)]) = fF?([n]):44

By the uniqueness criterion, we have F = ~f . This is not so. Hence there can be no�xpoint object in OnCPO, as claimed. 23.6 Functional CompletenessA concept which is closely related to the correspondence between FIX= theoriesand FIX categories is functional completeness. We begin by de�ning the notionof functional completeness for let ccc's and show these categories are functionallycomplete. We refer to [LS86] for a similar discussion concerning cartesian closedcategories.De�nition 3.6.1 Let C be a let ccc and let A be an object of C. The polynomialcategory C[X] in variable X is speci�ed by the following data:� The objects of C[X] are just the objects of C and� a morphism of C[X] is an equivalence class, obtained by quotienting the col-lection consisting of the morphisms of C together with an indeterminate globalelement X: 1 ! A by the equivalence relation �, where � is the least suchrelation satisfying:1. If fg = h in C, then gf � h.2. If u � u0 and v � v0, then vu � v0u0:3. u � id � u � id � u:4. (wv)u � w(vu):5. Conditions forcing (formal) cartesian closure of C[X]; see [LS86].6. If lift(f) = h in C, then lift(f) � h in C[X]:7. If u � u0 then lift(u) � lift(u0):8. Conditions forcing C[X] to be a let category; for example, this amounts torequiring lift(v(u� id)) � lift(v)(u� id);corresponding to LiftS of De�nition 1.3.2; similar conditions hold for theother let structure equations.Remark 3.6.2 The polynomial category in n variables, C[X1 : : :Xn], is de�nedby iterating the construction just given.Now we prove a version of functional completeness for let ccc's. If we assume thatwe have already the categorical logic correspondence for let ccc's, then we mayprove the next theorem using internal languages. Alternatively, the theorem can beproved with bare hands, and the categorical logic developed in the same way thatLambek and Scott prove an equivalence between ccc's and typed lambda calculus.45

Theorem 3.6.3 [\Functional Completeness"] Let C be a let category and C[X]its polynomial category. For every morphism u:B ! C in C[X] there is a uniquemorphism �(u):A�B ! Cin C such that �(u)hX!; idi = uwhere !:B ! 1: In particular, each global element of C in C[X] is of the form fXfor some unique morphism f :A ! C in C. Note that we now write = for �, thatis, for equality in the polynomial category.Proof As there is a proof of this result for ccc's in [LS86], we just give details ofthe proof for the let structure. Take morphismsu : B � B0 ! TC;and hence lift(u) : B � TB0 ! TC;l : (A� B)�B0 ! A� (B � B0);m : A� (B � TB0)! (A�B)� TB0;where l and m are the obvious isomorphisms. By induction, we shall assume thatthere is a morphism �(u):A� (B � B0)! TCthat satis�es functional completeness. Then we de�ne�(lift(u)) def= lift(�(u)l)m;and refer the reader to [LS86] for the de�nition of � on the ccc structure. We haveto check that this is well de�ned, i.e. if u = v in C[X] then �(u) = �(v) in C[X]:This amounts to showing that � respects each of conditions (1) to (8) of De�nition3.6.1; most of these are easy to verify, but we check in detail one of the let structureequations of condition (8), namely lift(vhu�; �0i) = lift(v)hu�; �0i: We have�(lift(vhu�; �0i)) = lift(�(vhu�; �0i)l)mby de�nition is = lift(�(v)h�; h�(u)h�; ��0i; �0�0iih��; h�0�; �0ii)mwhich is = lift(�(v)h��; h�(u)�; �0ii)mfor appropriate l0 = lift(�(v)l0(h�;�(u)i � id))mfrom the let structure = lift(�(v)l0)(h�;�(u)i � id)m= lift(�(v)l0)m0h�; h�(u)h�; ��0i; �0�0ii= �(lift(v))h�;�(hu�; �0i)i= �(lift(v)hu�; �0i)which is what we had to show. Now that we know � is well de�ned we prove theresult itself. Indeed, �(lift(u))hX!; idi = lift(�(u)l)mhX!; idi46

= lift(�(u)l)(hX; idi � id)which as C[X] is a let ccc = lift((�(u)l)(hX!; idi � id))= lift(�(u)hX!; idi)and by induction = lift(u):Hence the proof is complete. 2Thus we have presented a proof of the functional completeness result by directcalculation. As remarked above, we can then use the result to derive the categoricallogic correspondence. For an explanation of the general ideas, see [LS86].Theorem 3.6.4 Given a FIX category C, then there is an equivalence of FIXcategories Eq : C(Th(C)) ' C;where Eq is a FIX category morphism.Proof (Sketch) The types of the theory Th(C) are the objects of C and the termsof the theory Th(C) of type A are de�ned to be global elements in C[X1 : : :Xn] of theobject A: The rules of inference for �nite products and lambda terms can be foundin [LS86]. For the let structure suppose that we are given the terms E: 1 ! TAand M : 1! TB in Th(C): Then the term Let (E;X:M) is de�ned to belift(�(M)i)hid; Ei: 1! TBwhere i is the isomorphism 1 � A �= A � 1: Equality of terms is given by equalityin C[X1 : : :Xn].The category C(Th(C)) has objects the types of Th(C) and morphisms terms ofTh(C) with one free variable. Now de�ne Eq by the following recipe:� Set Eq(A) def= A and� given that (X:A;M(X):B) : A ! B in C(Th(C)) where of course X: 1! Aand M(X):A! B in C[X], we putEq(X:A;M(X):B) def= �(M(X) �X)�where �:A �= A � 1 in C and we have made use of Theorem 3.6.3. Theremainder of the proof is routine calculation. 2
47

3.7 Further Results about FIX Categories and FIX=TheoriesThe Proof of Lemma 2.3.3Proof Suppose that C is a let ccc and that the triple (!; �;
) is a FPO satisfyingthe hypotheses of Lemma 2.3.3. Let f :C � TA ! A: We shall use the categoricallogic correspondence and work with the internal language of C. We need to �nd aunique morphism ~f :C �
! A such that~f(id� �) = fh�1; lift(� ~f)i: (3.15)With a view to using the uniqueness property of the T algebra, we look for amorphism (say g) of the form g:T (C) A) ! (C) A): De�ne such a g via theterm in contexte:T (C) A) ` �C(c:f(c; Let (e; x:Val(xc)))): (C) A):Let us write F (e) for the raw term (in context e). From this, we can de�ne ~f bythe term in context c:C; n:
 ` It(F; n)c:A:Let u:T
: Using the rules of the logic FIX= we getc:C; u:T
 ` It(F; �(u))c = F (Let (u; y:Val(It(F; y))))cby de�nition of F (e) = f(c; Let (Let (u; y:Val(It(F; y))); x:Val(xc)))= f(c; Let (u; y:Let (Val(It(F; y)); x:Val(xc)))= f(c; Let (u; y:Val(It(F; y)c))):This says exactly that the equation 3.15 holds in C, as desired, with uniquenessimmediate from the FIX= rules.Conversely, given the existence of a TC algebra for each C, just take C to be 1 toget the required T algebra. 2Elementary Domain Theoretic Features of FIX=FIX= has certain features which seem to be close in spirit to those of axiomaticdomain theory and some properties of the abstract categorical semantics are verysimilar to those of the concrete model !Cpo. We note certain results concerningFIX= which have well known analogues in !Cpo and begin with the following lemma:Lemma 3.7.1 Work in an arbitrary FIX category. We can de�ne a morphism"A:
! TA which is unique such that let("A) = "A�.Proof Set "A def= it(let(idTA)): Note that let(id)let(�"A) = let(let(id)�"A) =let("A): Hence the result follows from the universal property of the FPO. 248

Corollary 3.7.2 Given a FIX category C and a morphism f :A! TB then thefollowing diagram commutes:
	�����"A @@@@@"BRTA let(f) - TBProof Note that let(let(f)"A) = let(f)let("A) = let(f)"A�: Then the result isimmediate from Lemma 3.7.1. 2For any object A of the FIX category C there is a morphism ?A: 1! TA which isde�ned to be "A�!. In the concrete FIX category !Cpo, the morphism "A:
! A?is of course the continuous function which is constantly bottom. Thus the morphism?A: 1! A? just selects the bottom element from the domain A?:A question that remains unanswered is just how like axiomatic domain theory is theFIX= logic? For example, how do abstract �xpoints in FIX= relate to least �xpointsin the category of domains !Cpo? We shall return to these issues in Chapter 10.Fixpoint Objects in Polynomial CategoriesProposition 3.7.3 Let C be a FIX category with FPO
. Then C[X] also has aFPO, given by i(
), where i : C ,! C[X] is the canonical inclusion functor.Proof We show that the category C[X] has a FPO by appealing to Lemma 2.3.3.Consider the diagram:T
 � -
@@@@@hX!; idiR 	�����hX!; idiA� T
 id� �- A�

A� TBk? �(f) - Bit(�(f))? -=� B?

h
�����hX!; idi�TB

let(�h)
? f - B?= 649

where k def= h�A; lift(�it(�(f)))i: We set h def= it(�(f))hX!; idi; where the morphism�(f) is de�ned by appealing to Theorem 3.6.3. In order to prove that h� = f let(�h)we inspect the diagram above. It is clear all regions commute except for khX!; idi =hX!; idilet(�h). To prove this it is enough to show that lift(�it(�(f)))hX!; idi =let(�it(�(f))hX!; idi): We appeal to Theorem 3.6.3 and note�(let(�it(�(f))hX!; idi)) = lift(�(�it(�(f)))h�;�(hX!; idi)i)= lift(��0h�; it(�(f))�0ih�; h�; �0ii)= lift(�it(�(f))h�; �0i):It remains to prove uniqueness. Suppose also that g� = f let(�g): Note that if�(g) = it(�(f)) then h = it(�(f))hX!; idi = �(g)hX!; idi = g; so it is su�cient toprove the former. For this, if we can show �(g)(id� �) = �(f)h�A; lift(��(g))i weare done using the universal property of the FPO
 in C. As �(g�) = �(g)(id� �)it is su�cient to prove �(f)h�A; lift(��(g))ihX!; idi = g�: We have�(f)h�A; lift(��(g))ihX!; idi = �(f)hX!; lift(��(g))hX!; idiiusing uniqueness of �(�) = �(f)hX!; let(�g)i= f let(�g)and so we are done. Finally, the equaliser condition is simple to verify. 2Completeness of the Models of FIX=TheoriesTheorem 3.7.4 The semantics which we have given to FIX= theories Th is bothsound and complete. By complete, we mean that an equation in context is a theoremof Th just in case it is satis�ed by all models of Th:Proof We proved soundness on Page 35. An equation E is a theorem of thetheory Th just in case it is satis�ed by the generic model G. But if E is satis�edby all models, in particular it is satis�ed by G. 2Remark 3.7.5 It is possible to check that for any FIX category D and modelMof Th in D there is an essentially unique FIX category morphism I: C(Th)! D forwhich we have I[[�:M]]G = [[�:M]]M: In particular, if Th is the pure FIX= theory(no extralogical axioms), then C(Th) is (essentially) an initial object in the categoryof FIX categories and FIX category morphisms.3.8 Gluing for Let Cartesian Closed CategoriesThe technique of gluing originated with Freyd, who presented a neat method forproving the existence and disjunction properties of certain intuitionistic type theor-ies. His proof made use of a certain topos E manufactured from two other toposes;E is the so-called glued topos and for an account of this see [LS86]. The essence of50

the method involves the careful application of a certain theorem from topos theory.A simple version of the theorem just for ccc's can be found in [Laf88]. We nowprove a version of the theorem for let ccc's.Lemma 3.8.1 [\Let ccc Gluing"] Let �:D ! C be a functor where D is a letccc and C is a ccc. Suppose also that C has pullbacks and that � preserves �niteproducts. Write Gl(�) for the category (C#�) and note that there is an obviousfunctor �: (C#�)! D: Then it is the case that1. Gl(�) is a let ccc.2. � is a morphism of let ccc's.Proof It is a well known result that Gl(�) is a ccc, for example see [Laf88]. Weshall denote a typical morphism in Gl(�) by(a; s): (A; f;X)! (B; g; Y):Note that the property of being a let ccc is not a categorical property. By thestatement that Gl(�) is a let ccc, we mean that there is an obvious canonical choicefor a let structure. We make the following de�nitions:1. T (A; f;X) def= (A;�(�)f; TX).2. �(A;f;X) def= (id; �): (A; f;X) �! T (A; f;X):3. (a; s): (A; f;X)� (B; g; Y) �! T (C; h; Z)lift(a; s) def= (a; lift(s)): (A; f;X)� T (B; g; Y) �! T (C; h; Z)The �rst two de�nitions clearly make sense. We note that the third de�nition isgood: A�B f � g- �X � �Y -�=� �(X � Y) �(id� �)- �(X � TY)
Ca? h - �Z �(�) - �TZ?�(s) -=� �TZ?�(lift(s))We have to verify that the equations of De�nition 1.3.2 on page 12 hold. We justcheck LiftA. Take morphisms(a; s): (C; h; Z)� (A; f;X) �! T (B; g; Y)(b; t): (C; h; Z)� (B; g; Y) �! T (D; k;W)(�; �0): (C; h; Z)� (A; f;X) �! (C; h; Z):51

Consider the commutative diagram:C � A h�; ai - C � B b - DQQQQQQQQQh� fs�Z � �TXh? � id��(�) �Z � �X �Z � �TYh� �(�)g?
�(Z �X)?�= 6

+����������(id� �) @@@@@�(h�0; si) R�(Z � TX)?
�= 6

�(h�0; lift(s)i) - �(Z � TY)?
�= 6

�(lift(t))- �TW?
�(�)k

�(Z � TX)?= 6 �(lift(lift(t)h�0; si)) - �TW?= 6From this, it is easy to see thatlift(lift(b; t) � h(�; �0); (a; s)i) = lift(lift(b; t) � (h�; ai; h�0; si))and using the diagram = lift(b; t) � (h�; ai; h�0; lift(s)i)= lift(b; t) � h(�; �0); (a; lift(s))i:This is exactly LiftA for the glued category Gl(�). It is immediate that � is amorphism of let ccc's. 2Let U be the forgetful functor from the category of locally small let ccc's to thecategory of locally small categories. There is, of course, a free functor F from thecategory of locally small categories to the category of locally small let ccc's, whereon objects we write FC for F (C): Then F is left adjoint to U and we write I forthe unit of the adjunction; thus there is for each locally small C a canonical functorIC: C ,! FC. Now we can proveCorollary 3.8.2 Let C be a locally small category, and FC the freely generatedlet ccc. Then the canonical functor I: C ,! FC is full and faithful.
52

Proof Consider the commutative diagramC I - FC@@@@@H R[Cop;Set]?�where H is the Yoneda embedding of C into its topos of presheaves, and the functor� arises (essentially) as the mate ofH across the adjunction (F ` U) where [Cop;Set]is regarded as a let category with the identity strong monad. H is faithful, implyingI is too.Let � be the compositeI� �H:FC �! [FCop;Set] �! [Cop;Set]:There is certainly a natural transformation �: C(�;+) �! FC(I(�); I(+)): So, foreach A in C there is a natural transformation�A:HA �! � � I(A): C �! [Cop;Set]:Thus we may de�ne a functor J : C �! ([Cop;Set]#�)by setting J(A) def= �A and J(f) def= (f�;�I(f)): That J is well de�ned follows thenaturality of � and that ([Cop;Set]#�) is a let ccc follows from Lemma 3.8.1.If �: ([Cop;Set]#�)! [Cop;Set] and �0: ([Cop;Set]#�)! FC are the usual projectionfunctors, then clearly we have �J = H and �0J = I:The universal property of the category FC says that the following diagram commutesup to natural isomorphism,C J- ([Cop;Set]#�) �0 - FC�����K �������������IdFC *
FCI?where, say, �:KI �= J: Now, �0�: �0KI �= �0J = I: By the uniqueness condition ofthe universal property, there is a natural isomorphism �: �0K �= IdFC: It is alsoclearly the case that �I = �0�:

53

Now take objects A and B in C and a morphism g: IA ! IB in FC, and considerthe diagram HA ========== �JA ���1A- �KIA
HB ========== �JB�(�B �Kg � ��1A)? � ��B �KIB?�KgThe Yoneda embedding is full, thus there is f :A ! B in C for which f� = �(h)where we set h def= �B � Kg � ��1A : Now, for each object A in C, we have a naturaltransformation �A:HA = �JA �! ��0JA = �IA:This leads to �Bf� = �B � �(h)= (� � �0)(h) � �A= �(�IB � �0Kg � �0��1A) � �A= �(g) � �A= HI(�)g � �AHence it is the case that �B;A �HAf = HIAg � �A;A and applying this to idA we getI(f � idA � idA) = g � idIA � idIAthat is I(f) = g;which says exactly that the functor I is full. 2The last result follows from an adaptation of Pitts' proof of the corresponding resultfor ccc's. We may derive from Corollary 3.8.2 the followingProposition 3.8.3 Given a �MLT theory Th, any term M of ground type
containing no object level variables is provably equal in the equational logic of�MLT to a ground term M 0 of type
. (A ground term is simply a raw term of�MLT for which all function symbols are basic.)Proof The term M corresponds to a global element of the denotation of
 in theclassifying category of the theory Th. But by Corollary 3.8.2, this global elementarises as a global element of the denotation of
 in the syntactic category arisingfrom the ground types and terms. This says exactly that M is provably equal to aground term M 0 in the logic of �MLT . 2

54

Presheaves on Categories with MonadsWe �nish this chapter with a miscellaneous result, namely:Proposition 3.8.4 Let C be a locally small category and (T; �; �) a monad overC. Then the category of presheaves on C is a let category for a certain choice ofmonad.Proof We de�ne a strong monad (S; �; �; �) on [Cop;Set] by setting� SF (A) def= F (TA) and SF (f) def= F (Tf),� (S�)A def= �TA,� (�F)A def= F (�A),� (�F)A def= F (�A) and� (�(F;G))A def= F (�A)� idG(TA)where f :A ! A0 is a morphism of C and �:F ! G is a morphism of [Cop;Set].It is routine to check that that we have de�ned a strong monad and appealing toLemma 1.3.5 we are done. 2

55

56

Part IIThe FIX Logic

57

Chapter 4The FIX Logical System4.1 Why Introduce the FIX Logic?roy The de�nition of an initial T algebra �:T
!
 for an endofunctor T containsboth an existence and a uniqueness clause. The uniqueness requirement amountsto a form of induction principle, which is stated precisely in the following theoremfor which a reference is [LS81].Theorem 4.1.1 [\Initial T Algebra Induction Principle"] To show that a subob-ject i:S ,!
 is the whole of
, it su�ces to show that the composition �T i:TS !
factors through i:S ,!
. 2For the functor (�)+1 on the category of sets, the object part of the initial algebrais the natural numbers and the above theorem is equivalent to the usual principleof mathematical induction; this is a well known fact.As another instance of initial T algebra induction, we consider the case when thecategory is !Cpo, the endofunctor is lifting and subobjects are given by inclusivesubsets. Suppose that i:S ,!
 is an inclusive subset of the �xpoint object
 =f0 < 1 < : : : < >g. Then we have that S? is just the inclusive subset of
? givenby fe 2
? j 8n 2
:[n] = e � n 2 Sg. Thus we can state Theorem 4.1.1 by wayof following induction principle:8e 2
?:(8n 2
:[n] = e � n 2 S) � �(e) 2 S
 = SJust as least �xed points are de�nable using the universal property of the initial(�)? algebra
, so is Scott's induction principle for least �xed points [Sco69b]derivable from the above induction rule.Proposition 4.1.2 [\Scott Induction"] Let P � D? be an inclusive subset, andlet f :D? ! D? be a continuous function. Then we have? 2 P 8d 2 D?:d 2 P � f(d) 2 P�x(f) 2 PProof In Theorem 4.1.1 take S def= fn 2
 j h(n) 2 Pg where h is the uniquemediating morphism arising from f?: (D?)? ! D? and the FPO
. Then S =
and so �x(f) = h(>) 2 P . 259

In order to formulate this induction principle for the �xpoint type in FIX= weintroduce a constructive logic [Bee85], called FIX, of properties of terms over FIX=.There are similarities between FIX and the traditional \axiomatic domain theory"of LCF [Pau87] and to Plotkin's approach to denotational semantics using partialcontinuous functions [Plo85].4.2 The Predicate Logic FIXThe FIX propositions constitute part of a predicate logic with equality. The rulesfor equality, conjunction and universal quanti�cation (over elements of a given type)form a fragment of �rst-order intuitionistic predicate calculus [Dum77]. Addition-ally there are certain predicate constructors which implicitly contain forms of im-plication, disjunction and existential quanti�cation. In order to set up a formalsystem for our logic, we begin by de�ning an extension of the notion of FIX= sig-nature, which was de�ned in Section 2.5.1.Signatures for FIXDe�nition 4.2.1 A FIX signature Sg is speci�ed as in Section 2.5.1, togetherwith the following data:� A collection of basic relation symbols, together with the following distinguishedrelation symbols: =�; true; false; ^; 8�; 2; 3; +.� A sorting for each of the basic relation symbols, which is a list of n types, andwill be written: R:�1; : : : ; �n:In the case that n is one, we shall write R:�. We say that R is an n-ary basicrelation symbol when its sorting consists of n types.We use the signature Sg to de�ne the propositions of our logic. Given such a Sg,we shall de�ne from this an abstract syntax signature �: The collection of groundarities, GAr, is the set fterm; propg and the collection of constants, Con, consistsof all function symbols, all relation symbols, and a countably in�nite set of objectlevel variables. The function symbols have the same arities as those designatedon Page 24 and the object level variables arity term. The n-ary relation symbolsare considered to have arity termn ! prop, the distinguished relation symbolswhich will represent truth, falsity, equality, conjunction and universal quanti�cationhave their usual arities and the remaining distinguished relation symbols have thefollowing arities:1. +: (term! prop)! (term! prop)! term! prop2. 2:term! (term! prop)! prop60

3. 3:term! (term! prop)! propAssociated with a FIX signature Sg is a collection of raw FIX terms and raw FIXpropositions. These are the closed expressions of the abstract syntax generated from� of arities term and prop respectively.Propositions in Context for FIXWe shall write � ` � propfor the judgement that given the context � the raw proposition � is well formed.These judgements are generated by the following rules, where in the case of thebasic relation symbols, the sorting of a certain symbol is used to determine theform of the introduction rule.Basic Relation Symbols� `M1:�1; : : : ;� `Mn:�n� ` R(M1; : : : ;Mn) propwhere R is a basic relation symbol with sorting R:�1; : : : ; �nEquality Propositions� `M :� � `M 0:�� `M =� M 0 propTruth� ` true propFalsity� ` false propConjunction Propositions� ` � prop � ` 	 prop� ` � ^	 propCoproduct Propositions�; x:� ` �(x) prop �; y:� ` 	(y) prop � ` C:�+ �� ` (� +)(C) prop61

Universal Quanti�cation Propositions�; x:� ` �(x) prop� ` 8�(�) propUniversal Modality Propositions�; x:� ` �(x) prop � ` E:T�� ` 2(E;�) propExistential Modality Propositions�; x:� ` �(x) prop � ` E:T�� ` 3(E;�) propRemark 4.2.2 The usual rules for weakening of contexts, and substitution ofraw terms for object level variables, are derivable from the above rules by simplestructural induction.Propositional Theories for FIXNow that we have the propositional syntax for the FIX logical system, we presentrules for deducing the validity of the propositions. These rules will be presented ina sequent natural deduction style. We will use a sequent in context as our basicjudgement, which will take the form:� j � ` �:Here, � is a �nite set of propositions. The intended meaning of a judgement isthat one has a deduction of � which involves a certain number of undischargedhypotheses, each of which must occur in the set �. We shall write �;�;	 ` � for�;�[f	g ` � and in the case that � is empty, we simply omit the symbol � fromthe judgement. A FIX theory, Th, is speci�ed by a FIX signature, together with aspeci�c collection of sequents in context, which are called the axioms of Th. Thecollection of theorems of Th consists of the least collection of sequents in contextwhich contains the axioms of Th, and is closed under the following rules:Weakening�;� ` � (wk)�0;� ` � where � � �0Identity� ` � prop � ` � prop (id)�;�;� ` �62

Substitution�; x:�;�(x) ` �(x) � `M :� (sub)�; �(M) ` �(M)Cut�;� ` � �;�;�0 ` 	 (cut)�;�;�0 ` 	EquationsEvery logical rule for deducing equations in FIX= becomes a rule in the FIXlogic,where judgements of the form � `M =M 0:� become judgements of the form� `M =� M 0: Null Type Falsity Entailment(null)x:null ` falseTruth Entailment� ` � prop (>)�;� ` trueFalsity Entailment�;� ` false � ` � prop (?)�;� ` �Equality Entailment(= ref)x:� ` x =� x (= sym)x:�; x0:�; x =� x0 ` x0 =� x (= tran)x:�; x0:�; x00:�; x =� x0; x0 =� x00 ` x =� x00�; x:� `M(x):� (= sub1)�; x:�; x0:�; x =� x0 `M(x) =� M(x0)�; x:� ` �(x) prop (= sub2)�; x:�; x0:�; x =� x0;�(x) ` �(x0)63

Conjunction Entailment�; � ` � �; � ` 	 (&i)�; � ` � ^	�; � ` � ^	 (&e)�; � ` � �; � ` � ^	 (&e)�; � ` 	Universal Quanti�cation Entailment�; x:�; � ` �(x) (8i)�;� ` 8�(�)�; � ` 8�(�) � `M :� (8e)�; � ` �(M)Universal Modality Entailment�; x:�; �;Val(x) =T� E ` �(x) (2i)� j � ` 2(E;�)�; � ` 2(E;�) �; � ` Val(M) =T� E (2e)� j � ` �(M)Existential Modality Entailment�; � ` Val(M) =T� E �; � ` �(M) (3i)�; � ` 3(E;�)�; x:�; �;Val(x) =T� E;�(x) ` 	 �; � ` 3(E;�) (3e)�; � ` 	Coproduct Entailment�; � ` �(M) �; y:� ` 	(y) prop (+i)�; � ` (� +)(Inl�(M)) �; � ` 	(N) �; x:� ` �(x) prop (+i)�; � ` (� +)(Inr�(N))8<: �;� ` (� +)(C)�; x:�; �; Inl�(x) =�+� C; �(x) ` �(F (x))�; y:�; �; Inr�(y) =�+� C; 	(y) ` �(G(y)) (+e)� j � ` �(fF;Gg(C))Disjoint Sum Condition(djsum)�;�; Inl�(M) =�+� Inr�(N) ` false64

Modality Condition�; � ` Let (E;F) =T� Val(M) (mod)� j � ` 3(E; x:F (x) =T� Val(M))Nat Induction�; � ` �(O) �; n:nat ; �;�(n) ` �(Suc(n)) � ` N :nat (natin)�; � ` �(N)Fix Induction�; e:T�x ; �;2(e;�) ` �(�(e)) � ` N :�x (fixin)�; � ` �(N)This completes the rules for deriving sequents.Informal Explanation of the FIX PropositionsThe FIX logic has many features in common with intuitionistic predicate calculus;for the latter see [Dum77]. However, it introduces propositions of the form 2(e;�),3(e;�), (� +)(z), and so we shall describe informally the intended meaning ofthis syntax.For the universal modality, 2(e;�), the intended meaning is8x:�:(Val(x) = e � �(x));which we read as \for all x of type �, if it is the case that e is provably equal to thevalue of x then necessarily �(x) holds."For the existential modality, 3(e;�), the intended meaning is9x:�:Val(x) = e ^ �(x);which we read as \it is possible that e is provably equal to Val(x) and that �(x)holds."For coproduct propositions, (� +)(z), the intended meaning is(9x:�:z = Inl�(x) ^ �(x)) _ (9y: �:z = Inr�(y) ^	(y)):which we read as \it is either the case that z is provably equal to Inl�(x) and that�(x) holds, or it is the case that z is provably equal to Inr�(y) and that 	(y) holds."Remark 4.2.3 Each of the terms FN(M) and It�(F;N) is unique up to provableequality in the FIX logic. In FIX= it is necessary to impose rules which makeuniqueness explicit. However, in the FIX logic, this uniqueness is derivable from65

the rules for Nat and Fix Induction. Consider, for example, the uniqueness rule forthe �xpoint type. Set �(n) def= G(n) =� It(F; n) where n: �x . Using the FIX ruleswe may deduce that(�; e:T�x ; n: �x ;�; e = Val(n);2(e;�) ` F (Let (Val(n); u:Val(G(u)))) = F (Let (Val(n); u:Val(It(F; u))))and this implies �; e;�;2(e;�) ` �(�(e)); we are done by (fixin).4.3 Adjoint Style Formulation of the FIX LogicThe Adjoint RulesThe FIX logic can be presented using rules which are closely related to the cat-egorical semantics given in Chapter 5. The new system is given by substituting thefollowing rules for their counterparts in the FIX logic.Equality Entailment�; x:�; x0:�;�; x =� x0 ` �(x0)========================== (= ad)�; x:�; � ` �(x)Conjunction Entailment� j � ` � � j � ` 	================ (&ad)� j � ` � ^	Universal Quanti�cation Entailment�; x:�;� ` �(x)============= (8ad)� j � ` 8�(�)Universal Modality Entailment�; x:�;�(Val(x)) ` �(x)=================== (2ad)�; e:T�;�(e) ` 2(e;�)Existential Modality Entailment�; x:�;�(Val(x)); �(x) ` 	(Val(x))============================ (3ad)�; e:T�;�(e); 3(e;�) ` 	(e)
66

Coproduct Entailment�; x:�;�(Inl�(x)); �(x) ` �(F (x)) �; y:�;�(Inr�(y)); 	(y) ` �(G(y))=== (+ad)�; z:�+ �;�(z); (� +)(z) ` �(fF;Gg(z))Equivalence of the SystemsLemma 4.3.1 The following are derived rules in the FIX logic, where � `M :�is a FIX term in context:� j � ` �(M)================= (ts)�; x;�; x =M ` �(x) �;�(M) ` �================= (es)�; x;�(x); x =M ` �Proof We omit the proof of rule (ts); for rule (es), note that the backwardsdirection follows from (sub). For the forwards direction, it su�ces to show the casewhen � is a single proposition. Indeed, we have:(hyp)�; x ` �(x) prop (sub2)�; x; x0;�(x); x = x0 ` �(x0) (sub)�; x;�(x); x =M ` �(M) (hyp)�; x;�(M) ` �(cut)�; x;�(x); x =M ` � 2Theorem 4.3.2 The original FIX logic and the system de�ned on Page 66 areequivalent.Proof The proof of the equivalence for equality, conjunction and universal quan-ti�cation is well known. We give details for the remaining forms of proposition:(Case (2i)(2e) imply (2ad)):(hyp)�; e;�(e) ` 2(e;�)�; x; e;�(e); e = Val(x) ` 2(e;�) �; x; e;�(e); e = Val(x) ` e = Val(x) (2e)�; x; e;�(e); e = Val(x) ` �(x) (sub)�; x;�(Val(x));Val(x) = Val(x) ` �(x)�; x;�(Val(x)) ` �(x)(hyp)�; x;�(Val(x)) ` �(x) (es)�; x; e;�(e); e = Val(x) ` �(x) (2i)�; e;�(e) ` 2(e;�)67

where (es) was established in Lemma 4.3.1.

68

(Case (2ad) implies (2e)(2i)):(hyp)� j � ` 2(E;�) (ts)�; e0;�; e0 = E ` 2(e0;�) (2ad)�; x;�;Val(x) = E ` �(x) (sub)�;�;Val(M) = E ` �(M) (hyp)� j � ` Val(M) = E (cut)� j � ` �(M)(hyp)�; x;�;Val(x) = E ` �(x) (2ad)�; e;�; e = E ` 2(e;�)� j � ` 2(E;�)(Case (3i)(3e) imply (3ad)):(hyp)�; x;�(Val(x));�(x) ` 	(Val(x))�; e; x;�(e);�(x); e = Val(x) ` 	(e)�; e; x;�(e);3(e;�);�(x); e = Val(x) ` 	(e) �; e;�(e);3(e;�) ` 3(e;�)�; e;�(e);3(e;�) ` 	(e)where the last rule is (3e). (id)(3i)�; e; x;�(e);�(x);Val(x) = e ` 3(e;�) (hyp)�; x; e;�(e);3(e;�) ` 	(e)�; e; x;�(e);�(x);Val(x) = e ` 	(e)�; x;�(Val(x));�(x) ` 	(Val(x))(Case (3ad) implies (3i)(3e)):(hyp)�; x;�; E = Val(x);�(x) ` 	 (3ad)�; e;�; E = e;3(e;�) ` 	�;�;3(E;�) ` 	 (hyp)� j � ` 3(E;�)� j � ` 	
69

�; e;�;3(e;�) ` 3(e;�) (3ad)�; x;�;�(x) ` 3(Val(x);�) (hyp)� j � ` �(M) (ts)�; x;�; x =M ` �(x)�; x;�; x =M ` 3(Val(x);�) (ts)� j � ` 3(Val(M);�)and the result follows using � j � ` E = Val(M).(Case (+i)(+e) imply (+ad)):(hyp)�; z; x;�(Inl(x));�(x) ` �(F (x))�; z; x;�(z); z = Inl(x);�(x) ` �(F (x))(�; z; x;�(z);(� +)(z); z = Inl(x);�(x) ` �(F (x))and similarly for G (�; z;�(z);(� +)(z) ` (� +)(z)�; z;�(z); (� +)(z) ` �(fF;Gg(z))where the �nal rule is (+e).(hyp)�; z;�(z); (� +)(z) ` �(fF;Gg(z))(�; x;�(Inl(x)); (� +)(Inl(x)) ` �(F (x)) �; x;�(Inl(x));�(x) ` �(x) (+i)(�; x;�(Inl(x));�(x) ` (� +)(Inl(x))�; x;�(Inl(x));�(x) ` �(F (x))(Case (+ad) implies (+i)(+e)):�; z;�; (� +)(z) ` (� +)(z) (+ad)�; x;�;�(x) ` (� +)(Inl(x))�;�;�(M) ` (� +)(Inl(M)) (hyp)� j � ` �(M)� j � ` (� +)(Inl(M))(hyp)�; x;�; Inl(x) = C;�(x) ` �(F (x)) (+ad)�; z;�; z = C; (� +)(z) ` �(fF;Gg(z))�;�; (� +)(C) ` �(fF;Gg(C)) (hyp)� j � ` (� +)(C)� j � ` �(fF;Gg(C)) 270

4.4 Extensions of FIXSome Inconsistent Extensions of the FIX LogicThe induction rule for nat is just the usual principle of mathematical induction.The induction rule for �x can be rendered informally as: to prove that a property�(n) holds of all elements n in �x , it is su�cient to prove for all computations eof an element of �x that �(�(e)) holds if whenever e evaluates to a value, thatvalue satis�es �(x). This principle is consistent (see Section 5.1) but only becausethe FIX propositions have limited forms. In fact, extending the FIX logic withunrestricted intuitionistic negation, implication or existential quanti�cation rendersit inconsistent.Proposition 4.4.1 Extending the FIX logic with intuitionistic implication rendersthe system inconsistent.Proof Since FIX contains falsity (false), adding implication (� �) means thatone also has negation (:� � (� � false)). So consider the proposition�(n) def= :(�(!) = n)about n: �x . From (ts) we can deduce that �; e:T�x ;�;2(e;�); ! = e ` 2(!;�)and using Proposition 4.5.1 we see that �;�;2(Val(�(!));�) ` �(�(!)): Recall-ing that ! is provably equal to Val(�(!)) together with the rules for intuitionisticimplication it is easy to see that�; e:T�x ;�;2(e;�); ! = e; �(!) = �(!) ` false:But the structure map of any initial T algebra is an isomorphism, which means thatin FIX we have �; e;�; �(!) = �(e) ` ! = e: Hence�; e:T�x ;�;2(e;�); �(!) = �(e) ` falseand applying (fixin) we have �; n: �x ;� ` �(n):So the induction principle for �x entails that �(n) holds of all n 2 �x , and inparticular of �(!), which is a contradiction. 2Proposition 4.4.2 Extending the FIX logic with intuitionistic existential quan-ti�cation renders the system inconsistent.Proof This proof mimics the ideas which show that the category !Cpo togetherwith inclusive subsets does not model standard intuitionistic predicate calculus[Dum77]. Recall that in !Cpo, Beck Chevalley conditions fail for left adjoints toprojections; for if this is not the case we can deduce that such left adjoints takeinclusive subsets to inclusive subsets by unravelling Beck Chevalley at a globalelement in !Cpo. Then considering the !cpo N �
 and inclusive subsetf(m;n) j m 2 N ^ n 2
 n f>g ^ n � mg71

we can deduce that fn j n 2
 n f>gg is inclusive in
. This is not so.Consider the term ? def= ItT�x (e:Let (e; x:x); �(!)):T�x (recall the discussion of do-main theoretic properties of FIX on Page 48). Set�(n) def= 9nat(m:(u:�(Val(u)))m(�(?))) =�x n:Using the usual rules for intuitionistic existential quanti�cation together with theFIX rules we may deduce e; n; e = Val(n);2(e;�) ` �(n) ` �(�(Val(n))) and from(fixin) we have n: �x ` �(n). In particular this means that` 9nat(m:(u:�(Val(u)))m(�(?))) =�x �(!):Using (mono) and that � is an isomorphism we conclude ` ? = !. 24.5 Further Results about the FIX LogicThe Modality ConditionsWe state and prove a proposition which we shall make use of in Chapter 5 where itwill be used in establishing a categorical logic correspondence for the FIX logic.Proposition 4.5.1 Within the FIX logical system, the following birules are de-rivable: � j � ` �(M)� j � ` 2(Val(M);�) � j � ` �(M)� j � ` 3(Val(M);�)� j � ` �(M) �; y: �; � ` 	(y) prop� j � ` (� +)(Inl�(M)) � j � ` 	(N) �; x:�; � ` �(x) prop� j � ` (� +)(Inr�(N))Proof The forward directions of each of these birules are easy to see and thus weomit the details. We shall give details of the backwards directions for the existentialmodality and coproduct.First, the existential modality. We have(mono)(cut)�; x; y;�;Val(x) = Val(y);�(x) ` �(y) (3ad)�; e; y;�; e = Val(y);3(e;�) ` �(y) (sub)�; y;�;3(Val(y);�) ` �(y)from which the result is immediate. Now we move to the coproduct.
72

We have 8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(hyp)� j � ` (� +)(Inl(M))(id)�; x;�; Inl(x) = Inl(M);�(x) ` �((u:u)(x))(djsum)(?)�; y;�; Inr(y) = Inl(M);	(y) ` �((v:M)(y)) (+e)� j � ` �(fu:u; v:Mg(Inl(M)))and the result follows from the rules for Coproduct Equations. 2Frobenius Reciprocity for the FIX LogicTo prove a Frobenius Reciprocity style rule for the FIX logic, it is convenient to usethe next lemma:Lemma 4.5.2 In the FIX logic, if �;�;� ` 	; then�; e;�;3(e; y:�) ` 3(e; y:):Proof Use (3ad) and (sub). 2Proposition 4.5.3 Within the �x logical system, the following birule is derivable:�; e; x;� ` 3(e; y:�(x;Val(y)) ^	(x; y))================================ (fr)�; e; x;� ` �(x; e) ^3(e; y:	(x; y))Proof First we prove the forwards direction. From the hypothesis, Lemma 4.5.2,and the rules (&ad) for conjunction, we deduce13(e; y:�(x;Val(y)) ^ 	(x; y)) ` 3(e; y:�(x;Val(y))) ^3(e; y:	(x; y)):Also, we have(id)(= ad)(sub)(e = Val(y);�(x;Val(y)) ` �(x; e) (id)3(e; y:�(x;Val(y))) ` 3(e; y:�(x;Val(y))) (3e)3(e; y:�(x;Val(y))) ` �(x; e)and the result is immediate from the rules (&ad).For the backwards direction, note that using (3i) we have�(x; e);	(x; y);Val(y) = e ` 3(e; y:�(x;Val(y)) ^ 	(x; y));1For sake of space we omit contexts in this proof.73

label this sequent (�). Hence3(e; y:	(x; y)); (�) �(x; e);3(e; y:	(x; y)) ` 3(e; y:	(x; y)) (3e)�(x; e);3(e; y:	(x; y)) ` 3(e; y:�(x;Val(y)) ^ 	(x; y))and from (&ad) and (cut) we are done. 2The Existence and Disjunction PropertiesWe now give two results which witness the constructive nature of the FIX logic.They bear some resemblance to the existence and disjunction properties of standardintuitionistic logic [LS80], [Pit89].Theorem 4.5.4 [\Existence Property"] If E is a closed term of type T�, then` 3(E;�) is derivable in FIX if and only if there is a closed term M of type �for which ` E =T� Val(M) and ` �(M) are derivable. (In other words, a formalproof that E evaluates to a value satisfying �(x) necessitates the existence of aterm denoting that value.)Theorem 4.5.5 [\Disjunction Property"] If E is a closed term of coproduct type� + �, �(x) and 	(y) are properties of � and � and ` (� +)(E) is derivable inFIX, then either ` E =�+� Inl(M) and ` �(M) are derivable for some closed termM of type �, or ` E =�+� Inr(N) and ` 	(N) are derivable for some closed termN of type �.Standardness of the Natural Number TypeThe Existence Property enables one to produce closed terms of type nat from acomputation of a number (i.e. a closed term of type Tnat) together with a proofthat the computation converges. There remains the possibility that a closed termof type nat is not a value, i.e. a standard numeral. However, this is not so:Theorem 4.5.6 [\Standardness of nat"] Every closed term of type nat in FIX isprovably equal to a standard numeral Sucn(O).Theorems 4.5.4, 4.5.5 and 4.5.6 will be proved in Chapter 5.Miscellaneous ResultsLemma 4.5.7 Modulo the remaining rules of the FIX logic, the modality condi-tion �; � ` Let (E; F) =T� Val(M) (mod)� j � ` 3(E; x:F (x) =T� Val(M))74

is equivalent to the rule � j � ` 2(E; x:2(F (x);�)) (mod0)� j � ` 2(Let (E; F);�)Proof (Case (mod) implies (mod0)): Applying (2e) twice to the hypothesis of(mod0) we have �; y; x;�; E = Val(x); F (x) = Val(y) ` �(y)and using (mod) we obtain�; y;�; Let (E; F) = Val(y) ` 3(E; x:F (x) = Val(y)):By a suitable weakening of the hypotheses of the above derived judgements, we canapply (3e) and (2i) to obtain the result.(Case (mod0)implies (mod)): As this direction is not entirely straightforward we givea full proof tree:8>>>>><>>>>>: (id)�; x; y;�; E = Val(x); F (x) = Val(y) ` E = Val(x)(id)�; x; y;�; E = Val(x); F (x) = Val(y) ` F (x) = Val(y) (3i)�; x; y;�; E = Val(x); F (x) = Val(y) ` 3(E; u:F (u) = Val(y)) (2i)� j � ` 2(E; x:2(F (x); y:3(E; u:F (u) = Val(y)))) (mod0)� j � ` 2(Let (E; F); y:3(E; u:F (u) = Val(y)))Using this conclusion together with the premiss of (mod) as the premisses for (2e)completes the proof. 2Lemma 4.5.8 Modulo the remaining rules of the FIX logic, the rule� j � ` Val(M) = Val(M 0) (mono)� j � `M =M 0is equivalent to the rule � j � ` �(M) (mono0)� j � ` 2(Val(M);�)Proof We sketch the details.(Case (mono) implies (mono0)): The rule (mono) yields�; x;�;Val(M) = Val(x) `M = x:Applying (ts) to the hypothesis of (mono0), cutting (cut) and using (2i) we aredone.(Case (mono0) implies (mono)): The rule (mono0) yields� j � ` 2(Val(M); x:x =M):Now apply (2e) to this along with the hypothesis of (mono). 275

76

Chapter 5Categorical Semantics of the FIX Logic5.1 FIX HyperdoctrinesFor background on hyperdoctrines and indexed categories see [JP78], [See83] and[Pit89].De�nition 5.1.1 A FIX hyperdoctrine is speci�ed by a FIX category C (referredto as the base category) together with a C indexed poset, C: Cop ! Poset ; whereif f :A ! B is a morphism in the base category C we denote the correspondingpullback function by f �: C(B) ! C(A) with the �bre at A denoted by C(A): Weadopt the following notational convention. IfA f - B
Cg? k - D?his a commuting square in C then right Beck-Chevalley conditions are said to hold(which will be abbreviated to RBC) if f �: C(B)! C(A) and k�: C(D)! C(C) haveright adjoints which satisfy the identity 8f �g� = h� �8k:We use a dual conventionfor left Beck-Chevalley conditions, LBC. The indexed poset satis�es the followingconditions:1. The �bres are meet semi-lattices with least element, and the �bre over theinitial object is a singleton. The top element is denoted by >, the bottomelement by ?, and the meet of elements x 2 C(A) and y 2 C(A) by x ^ y 2C(A): The pullback functions preserve meets, top and bottom elements.2. RBC holds for all squares of the formC � A � - C
C 0 � Af � id? �0 - C 0?f77

where the morphisms � and �0 are product projections.3. RBC and LBC hold for all squares of the formC � A id� �- C � TA
C 0 � Af � id? id� �- C 0 � TA?f � idAlso, the hyperdoctrine enjoys a form of Frobenius Reciprocity, namely givenx 2 C(C � TA) and y 2 C(C � A) we have9(id� �)((id� �)�(x) ^ y) = x ^ 9(id� �)(y):These conditions ensure the soundness of the rules for Universal and Existen-tial Modality Entailment.4. There is an operation + on �bres+ : C(C � A)� C(C �B) �! C(C � (A +B))which is natural in C: Suppose we are given elementsx 2 C(C � A) u 2 C(C � (A+B))y 2 C(C �B) z 2 C(C �D)and morphisms f :C � A! D; g:C �B ! D: Then we demand that(idC � i)�(u) ^ x � h�A; fi�(z) (idC � j)�(u) ^ y � h�B; gi�(z)u ^ (x + y) � h�; ff; ggi�(z)where i:A! (A+B) and j:B ! (A+B) are coproduct insertions,(C � A) + (C � B) ��! C � (A+B)is the obvious isomorphism and�A:C � A! C �B:C � B ! C �:C � (A+B)! Care product projections. Finally, ff; gg def= [f; g] � ��1 where [f; g] arisesfrom the coproduct structure of C. Note that if x+ y exists, it is determineduniquely. These requirements ensure the soundness of the rules for CoproductEntailment.

78

5. LBC holds for C � A id��- C � A� A
A�A? � - A� A?h�A; �0AiThe left adjoint to id�� satis�es the following Frobenius Reciprocity condi-tion, 9(id��) � (id��)�(x) = x ^ 9(id��) � ��C(>)where x 2 C(C � A � A) and �C :C � A ! C: (Recall that the pullbackfunction ��C preserves the top element by de�nition.) These conditions ensurethe soundness of the rules for Equality Entailment.6. We demand the inequalities(� � �)� � 9�(>TA) � 9�(>A)and hi; ji� � 9�(>A+B) = ?where >A 2 C(A) ; >TA 2 C(TA) and >A+B 2 C(A+B) are the top elementsof the �bres and i:A ! (A + B); j:B ! (A + B) are coproduct insertions.This guarantees the soundness of the Mono Condition and the Disjoint SumCondition.7. Given a morphism f :C � TA�B�A! TB then we demand the inequalityhlift(f); ��1i� � 9�(>) � 9(id� �) � hf; ��2i� � 9�(>)where > 2 C(TA) is the top element of the �bre and�1:C � TA�B � TA! B �2:C � TA�B � A! Bare product projections. This ensures the soundness of the Modality Condi-tion.Finally, to complete the de�nition of a FIX hyperdoctrine, there are two�brewise induction conditions and a coherence condition. The induction con-ditions ensure soundness of the induction rules in the logic and the coherencecondition guarantees that semantic equality of terms coincides with derivableequality in the FIX logic.8. Given elements x 2 C(C); y 2 C(C �N) then we demand thatx � hid; 0� !i�(y) ��(x) ^ y � (id� s)�(y)��(x) � ywhere �:C � N ! C is a product projection and 0: 1 ! N; s:N ! N aregiven as part of the structure of the NNO in the base category.79

9. Given elements x 2 C(C); y 2 C(C �
) then we demand that��(x) ^ 8(id� �)(y) � (id� �)�(y)�0�(x) � ywhere �:C�T
! C; �0:C�
! C are product projections and �:T
!
is given as part of the structure of the FPO in the base category.10. Given morphisms f; g:B ! A and the diagonal �:A ! A� A; then we askthat hf; gi� � 9�(>) = >f = g in CThis completes De�nition 5.1.1. A morphism of FIX hyperdoctrines C and C 0 isspeci�ed by a FIX category morphism between the base categories (referred to asthe base functor) say F : C ! C 0; together with an indexed collection of monotonefunctions, called �bre morphisms, FA: C(A)! C 0(FA) for each object A in C. Thesemonotone functions are required to preserve the structure of the �bres in a canonicalfashion. For example, the pullback functions are preserved by the �bre morphismsin the sense that given a morphism f :A) B in C; the following square commutesC(A) FA- C 0(FA)
C(B)f �6 FB- C 0(FB)

6(F (f))�
Also, the structure of the �bres is preserved by the �bre morphisms; for example� Given > 2 C(A), then FA(>) = > 2 C 0(FA);� given x; y 2 C(A), then FA(x ^ y) = FA(x) ^ FA(y), and� given x 2 C(C � A) and y 2 C(C � B) thenFC�(A+B)(x + y) = FC�A(x) + FC�B(y):The remaining structure of the �bres is preserved in a similar way; the details areomitted.The FIX Hyperdoctrine !CpoThe de�nition of a FIX hyperdoctrine is quite involved and so we must give aconcrete example. We have the 80

Proposition 5.1.2 Recall that the category !Cpo is a FIX category. There isan !Cpo indexed poset, I:!Cpoop ! Poset, where I takes an !cpo D to the set ofinclusive subsets of D which are ordered by inclusion and I takes each continuousfunction f :D! D0 to its inverse image function f�1 restricted to inclusive subsets.This gives rise to a FIX hyperdoctrine.Proof It is trivial to check that f�1: I(D0) ! I(D) is well de�ned and indeedmonotone and that I is a functor. We de�ne the operations that make !Cpo a FIXhyperdoctrine, but omit detailed veri�cations.1. With meet given by intersection of inclusive subsets, it is clear that each �breis a meet semi-lattice with least element. It is easy to see that each pullbackfunction is a morphism of pointed meet semi-lattices. Finally I(?) = f?g isa singleton.2. The right adjoint to projection is given by restriction of the dual image func-tions to inclusive subsets; that RBC holds is trivial.3. The existence of left adjoints is well known, given by restriction of the settheoretic direct image functions to inclusive subsets. The right adjoint to(id� �)�1: I(C �D?)! I(C �D)is given by 8(id� �)(I) def= (id� �)(I) [f(c;?) j c 2 Cgwhere I 2 I(C �D): It is easy to see that this is a good de�nition and yieldsthe required adjoint. Checking RBC and LBC is easy; Frobenius Reciprocityis virtually immediate.4. Let i:D) D + D0 and j:D0 ! D + D0 be coproduct insertions. Givenelements I 2 I(C �D) and J 2 I(C �D0) we de�ne+ : I(C �D)� I(C �D0)! I(C � (D +D0))by I + J def= 9(id� i)(I) [9(id� j)(J):Note that the �brewise induction conditions are satis�ed because any inclusivesubset of an !cpo is an !cpo. Finally note that the existence of this concrete modelimplies the consistency of the pure FIX logic relative to Zermelo Fraenkel set theory.25.2 Categorical Semantics of FIXStructures for FIX SignaturesLet C be a FIX hyperdoctrine and Sg a FIX signature. Then a structure, M, in Cis speci�ed by the following data: 81

� A structure in the base FIX category C (see Section 3.2), and� for each basic relation symbol R:�1; : : : ; �n an element [[R]] in the �bre over[[�1]]� : : :� [[�n]]:Interpretation of the FIX Propositions in ContextGiven a structure M we now show how to interpret the FIX logic in a FIX hyper-doctrine. The propositions of FIX are modelled by elements in the �bres of thehyperdoctrine; more precisely, for each context � and proposition � for which wecan derive � ` � prop, we specify an element [[�:�]] of the �bre C([[�]]). If � isempty we write [[�]] for this. The semantics of propositions in context is de�nedusing the structure of the propositions:� [[�:true]] def= > 2 C([[�]]).� [[�:false]] def= ? 2 C([[�]]).� [[�:M =� N]] def= h[[�:M]]; [[�:N]]i� � 9�(>).� [[�:� ^]] def= [[�:�]] ^ [[�:]].� [[�:8�(�)]] def= 8�1([[�; x:�:�]]).� [[�:2(E;�)]] def= hid; [[�:E]]i� � 8(id� �)([[�; x:�:�(x)]]) .� [[�:3(E;�)]] def= hid; [[�:E]]i� � 9(id� �)([[�; x:�:�(x)]]).� [[�:(� +)(C)]] def= hid; [[�:C]]i�([[�; x:�:�(x)]] + [[�; y: �:	(y)]]).Models of FIX TheoriesIf � is a �nite set of propositions, each of which is well formed in the context �;then set [[�:�]] def= �̂2�[[�:�]]:A structure M in a FIX hyperdoctrine C satis�es a sequent in context � j � ` � if[[�:�]] � [[�:�]] holds in the �bre C([[�]]). Given a FIX theory, Th, then M is calleda model of the theory if it satis�es all the axioms of Th.The Substitution LemmaThe next lemma tells us how substitution of terms for variables in propositions ismodelled.
82

Lemma 5.2.1 Put �0 = [x1:�1; : : : ; xn:�n], let �0 ` �(x1; : : : ; xn) prop be a FIXproposition in context and let � ` Mi:�i for i = 1; : : : ; n be FIX terms in context.Then [[�:�(~M)]] = h[[�:M1]]; : : : ; [[�:Mn]]i�([[�0:�(~x)]]):Proof The proof proceeds by induction on the structure of propositions; weillustrate with 2(E;�) and (� +)(C):[[�:~u:2(E(~u);�(~u))(~M)]]= [[�:2(E(~M);�(~M))]]= hid; [[�:E(~M)]]i�[[�; e:2(e;�(~M))]]= hid; [[�:E(~M)]]i� � 8(id � �)([[�; x:�(~M; x)]])induction = hid; [[�:E(~M)]]i� � 8(id� �) � (h[[�: ~M]]i � id)�([[�0; x:�(~x)(x)]])= hid; [[�:E(~M)]]i� � (h[[�: ~M]]i � id)� � 8(id � �)([[�0; x:�(~x)(x)]])= hid; [[�0:E(~x)]]h[[�: ~M]]ii� � (h[[�: ~M]]i � id)�([[�0; e0:2(e0;�(~x))]])= ((h[[�: ~M]]i � id) � hid; [[�0:E(~x)]]h[[�: ~M]]ii)�([[�0; e0:2(e0;�(~x))]])= hh[[�: ~M]]i; [[�0:E(~x)]]h[[�: ~M]]ii�([[�0; e0:2(e0;�(~x))]])= (hid; [[�0:E(~x)]]i � h[[�: ~M]]i)�([[�0; e0:2(e0;�(~x))]])= h[[�: ~M]]i�hid; [[�0:E(~x)]]i�([[�0; e0:2(e0;�(~x))]])= h[[�: ~M]]i�([[�0:2(E(~x);�(~x))]]):[[�:~u:(�(~u) + 	(~u))(C(~u))(~M)]]= [[�:(�(~M) + 	(~M))(C(~M))]]= hid; [[�:C(~M)]]i�[[�; z0:(�(~M) + 	(~M))(z0)]]= hid; [[�:C(~M)]]i�([[�; x:�(~M)(x)]] + [[�; y:	(~M)(y)]])induction = hid; [[�:C(~M)]]i�((h[[�: ~M]]i � id)�([[�0; x:�(~x)(x)]]) + (h[[�: ~M]]i � id)�([[�0; y:	(~x)(y)]]))= hid; h[[�: ~M]]ii� � (id� [[�0:C(~x)]])�((h[[�: ~M]]i � id)�([[�0; x:�(~x)(x)]]) + (h[[�: ~M]]i � id)�([[�0; y:	(~x)(y)]]))= h[[�: ~M]]i� � hid; [[�0:C(~x)]]i�([[�0; x:�(~x)(x)]] + [[�0; y:	(~x)(y)]])= h[[�: ~M]]i�([[�0:(�(~x) + 	(~x))(C(~x))]]): 2The Soundness TheoremThe categorical semantics of the FIX logic is sound; indeed we have:Proposition 5.2.2 [\Soundness for FIX Theories"] Let C be a FIX hyperdoc-trine, Th a FIX theory and M a model of Th in C. Then M satis�es any sequentin context which is a theorem of Th. 83

Proof We need to check that the collection of sequents in context which aresatis�ed by M is closed under the rules for generating sequents in context. Wegive just one example of this, by checking the soundness of Existential ModalityEntailment. We have�̂2�[[�; x:�(Val(x))]] ^ [[�; x:�(x)]] � [[�; x:	(Val(x))]]i� �̂2�(id� �)�[[�; e:�(e)]] ^ [[�; x:�(x)]] � (id� �)�[[�; e:	(e)]]:Pullback functions preserve meet, so this is i�(id� �)�[[�; e:�(e)]] ^ [[�; x:�(x)]] � (id� �)�[[�; e:	(e)]]:Using adjointness, this holds i�9(id� �)((id� �)�[[�; e:�(e)]] ^ [[�; x:�(x)]]) � [[�; e:	(e)]]and from Frobenius Reciprocity i�[[�; e:�(e)]] ^ 9(id� �)[[�; x:�(x)]] � [[�; e:	(e)]]i� [[�; e:�(e)]] ^ [[�; e:3(e;�)]] � [[�; e:	(e)]]which is what we want. 25.3 The Categorical Logic CorrespondenceProposition 5.3.1 For each FIX theory Th over some FIX signature Sg, wemay construct a syntactic FIX hyperdoctrine, which we shall denote by C(Th) orsometimes F :Proof The objects of the base FIX category are the types of Sg. The morphismsare equivalence classes of terms in a single variable context. We setF(�; �) def= fM(x) j x:� `M(x): �g= =where M(x) =M 0(y) i� x:� `M(x) =� M 0(x) is a theorem of Th. We now de�nean F indexed poset. For each object � 2 F the underlying set of the partial orderF(�) consists of equivalence classes of propositions in a single variable context,x:� ` �(x) prop: We shall often omit the context itself; with this convention weimpose a preorder by asking that�(x) � 	(y) i� �(x) ` 	(x):The required partial order is the poset re
ection of the preorder. Given a morphismF :�! � in F, the pullback function F �:F(�)! F(�) is de�ned by substitution:84

F �(�(y)) def= �(F): We check that the conditions de�ning a FIX hyperdoctrine aresatis�ed. For condition (1), it is obvious that that the �bres are meet semi latticesand that the pullback functions preserve the structure. For condition (2), the rightadjoint to Fst(z)�:F(
)! F(
 � �); will be written 8�:F(
 � �)! F(
) where8�(�(z)) def= 8�(x:�(hy; xi)):That this is the required adjoint is well known; RBC is simple to check. We checkcondition (3) with some care. The right adjoint tohFst(u);Val(Snd(u))i�:F(
 � T�)! F(
 � �)will be written 2:F(
 � �)! F(
 � T�) where2(�(u)) def= 2(Snd(z); x:�(hFst(z); xi)):We check that this de�nition gives a right adjoint, that is�(z) ` 2((u))hFst(u);Val(Snd(u))i�(�(z)) ` 	(u)We have u;�(hFst(u);Val(Snd(u))i) ` 	(u) (sub)x; y;�(hy;Val(x)i) ` 	(hy; xi) (2i)e; y;�(hy; ei) ` 2(e; x:	(hy; xi))z;�(hFst(z); Snd(z)i) ` 2(Snd(z); x:	(hFst(z); xi))The converse direction is equally easy; we omit the remaining details for condition(3). For condition (4) we de�ne an operation+:F(
 � �)� F(
 � �0)! F(
 � (� + �0)):For elements �(v) 2 F(
 � �) and 	(w) 2 F(
 � �0) we set�(v) + 	(w) def= (� +)(P (u));where P (u) is the isomorphism P (u):
� (�+�0)! (
��)+ (
��0): To see thatthis satis�es condition (4), take morphisms M(v):
��! � and N(w):
� �0 ! �together with elements �(z) 2 F(
 � �) and �(u) 2 F(
 � (� + �0)). Then itremains to show that(hFst(v); Inl(Snd(v))i��(u) ^ �(v) ` hFst(v);M(v)i��(z)hFst(w); Inl(Snd(w))i��(u) ^	(w) ` hFst(w); N(w)i��(z)�(u) ^ (� +)(P (u)) ` hFst(u); fM;Ng(P (u))i��(z)which follows from careful application of the rule (+ad) and the Coproduct Equa-tions rules. Conditions (5) and (6) are easy to verify. Moving on to condition (7),the left adjoint to (id��)�:F(
 � �� �)! F(
 � �); is de�ned by9(id��)(�(u)) def=�(hFst(z); hFst(Snd(z)); Snd(Snd(z))ii) ^ Fst(Snd(z)) = Snd(Snd(z)):85

We have now given all the structure needed to specify F; the remaining details areroutine and omitted. Note that condition (10) is immediate from the constructionof F . 2Proposition 5.3.2 Given a FIX hyperdoctrine C; then we can de�ne a FIXtheory which we denote by Th(C):Proof The basic ground types and basic function symbols for the base FIXcategory are exactly those de�ned in Section 2.5. For each object A1 � : : :� An inC there are relation symbols R:A1; : : : ; An which are copies of the elements in the�bre C(A1 � : : :� An). This gives us data for a FIX signature; there is an obviouscanonical structure for this signature in C which we denote by G. Then the axiomsof the theory Th(C) are exactly those sequents in context which are satis�ed by thecanonical structure; the theorems of Th(C) are generated by the usual rules of theFIX logic. 2Now we can state the categorical logic correspondence:Theorem 5.3.3 Let C be a FIX hyperdoctrine; then there is an equivalence ofhyperdoctrines (i.e. an equivalence of indexed posets)Eq : C(Th(C)) ' C : Eq�1;where Eq is a FIX hyperdoctrine morphism. Thus there is a categorical equivalenceof base categories, together with an isomorphism of posetsEq� : C(Th(C))(�)! C(Eq(�)) : (Eq�1)Eq(�):Proof For the de�nition of Eq and Eq�1 see Theorem 3.4.3. De�ne Eq�(�(x)) def=[[x:�(x)]]G and (Eq�1)[[�]]G(R) def= R(x) where R 2 C([[�]]G): We omit the routinedetails of the proof. 25.4 The Logical Relations HyperdoctrineNow that we have formalised the correspondence between FIX theories and FIXhyperdoctrines, we de�ne a new FIX hyperdoctrine and use it, together with itscorresponding theory/logic, to prove Theorems 4.5.4, 4.5.5 and 4.5.6. We shallwrite F for the FIX hyperdoctrine constructed from the pure FIX logic.De�nition 5.4.1 Let �:F ! !Cpo denote the functor which assigns to eachobject � 2 F its set �(�) of global elements equipped with the discrete partialorder. We construct a new FIX hyperdoctrine, denoted by Lr; using a constructionthat is closely allied to the theory of logical relations. An object of Lr is a triple(D;C; �), where D 2 !Cpo, � 2 F and C is an inclusive subset of D � �(�). A86

morphism (D;C; �)! (D0;C0; �0) in Lr is a pair (f; F), where f :D! D0 in !Cpoand F :�! �0 in F , satisfying the following condition:8d 2 D:M 2 �(�):d CM � f(d) C0 FM:It remains to de�ne a Lr indexed poset. We shall denote the �bre at an object(D;C; �) by Lr(D;C; �): The elements of the �bre consist of all triples (S;E;�(x)),where1. S 2 I(D), i.e. S runs over the inclusive subsets of the !cpo D.2. �(x) 2 F(�).3. E2 I([S � ��(x)(�)]\ C) where ��(x)(�) def= fM 2 �(�) j` �(M)g; note that[S � ��(x)(�)]\ C is an !cpo.The order is given by inclusion in the �rst and second coordinates, and by entailmentin the third. Given a morphism (f; F): (D0;C0; �0)! (D;C; �) in Lr, we de�ne thepullback function (f; F)�:Lr(D;C; �)! Lr(D0;C0; �0)by (f; F)�(S;E;�(x)) def= (f�1(S);E�;�(F))where E�def= f(d;M) 2 [f�1(S)� ��(F)(�0)]\ C0j f(d) E FMg:This completes the de�nition of the logical relations hyperdoctrine, Lr. Clearly weneed to see that Lr really is a FIX hyperdoctrine:Proposition 5.4.2 The construction of Lr detailed in De�nition 5.4.1 gives riseto a FIX hyperdoctrine.Proof It is a simple exercise to verify that this de�nition makes sense. Wecheck that each (f; F)� is indeed monotone. Suppose that (S1;E1;�1(x)) � (S2;E2;�2(x)) in the �bre Lr(D;C; �).Then,� S1 � S2 and so f�1(S1) � f�1(S2):� �1(x) ` �2(x) and so �1(F) ` �2(F) by substitution.� To see that E�1�E�2 note that �1(FM) ` �2(FM):We also need to see that given(D00;C00; �00) (f 0 ;F 0)�! (D0;C0; �0) (f;F)�! (D;C; �)it is the case that (f 0; F 0)� � (f; F)� = (ff 0; FF 0)�: The details are tedious but easyand so they are omitted. Now we have to check that the de�nitions of objects andmorphisms yield a base FIX category, and that the Lr indexed poset does indeed87

constitute a FIX hyperdoctrine. Firstly we check that we have a FIX category; mostof the details are simple calculations, once it is clear how one de�nes the variouscategorical constructs.The terminal object is (1;Cunit ; unit) where � Cunit idunit . The binary product isgiven by (D;C; �)� (D0;C0; �0) def= (D �D0;C � C0; �� �0);where (putting C�def=C � C0),(d; d0) C� N i� d C Fst(N) and d0 C0 Snd(N):It is clear thatC� is inclusive, and easy to check the remaining details. Exponentialsof objects are de�ned by(D0;C0; �0;)) (D;C; �) def= (D0) D;C0)C; �0) �);where f C0)C F i� 8d0 2 D0:8L0 2 �(�0):d0 C0 L0 � f(d0) C ap � hF; L0iand ap is the evaluation morphism in F. The transpose rule is given by(f; F): (D �D0;C�; �� �0)! (D00;C00; �00)(cur(f); cur(F)): (D;C; �)! (D0) D00;C0)C00; �0) �00)and the evaluation morphism is (ap; ap): Finite coproducts are also de�ned in thesame (hopefully now familiar) coordinatewise/logical relations manner. The NNOof Lr is speci�ed by (N;Cnat ; nat); where n Cnat N i� N = Sucn(O);1 and the zeroand successor morphisms are the expected coordinatewise ones. We now show thatfor a particular choice of monad, the category Lr does indeed become a let category.The action of the monad on objects is speci�ed by T (D;C; �) def= (D?;CT ; T�);where e CT E i� 8d 2 D:[d] = e � 9M 2 �(�):d CM ^ ��M = E;and �(D;C;�) def= (�; ��): (D;C; �) ! (D?;C; T�); with �:D ! D? the canonicalinclusion. Finally the lifting rule is(f; F): (D �D0;C�; �� �0)! (D00?;C00T ; T�00)(f?; lift(F)): (D �D0?;C � C0T ; �� T�0)! (D00?;C00T ; T�00)where of course f?(d; [d0]) = f(d; d0) and f?(d;?) = ?:Now we show that Lr does indeed possess a FPO. This will be determined up toisomorphism; thus as for the previous constructs we exhibit a candidate and showthat it satis�es the required properties. The expected candidate for the FPO wouldbe (
;C�x ; �x); with structure morphism (�; �): By de�nition of the action of the1We shall often drop the sequent symbol ` from equalities such as ` N = Sucn(O)88

monad on objects, in the relation C�xT one has ? C�xT M , for any M 2 �(T�x):As (�; �) must preserve the relation, then 0 C�x �M must hold, and the action ofthe monad yields [0] C�xT ��M: Once again (�; �) preserves this, so we must have1 C�x ���M: In general we are forced to have n C�x (��)n�M: Finally, consideringthat the relation C�x has to be a certain inclusive subset, we are led to the followingde�nition:(
;C�x ; �x) is a FPO for T over Lr, where� n C�x N i� 9M 2 �(�x):N = (��)nM; and� > C�x N i� 8n 2
 n f>g:n C�x N:We check that the relation C�x is inclusive. Take a chain in C�x , say fnr C�xN j r 2 Ng where N 2 �(�x): We need to check that Wfnr j r 2 Ng C�x N: IfWfnr j r 2 Ng is not > we are done. Otherwise, given any n 2
 n f>g, we canchoose r 2 N such that nr � n: As nr C�x N , we getN = (��)nrM = (��)n(��)nr�nM;and so n C�x N: As n was arbitrary, we are done. Now we check that (�; �) is amorphism in Lr, where (�; �): (
?;C�xT ; T�x) ! (
;C�x ; �x): We have three casesto cover.1. If ? C�xT E then �(?) = 0 C�x �E:2. If [n] C�xT E note that E = �(��)nM for some M .3. Suppose that [>] C�xT E: Then > C�x N and hence 8n 2
nf>g:n C�x N: Inparticular, we have n � 1 C�x N; and so there is some M 2 �(�x) for whichN = (��)n�1M; giving ��N = (��)nM . So we have 8n 2
nf>g:n C�x ��N;that is > C�x �E:Finally, we have to verify that our de�nition yields an initial T algebra in Lr. Take(f; F): (D?;CT ; T�) ! (D;C; �): The unique mediating morphism for (�; �) hasto be (~f; ~F) def= (it(f); it(F)) whose coordinates are the mediating morphisms in!Cpo and F. Firstly we check that it is a morphism in Lr. Suppose that n C�x N .Then for some M we get N = (��)nM: From the de�nition of the CT relation, weget ? CT let(� ~F)��1M and so f(?) C F let(� ~F)��1M = ~FM: Now suppose thatf r(?) C ~F (��)r�1M; where r � n � 1: Clearly [f r(?)] CT � ~F (��)r�1M; and sof r+1(?) C ~F (��)rM: Inductively we have fn+1(?) C ~F (��)nM = ~FN; which iswhat we had to prove. Finally, if > C�x N we need W fn(?) C ~FN; which followsfrom inclusivity of C : We omit to verify that the morphisms([>]; !): (1;Cunit ; unit)! (
?;C�xT ; T�x) (�; �): (
?;C�xT ; T�x)! (
;C�x ; �x)constitute a FPO in Lr. 89

We now verify conditions (1) to (10) of De�nition 5.1.1. It is easy to see thatcondition (1) holds. We check condition (2) in detail. Firstly we de�ne the rightadjoint to (�; Fst(z))�:Lr(C;C0;
)! Lr(C �D;C0 � C;
 � �)which we denote by 8�:Lr(C �D;C�;
 � �)! Lr(C;C0;
)where we set 8�(S;E�;�(z)) def= (8�(S);E��; 8�(�(z))) withE�� def= f(c; N) 2 [8�(S)� �8�(�(z))(
)]\ C0j8d 2 D:8M 2 �(�):d CM � (c; d) E� hM;Nig:This makes sense. For certainly 8�(S) 2 I(C) and 8�(�(z)) 2 F(
). Let us seethatE��2 I([8�(S)��8�(�(z))(
)]\ C0). With the obvious notation, let f(ci; N) j i 2Ng be a chain in E�� and so 8d 2 D:8M 2 �(�):d CM we have f((ci; d); hN;Mi) ji 2 Ng in E� : But E� is inclusive, so the supremum of the latter chain lies in E�,for all d and M such that d CM . But this is exactly that (Wfci j i 2 Ng; N) 2E��.Finally, it is clear that 8� is monotone. Now we verify that (�; Fst(z)) a 8�: Take(U;E0;	(y)) 2 Lr(C;C0;
) and (S;E�;�(z)) 2 Lr(C � D;C�;
 � �): Then weneed to check that (��1(U); (E0)�;	(Fst(z))) � (S;E�;�(z))(U;E0;	(y)) � (8�(S);E��; 8�(�(z)))It is clear that all is well in the �rst and third coordinates, as both !Cpo and F areFIX hyperdoctrines. All we need to do is examine the second coordinates.Suppose that (E0)� �E� : Hence it remains to show E0�E�� : Let c E0 N: Thus weneed1. c 2 8�(S);2. N 2 �8(x:�(hy;xi))(
);3. c C0 N;4. 8d 2 D:8M 2 �(�):d CM � (c; d) E� hM;Ni:We check each of these in turn.1. Clearly c 2 U � 8�(S):2. We are given ` 	(N) and 	(y) ` 8�(x:�(hy; xi)), hence ` 8�(x:�(hN; xi)):3. Immediate.
90

4. By de�nition(E0)� = f((c; d); hN;Mi) 2 [��1(U)� �	(Fst(z))(
 � �)]\ C�j c E0 Ng:Suppose that d CM . We have c 2 U , so (c; d) 2 ��1(U) and ` 	(N) implyinghN;Mi 2 �	(Fst(z))(
 � �): Also c C0 N and so (c; d) C� hN;Mi: With thesefacts, we see that (c; d)(E0)�hN;Mi and using the hypothesis we are done.Now suppose that E0�E��; it remains to show (E0)� �E�. Let (c; d)(E0)�hN;Mi:Then from the supposition we get c E�� N , which means that (c; d) E� hN;Mi: Sowe do get the required right adjoint.We must verify that RBC holds, namely that the squareLr(C �D;C0 � C;
 � �) 8�- Lr(C;C0;
)
Lr(C 0 �D;C00 � C;
0 � �)(f � id; F � id)�? 8�- Lr(C 0;C00;
0)?(f; F)�Of course, we already know that everything is �ne in the �rst and third coordinates.We just need to check the second coordinate. We have thatE�� = f(c; N) 2 [8�(S)� �8�(�(z))(
)]\ C0j 8d:8M:d CM� (c; d) E� hN;MigE�� = f((c0; d); hN 0;Mi) 2 [(f � id)�1(S)� �(F�id)�(�(z))(
0 � �)]\ C00 � Cj(f � id)(c0; d) E� (F � id)hN 0;Mig(E��)� = f(c0; N 0) 2 [f�1 � 8�(S)� �F ��8�(�(z))(
0)]\ C00j f(c0) E�� FN 0g(E��)� = f(c0; N 0) 2 [8� � (f � id)�1(S)� �8��(F�id)�(�(z))(
0)]\ C00j8d:8M:d CM � (c0; d) E�� hN 0;MigSuppose that c0(E��)�N 0: We show c0(E��)�N 0: Hence we need to see that d C Mimplies (c0; d) E�� hN 0;Mi: This amounts to showing1. (c0; d) 2 (f � id)�1(S):2. hN 0;Mi 2 ��(hF (Fst(z0));Snd(z0)i)(
0 � �):3. (c0; d) C00 � C hN 0;Mi:4. (f(c0); d) E� hFN 0;Mi:We check each of these:1. Note that c0 2 f�1 � 8�(S) = 8� � (f � id)�1(S):91

2. We have N 0 2 �8�(x:�(hF;xi)) and hence ` �(hFN 0;Mi):3. Immediate from c0 C00 N 0:4. Immediate from f(c0) E�� FN 0.Thus (E��)� � (E��)�; the reverse inclusion is similar.We move on to condition (3). The right adjoint to(id� �; id� �)�:Lr(C �D?;C0 � CT ;
 � T�)! Lr(C �D;C0 � C;
 � �)which we shall write as2:Lr(C �D;C�;
 � �)! Lr(C �D?;CT�;
 � T�)is de�ned by 2(S;E�;�(u)) def= (2(S);E��;2(�(u))) where 2(S) and 2(�(u)) havethe expected meaning, and whereE�� def= f((c; e); hN;Ei) 2 [2(S)� �2(�(u))(
 � T�)]\ CT�j8d:8M:d CM ^ e = [d] ^ E = Val(M) � (c; d) E� hN;Mig:We omit to check that the de�nition of 2 makes sense, and that it is the requiredadjoint. We shall just check that RBC does indeed hold, i.e. the following squarecommutes: Lr(C �D;C�;
 � �) 2 - Lr(C �D?;CT�;
 � T�)
Lr(C 0 �D;C00 � C;
0 � �)((f � id); (F � id))�? 2- Lr(C 0 �D?;C00 � CT ;
0 � T�)?((f � id); (F � id))�Once again, all we need to do is check things work in the second coordinate. Wehave:E�� = f((c; e); hN;Ei) 2 [2(S)� �2(�(u))(
 � T�)]\ CT�j8d:8M:d CM ^ e = [d] ^ E = Val(M) � (c; d) E� hN;MigE�� = f((c0; d); hN 0;Mi) 2 [(f � id)�1(S)� �(F�id)�(�(u))(
0 � �)]\ C00 � Cj(f(c0); d) E� hFN 0;Mig(E��)� = f((c0; e); hN 0; Ei) 2 [(f � id)�1 �2(S)� �(F�id)��2(�(u))(
0 � T�)]\ C00 � CT j (f(c0); e) E�� hFN 0; Eig(E��)� = f((c0; e); hN 0; Ei) 2 [2 � (f � id)�1(S)� �2�(F�id)�(�(u))(
0 � T�)]\C00�CT j 8d:8M:d CM ^ e = [d] ^E = Val(M)�(c0; d) E�� hN 0;MigSuppose that (c0; e)(E��)�hN 0; Ei. Then it remains to prove (c0; e)(E��)�hN 0; Ei: Thismeans given any d 2 D and M 2 �(�) for which d C M; e = [d] and E = Val(M)we must show 92

1. (c0; d) 2 (f � id)�1(S):2. hN 0;Mi 2 �(F�id)�(�(u))(
0 � �):3. (c0; d) C00 � C hN 0;Mi:4. (f(c0); d) E� hFN 0;Mi:Using the hypothesis, we have (f(c0); e) E�� hFN 0; Ei and henced CM ^ e = [d] ^ E = Val(M) � (f(c0); d) E� hFN 0;Mi:We check each of 1 to 4:1. (c0; [d]) 2 (f � id)�1 �2(S) = 2 � (f � id)�1(S) and so (c0; d) 2 (f � id)�1(S):2. hN 0; Ei 2 �2(Snd(z);x:�(hFFst(z);xi))(
0 � T�); which means that` 2(E; x:�(hFN 0; xi)):But E = Val(M), thus appealing to Proposition 4.5.1 we have ` �(hFN 0;Mi):3. By hypothesis.4. Immediate.Suppose that (c0; e)(E��)�hN 0; Ei: It remains to prove (c0; e)(E��)�hN 0; Ei: Thusgiven d 2 D and M 2 �(�) for which e = [d], E = Val(M) and d C M , weneed to show1. (f(c0); e) 2 2(S);2. hFN 0; Ei 2 �2(�(u))(
 � T�);3. (f(c0); e) CT� hFN 0; Ei;4. (f(c0); d) E� hFN 0;Mi:Using the hypothesis, we getd CM ^ e = [d] ^ E = Val(M) � (f(c0); d) E� hFN 0;Mi:We check each of 1 to 4:1. (c0; [d]) 2 2 � (f � id)�1(S) = (f � id)�1 �2(S):2. We have hN 0; Ei 2 �2(Snd(z);x:�(hFFst(z);xi))(
0 � T�); and so` 2(E; x:�(hFN 0; xi)):But E = Val(M) and so ` �(hFN 0;Mi) by appeal to Proposition 4.5.1.93

3. Trivial.4. Immediate.We now de�ne the left adjoint to(id� �; id� �)�:Lr(C �D?;C0 � CT ;
 � T�)! Lr(C �D;C0 � C;
 � �):Denote this by3:Lr(C �D;C�;
 � �)! Lr(C �D?;CT�;
 � T�)where we set 3(S;E�;�(u)) def= (3(S);E��;3(�(u))) withE�� def= f((c; e); hN;Ei) 2 [3(S)� �3(�(u))(
 � T�)]\ CT�j9d:9M:d CM ^ e = [d] ^ E = Val(M) ^ (c; d) E� hN;Mi)gWe omit to check that this is well de�ned and that LBC is satis�ed, but give briefdetails of the Frobenius Reciprocity condition. Take(U;ET�;	(z)) 2 Lr(C �D?;CT�;
 � T�)and (S;E�;�(u)) 2 Lr(C �D;C�;
 � �):Observe that U \3(S) = 3((id� �)�1(U) \ S) and	(hy; ei) ^3(e; x:�(hy; xi)) a` 3(e; x:	(hy;Val(x)i) ^ �(hy; xi)):We require ((ET�)�\ E�)� =ET� \ E�� : Suppose that (c; e)((ET�)�\ E�)�hN;Ei:Then there exist d and M for which (c; d)((ET�)�\ E�)hN;Mi: Unravelling thesupposition and appealing to the above observation, we conclude that (c; e) 2 U \3(S) and ` 	(hN;Ei)^3(E; x:�(hN; xi)): Using Proposition 4.5.1 we may deduce` 	(hN;Ei) and ` �(hN;Mi). So we can conclude that (c; e) ET� hN;Ei and(c; e) E�� hN;Ei:Suppose that (c; e)(ET� \ E��)hN;Ei:We need to �nd d and M for which (c; d)(ET�)�hN;Mi and (c; d) E� hN;Mi: Now (c; e) E�� hN;Ei implies that there are d andM for which d C M; e = [d] and E = Val(M). From the observation above, wededuce that (c; e) 2 3((id � �)�1 \ S) and ` 3(E; x:	(hN;Val(x)i) ^ �(hN; xi)).Thus (c; d) 2 (id � �)�1(U) \ S and appealing to Proposition 4.5.1 we deduce` 	(hN;Ei) ^ �(hN;Mi): Using these conclusions along with the supposition weare done.Now for condition (4). We de�ne the operation ++:Lr(C �D;CC � C;
 � �)� Lr(C �D0;CC � C0;
 � �0)!Lr(C � (D +D0);CC �(C + C0);
 � (� + �0))94

by sending the elements(I;E1;�(v)) 2 Lr(C �D;CC � C;
 � �)(J;E2;	(w)) 2 Lr(C �D0;CC � C0;
 � �0)to (I + J;E3;�(v) + 	(w)) whereE3 def= f((c; e); hN;Ei) 2 [(I + J)� ��(v)+	(w)(
 � (�+ �0))]\ CC �(C + C0) j9d:9M:d CM ^ e = i(d) ^ E = Inl(M) ^ (c; d) E1 hN;Mior 9d0:9M 0:d0 C0 M 0 ^ e = j(d0) ^ E = Inr(M 0) ^ (c; d0) E2 hN;M 0ig:We omit to check that condition (4) is satis�ed and move to condition (5). The leftadjoint to(id��; id��)�:Lr(C �D �D;C0 � C � C;
 � �� �)!Lr(C �D;C0 � C;
 � �)denoted by9(id��):Lr(C �D;C�;
 � �)! Lr(C �D �D;C0�;
 � �� �)is de�ned by setting9(id��)(S;E�;�(u)) def= (9(id��)(S);E��; 9(id��)(�(u)));whereE�� def= f((c; e); hN;Ei) 2 [9(id��)(S)� �9(id��)(�(u))(
 � �� �)]\ C0�j9d:9M:d CM ^ e = �(d) ^ E = �M ^ (c; d) E� hN;Mig:Let us check that we have de�ned the required adjoint. Take an element(U;E0�;	(z)) 2 Lr(C �D �D;C0�;
 � �� �):Of course we only need to check details in the middle coordinate. The action of(id��; id��)� on this element gives(E0�)� def= f((c; d); hN;Mi) 2 [(id��)�1(U)� �(id��)�((z))(
 � �)]\ C�j(c; d; d) E0� hN;M;Mig:So we need to verify that E�� (E0�)�E���E0�We check one direction. Suppose E���E0� and take (c; d) E� hN;Mi: Then (c; d) 2S � (id��)�1(U) and ` �(hN;Mi) hence ` 	(hN;M;Mi): It is clear that (c; d) C�95

hN;Mi: So it remains to show that (c; d; d) E0� hN;M;Mi: It will be enough to show(c; d; d) 2 9(id��)(S) and ` �(hN;Mi) ^M = M: But this is clear, for we have(c; d) 2 S and hN;Mi 2 ��(u)(
 � �): Finally, for Frobenius reciprocity, write(C �D;E>;>) for the greatest element in Lr(C �D;C;
 � �): Then it is easy tosee that((E0�)�)� = f((c; d; d); hN;M;Mi) 2 9(id��) � (id��)�1(U)��9(id��)�(id��)�((z))(
 � �� �)\ C0�j (c; d; d) E0� hN;M;Mig= E�> \ E0� :We have now shown how to de�ne all of the adjoints and operations needed to verifythat Lr is a FIX hyperdoctrine; we omit the remaining details. 25.5 Proving Existence and Disjunction Proper-tiesWe shall soon prove the Existence Property, Disjunction Property, and Standard-ness of nat ; these results were stated in Section 4.5.The Initial Model of the FIX LogicProposition 5.5.1 The FIX hyperdoctrine F, arising from the pure FIX logic,is (essentially) initial amongst all FIX hyperdoctrines.Proof This is immediate from the de�nition of FIX hyperdoctrine morphism. 2We shall need the following observations: Using the initiality of F, we see that thereare FIX hyperdoctrine morphisms [[�]] and I, together with obvious projections �and �0 where [[�]]:F ! !Cpo �:Lr! !CpoI:F ! Lr �0:Lr ! F :These FIX hyperdoctrine morphisms satisfy the following commutative diagrams:F	�����id @@@@@[[�]]RF � �0 Lr?I � - !CpoF(�)	�����id� @@@@@[[�]]�RF(�) � �0� Lr([[�]];C�; �)?I� ��- I([[�]])96

The Disjunction PropertyWe prove Theorem 4.5.5. First note that the closed term E:� + � corresponds toa morphism E: unit ! � + � in F. The action of the base functor component ofI:F ! Lr on this morphism, using the above commutative diagrams, isI(E) = ([[E]]; E): (1;Cunit ; unit)! ([[�]] + [[�]];C�+�; �+ �):Also, the following square commutes:F(�+ �) I�+�- Lr([[�]] + [[�]];C�+� ; �+ �)
F(unit)E�? Iunit - Lr(1;Cunit ; unit)?([[E]]; E)�The theorem follows by observing the e�ect of the two possible routes of the square.Let z be a variable of type � + �, and consider (� +)(z) 2 F(� + �): Then wehave Iunit(E�((� +)(z))) = I((� +)(E))= ([[(� +)(E)]];Eunit ; (� +)(E))where because ` (� +)(E) by hypothesis and Iunit preserves greatest elements,the relation Eunit must be non-empty. Also, we have([[E]]; E)�(I�+�((� +)(z))) = ([[E]]; E)�([[z:(� +)(z)]];E�+�; (� +)(z))= ([[E]]�1([[z:(� +)(z)]]);E��+� ; (� +)(E))whereE��+� = f(�; idunit) 2 [[[E]]�1([[z:(� +)(z)]])� �(�+)(E)(unit)]\ Cunit j[[E]](�) E�+� E � idg:But this relation is exactly Eunit , hence is non-empty, yielding [[E]](�) E�+� E whichimplies [[E]](�) C�+� E: By de�nition of the relation C�+� this means without lossof generality there is a global elementM 2 �(�), that is a closed termM , for which` E =�+� Inl(M); and from this we may derive ` �(M) using Proposition 4.5.1.The Existence PropertyWe prove Theorem 4.5.4. Take a proposition 3(e;�) 2 F(T�) and use the squareF(T�) IT�- Lr([[�]]?;CT�; T�)
F(unit)E�? Iunit- Lr(1;Cunit ; unit)?([[E]]; E)�

97

As above, this yieldsEunit = E�T�= f(�; id) 2 [[[E]]�1([[e:3(e;�)]]) � �3(E;�)(unit)]\ Cunit j [[E]](�) ET� Eg:This has to be non empty and so [[E]](�) ET� E; which implies [[E]](�) CT� E: Byassumption we have ` 3(E;�) and therefore f�g = [[E]]�1�([[x:�(x)]]) implying that[[E]](�) is not bottom. Hence there is some closed M for which ` E =T� Val(M)and using Proposition 4.5.1 we have ` �(M):A Formal Adequacy of the FIX LogicWe �nish this section by remarking that the Existence Property expresses a formaladequacy of the FIX logic. Indeed, we have the followingCorollary 5.5.2 Given a closed term E of type T�, it is provably equal to a valueVal(M), where M is a closed term of type �, if and only if the !Cpo interpretation[[E]] 2 [[T�]] = [[�]]? is not ?.Proof Immediate from the proof of the Existence Property. 25.6 Proving Standardness of the Natural NumberTypeWe prove Theorem 4.5.6. Let N be a closed term of type nat: Using the squareF(nat) Inat- Lr(N ;Cnat ; nat)
F(unit)N�? Iunit- Lr(1;Cunit ; unit)?([[N]]; N)�

and arguing the same way as in the previous section, we conclude that [[N]](�) EnatN and from this we deduce ` N =nat Sucn(0); using the de�nition of the Cnatrelation in the NNO of Lr.
98

Chapter 6Applications of the FIX Logic6.1 IntroductionIn this chapter we shall de�ne the syntax and operational semantics of two littleprogramming languages, both of which are closely allied to Plotkin's PCF. PCF isan acronym for Programming Computable Functions. In essence, the syntax of PCFis that of simply typed lambda calculus (with ground types just the natural numbersand booleans) which has been enriched with explicit operations for arithmetic, aconditional at ground types and �xpoint operators. This syntax is then equippedwith a call by name operational semantics, giving rise to the language PCF. PCFwas �rst investigated by Plotkin and the results appear in [Plo77].The two languages we investigate here, which we call QL and HPCF, resemble PCFin that their syntax consists essentially of simply typed lambda calculus with extraarithmetical, procedural and �xpoint features. They di�er in having conditionals athigher types. The syntax of QL, while similar to that of PCF, makes use of higherorder metaconstants. QL has recursive function declarations instead of �xpointoperators and the operational semantics is call by value. HPCF has a call by nameoperational semantics and apart from conditionals at higher types is identical toPCF.We shall specify the syntax and semantics of these languages, then give a translationinto a suitable FIX theory. For each language we state two adequacy results, one forstatic semantics and one for dynamic semantics, which shows that the translationpreserves the structure of the original language. We emphasise that both QL andHPCF are no more than very simple adaptations of Plotkin's PCF. The intentionof this chapter is just to investigate how well suited the FIX logic is for interpretingand reasoning about two quite standard languages. The FIX logic can be viewed asa metalogic in which we interpret both QL and HPCF; for an account of this styleof programming language analysis see [Plo85].6.2 The Language QLWe de�ne the language QL by specifying the basic syntax of types and raw expres-sions; this syntax will then be given a static and dynamic semantics.
99

The Types and Expressions of QLThe types of QL are given by the grammar:� ::= bool j nat j �) �The (raw) expressions of QL are given by the grammar:m ::= x variablesj tt truthj ff falsityj kn natural numbersj C�(b; m; n) conditionalj S(m) successorj P(m) predecessorj Z(m) zero testj mn applicationj �x: �:m function de�nitionj R�;�(m; n) recursive functionsThe Static Semantics of QLThe static semantics assigns types to expressions in context. Each judgement takesthe form � ` m: �: The rules for deriving these judgements are given below. Thecontext � consists of a list of typed variables (the variables are assumed distinct).Variables are bound in the usual way by lambda abstractions and recursive functiondeclarations. Given a QL expression in context, � ` m: �, it is easy to see that thefree variables of m all occur in �, and that the type � assigned to the raw QL termm is unique. The types nat and bool will be referred to as ground types.Variables�; x:�;�0 ` x:�Constants� ` tt: bool � ` ff: bool � ` kn: natConditional� ` b: bool � ` m:� � ` n:�� ` C�(b; m; n):�Arithmetic� ` m: nat� ` S(m): nat � ` m: nat� ` P(m): nat � ` m: nat� ` Z(m): bool100

Functions� ` m:�) � � ` n:�� ` mn: � �; x:� ` m: �� ` �x:�:m:�) �Recursive Functions�; f :�) �0; x:� ` m:�0 � ` n:�� ` R�;�0(m; n):�0The Dynamic Semantics of QLWe call a QL expression m closed if ` m: � is derivable for some (necessarily unique)type �: The canonical QL expressions comprise the subset of closed expressionsgiven by the grammar: c ::= tt j ff j kn j �x: �:mWe now give the syntax of QL a call by value dynamic semantics via an evaluationrelation, which will take the form m + c, where m and c are closed QL expressionsand c is canonical. The rules for generating the evaluation relation are given below:Canonical Formsc canonicalc + cConditionalsb + tt m + cC�(b; m; n) + c b + ff n + cC�(b; m; n) + cArithmeticm + knS(m) + kn+1 m + kn+1P(m) + kn m + k0P(m) + k0m + k0Z(m) + tt m + kn+1Z(m) + ffFunctionsm + �x:�:m0 n + c0 m0[c0=x] + cmn + cRecursive Functionsn + c0 m[�x:�:R�;�0(m; x)=f; c0=x] + cR�;�0(m; n) + c101

It is easy to see that the dynamic semantics is deterministic and if m + c then m andc have the same type.6.3 Translation of QL into the FIX LogicWe shall give a translation of QL into a theory over FIX. We aim to give an inter-pretation of the language QL which will preserve all of its structure and properties.In fact the pure FIX logic will interpret QL; more formally, the FIX theory weconsider consists simply of the FIX signature with no basic function symbols orrelation symbols, together with no extralogical axioms. We shall not be too formaland simply refer to the FIX logic. The �rst step is to translate the static semanticsof QL into suitable judgements in the FIX logic.Interpretation of the Static SemanticsFor each expression in context, xi: �i ` m: �, we give a a term in context of FIX,and we think of this process as a translation of QL into FIX. The static typingjudgement x1: �1; : : : ; xn: �n ` m: � is translated tox1: [[�1]]v; : : : ; xn: [[�n]]v ` ~u:[[m]]v(~x):T [[�]]v;where for any term m in a context of n variables fx1; : : : ; xng, [[m]]v is an expressionof the abstract syntax generated from the pure FIX logic with arity term and forwhich fv([[m]]v) = fu1; : : : ; ung. Given a closed QL expression (in context) ` m: �,this is of course translated to a judgement ` [[m]]v:T [[�]]v. Note that the superscript von the semantic bracket [[�]]v refers to the fact that we are specifying a translationof a call by value language. We shall often refer informally to a call by valuetranslation. In order to specify the translation, we shall de�ne expressions of theabstract syntax generated from the object level signature of FIX which have arityterm ! term and which we shall denote by Pred and Zero: The (representativesfor these) expressions are (using � equality in the meta � calculus) de�ned byPred(n) def= Snd((x:hSuc(Fst(x)); Fst(x)i)n(hO;Oi))Zero(n) def= (x:Inrunit(hi))n(Inlunit(hi))Note that the judgements n: nat ` Pred(n): nat and n: nat ` Zero(n): unit + unitare FIX terms in context; moreover, it is not di�cult to see that Pred and Zero havethe properties we would expect of them. We also make the de�nitionFix�(f) def= It�(e:Let (e; x:fx); �(!))for which it is immediate that f :T�) T� ` Fix�(f):T� is a FIX term in context.The translation of QL into FIX is given below:� [[nat]]v def= nat 102

� [[bool]]v def= unit+ unit� [[�) �]]v def= [[�]]v) T [[�]]v� [[x]]v def= Val(u) where u is a meta variable.� [[tt]]v def= Val(Inlunit(hi))� [[ff]]v def= Val(Inrunit(hi))� [[kn]]v def= Val(Sucn(O))� [[C�(b; m; n)]]v def= Let ([[b]]v; x:fy:[[m]]v; y:[[n]]vg(x))� [[S(n)]]v def= Let ([[n]]v; x:Val(Suc(x)))� [[P(n)]]v def= Let ([[n]]v; x:Val(Pred(x)))� [[Z(n)]]v def= Let ([[n]]v; x:Val(Zero(x)))� [[mn]]v def= Let ([[m]]v; f:Let ([[n]]v; x:fx))� [[�x: �:m]]v def= Val(�[[�]]v(x:[[m]]v))� [[R�;�0(m; n)]]v def= Let ([[n]]v ; y:Y[[�]]v;[[�0]]v(�(f:(�(x:[[m]]v))))y)Interpretation of the Dynamic SemanticsClearly the minimal requirement of an interpretation of the dynamics semantics ofQL is soundness, namely that if m + c then we have ` [[m]]v = [[c]]v where the latterequality holds in FIX. Further, it would be pleasing if whenever ` [[m]]v = [[c]]v,there is a canonical c0 for which m + c0 and ` [[c0]]v = [[c]]v; that is to say thatFIX is computationally adequate for interpreting QL. We shall soon see that thisis indeed the case, and in order to do this we shall need a little additional notation.For canonical closed terms c of QL, note that the interpretation takes the form[[c]]v � Val(dce) and we shall take this as an informal de�nition of dce:We translatethe dynamic semantics of QL into judgements in FIX simply by taking each instanceof the evaluation relation m + c to the judgement ` [[m]]v = [[c]]v:6.4 Adequacy Results for QLStatic Adequacy for QLProposition 6.4.1 [\QL Static Adequacy"] The interpretation of the static se-mantics of QL in FIX is adequate, in the sense that xi: �i ` m: � is a well formed103

QL expression in context i� xi: [[�i]]v ` ~u:[[m]]v(~x):T [[�]]vis derivable in FIX.Proof Both directions proceed by structural induction. We give one example,for the backwards direction.(Case m is R(m; n)): From the de�nition of [[R(m; n)]]v, the FIX logic rules and theinduction hypothesis, we havexi: �i; f : �0) �; x: �0 ` m: � and xi: �i ` n: �0;from which xi: �i ` R(m; n): � is immediate. 2Dynamic Adequacy of QLWe shall require a Lemma based on Plotkin's methods given in [Plo85]. We writeD(�) for the composition [[�]] � ~u:[[�]]v(~x): QL ! FIX ! !Cpo where [[�]] is thestandard domain theoretic semantics of FIX. We de�ne a relation C� between ele-ments d 2 D(�) and canonical forms ` c: � by induction on the structure of �.In the de�nition which follows, E� is the relation between elements e 2 D(�)?and closed QL terms ` m: � de�ned in terms of C� by asking that e E� m i�8d 2 D(�):e = [d] � 9c:m + c ^ d C� c. We de�ne:� i(�) Cbool tt and j(�) Cbool ff where i; j: 1! 1+ 1 are coproduct insertions.� n Cnat kn where n 2 N.� f C�)� �x: �:m i� 8d 2 D(�)8c: �:d C� c � f(d) E� (�x: �:m)c.With this, we haveLemma 6.4.2 Let x1: �1; : : : ; xn: �n ` m: � be a QL term in context and supposethat for i = 1; : : : ; n we have di 2 D(�i), ` ci: �i and di C�i ci. Then the continuousfunction D(� ` m):D(�1)� : : :�D(�n)! D(�)? satis�es D(� ` m)(~d) E� m[~c=~x]:Proof The proof proceeds by induction on the structure of m. We illustrate theproof with two cases(Case m is �x: �:m): Suppose that the conditions of the lemma are satis�ed. Thenwe need to show that D(� ` �x: �:m)(~d) E�)� �x: �:m[~c=~x]. Using the de�nition ofD(�) we can show that D(� ` �x: �:m) = � � cur(D(�; x: � ` m)) where�:D(�)) D(�)? ! (D(�)) D(�)?)?:Hence D(� ` �x: �:m)(~d) = [cur(D(�; x: � ` m))(~d)]. By de�nition of the E relationwe show that cur(D(�; x: � ` m))(~d) C�)� �x: �:m[~c=~x]; thus if d C� c it remains to104

show cur(D(� ` �x: �:m))(~d)(d) E� (�x: �:m[~c=~x])c: By the induction hypothesis,D(�; x: � ` m)(~d; d) E� m[~c=~x; c=x] and so m[~c=~x; c=x] + c0 for some c0 provided thatD(� ` �x: �:m)(~d)(d) is not ?. But then (�x: �:m[~c=~x])c + c0 and we are done.(Case m is mn): We need to show that D(� ` mn)(~d) E� m[~c=~x]n[~c=~x] where, say,� ` m: �) � and � ` n: �. Suppose that D(� ` mn)(~d) is not ?. One can checkthat neither are D(� ` m)(~d) or D(� ` n)(~d); let us write [f] and [d] for these.By the induction hypothesis we have [f] E�)� m[~c=~x] and [d] E� n[~c=~x]. Hencem[~c=~x] + �x: �:m0 and n[~c=~x] + c. This leads to f(d) E� (�x: �:m0)c and from theoriginal supposition there is some c0 for which (�x: �:m0)c + c0. Thus we may deducem0[c=x] + c0 and conclude m[~c=~x]n[~c=~x] + c0: 2We shall also need the following Lemma:Lemma 6.4.3 With the call by value interpretation of QL, and x: � ` m: � , ` c: �QL terms in context with c canonical, we have` [[m[c=x]]]v = [[m]]v[dce=u];where [[x]]v def= Val(u) and [dce=u] means substitution in the meta � calculus.Proof N.B. Recall Section 0.3 of Chapter 0. The proof is a trivial structuralinduction on m: We illustrate with one example.(Case m is R(m; n)):` [[R(m; n) [c=y]]]v = Let ([[n[c=y]]]v; u:Y(�(f:(�(x:[[m[c=y]]]v))))u)which by induction is = Let ([[n]]v ; u:Y(�(f:(�(x:[[m]]v))))u) [dce=y]= [[R(m; n)]]v [dce=y]: 2Theorem 6.4.4 [\QL Dynamic Adequacy"] The interpretation of QL in the FIXlogic is computationally adequate; more precisely, given closed QL terms m and c forwhich c is canonical, then m + c implies ` [[m]]v = [[c]]v , and ` [[m]]v = [[c]]v impliesthere is some canonical c0 for which m + c0:Proof The proof in the forwards direction proceeds by induction on the derivationof m + c; we give details for the cases of application and recursive function terms.(Case mn + c): Using minimality of + and the induction hypothesis, we obtain` [[m]]v = Val(�(x:[[m0]]v))` [[n]]v = Val(dc0e)` [[m0[c0=x]]]v = Val(dce):
105

Thus we have ` [[mn]]v = Let ([[m]]v; f:Let ([[n]]v ; x:fx))= �(x:[[m0]]v)dc0e= [[m0]]v[dc0e=x]which by Lemma 6.4.3 = [[c]]v;as required.(Case R(m; n) + c): Using minimality of + and the induction hypothesis, we obtain` [[n]]v = Val(dc0e)` [[m[�x: �:R(m; x)=f; c0=x]]]v = Val(dce):Let us put M def= �(f:�(x:[[m]]v)) and note that` [[�x: �:R(m; x)]]v = Val(�(x:Y(M)x))= Val(Y(M)):Thus we have ` [[R(m; n)]]v = Let ([[n]]v; y:Y(�(f:(�(x:[[m]]v)))y)= �(f:(�(x:[[m]]v))) Y(M) dc0e= �(x:[[m]]v)[Y(M)=f] dc0e= �(x:[[m]]v [Y(M)=f]) dc0e= [[m]]v[Y(M)=f][dc0e=x]= [[m]]v[d�x: �:R(m; x)e=f; dc0e=x]which by Lemma 6.4.3 = [[c]]v;and so we are done.For the converse direction, suppose that ` [[m]]v =� [[c]]v. We have [[m]]v = Val(dce)and hence it is the case that D(` m)(�) is not ?, say [d]. Appeal to Lemma 6.4.2 todeduce that [d] E� m and hence there is some canonical c0 for which m + c0 by thede�nition of E. 26.5 A Further PCF style language, HPCFWe de�ne the language HPCF by specifying the basic syntax of types and rawexpressions; this syntax will then be given a static and dynamic semantics.The Types and Expressions of HPCFThe types of HPCF are given by the grammar:� ::= bool j nat j �) �106

The (raw) expressions of HPCF are given by the grammar:m ::= x variablesj tt truthj ff falsityj kn natural numbersj C� conditionalj S successorj P predecessorj Z zero testj Y� �xpointsj mn applicationj �x: �:m function de�nitionThe Static Semantics of HPCFVariables�; x:�;�0 ` x:�Constants� ` tt: bool � ` ff: bool � ` kn: natConditional� ` C�: bool) (�) (�) �))Arithmetic� ` S: nat) nat � ` P: nat) nat � ` Z: nat) boolFixpoints� ` Y�: (�) �)) �Functions� ` m:�) � � ` n:�� ` mn: � �; x:� ` m: �� ` �x:�:m:�) �
107

The Dynamic Semantics of HPCFThe canonical HPCF expressions consist of the subset of closed expressions givenby the grammar:c ::= tt j ff j C� j kn j S j P j Z j Y� j �x: �:m j C�b j C�bmWe now give the syntax of HPCF a call by name dynamic semantics. Apart fromconditionals at higher types, HPCF is in every respect identical to Plotkin's lan-guage PCF. The dynamic semantics will be presented using an evaluation relationjust as for QL: Canonical Formsc canonicalc + cConditionalsm + C�mb + C�b m + C�bmn + C�bnm + C�bm0 b + tt m0 + cmn + c m + C�bm0 b + ff n + cmn + cl + C� b + tt m + clbmn + c l + C� b + ff n + clbmn + cArithmeticm + S n + knmn + kn+1 m + P n + kn+1mn + kn m + P n + k0mn + k0m + Z n + k0mn + tt m + Z n + kn+1mn + ffFixpointsm + Y� nY�n + cmn + cFunctionsm + �x:�:m0 m0[n=x] + cmn + cRemark 6.5.1 Plotkin originally speci�ed the operational semantics of PCF viaa single step reduction relation of the form m n where m and n are closed terms.Clearly HPCF could be given an operational semantics in the same way: for detailsof the original speci�cation of Plotkin's PCF in this style of semantics see [Plo77].We omit the details, but remark that presenting HPCF in this style would lead to:108

Proposition 6.5.2 Let m and c be closed HPCF terms with c canonical. Thenm + c i� m � c, where � is the re
exive transitive closure of . 2This can be proved succinctly through:Lemma 6.5.3 If m n then for all closed canonical c, we have n + c impliesm + c: 26.6 Translation of HPCF into the FIX LogicInterpretation of the Static SemanticsFor each expression in context, xi: �i ` m: � of HPCF, we give a translation intoa term in context of FIX. The static typing judgement x1: �1; : : : ; xn: �n ` m: � istranslated to x1:T [[�1]]n; : : : ; xn:T [[�n]]n ` ~u:[[m]]n(~x):T [[�]]n:The translation of HPCF into FIX is given below:� [[nat]]n def= nat� [[bool]]n def= unit+ unit� [[�) �]]n def= T [[�]]n) T [[�]]n� [[x]]n def= u where u is a meta variable.� [[tt]]n def= Val(Inlunit(hi))� [[ff]]n def= Val(Inrunit(hi))� [[kn]]n def= Val(Sucn(O))� [[C�]]n def= Val(�T [[bool]]n(b:Val(�T [[�]]n(z:(Val(�T [[�]]n(z0:Let (b; x:fy:z; y:z0g(x) : : :)� [[S]]n def= Val(�T [[nat]]n(y:Let (y; x:Val(Suc(x)))))� [[P]]n def= Val(�T [[nat]]n(y:Let (y; x:Val(Pred(x)))))� [[Z]]n def= Val(�T [[nat]]n(y:Let (y; x:Val(Zero(x)))))� [[Y�]]n def= Val(�T (T [[�]]n)T [[�]]n)(y:Fix[[�]]n(�T [[�]]n(x:Let (y; f:fx)))))� [[mn]]n def= Let ([[m]]n; f:f [[n]]n))� [[�x: �:m]]n def= Val(�[[T�]]n(x:[[m]]n)) 109

Note that this interpretation is one of a number of possibilities. Of course, formost of the syntax of HPCF there will only be one sensible translation. However,in the case of the �xpoint constants Y�, there are two reasonable translations and(as we shall see) they have quite di�erent properties. This said, the importantrequirement of any translation is that it preserves the structure and properties ofthe original language. In Section 6.8 we shall give an alternative translation of Y�and investigate its properties.Interpretation of the Dynamic SemanticsThis is the same as for QL: see Page 1036.7 Adequacy Results for HPCFStatic Adequacy for HPCFWe prove the following Proposition, establishing that the translation of the staticsemantics of HPCF is, in a sense to be made precise, information preserving.Proposition 6.7.1 [\HPCF Static Adequacy"] The interpretation of the staticsemantics of HPCF in FIX is adequate, in the sense that xi: �i ` m: � is a wellformed HPCF expression in context i�xi:T [[�i]]n ` ~u:[[m]]n(~x):T [[�]]nis derivable in FIX.Proof The forwards direction is an induction on the structure of the term m; weillustrate one case.(Case m is Y�m): By induction and the de�nition of the translation, we havexi:T [[�i]]n ` ~u:[[m]]n(~x):T (T [[�]]n) T [[�]]n)and thus (using the fact that the raw terms (represented by) ~u:[[m]]n(~x) and [[m]]n[~x=~u]are the same) xi:T [[�i]]n ` Let ([[m]]n; x:Fix(x)):T [[�]]n:From the de�nition of [[Y�m]]n we are done. Clearly the reverse direction is equallyeasy. 2Dynamic Adequacy for HPCFWe shall need the following Lemma:
110

Lemma 6.7.2 With the call by name interpretation of HPCF, and x: � ` m: � ,` n: � HPCF terms in context, we have` [[m[n=x]]]n = [[m]]n[[[n]]n=u];where [[x]]v def= u.Proof Trivial induction. 2Theorem 6.7.3 [\HPCF Dynamic Adequacy"] The translation of HPCF into theFIX logic is computationally adequate; more precisely, given closed HPCF terms mand c where c is canonical, then m + c implies ` [[m]]n = [[c]]n and if ` [[m]]n = [[c]]nthen there is a canonical c0 for which m + c0.Proof The \only if" uses rule induction on the derivation of the evaluation rela-tion. We shall just give two cases, namely for application and �xpoint terms.(Case Functions): Using minimality of + and the induction hypothesis, we obtain` [[m]]n = Val(�(x:[[m0]]n))` [[m0[n=x]]]n = [[c]]n:Hence we get ` [[mn]]n def= Let ([[m]]n; f:f [[n]]n)= �(x:[[m0]]n)[[n]]n= [[m0]]n[[[n]]n=x]which via Lemma 6.7.2 = [[c]]nas required.(Case Fixpoints): Using minimality of +, the induction hypothesis and the trans-lation of application terms, we have` [[m]]n = [[Y�]]n` Let ([[n]]n; g:g[[Y�n]]n) = [[c]]n:Hence we get [[mn]]n = Let ([[Y�]]n; f:f [[n]]n)= Fix(�(x:Let ([[n]]n; f:fx)))= Let ([[n]]n; f:f [[Y�n]]n)= [[c]]n;which is what we had to prove.To prove the converse direction we could use a method similar to the one used inthe proof of QL Dynamic Adequacy. The details are omitted. 2111

6.8 An Alternative Translation of FixpointsAll of the results of Sections 6.6 and 6.7 remain true for a slightly di�erent transla-tion of the �xpoint constants Y�. However, the proof of computational adequacy ofthe translation is not so straightforward as before. We present a proof which usesthe Existence Property of the FIX logic which was stated on Page 74.The translation of the �xpoint constants Y� now takes the form[[Y�]]n def= Val(�T (T [[�]]n)T [[�]]n)(y:Let (y; x:Fix[[�]]n(x)))):In order to prove a computational adequacy result which uses this new translation,we shall needLemma 6.8.1 Suppose that � ` E:T��; x:� ` F (x):T��; y: � ` �(y) propare well formed judgements in FIX. Then we have�;� ` 3(Let (E; F);�)�;� ` 3(E; x:3(F (x);�))Proof The labelling of steps in the prooftrees is informal and for guidance only.We have (3i)�; x:�; y: �;�;�(y); F (x) = Val(y) ` 3(F (x);�) (�)�; y: �;�;3(E; x:�(y)^ F (x) = Val(y)) ` 3(E; x:3(F (x);�)) (fr)�; y: �;�;�(y)^3(E; x:F (x) = Val(y)) ` 3(E; x:3(F (x);�))and (mod)(^ad)�; y: �;�; Let (E; F) = Val(y);�(y) ` �(y) ^3(E; x:F (x) = Val(y))where the step (�) follows from Lemma 4.5.2 and rule (fr) is proved Proposi-tion 4.5.3. Applying (cut) to the above conclusions we have�; y: �;�; Let (E; F) = Val(y);�(y) ` 3(E; x:3(F (x);�)):Using this together with the hypothesis �;�;` 3(Let (E; F);�) and (3e) we aredone. 2Now we can prove computational adequacy:112

Theorem 6.8.2 Theorem 6.7.3 remains true if we replace the translation of theconstants Y� given on Page 109 with that given on Page 112.Proof Clearly the change to the original proof will only involve the �xpointconstants. Indeed, for the \only if" direction:(Case Fixpoints): Applying minimality of +, the induction hypothesis, and thetranslation of application terms, we have` [[m]]n = [[Y�]]n` Let ([[n]]n; f:f [[Y�n]]n) = [[c]]n;and thus ` 3(Let ([[n]]n; f:f [[Y�n]]n); x:x = dce):Applying Lemma 6.8.1 we obtain` 3([[n]]n; y:3(y[[Y�n]]n; x:x = dce)):Appealing to the Existence Property (Theorem 4.5.4), there is a closed term N forwhich ` [[n]]n = Val(N) and ` 3(N [[Y�n]]n; x:x = dce); that is ` N [[Y�n]]n = [[c]]n:Via the de�nition of [[Y�]]n we see that ` [[Y�n]]n = Fix(N); yielding` [[mn]]n = Let ([[Y�]]n; f:f [[n]]n)= Let ([[n]]n; x:Fix(x))= NFix(N)= [[c]]n:as required. The details for the converse direction are omitted; the proof uses atechnique similar to that adopted in proving QL Dynamic Adequacy. 2

113

114

Part IIIThe FIX�= Logic

115

Chapter 7Representations of Scott Predomains7.1 Scott Domains and Information SystemsIt is well known that the class of Scott domains together with Scott continuousfunctions form a category which is equivalent to the category of information systemstogether with approximable maps. Note that here the Scott continuous functionsare those set functions which preserve �ltered colimits (i.e. directed suprema). Fordetails see both [Sco82] and [WL83]. Of course, it is by de�nition that a Scottdomain has a least element. We now extend Scott's results to structures whichare just like Scott domains but which do not necessarily possess a least element;we shall call these Scott predomains. The literature describes many di�erent kindsof domain and a number of the de�nitions are non-standard. For this reason weelaborate on precisely what we mean by a Scott predomain.7.2 Scott Predomains and Preinformation Sys-temsThe Category of Scott PredomainsDe�nition 7.2.1 If P is any poset then a subset S is bounded i� S is non-emptyand we have 9p 2 P:S � p: We write Bd(S) for this. We say that P is boundedcocomplete if every bounded subset has a supremum.An ! cocomplete partial order is a poset which possesses suprema (colimits) of !diagrams. We refer to these as !cpo's and often call ! diagrams ! chains.A directed cocomplete partial order D is a poset which has suprema of directeddiagrams (recall that a directed diagram is a functor f :F ! D where F is a posetwhich is a �ltered category). We refer to these as dcpo's. The image of such adirected diagram will be referred to as a directed subset of D. If S is a directedsubset of D we shall write FS for its supremum; we shall suppose that part of theforce of this notation is that S is directed. For other subsets we write WS for thesupremum. Finally, note that any dcpo is an !cpo.An element d 2 D is �nite i� d � FS implies 9s 2 S:d � s for all directed S. Theset of �nite elements of D will be written as D�. A dcpo D is algebraic if for everyd in D we have d = Ffe j e 2 D� ^ e � dg; note that by de�nition, for any elementd of D there is a �nite element below d.117

A Scott predomain is a bounded cocomplete algebraic dcpo. We shall say that a setfunction between Scott predomains which preserves suprema of directed subsets isScott continuous. (Note that as a functor between categories, this coincides withthe categorical notion of continuity as preservation of �ltered colimits).Proposition 7.2.2 Scott predomains and Scott continuous functions form a cat-egory, Ppd . 2De�nition 7.2.3 Let C be a let category. Suppose that for all objects B and Cthe functor C((�)�B; TC): Cop ! Set is represented by an object B*C: Then weshall say that C has T -exponentials.Proposition 7.2.4 The category Ppd is a let category with respect to liftingof domains, which has (�nite products), stable �nite coproducts, ?-exponentials,NNO and FPO.Proof We just sketch the details. The forgetful functor U :Ppd ! Set createsstable �nite (co)products in Ppd . Given a Scott predomain D we de�ne the liftedScott predomain D? as expected. There is an obvious inclusion i:D ! D? and fora Scott continuous function f :D � D0 ! D00? there is f �:D � D0? ! D00? sending(d;?) to ?. It is easy to see that this gives rise to a let category. Now we show thatPpd((�) � B;C?) is representable, say by a Scott predomain B *C. We de�nethe underlying set of B*C to be the set of Scott continuous functions from B toC? which is a poset ordered pointwise. B*C is a dcpo: For let F � B*C be adirected subset. Then setting (FF)(b) def= FFb yields the supremum of F . Now letF be non-empty and bounded by f . Then we have Fb � fb for any b 2 B; as C?is bounded cocomplete WFb exists in C? and hence we have WF in B*C: Finallywe have to show that B*C is algebraic. Consider the set function de�ned by[b; c](x) def= (c if b � x? otherwisewhere b 2 B�, c 2 C�? and x 2 B: Then it is easy to check that every [b; c] is Scottcontinuous and �nite; indeed all �nite elements of B*C arise in this way and itis the case that if f 2 B*C then f = Ff[b; c] j [b; c] � fg. We omit details: theessence of the proof can be found in [Sco71]. Recall that the category C of dcpo'sand Scott continuous functions is a ccc. Of course Ppd is a full subcategory of Cand thus the natural isomorphismPpd((�)� B;C?) �= Ppd((�); B*C)is immediate. Finally, the expected candidates for the NNO and FPO are easilyseen to work. 2Remark 7.2.5 Note that the category Ppd is not cartesian closed. For moredetails about cartesian closure of categories of domains see [Jun88].118

The Category of Preinformation SystemsInformation systems provide a form of representation theorem for Scott domains.In essence, every such domain corresponds in a natural way to a set of sets which isordered by inclusion. We shall describe a version of the original information systemsfrom which we may derive a similar representation theorem for Scott predomains.De�nition 7.2.6 The category of preinformation systems, PInSys consists ofobjects A def= (A; #;`) triples which are either (?;?;?), or else A is a nonemptyset, # is a nonempty set of �nite subsets of A, and ` is a subset of # � A. Thethree coordinates of the triple are respectively known as the tokens, the consistentsets and the the entailment relation. Note that we shall confuse the preinformationsystem A with the token set A. These triples satisfy the following data:1. ? 62 #.2. X �f Y # implies X#, where �f denotes non-empty �nite subset and X#means X 2 #.3. a 2 A implies fag#.4. X ` a implies X [fag#.5. X# ^ a 2 X implies X ` a.6. X ` Y ` a implies X ` a where X ` Y means X ` y for each y 2 Y .Note that part of the force of the judgement X ` a is that X is consistent. We referto the objects as preinformation systems and (?;?;?) as the empty preinformationsystem.The morphism sets PInSys(A;B) are empty if B = ? and A 6= ?, f?g if A = ?and otherwise consist of all those r � #A � #B which satisfy1. 8a 2 A:9Y #B:fagrY .2. XrY ^XrY 0 implies Xr(Y [Y 0).3. X 0 `A XrY `B Y 0 implies X 0rY 0.We refer to a morphism r:A ! B as a preapproximable map; the identity on A isjust `A and composition is the usual composition of relations.Remark 7.2.7 This de�nition is clearly very similar to that of an informationsystem as given in [Sco82] and [WL83]. In Scott's original paper, the token setscontain a distinguished element � which plays the role of a least element in the cor-responding domain. However, if this requirement is removed, the resulting inform-ation systems still represent Scott domains as is noted in [WL83]; the (consistent)empty set plays the role of a bottom element. Thus in [WL83] there are simply119

more information systems in any equivalence class which represents a particulardomain than is the case in Scott's paper [Sco82]. However, if the requirement thatthe empty set be consistent is removed, then the resulting structures will, as weshall see, represent Scott predomains.However, if this step is taken, the original de�nition of approximable map mustbe altered in order that the category of preinformation systems be equivalent tothat of Scott predomains. Condition (1) imposes a direct \total functionality"condition on the preapproximable maps. If the de�nition of approximable map isinspected, where say r:A! B is an approximable map, then for any fag 2 A theremay not be Y #B for which fagrY: If this is the case, then the continuous functionjrj between domains jAj and jBj corresponding to r:A ! B would map a to ?:Working with Scott predomains means that there may not be a least element toabsorb this inherent partiality in the de�nition of approximable mapProposition 7.2.8 De�nition 7.2.6 does indeed yield a category PInSys .Proof This is essentially routine. We just look at condition (1) for the com-position A r! B s! C between non-empty preinformation systems. Let a 2A. As r and s are preapproximable maps there is Y #B such that fagrY and8y 2 Y:9Zy#C :fagrY `B fygsZy; hence fagrY sZy: But Y is �nite and thusY sSfZy j y 2 Y g implying fagsrSfZy j y 2 Y g: The details of conditions (2)and (3) for preapproximable maps are essentially as in [Sco82]. 27.3 Equivalence of the Categories PInSys and PpdScott FamiliesOur aim now is to prove that the categories PInSys and Ppd are equivalent. Inorder to do this we introduce the auxiliary notion of Scott family of sets.De�nition 7.3.1 A Scott family of sets is a set of non-empty sets F where1. For directed S � F we have S@ S 2 F .2. For non-empty U � F we have TU 2 F whenever TU is non-empty.Remark 7.3.2 We shall often refer to Scott predomains as domains, Scott con-tinuous functions as continuous functions and preinformation systems as presystems.Proposition 7.3.3 There is a functor j�j:PInSys ! Ppd given by the followingprescription:On objects, jAj is the empty domain when A is the empty presystem and otherwiseconsists of the non-empty subsets U � A such that(i) X �f U implies X#. 120

(ii) X �f U ^X ` a implies a 2 U .On morphisms, jrj: jAj ! jBj is given byjrj(U) def= fb 2 B j 9X �f U:Xrfbgg:We shall refer to an element U of jAj as a point of A.Proof The following Lemma will prove useful:Lemma 7.3.4 Let (A; #;`) be a non-empty presystem, X# and Y �f A: Then(i) X ` Y implies X [Y # and Y #.(ii) If X# then X def= fa j X ` ag is a point of A.Proof (i) is a simple induction on the cardinality of the (�nite) set Y . (ii) is aconsequence of (i). 2We have to show that jAj is a domain; this has only to be checked when A is non-empty. First we prove that jAj is a Scott family of sets and then show every suchfamily is a domain.By construction jAj is a set of non-empty sets. We check it is a Scott family:1. Take S � jAj directed. Certainly S@ S is a non-empty subset of A. (i) LetX �f S@ S. X is �nite so X �f S 2 S and thus X#. (ii) Let X ` a; thena 2 S � S@ S.2. Take non-empty U � jAj for which TU 6= ?. By hypothesis there is U 2 U :(i) X �f TU � U implies X#. (ii) If also X ` a then a 2 U for any such U ,i.e. a 2 TU .Obviously jAj has a poset structure when ordered by inclusion; that it is a Scottfamily says immediately it is a dcpo.jAj is bounded cocomplete: Take U � jAj bounded, say by U 0 2 jAj and setV def= fV 2 jAj j U � V g; as U 0 2 V, V is itself non-empty. By hypothesis there is anon-empty set U 2 U ; then any element u 2 U will be an element of every V 2 Vand hence TV is non-empty. As jAj is a Scott family, this means SU = TV 2 jAjand this is certainly the supremum of U .Finally, we show that the dcpo jAj is algebraic: It will be convenient to have theLemma 7.3.5 The �nite elements of the dcpo jAj are given by the collectionfX j X#g:Proof (Suppose U 2 jAj is �nite): Clearly U = S@fX j X �f Ug; this makessense, for any such X is consistent in A. As U �nite, U � X0 for some X0 �f U .As U is entailment closed, we have also X0 � U , as desired.(Suppose X 2 jAj for X#): Let X � S@ S. X is of �nite cardinality and so X � Sfor some S 2 S. By entailment closure X � S 2 jAj showing X is �nite. 2121

Let U 2 jAj. Then certainly we have U = S@fX j X �f Ug and it is easy tosee using Lemma 7.3.5 that the directed set consists precisely of the �nite elementsbelow U i.e. jAj is algebraic.Thus we have shown that jAj is a domain; it remains to demonstrate that j � j iswell de�ned and functorial on morphisms.Let r:A ! B be a preapproximable map. Then jrj is well de�ned: Take U 2 jAjand we show jrj(U) 2 jBj. Let Y �f jrj(U). Then for any y 2 Y we have9Xy �f U:Xyrfyg and it follows from the properties enjoyed by U and r thatSfXy j y 2 Y g `A Xyrfyg `B fyg implying SfXy j y 2 Y grfyg. But y is arbitraryin the �nite set Y giving SfXy j y 2 Y grY and so Y #B. If also Y `B b then it isimmediate that SfXy j y 2 Y grfbg and we are done.jrj is a continuous function: To see this take fUi j i 2 Ig � jAj directed. It iseasy to see that fjrj(Ui) j i 2 Ig is directed and hence S@ fjrj(Ui) j i 2 Ig existsin jBj. Certainly S@ fjrj(Ui) j i 2 Ig � jrj(S@ fUi j i 2 Ig). For the converse takeb 2 jrj(S@ fUi j i 2 Ig) and so 9X �f S@ fUi j i 2 Ig:Xrfbg. But X is �nite and soX �f Ui0 i.e. b 2 jrj(Ui0) � S@ fjrj(Ui) j i 2 Ig:j � j is functorial on morphisms: j ` j = idjAj for any U 2 jAj is entailment closed.Now take A r! B s! C between non-empty presystems and let U 2 jAj; we omit tocheck the degenerate cases involving empty presystems. We havejsrj(U) = fc j 9X �f U:9Y #B:XrY ^ Y sfcggand jsjjrj(U) = fc j 9Y �f fb j 9X �f U:Xrfbgg:Y sfcgg:Take c 2 jsjjrj(U) so that 8y 2 Y:9Xy �f U:Xyrfyg where Y sfcg. Y is �nite andso we have SfXy j y 2 Y g `A Xyrfyg leading to SfXy j y 2 Y grfyg and thusSfXy j y 2 Y grY . Thus c 2 jsrj(U). The reverse inclusion is trivial and so we maydeduce from this that jsrj = jsjjrj. This completes the proof of Proposition 7.3.3.2Now we show that there is a functorial construction of presystems from domains.More precisely we have theProposition 7.3.6 There is a functor �:Ppd ! PInSys given by the followingprescription:On objects de�ne �D to be the empty presystem if D is empty and otherwise�D def= (D�; #;`) where1. D� is the set of �nite elements of D.2. X# i� X �f D� ^ Bd(X).3. X ` d i� X# ^ d � WX ^ d 2 D�.On morphisms, �f : �D! �E is speci�ed by the relation �f � #�D�#�E given byX�fY i� _Y � f(_X):122

Proof We have to show that �D is a presystem; we just sketch the details whenD is non-empty. D is algebraic so there must be at least one �nite element, implying? 6= # � Pfin(D�). We have `� # �D� by de�nition. The conditions (1) to (6) ofDe�nition 7.2.6 are easy to verify. For (1) the empty set is not consistent for it isnot bounded. For (6) suppose that X ` Y ` d; it is immediate that d � WY � WX,i.e. X ` d.Now we need to see that � is well de�ned and functorial on continuous functions; wejust sketch the former. Take f :D ! E a continuous function between non-emptydomains. We look at condition (1) of De�nition 7.2.6. Let d 2 �D and so byalgebraicity of E there is a �nite e 2 E with e � f(d). Thus fdg�ffeg; conditions(2) and (3) are equally trivial. Con�rming functoriality on continuous functions isa routine calculation. 2Proof of the EquivalenceWith the machinery just set up we can now prove the next theorem:Theorem 7.3.7 The functors j�j:PInSys ! Ppd and �:Ppd ! PInSys giverise to an equivalence of categories.Proof Let D be a domain and A a presystem. It will be convenient to write�D def= (D�; #;`). Of course we simply check that we have an isomorphism whichis natural on components D and A; we consider D �rst.There is an isomorphism natural in D, � : D �= j�Dj : �; given by�(d) def= fe 2 D� j e � dg�(U) def= GU;on non-empty D and by the empty continuous function when D = ?.� is well de�ned: U def= fe 2 D� j e � dg is a directed hence non-empty subset ofD�. To see that U 2 j�Dj let X �f U . Then1. X is bounded by d so X#:2. If X ` e then e � WX � FU = d and so e 2 U .Now for continuity: Take S � D directed. Then �(S) is certainly directed and thatS@ �(S) = �(FS) is easy.� is well de�ned: Take U 2 j�Dj; we show that U is directed. U is non-empty byde�nition and if fe; e0g �f U we have fe; e0g consistent in �D implying Bd(fe; e 0g).Hence s def= Wfe; e0g exists in D and s will clearly inherit �niteness from e and e0,showing s 2 U on noting fe; e0g ` s.� is continuous: Take U � j�Dj directed. �(U) inherits directedness from U .Clearly �(U) � �(S@ U)) and U � F�(U); this is all we need. That the pair (�;)123

yields an isomorphism of domains is virtually immediate; we omit the veri�cationof naturality.Now we write A def= (A; #;`) and �jAj def= (jAj�; #0;`0). We show that there is anatural isomorphism r : A �= �jAj : s given by the empty preapproximable mapwhen A is empty and otherwiseXrfXi j i 2 Ig i� Xi# ^X# ^ 8i 2 I:Xi � XfXi j i 2 IgsX i� Xi# ^X# ^X �f S fXi j i 2 Ig:This de�nition makes sense. To see this recall Lemma 7.3.5 and also note that thesupremum exists for fXi j i 2 Ig#0 implying that Bd(fXi j i 2 I g) in jAj:r is a preapproximable map: For (1) fagrffagg: Condition (2) is easy. For condition(3) suppose that X 0 ` XrfXi j i 2 Ig `0 fX 0j j j 2 Jg. The only thing not clear isthat for any j we have X 0j � X 0; but it is easy to see that X 0j � S fXi j i 2 Ig � Xand X � X 0.s is a preapproximable map: For (1) note that fXgsX. Condition (2) is easy.For (3) suppose that fX 0j j j 2 Jg `0 fXi j i 2 IgsX ` X 0. We need to see thatX 0 �f S fX 0j j j 2 Jg; but it is the case that X �f S fXi j i 2 Ig � S fX 0j j j 2 Jgand we are done by entailment closure.Checking that sr =` is easy. We sketch the details for rs =`0. Suppose thatfXi j i 2 IgrsfX 0j j j 2 Jg and so for some X# and for each j we have X 0j � X �S fXi j i 2 Ig implying that fXi j i 2 Ig `0 fX 0j j j 2 Jg. Conversely suppose thatfXi j i 2 Ig `0 fX 0j j j 2 Jg. We see that[fX 0j j j 2 Jg �f [fX 0j j j 2 Jg � [fXi j i 2 Ig 2 jAjimplyingS fX 0j j j 2 Jg#. Finally we can conclude that fXi j i 2 IgsS fX 0j j j 2 Jgand S fX 0j j j 2 JgrfX 0j j j 2 Jg so we are done.To �nish, we give one case of naturality, namely given a preapproximable mapm:A! A0 we check that the following diagram commutes:�jAj s - A
�jA0j�jmj? s - A0?mSuppose that fXi j i 2 Igs�jmjX 0. Then for some fX 0j j j 2 Jg we have X 0 �fS fXj j j 2 Jg � jmj(S fXi j i 2 Ig). Recall that X 0 is non-empty and using thede�nition of jmj we see that 8x0 2 X 0:9Yx0 �f S fXi j i 2 Ig:Yx0mfx0g: As X 0 is a�nite set we deduce SfYx0 j x0 2 X 0g# because SfYx0 j x0 2 X 0g �f S fXi j i 2 Igand thus SfYx0 j x0 2 X 0g ` Yx0mfx0g: Collecting our conclusions together we seethat SfYx0 j x0 2 X 0gmX 0 and fXi j i 2 IgsSfYx0 j x0 2 X 0g i.e. fXi j i 2 IgmsX 0.124

Conversely let fXi j i 2 IgmsX 0. Then there is some X# for which fXi j i 2 IgsXand XmX 0 and taking x0 2 X 0 we have Xmfx0g. Hence we deduce that X 0 �jmj(S fXi j i 2 Ig) 2 jA0j using the de�nition of jmj and entailment closure ofpoints of jA0j; but this says that fXi j i 2 Ig�jmjfX 0g. Of course fX 0gsX 0, so weare done. 27.4 The Large !cpo of PresystemsHere we shall be a little more precise about set-theoretical conventions. Let us workwith Zermelo Fraenkel (ZF) set theory and assume the existence of a universe ofsets U . Then a class will be a (meta)-subset of the universe U . This can be mademore precise by de�ning a class to be an equivalence class of ZF-formulae identi�edunder universally quanti�ed bi-implication, but we omit all formal details. We nowshow that the collection of all presystems forms an ! cocomplete partially orderedclass under a suitable ordering.De�nition 7.4.1 Given presystems A and B we de�ne an order relation � onthe class PS of all presystems where (?;?;?) is a least element and for non-emptyA and B, A � B i�1. A � B.2. X#A i� X � A ^X#B.3. X `A a i� X � A ^ a 2 A ^X `B a.Lemma 7.4.2 If A � B and the token set A equals that of B then A = B. 2Theorem 7.4.3 The class PS of presystems with the above ordering is an !cocomplete partially ordered class with a least element.Proof It is easy to see that the order � is indeed a partial order. Suppose thatwe have a chain fAi j i 2 !g of presystems. Then the supremum exists and is givenby the presystem (SfAi j i 2 !g;Sf#i j i 2 !g;Sf`ij i 2 !g). The least element isthe empty presystem. 2De�nition 7.4.4 The category !CPO has objects which are ! cocomplete par-tially ordered classes and morphisms which are Scott continuous function classes.Thus the category !Cpo is a full subcategory of !CPO.Proposition 7.4.5 The category !CPO is a let category with respect to liftingof domains which has (�nite products), stable �nite coproducts, ?-exponentials,NNO and FPO.Proof The only thing in doubt is the existence of ?-exponentials; it is possibleto check that !CPO is closed under the formation of ?-exponentials in the chosenformulation of set theory. 2125

Our aim is to see that the object PS in the category !CPO can be used to play therôle of a type universe. The precise details of how this can be done will emerge inChapter 9. Clearly the essence of the idea comes from the fact that the categoriesPInSys and Ppd are equivalent, but as we have just seen, the class of all presystemscan be seen as a (large) !cpo. We saw in Proposition 7.2.4 that Ppd has �nite(co)products and ?-exponentials. Thus so does PInSys. With a view to using PSas a type universe, we give constructions of these categorical structures directly,and show that their formation is continuous with respect to the order on PS. Wewill need the following observations:For each �nite ordinal n 2 ! there is a large !cpo PSn def= PS� : : :�PS enjoying theobvious pointwise order. Then it is easy to see that any morphism f :PSn ! PS iscontinuous i� it is so in each coordinate. This observation, together with the nextlemma will be found useful in later work; we need theDe�nition 7.4.6 Let f :PS ! PS be a function class on the the underlyingclass of PS. Then f is said to be continuous on token sets if given a chain ofpresystems fAn j n 2 !g we have f(SfAn j n 2 !g) � Sff(An) j n 2 !g where thecontainment is between token sets.Lemma 7.4.7 Let f :PS ! PS be a morphism. Then f is continuous i� f ismonotonic and continuous on tokens.Proof The \only if" case is immediate. Conversely let fAn j n 2 !g be a chainof presystems. Then Sff(An) j n 2 !g � f(SfAn j n 2 !g) and by Lemma 7.4.2we are done. 27.5 Categorical Constructions in PInSysWe give explicit (canonical) constructions of �nite (co)products and ?-exponentialsin the category PInSys. These constructions are continuous in the following sense:Lemma 7.5.1 There are morphisms in the category !CPOp0q: 1! PS p1q: 1! PS p?q:PS ! PSp�q:PS2 ! PS p+q:PS2 ! PS p*q:PS2 ! PSwhich give rise to the canonical initial object, terminal object, liftings, binary(co)products and ?-exponentials in the category PInSys.Proof Throughout the proof let A and B be non-empty presystems; the e�ect ofthe morphisms which involve empty presystems will be clear, although we do makethis explicit for the ?-exponential construction. We omit all details concerning wellde�nedness and continuity, except for p*q:Put p0q(�) def= (?;?;?) and p1q(�) def= (f�g; ff�gg; f�g ` �); it is clear thesede�nitions work. 126

Now we prescribe p?q:PS ! PS; this will take the empty presystem to the onepoint presystem and take A = (A; #;`) to (A?; #?;`?) where� A? def= A [f?g where ? 62 A.� X#? i� X n f?g# or X = f?g:� X `? a i� X n f?g ` a or a = ?:Given presystems (A; #A;`A) and (B; #B;`B) de�ne Ap�qB to be (P; #;`) where� P def= A� B:� Z# i� �1Z#A ^ �2Z#B.� Z ` p i� �1Z `A �1p^ �2Z `B �2p where �1 and �2 are the projections of theproduct A�B in Set .We de�ne A+B to be (C; #;`) where� C def= A +B where we shall put A+B def= f1g � A [f2g � B.� Z# i� 9X#A:Z = f1g �X or 9Y #B:Z = f2g � Y:� Z ` c i� 9a 2 A:9X#A:Z = f1g�X^c = (1; a)^X `A a or 9b 2 B:9Y #B:Z =f2g � Y ^ c = (2; b) ^ Y `B b.The morphism p*q:PS2 ! PS is de�ned by((?;?;?); (?;?;?)) 7! (f�g; ff�gg; f�g ` �)(A; (?;?;?)) 7! (f�g; ff�gg; f�g ` �)((?;?;?); A) 7! (f�g; ff�gg; f�g ` �)(A;B) 7! (F; #;`)where� F def= fXIb j X#A ^ b 2 Bg [f�g:� Z# i� Z �f Pfin(F) and it is either the case that Z = f�g or we haveZ n f�g 6= ? ^ 8I �f n:S fXi j i 2 Ig#A implies fbi j i 2 Ig#B where n =f0; : : : ; n� 1g and Z n f�g = fXiIbi j i 2 ng:� Z ` f i� Z# and either f = � or f 6= �^Z n f�g 6= ?^Sfbi j X `A Xig `B b.First we see that F really is a presystem. As A and B are non-empty the basiccriteria of De�nition 7.2.6 are satis�ed. Further:1. ? 62 # by de�nition.2. If Z 0 �f Z# then Z 0# is immediate.127

3. Let f 2 F . If f = � then f�g# by de�nition and if f = XIb just note thatX#A and fbg#B.4. Let Z ` f . If f = � then Z [f�g# is immediate. Otherwise let f = XIband write fXiIbi j i 2 ng for the non-empty set Z n f�g. Let I �f n.Suppose that S fXi j i 2 Ig [X#A. Using Lemma 7.3.4 we may deduce thatS fXi j i 2 Ig[SfXj j X `A Xjg#A and as Z# this means that S fbi j i 2 Ig[Sfbj j X `A Xjg#B: Finally note that Sfbj j X `A Xjg `B b from which wecan deduce that S fbi j i 2 Ig [fbg#B.5. Let Z# and XIb 2 Z. Write Z n f�g = fXiIbi j i 2 ng where X0 = X andb0 = b. Then it is trivial that Sfbi j X `A Xig `B b.6. Suppose that Z 0 ` Z ` f . The result is trivial if f = � and so let f = XIb.Checking the de�nitions we may safely put Z n f�g = fXiIbi j i 2 ng andZ 0 nf�g = fX 0jIb0j j j 2 n0g and deduce that Sfbi j X `A Xig `B b and Sfb0j jXi `A X 0jg `B bi. (Note that we have X ` Xi for at least one i). ObviouslyX `A SfX 0j j X `A X 0jg and so by Lemma 7.3.4 we have fX 0j j X `A X 0jg#A.Hence Sfb0j j X ` X 0jg#B and from Sfb0j j Xi `A X 0jg � Sfb0j j X `A X 0jgwe can deduce that Sfb0j j X `A X 0jg `B bi. Thus Sfb0j j X `A X 0jg `B b asrequired.It remains to show that p*q:PS2 ! PS is a morphism in !CPO. We have only tosee continuity in each coordinate, and appealing to Lemma 7.4.7 we may simplyverify that p*q is continuous on token sets in each coordinate. We verify this forthe �rst coordinate of p*q:Take A � A0 and B in PS. We show F def= Ap*qB � F 0 def= A0p*qB:1. #A � #A0 so F � F 0:2. Note that Z# implies Z � F: We need Z# i� Z � F and Z#0. This is clearunless Z n f�g is non-empty, say Z n f�g = fXiIbi j i 2 ng: Using the notewe see S fXi j i 2 Ig#A i� fXi j i 2 Ig#A0 and so Z# i� Z#0:3. We need to show that Z ` f i� Z � F ^ f 2 F ^ Z `0 f: This is only nontrivial if f is not � and ? 6= Z n f�g = fXiIbi j i 2 ng with f = XIb. Notethat Z ` f implies Z � F and as X `A Xi i� X `A0 Xi we have Z ` f i�Z `0 f .Take a directed set fAi j i 2 Ig in PS. We need to prove (FfAi j i 2 Ig)p*qB �FfFi j i 2 Ig. Take f 2 (FfAi j i 2 Ig)p*qB. Certainly we are okay if f is �; letf = XIb. Then X#_@fAiji2Ig, so X �f Ai for some i and hence X#Ai. ThereforeXIb 2 Aip*qB � FfFi j i 2 Ig. 2De�nition 7.5.2 Suppose that A and B are Scott predomains. A continuousfunction m:A! B is called an embedding if there is a (necessarily unique) continu-ous partial function r:B ! A for which rm = idA and mr � idB. r is referred to as128

a partial-projection. The class of Scott predomains together with embeddings (andspeci�ed partial-projections) forms a category which will be denoted by Ppd ep. Weshall write r(a)+ to mean that r is de�ned at a 2 A.Lemma 7.5.3 There is a functor j � j:PS ! Ppd ep. Moreover, the e�ect ofj � j on objects commutes up to isomorphism (in Ppd) with the functors pgq and gwhere g runs over 0, 1, ?, �, + and * :Proof j � j is de�ned on objects by taking points. Given A � A0, U 2 jAj andU 0 2 jA0j we de�ne an embedding partial-projection pair (m; r) wherem : jAj � -� jA0j : rby setting m(U) def= fa0 2 A0 j 9X �f U:X `A0 a0g;r(U 0) def= (A \ U 0 if this is non-emptyunde�ned otherwiseWe omit the routine details verifying that (m; r) is a well de�ned embedding partial-projection pair. We give the de�nitions of the isomorphisms and check details for*. We begin by noting that all is clear for 0 and 1.De�ne # : jAj? �= jp?q(A)j : ' by#(U) def= (U [f?g if U 6= ?f?g otherwise '(V) def= (V n f?g if V 6= f?g? otherwiseDe�ne # : jAj � jBj �= jAp�qBj : ' by #(U; V) def= U �V and '(W) def= (�1W;�2W):De�ne # : jAj+ jBj �= jAp+qBj : ' by#(C) def= (f1g � U if C = (1; U)f2g � V if C = (2; V)'(W) def= 8><>: (1;SfXZ j Z �f Wg) where Z = f1g �XZor(2;SfYZ j Z �f Wg) where Z = f2g � YZwhere the de�nition of XZ and YZ and well de�nedness of ' can be seen frominspection of the construction of Ap+qB in the proof of Lemma 7.5.1.De�ne # : (jAj) jBj?) �= jAp*qBj : ' by#(g) def= fXIb j b 2 g(X)g [f�g'(V)(U) def= (fb j 9X �f U:XIb 2 V g if this is non-emptyelse ?(Recall that jAj* jBj def= jAj) jBj?; see Proposition 7.2.4). # is well de�ned: TakeZ �f #(g): If Z = f�g then Z#. Suppose not; take Z n f�g def= fXiIbi j i 2 ng;129

I �f n and let S fXi j i 2 Ig#A: From the de�nition of # and the monotonicity ofg we see thatfbi j i 2 Ig �f [fg(Xi) j i 2 Ig � g([fXi j i 2 Ig) 2 jBj?:Thus Z# as required. Now suppose also that Z ` f: If f = � then f 2 #(g).Suppose not. We have Sfbi j X ` Xig `B b where f = XIb and so X ` Xi for atleast one i: let I index such Xi. Note that X ` S fXi j i 2 Ig so by Lemma 7.3.4S fXi j i 2 Ig#A. Of course S fXi j i 2 Ig � X and arguing as above we concludefbi j i 2 Ig �f g(X) 2 jBj? implying that b 2 g(X): Hence f 2 #(g).' is well de�ned: Take V 2 jAp*qBj, U 2 jAj and show '(V)(U) 2 jBj?. For thenon trivial case take Y �f '(V)(U) and let y 2 Y: Then 9Xy �f U:XyIy 2 V:Noting that SfXy j y 2 Y g �f U and fXyIy j y 2 Y g �f V along with thede�nition of # we have Sfy j y 2 Y g = Y #B: Now suppose that Y `B b: Notingthat Y = Sfy j SfXy j y 2 Y g `A Xyg `B b we have fXyIy j y 2 Y g ` SfXy j y 2Y gIb which implies that SfXy j y 2 Y gIb 2 V and thus b 2 '(V)(U). Finally wehave to see that ' is a continuous function; we omit the simple details.(#; ') is an isomorphism: Suppose that '(#(g))(U) is not ?: Then we have'(#(g))(U) = fb j 9X �f U:XIb 2 fXIb j b 2 g(X)g [f�gg= fb j 9X �f U:b 2 g(X)g= S@fg(X) j X �f Ug= g(U)where the �nal step follows by continuity of g: For the converse, note that#('(V)) = fXIb j 9X 0 �f X:X 0Ib 2 V g [f�g:Certainly V � #'(V): Now take XIb 2 #'(V): We can �nd some X 0 for whichX `A X 0 and hence Sfb j X `A X 0g `B b implies fX 0Ibg ` XIb: Thus XIb 2 V ,completing the proof. 2Remark 7.5.4 Note that the construction of the product Ap�qB in PInSys isquite di�erent from the usual construction of products of information systems; fora discussion of products of information systems see [Sco82]. Note also that wehave not given the full details of the categorical constructions, for example thepreapproximable maps which are the projections of jAp�qBj. The details are easyto �ll in.7.6 The Small !cpo of PresystemsWe can avoid the set-theoretical complications of the last section by restricting thecardinality of the sets which underly our constructions.
130

De�nition 7.6.1 A Scott predomain is countably based if its set of �nite elementsis countable. Such Scott predomains give rise to a full sub-category Ppd! of Ppd .A presystem is countably based if its token set is countable. Such presystems giverise to a full sub-category PInSys! of PInSys .With this de�nition, it is not too di�cult to verify the following results, which willbe put to use in Chapter 9.Theorem 7.6.2 The functors j � j:PInSys ! Ppd and �:Ppd ! PInSysde�ned in Section 7.3 restrict to an equivalence Ppd! ' PInSys!. 2Lemma 7.6.3 The set PSN of all presystems whose token sets are subsets of Nis an !cpo with least element.Proof Suprema in PSN are given by unions and the least element is the emptypresystem. The details are easy to verify. 2Lemma 7.6.4 There are morphisms in the category !Cpop0q: 1! PSN p1q: 1! PSN p?q:PSN ! PSNp�q:PS2N ! PSN p+q:PS2N ! PSN p*q:PS2N ! PSNwhich give rise to the canonical initial object, terminal object, liftings, binary(co)products and ?-exponentials in the category PInSys!. 2Lemma 7.6.5 There is a functor j � j:PSN ! Ppd ep! . Moreover, the e�ect ofj � j on objects commutes up to isomorphism (in Ppd!) with the functors pgq andg where g runs over 0, 1, ?, �, + and * : 27.7 Some Miscellaneous ResultsWhile it is not central to out main concerns, we note a pleasing relationship betweenScott families of sets and presystems, namely that there is a one to one correspond-ence between them.De�nition 7.7.1 Given a Scott family of sets F de�ne AF = (AF ; #;`) to bethe empty presystem if F is empty and otherwise put1. AF def= SF :2. X# i� X 6= ? ^ 9U 2 F :X �f U .3. X ` a i� X# ^ a 2 SF ^ (8U 2 F :X � U implies a 2 U):Proposition 7.7.2 For a Scott family F , AF is a preinformation system. 2131

Proposition 7.7.3 Let F be a Scott family. Then jAF j = F .Proof We sketch the details. Showing F � jAF j is easy. To prove the conversetake U 2 jAF j (we assume that F is non-empty). The proof goes by approximatingU via appropriately chosen sets; in particular that U = S@fX j X �f Ug 2 F : Todo this, set V def= fV 2 F j X �f V g. It is clear that TV is non empty and soX = TV 2 F ; hence fX j X �f Ug � F . Note that this latter set is directed(fX; Y g � X [Y); showing U is its supremum is easy. 2Proposition 7.7.4 Let A = (A; #;`) be a presystem. Then A = AjAj.Proof The empty case is trivial so let A be non-empty. We need to show thefollowing facts:1. AjAj = S jAj:2. X#AjAj i� X 6= ? ^ 9U 2 jAj:X �f U .3. X `AjAj i� X#AjAj ^ a 2 S jAj ^ (8U 2 jAj:X �f U implies a 2 U):The easy details are omitted. 2

132

Chapter 8The FIX�= Logical SystemOur goal is to de�ne a logic in which we are able to solve recursive domain equationswith the aid of the �xpoint type. The approach we adopt is to set up a logic in whichthere is a universal type [Car86]. The elements of this type act as codes for theexternal or observable types. Thus a recursive type can be realised by consideringthe corresponding �xpoint of the universal type. In order to make things precise,we shall de�ne a dependently typed equational logic called FIX�=. This is essentiallythe same as FIX= but has T -exponentials and a universal type.8.1 The Dependently Typed Equational Logic FIX�=Signatures for FIX�=A FIX�= signature Sg is speci�ed by� A collection of basic type valued function symbols which are tagged with anarity t:termn ! type.� A collection of distinguished type valued function symbols denoted by unit,null, nat, �x, dom, El.� A collection of distinguished type valued type constructor symbols �, +,*, T .� A collection of basic term valued function symbols which are tagged with anarity f :termn ! term.� A collection of distinguished term valued function symbols which consists ofthe distinguished function symbols from a FIX= signature augmented withpnullq, punitq, p�q, p+q, p*q, pTq, Ip, Jp, Ic, Jc, If, Jf, Ret.We now de�ne an abstract syntax signature � = (Gar;Con) where we shall setGar=ftype, termg and Con consists of the function symbols, type constructorsymbols and a countable number of object level variables of arity term. Thedistinguished symbols have the following arities:� unit, null, nat, �x, dom : type.� El : term! type. 133

� �, +,* : type2 ! type.� T : type! type.� pnullq, punitq : term.� pTq, Ip, Jp, Ic, Jc, If, Jf, Ret : term! term.� p�q, p+q, p*q : term2 ! term.The raw FIX�= types are closed expressions of the abstract syntax generated from� which have arity type and the raw FIX�= terms closed expressions with arityterm.Judgements in FIX�=The logic FIX�= is a dependently typed equational logic. The forms of judgementwhich we use involve contexts �, raw terms M , raw types � and �nite lists of rawterms �. A context � = [x1:�1; : : : ; xn:�n]is a �nite list of (variable,type) pairs where the variables are distinct and OV(�i) �fx1; : : : ; xi�1g; with OV(�) the �nite set of object level variables in �. We use thenotation Len(L) to denote the length of a list L. The judgements that we considerare1. � ctxt.2. � ` � type where OV(�) � OV(�).3. � `M :� where OV(M) [OV(�) � OV(�).4. �: �! �0 where OV(�) � OV(�).5. � = �0 where Len(�) = Len(�0).6. � ` � = �0 where OV(�) [OV(�0) � OV(�).7. � `M =M 0:� where OV(M) [OV(M 0) [OV(�) � OV(�).8. � = �0: � ! �0 where OV(�) [OV(�0) � OV(�) and Len(�) = Len(�0) =Len(�).Equational theories for FIX�=A FIX�= theory Th over a signature Sg is speci�ed by the following data:� For each basic type valued function symbol an introductory axiom of the form�t ` t(~x) type: 134

� For each basic term valued function symbol an introductory axiom of the form�f ` f(~x):�f :� A collection of judgements of the form � `M =M 0:� called the term equalityaxioms.� A collection of judgements of the form � ` � = �0 called the type equalityaxioms.The theorems of Th are exactly those judgements which are provable from thefollowing rules: Equational Logic: Contexts[] ctxt [] = [] � ` � type�; x:� ctxt � = �0 � ` � = �(~x)�; x:� = �0; y:�(~y)Equational Logic: Types� ` � type� ` � = � � ` � = �0� ` �0 = �� ` � = �0 � ` �0 = �00� ` � = �00 � = �0: �! �0 �0 ` �(~y) = �0(~y)� ` �(�) = �0(�0)Equational Logic: Terms�; x:�;�0 ctxt�; x:�;�0 ` x:� � `M :� � ` � = �0� `M :�0 � `M =M 0:� � ` � = �0� `M =M 0:�0� `M :�� `M =M :� � `M =M 0:�� `M 0 =M :� � `M =M 0:� � `M 0 =M 00:�� `M =M 00:�� = �0: �! �0 �0 `M(~y) =M 0(~y):�(~y)� `M(�) =M 0(�0):�(�)Equational logic: Context Morphisms� ctxt[]: �! [] �: �! �0 �0 ` �(~y) type � `M :�(�)�;M : �! �0; y:�(~y)� ctxt[] = []: �! [] � = �0: �! �0 �0 ` �(~y) type � `M =M 0:�(�)�;M = �0;M 0: �! �0; y:�(~y)Equational Logic: Axioms 1�: �! �t� ` t(�) type �: �! �f �f ` �f (~x) type� ` f(�):�f (�)provided t has introductory axiom � ` t(~x) type and that f has introductoryaxiom�f ` f(~x):�f type: 135

Equational Logic: Axioms 2� `M :� � `M 0:�� `M =M 0:� � ` � type � ` �0 type� ` � = �0provided that � `M =M 0:� is term equality axiom and that � ` � = �0 is atype equality axiom. Elementary External Types[]: �! []� ` t typewhere t is one of the types unit, null, nat, �x, dom.External Binary Product� ` � type � ` � type� ` �� � typeExternal Binary Coproduct� ` � type � ` � type� ` �+ � typeExternal T-Exponential� ` � type � ` � type� ` �*� typeExternal Computation� ` � type� ` T� typeExternal Decoding� ` D: dom� ` El(D) typeTerms in ContextThe rules for term formation in FIX= are part of FIX�= with the rule for FunctionTerms (see Page 25) replaced by the rule for T -exponentials.
136

T-Exponential Terms�; x:� ` F (x):T�� ` ��(F):�*� � `M :�*� � ` N :�� `MN :T�Internal Elementary Types� ` punitq: dom � ` pnullq: domInternal Binary Product� ` D: dom � ` D0: dom� ` Dp�qD0: domInternal Binary Coproduct� ` D: dom � ` D0: dom� ` Dp+qD0: domInternal T-Exponential� ` D: dom � ` D0: dom� ` Dp*qD0: domInternal Computation� ` D: dom� ` pTqD: domProduct Externalisation Terms� `M :El(Dp�qD0)� ` Ip(M):El(D)� El(D0) � ` P :El(D)� El(D0)� ` Jp(P):El (Dp�qD0)Coproduct Externalisation Terms� `M :El(Dp+qD0)� ` Ic(M):El(D) + El(D0) � ` C:El(D) + El(D0)� ` Jc(C):El(Dp+qD0)T-Exponential Externalisation Terms� `M :El(Dp*qD0)� ` If(M):El(D)*El(D0) � ` F :El(D)*El(D0)� ` Jf(F):El (Dp*qD0)137

Universal Type Retraction Terms� ` E:Tdom� ` Ret(E): domComputation Externalisation� ` D: dom� ` El(pTqD) = TEl(D)Equations in ContextThe rules for equation formation in FIX= are part of FIX�= with the rule forFunction Equations (see Page 27) replaced by the rule for T -Exponential Equa-tions. T-Exponential Equations� `M :�*�� ` ��(x:Mx) =M :�*� �; x:� ` F (x):T� � `M :�� ` ��(F) M = F (M):T�Product Externalisation Equations� `M :El(Dp�qD0)� ` Jp(Ip(M)) =M :El(Dp�qD0) � ` P :El(D)� El(D0)� ` Ip(Jp(P)) = P :El(D)� El(D0)Coproduct Externalisation Equations� `M :El(Dp+qD0)� ` Jc(Ic(M)) =M :El(Dp+qD0) � ` C:El(D) + El(D0)� ` Ic(Jc(C)) = C:El(D) + El(D0)T-Exponential Externalisation Equations� `M :El(Dp*qD0)� ` Jf(If(M)) =M :El(Dp*qD0) � ` F :El(D)*El(D0)� ` If(Jf(F)) = F :El(D)*El(D0)Universal Type Retraction Equations� ` D: dom� ` Ret(Val(D)) = D: domSubstitution and WeakeningThere are particularly useful rules concerning substitution and weakening whichmay be derived from the rules for deducing theorems of FIX�= theories. Indeed, wehave the following lemma: 138

Lemma 8.1.1 The following rules are derivable, where we write J for any oneof the expressions e type, e = e0, e: e0 or e = e0: e00.�: �! �0 �0 ` J(~y)� ` J(�) � ` � type �;�0 ` J�; x:�;�0 ` J� `M =M 0:� �; x:�;�0(x) ` N(x) = N 0(x): �(x)�;�0(M) ` N(M) = N 0(M 0): �(M)� `M =M 0:� �; x:�;�0(x) ` �(x) = � 0(x)�;�0(M) ` �(M) = � 0(M 0)Proof Proceeds by an induction on the derivation of judgements. 28.2 Recursive Types via Fixpoint ObjectsWe have seen how to interpret types of languages as objects in categories. It is wellknown that the type of natural numbers can be represented as the recursive type�X:X + unit. If we are interpreting formal typing statements in, say, a categoryC, then a sensible denotation of such a recursive type would be a solution to theequation X �= X+1. More generally, recursive types can be thought of as �xpointsof assignments A 7! F (A) on objects A. The type is denoted by an object A0 suchthat F (A0) �= A0 and the operation F will usually be a functor satisfying propertieswhich ensure that A0 exists [SP82].The basic categorical notion of a type of types in a category C is that there is acategory object U in C which is externally equivalent to C indexed over itself, i.e.there is an equivalence C(�;U) ' C=�. With this, an endofunctor F on C willgive rise to an internal functor ~F :U ! U. Thus with the above interpretation ofrecursive types as a �xed point of such endofunctors F we may equivalently solvefor a �xed point of ~F . With this motivation, we prove the following proposition:Proposition 8.2.1 There is an expression of the abstract syntax, Fix, for whichgiven a recursive typing judgement of the form �; x: dom ` D(x): dom one mayderive the judgements� ` Fix(D): dom and � ` D(Fix(D)) = D: dom:Proof Set Fix def= d:Itdom(y:d(Ret(y)); �(!)). Then the claim is immediate fromthe FIX�= rules. 2
139

140

Chapter 9Categorical Semantics of the FIX�= Logic9.1 Categories for Modelling Dependent Type The-oriesWe review a categorical structure which can be used to model dependent type the-ories. Some of the earliest work in this area was undertaken by Cartmell [Car86]with additional work by Taylor [Tay86]. Here we shall give a presentation of \cat-egories with attributes" which is based on on Pitts' account in [Pit95]. Furtheruseful information can be found in [Str89], [HP89], [CGW89] and [Ben85].Categories with AttributesDe�nition 9.1.1 A category with attributes is speci�ed by a category C withterminal object (called the base category) which is equipped with the followingstructure:� For each object X in C, a collection of �brations over X, Fib(X): We write�F :X�F ! X for the projection from the total object to the base object of F .� For each morphism f :Y ! X in C and �bration F over X, there is a �brationf �F over Y called the pullback of F along f for which there is a pullback squarein C of the form Y �f �F f�F- X�F
Y�f�F ? f - X�F ?such that we haveid�XF = F idX�F = idX�Fg�(f �F) = (fg)�F (f�F) � (g�f �F) = (fg)�Fwhere Z g! Y f! X.
141

Notation for Categories with AttributesIt will be convenient to adopt some notational conventions which will be usefulwhen presenting the categorical semantics of dependent type theories.Given a �bration F 2 Fib(X) we shall write a 2X F to indicate that a is a sectionof �F . Note that given f :Y ! X in C, there is a section f �a 2Y f �F arising fromthe universal property of pullbacks.Fibration lists L and their associated total objects L are de�ned inductively. Theempty list [] is a �bration list with [] def= 1. If L is a �bration list and F 2 Fib(L),then L; F is a �bration list with L; F def= L�F .Section lists l and their associated morphisms l are de�ned inductively. The emptylist [] is a section list []:L! [] (where L is a �bration list) with [] def=! : L! 1. Ifl:L ! L0 is a section list, F 0 2 Fib(L0) and a0 2L l�F 0, then l; a0:L ! L0; F 0 is asection list with l; a0 def= L a0�! L�l�F 0 l�F 0�! L0�F 0:Given a �bration list L; L0 the associated projection morphism �L0 :L; L0 ! L isde�ned by induction on the length of L0. We put�[] def= L id�! L;�L0;F 0 def= L; L0; F 0 = L; L0�F 0 �F 0�! L; L0 �L0�! L:Finally, we complete our notational conventions with the de�nition of generic sec-tions. Given a �bration list L; F; L0 the generic section �(L; F; L0) 2L;F;L0 ��F;L0F isde�ned by appealing to the universal property of the pullback squareL; F; L0���F;L0F �F;L0�F- L�F
L; F; L0���F;L0F ?6�(L; F; L0)�F;L0 - L?�Ftogether with the observation that �F;L0 = �F�L0 .9.2 FIX Categories with AttributesWe have seen that the logical systems FIX= and FIX correspond in a precise wayto FIX categories and FIX hyperdoctrines respectively. We shall now de�ne thecategorical structure which corresponds to FIX�=; such structures will be called FIXcategories with attributes. Useful background information can be found in [Pit87]and [Joh77].De�nition 9.2.1 Let C be a category-with-attributes where for each object Xof C, Fib(X) is regarded as a category with objects the �brations over X and142

morphisms given by Fib(X)(F; F 0) def= C=X(�F ; �F 0): Then C is a FIX category-with-attributes if it satis�es the following conditions:� Each Fib(X) is a let-category with (�nite products), stable �nite coproductsand T -exponentials. For a �bration F over X and a morphism f :Y ! X wehave Tf �(F) = f �(TF); and the pullback functions preserve the categoricalstructure of the categories Fib(X).� There are distinguished �brations 1̂, 0̂; N̂ and
̂ over 1 such that the �brationsobtained by pulling back along the unique morphism !:X ! 1 (for any objectX) are the canonical terminal object, initial object, natural numbers objectand �xpoint object of the category Fib(X).� There is a speci�ed distinguished �bration Û over the terminal object forwhich Û is a retract of T Û in Fib(1). There is a speci�ed distinguished�bration � over 1�Û which gives rise, via speci�ed internal type constructormorphismsp0q: 1! 1�Û p1q: 1! 1�ÛpTq: 1�Û ! 1�Û p�q: 1�Û � 1�Û ! 1�Ûp+q: 1�Û � 1�Û ! 1�Û p*q: 1�Û � 1�Û ! 1�Ûto certain speci�ed canonical type decoding isomorphisms, where we writepri: 1�Û � 1�Û ! 1�Û for projection:1. p1q�� �= 1̂ in Fib(1):2. p0q�� �= 0̂ in Fib(1):3. pTq�� �= T� in Fib(1�Û).4. p�q�� �= pr�1� � pr�2� in Fib(1�Û � 1�Û):5. p+q�� �= pr�1� + pr�2� in Fib(1�Û � 1�Û):6. p*q�� �= pr�1� *pr�2� inFib(1�Û � 1�Û):The FIX Category with Attributes !CpoThe results from Chapter 7 will enable us to give a concrete example of a FIXcategory with attributes. It will be convenient to have the following lemmas:Lemma 9.2.2 Given a continuous functor A:X ! !Cpo ep where X is an !cpoand !Cpo ep is the category of embedding partial-projection pairs over !Cpo, apply-ing the (covariant) Grothendieck construction to A yields a morphism �A: G (A) !X in !Cpo.Proof By de�nition,G (A) def= �x2XAx = f(x; U) j U 2 Ax ^ x 2 Xg143

with a partial order structure given by (x; U) � (x0; U 0) i� x � x0 and ix;x0(U) � U 0where ix;x0:Ax ! Ax0 is the embedding determined by the functor A. We omit thedetails which check that G (A) is an !cpo with the above order in which supremaof chains is given by_f(xn; Un) j n 2 !g def= (_fxn j n 2 !g;_fixn;Wfxnjn2!g(Un) j n 2 !g):It is trivial that �A is continuous. 2Lemma 9.2.3 Let I be a �ltered category, C a cocomplete category and D: I �I ! C a functor. Then we havelim�!I2I lim�!J2ID(I; J) �= lim�!J2I lim�!I2ID(I; J) �= lim�!I2ID(I; I):Proof Routine application of the de�nition of colimit and �ltered category. 2Lemma 9.2.4 Let A:X ! !Cpo ep be a continuous functor. Let fxn j n 2 !gbe a chain in X and write x for the supremum of this chain. Then we have idAx =Wfixn;xrxn;x j n 2 !g.Proof This result follows from unravelling the construction of �ltered colimitsin the category !Cpo ep. Details of a similar result for the category of embeddingprojection pairs over the full subcategory of !Cpo of pointed !cpo's can be foundin [SP82]; the proof for embedding partial-projection pairs over !Cpo is virtuallyidentical. 2Lemma 9.2.5 Let A and B be as in Lemma 9.2.2. Then f 2 !Cpo=X(�A; �B)corresponds to an X-indexed family (fx:Ax ! Bx j x 2 X) of continuous functionsfor which given x � x0 and a chain fxn j n 2 !g � X we havejx;x0fx � fx0ix;x0 (9.1)fx = _fjxn;xfxnrxn;x j n 2 !g where x def= _fxn j n 2 !g (9.2)where we write i and j for embeddings, r for partial-projection. Thus for example,ix;x0:Ax ! Ax0:Proof Note that the underlying set-theoretic function of f 2 !Cpo=X(�A; �B)corresponds to a family (fx j x 2 X) of set-theoretic functions which have therequired form. It is easy to see that f is monotone just in case each fx is monotoneand 9.1 holds. Now take an arbitrary directed set in G (A) of the form f(xn; Un) jn 2 !g and assume the continuity (and monotonicity) of f: This leads to therequirement that_fjxn;xfxn(Un) j n 2 !g = fx(_fixn;x(Un) j n 2 !g) (9.3)where x def= Wfxn j n 2 !g and the set on the left hand side of equation 9.3 is achain due to equation 9.1 (itself a consequence of the monotonicity of f). By taking144

an instance of equation 9.3 in which xn = xn+1 for each n, we see that each fx iscontinuous. To see that 9.3 implies 9.2 take a chain fxn j n 2 !g � X. It is thecase that f(xn; rxn;x(U)) j n 2 ! ^ rxn;x(U) +g is a chain in G (A) where U 2 Ax.We can apply an instance of equation 9.3 to this directed set and deduce:_fjxn;xfxn(rxn;x(U)) j n 2 ! ^ rxn;x(U)+g= fx(_fixn;x(rxn;x(U)) j n 2 ! ^ rxn;x(U)+g)by Lemma 9.2.4 = fx(U):Conversely, suppose we are given a family (fx j x 2 X) of continuous functions whichsatisfy 9.2. It remains to prove that the corresponding morphism f is continuous,that is 9.3 holds. Indeed we havefx(_fixn;x(Un) j n 2 !g) = _fjxm;xfxmrxm;x(_fixn;x(Un) j n 2 !g) j m 2 !g= _f_fjxm;xfxmrxm;xixn;x(Un) j n 2 !g j m 2 !gby Lemma 9.2.3 = _fjxn;xfxnrxn;xixn;x(Un) j n 2 !g= _fjxn;xfxn(Un) j n 2 !g: 2We can now prove the main result of this section, namelyProposition 9.2.6 The category !Cpo is a FIX category with attributes.Proof The base category is of course !Cpo and this certainly has a terminalobject. The collection of �brations over a Scott predomain X is given by thecollection of continuous functors of the form A:X ! !Cpo ep. Recall Lemma 9.2.2:Given a �bration A over X the total object and projection are given by �A: G (A) !X. If f :Y ! X is a morphism in !Cpo we set f �A def= Af . It is simple to checkthat G (f �A) def= �y2YAfy �= Y �X G (A)and hence that we get a pullback square in !Cpo of the required form, wheref�A: G (f �A)! G (A) is given by f�A(y; V) def= (f(y); V). The functoriality condi-tions are satis�ed, and we have shown that !Cpo is a category with attributes.Now we need to see that each Fib(X) is a let category with (�nite products), stable�nite coproducts and T -exponentials. This structure arises pointwise. For example,given �brations A and B, their product object A� B is de�ned by settingA�B(x � x0) def= ix;x0 � jx;x0:Ax � Bx !Ax0 � Bx0: rx;x0 � sx;x0and (for example) the projection morphism on A is speci�ed by the family of projec-tions (�x:Ax�Bx ! Ax j x 2 X), which are easily checked to satisfy Lemma 9.2.5.
145

We sketch the details of the let category structure, which arises by pointwise ap-plication of the properties of the let category !Cpo (with the lifting monad): Theoperation on objects is given by A 7! ?A, where ?A is de�ned by?A(x � x0) def= (ix;x0)?: (Ax)? !(Ax0)?: (rx;x0)?:Morphisms �A:A! ?A are speci�ed by the continuous family ((�A)x:Ax ! (Ax)? jx 2 X) with (�A)x(U) def= [U]. Given f :A�B ! C? we de�ne lift(f):A�B? ! C?by specifying the family (lift(fx):Ax � (Bx)? ! (Cx)? j x 2 X). We omit theremaining details, but note that the structure preserving conditions are immediate.Now we need to de�ne the �brations 1̂, 0̂, N̂ and
̂. Let us write f�g for the terminalobject of !Cpo: Then set 1̂(�) def= 1, 0̂(�) def= 0, N̂(�) def= N and
̂(�) def=
 whereN and
 are the NNO and FPO of !Cpo. We consider the details for the FPOin Fib(X). Thus we need to see the existence of !: 1̂! ! ?
̂! and �:?
̂! !
̂!which give rise to a FPO
̂! in Fib(X): Using Lemma 9.2.5 we need to de�nea family (!x: 1̂!x ! ?
̂!x j x 2 X) that is (!x: 1 !
? j x 2 X) and also(�x:?
̂!x !
̂!x j x 2 X) that is (�x:
? !
 j x 2 X). We take these to bethe constant families given by the FPO (
; �; !) of !Cpo. We omit to check theequaliser diagram requirement; however we shall give all the necessary details forthe universal property of the FPO. Thus given a morphism f :?A! A in Fib(X) weneed a unique h:
̂!! A for which f let(�h) = h�: Using Lemma 9.2.5 this amountsto de�ning a unique continuous family (hx j x 2 X) which satis�es equations 9.1and 9.2 and for which the following diagram commutes:
? � -
(�)(Ax)?(hx)?? fx - Ax?hxThe existence of a candidate for the family (hx j x 2 X) is immediate from theexistence of a FPO
 in !Cpo. We need to check that the hx satisfy the conditions9.1 and 9.2.(Satisfaction of 9.1): Take x � x0 and consider the diagram
̂!x id -
̂!x0
Axhx? jx;x0 - Ax0?hx0together with ix;x0: (Ax)? ! (Ax0)?. Condition 9.1 demands that jx;x0hx � hx0 id.Indeed, jx;x0hx = jx;x0hx���1146

= jx;x0fx(hx)?��1� fx0ix;x0(hx)?��1= fx0(jx;x0)?(hx)?��1= fx0(hx0)?��1= hx0:(Satisfaction of 9.2): Take a chain fxn j n 2 !g in X and set x = Wfxn j n 2 !g.Put jxn;x:Axn ! Ax, j 0xn;x: (Axn)?! (Ax)? and rxn;x: (Ax)? ! (Axn)?. Then(_fjxn;xhxn j n 2 !g)� = _fjxn;xhxn� j n 2 !g= _fjxn;xfxn(hxn)? j n 2 !g= _fjxn;xfxnrxn;xj 0xn;x(hxn)? j n 2 !gby Lemma 9.2.3 = _fjxn;xfxnrxn;x j n 2 !g_fj 0xn;x(hxn)? j n 2 !g= fx_f(jxn;x)?(hxn)? j n 2 !g= fx_f(jxn;xhxn)? j n 2 !g= fx(_fjxn;xhxn j n 2 !g)?:Appealing to the universal property of the FPO in !Cpo, it must be the case thathx = Wfjxn;xhxn id j n 2 !g which is what we wanted to prove.We de�ne the �bration Û : 1 ! !Cpo ep by setting Û(�) def= PSN. The retract con-dition in Fib(1) is immediate from Lemma 7.6.3. Of course 1�Û = 1 � PSN, butwe shall take this to be just PSN in the remainder of this proof. The continuousfunctor � :PSN ! !Cpo ep is given by using Lemma 7.6.5 and regarding Ppd ep! as afull subcategory of !Cpo ep. It remains to verify the existence of certain canonicalisomorphisms; we only verify p*q�� �= pr�1�) (pr�2�)? in Fib(PSN � PSN) wherepri:PSN � PSN ! PSN. Unravelling the de�nitions, we have to see that we have adiagram of the form�(A;B)2PSNjAp*qBj �= �(A;B)2PSNjAj ! jBj?@@@@@�p*q�� R 	������pr�1�)(pr�2�)?PS2NTo do this we de�ne a family of isomorphisms in !Cpo which satisfy Lemma 9.2.5:('(A;B) : jAp*qBj �= jAj) jBj? : #(A;B) j (A;B) 2 PS2N)and to do this we use Lemma 7.6.5 (Lemma 7.5.3). We shall only check that themorphism '(A;B) satis�es equation 9.2. Take a chain f(An; Bn) j n 2 !g in PS2N andset (A;B) to be the supremum. Unravelling the details, if we writern: jAp*qBj ! jAnp*qBnj 'n: jAnp*qBnj ! jAnj) jBnj?sn: jAj ! jAnj (in)?: jBnj? ! jBj?147

for the obvious morphisms, and set Fn def= Anp*qBn then explicitly we havern(V) def= (Fn \ V if this is non-emptyunde�ned otherwise'n(V)(U) def= (fb j 9X �f U:XIb 2 V g if this is non-emptyelse ?(in)? � f � sn(U) def= 8>><>>: unde�ned if An \ U is non-empty, else? if f(An \ U) is ? elsefb j 9Y �f f(An \ U):Y `B bgand we need to prove that ' = Wfin'nrn j n 2 !g. In order to show this weintroduce some notation. PutF def= Ap*qBen def= (in)? � 'n(rn(V)) � sn(U)S def= '(V)(U)T def= _fen j en+g:Then we need to show that S = T whereen = 8>><>>: unde�ned if Fn \ V = ? or An \ U = ? else? if fb j 9X �f An \ U:XIb 2 Fn \ V g = ? elseWn def= fb j 9Y �f fb j 9X �f An \ U:XIb 2 Fn \ V g:Y `B bgWe begin by noting that en + for at least one n. Suppose that S = ?. Thenwhenever en + we must have en = ?. Therefore T = Wf? j en +g = ?. Nowsuppose that T = ?. Then whenever en+ there can be no X �f An\U and b 2 Bnfor which XIb 2 Fn \ V . Suppose for a contradiction that S is not ?, which is tosay there is X �f U and b 2 B for which XIb 2 V . Then we must have XIb 2 Fn0for some n0 which implies X �f An0 and b 2 Bn0 . These data imply that en0 +,which is contradictory. Hence S = ?.It follows that S is not bottom just in case T is not bottom. Thus it remains toshow if S is not bottom then S = SfWn j n 2 !g. Let b 2 S. Then there is someX �f U for which XIb 2 V and so XIb 2 Fn0\V for some n0. This impliesX#An0and so X �f An0 \U . Trivially fbg `B b and so b 2 Wn0 . Conversely, suppose thatb 2 Wn0 for some n0. Then there are X, Y for which Y `B b, X �f An0 \ U , andXIy 2 Fn0 \ V for each y 2 Y . Hence b 2 Bn0 and Sfy j X `An0 Xg `Bn0 b whichimplies fXIy j y 2 Y g `Fn0 XIb and hence XIb 2 V . Therefore b 2 S.We leave all remaining details of the type coding isomorphisms to the reader; withthis, the proof is complete. 2
148

9.3 Categorical Semantics of FIX�=Structures for FIX�= SignaturesA structure M for a FIX�= signature Sg in FIX category with attributes is speci�edby: � For each basic type valued function symbol t, a �bration list Lt and a �brationFt 2 Fib(Lt):� For each basic term valued function symbol f , a �bration list Lf , a �brationFf 2 Fib(Lf) and a section af 2Lf Ff :It is assumed that the length of the �bration lists match the arities of the functionsymbols.Interpretation of FIX�= ExpressionsLet us suppose that we have a structure M in a FIX category with attributes C fora FIX�= signature Sg. We de�ne relations between the forms of judgement given onPage 134 and appropriate structure in C. These relations are of the following kindswhere it is assumed that the FIX�= judgements are well formed:1. [[� ctxt]] I L where L is a �bration list with Len(L) = Len(�):2. [[� ` � type]] I L ` F where Len(L) = Len(�) and F 2 Fib(L).3. [[� `M :�]] I L ` a : F where Len(L) = Len(�), F 2 Fib(L) and a 2L F .4. [[�: � ! �0]] I l:L ! L0 where Len(L) = Len(�) and l:L ! L0 is a sectionlist with Len(l) = Len(�):The relations are de�ned inductively by the following rules:� Contexts[[[] ctxt]] I [] [[� ctxt]] I L [[� ` � type]] I L ` F[[�; x:� ctxt]] I L; F� Types [[�: �! �t]] I l:L! Lt[[� ` t(�) type]] I L ` l�Ft� Terms([[�; x:�;�0 ` � type]] I L; F; L0 ` ��F;L0F[[� ctxt]] I L [[� ` � type]] I L ` F [[�; x:�;�0 ctxt]] I L; F; L0[[�; x:�;�0 ` x:�]] I L; F; L0 ` �(L; F; L0): ��F;L0F[[�: �! �f]] I l:L! Lf [[� ` � type]] I L ` l�Ff[[� ` f(�):�]] I L ` l�af : l�Ff149

� Term Lists [[� ctxt]]IL[[[]: �! []]]I []:L! []([[�`M :�0(�)]]IL`a: l�F 0[[�: �! �0]]I l:L! L0 [[�0`�0(~y) type]]IL0`F 0[[�;M : �! �0; y:�0(~y)]]I l; a:L! L0; F 0� Elementary External Types[[[]: �) []]] I []:L) [][[�`unit type]] I L !̀�1̂ [[[]: �) []]] I []:L) [][[�`null type]] I L !̀�0̂ [[[]: �) []]] I []:L) [][[�`nat type]] I L !̀�N̂[[[]: �) []]] I []:L) [][[�`�x type]] I L !̀�
̂ [[[]: �) []]] I []:L) [][[�`dom type]] I L !̀�Ûwhere !:L! 1.� External Binary Products[[� ` � type]] I L ` F [[� ` � type]] I L ` F 0[[� ` �� � type]] I L ` F � F 0� External Binary Coproducts[[� ` � type]] I L ` F [[� ` � type]] I L ` F 0[[� ` � + � type]] I L ` F + F 0� External T-Exponentials[[� ` � type]] I L ` F [[� ` � type]] I L ` F 0[[� ` �*� type]] I L ` F *F 0� External Computations [[� ` � type]] I L ` F[[� ` T� type]] I L ` TF� External Decoding [[� ` D: dom]] I L ` hid; di: !�(Û)[[� ` El(D) type]] I L ` d��where !:L! 1 and d:L! 1�Û .� Unit and Null Terms[[� ctxt]] I L[[� ` hi: unit]] I L ` hid; �!i: 1̂ [[� `M :]] I L ` a: 0̂[[� ` fg�(M):�]] I L `!�a:F150

where !:L! 1, �: 1 �= 1�1̂, �: 1�0̂ �= 0 and !: 0! L�F:� Binary Product Terms[[� `M :�]] I L ` a:F [[� ` N : �]] I L ` a0:F 0[[� ` hM;Ni:�� �]] I L ` ha; a0i:F � F 0[[� ` P :�� �]] I L ` a:F � F 0[[� ` Fst(P):�]] I L ` �1a:F [[� ` P :�� �]] I L ` a:F � F 0[[� ` Snd(P): �]] I L ` �2a0:F 0where �1 and �2 are the projections arising from the product F �F 0 in the categoryFib(L):� Binary Coproduct Terms[[� `M :�]] I L ` a:F[[� ` Inl�(M):� + �]] I L ` ia:F + F 0 [[� ` N : �]] I L ` a0:F 0[[� ` Inl�(N):� + �]] I L ` ja0:F + F 08><>: [[�; x:� ` F (x):
]] I L; F ` a: ��FF 00[[�; y: � ` G(y):
]] I L; F 0 ` a0: ��F 0F 00[[� ` C:� + �]] I L ` a00:F + F 0[[� ` fF;Gg(C):
]] I L ` [�F�F 00 � a; �F 0�F 00 � a0]a00:F 00where we note that a:L�F ! (L�F)�(��FF 00), a0:L�F 0 ! (L�F 0)�(��F 0F 00) and[�;+] denotes the abstraction of unique mediating morphisms arising from thecoproduct F + F 0 in Fib(L):� T-Exponential Terms[[� ` F :�*�]] I L ` a:F *F 0 [[� `M :�]] I L ` a0:F[[� ` FM :T�]] I apha; a0i:TF 0[[�; x:� ` F (x):T�]] I L; F ` a:T��FF 0[[� ` ��(F):�*�]] I L ` cur(�F�TF 0 � a � pr)�:F*F 0where we recall that ��FTF 0 = T��FF 0 by de�nition and we have �:L �= L�!�1̂ andpr:L�!�1̂� L�F ! L�F .� Computation Terms [[� `M :�]] I L ` a:F[[� ` Val(M):T�]] I L ` �a:TF[[� ` E:T�]] I L ` a:TF [[�; x:� ` F (x):T�]] I L; F ` a0:T��FF 0[[� ` Let (E; F):T�]] I L ` let(�F�TF 0 � a0) � a:TF 0� Natural Number Terms[[[]: �! []]] I []:L! [][[� ` 0: nat]] I L `!�0: !�N̂ [[� ` N : nat]] I L ` hid; ni: !�N̂[[� ` Suc(N): nat]] I L ` hid; sni: !�N̂([[� `M :�]] I L ` a:F[[�; x:� ` F (x):�]] I L; F ` a0: ��FF [[� ` N : nat]] I L ` hid; ni: !�N̂[[� ` FN(M):�]] I L ` ghid; ni:F151

where !:L ! 1, 0: 1 ! 1�N̂ , s: 1�N̂ ! 1�N̂ and g is the unique morphism arisingfrom the universal property of the NNO !�N̂ 2 Fib(L):L�!�1̂ id� 0- L�!�N̂ id� s- L�!�N̂
LprL? a - L�F?g a0 - L�F?g� Fixpoint Terms[[[]: �! []]] I []:L! [][[� ` !:T�x]] I L `!�!: !�T
̂ [[� ` E:T�x]] I L ` hid; ei:T !�
̂[[� ` �(E): �x]] I L ` hid; �ei: !�
̂[[� ` N : �x]] I L ` hid; ni: !�
̂ [[�; x:T� ` F (x):�]] I L; TF ` a: ��TFF[[� ` It�(F;N):�]] I L ` ghid; ni:Fwhere !:L ! 1 and g is the unique morphism arising from the universal propertyof the FPO !�
̂ 2 Fib(L): L�T !�
̂ id� �- L�!�
̂

L�TFlet(�g)? a - L�F?gwhere �g:L�!�
̂! L�F ! L�TF .� Internal Elementary Types[[[]: �! []]] I []:L! [][[� ` punitq: dom]] I L `!�p0q: !�Û [[[]: �! []]] I []:L! [][[� ` pnullq: dom]] I L `!�p1q: !�Ûwhere !:L! 1:� Internal Binary Product[[� ` D: dom]] I L ` hid; di: !�Û [[� ` D0: dom]] I L ` hid; d0i: !�Û[[� ` Dp�qD0: dom]] I L ` hid; p�qhd; d0ii: !�Û� Internal Binary Coproduct[[� ` D: dom]] I L ` hid; di: !�Û [[� ` D0: dom]] I L ` hid; d0i: !�Û[[� ` Dp+qD0: dom]] I L ` hid; p+qhd; d0ii: !�Û� Internal T-Exponential[[� ` D: dom]] I L ` hid; di: !�Û [[� ` D0: dom]] I L ` hid; d0i: !�Û[[� ` Dp*qD0: dom]] I L ` hid; p*qhd; d0ii: !�Û152

� Internal Computation[[� ` D: dom]] I L ` hid; di: !�Û[[� ` pTqD: dom]] I L ` hid; pTqdi: !�Û� Product Externalisation[[� `M :El(Dp�qD0)]] I L ` a: (p�qhd; d0i)��[[� ` Ip(M):El(D)� El(D0)]] I L ` �a: d�� � d0��[[� ` P :El(D)� El(D0)]] I L ` a: d�� � d0��[[� ` Jp(P):El(Dp�qD0)]] I L ` ��1a: (p�qhd; d0i)��where �:L�(p�qhd; d0i)�� �= L�(d�� � d0��):� Coproduct Externalisation[[� `M :El(Dp+qD0)]] I L ` a: (p+qhd; d0i)��[[� ` Ic(M):El(D) + El(D0)]] I L ` �a: d�� + d0��[[� ` C:El(D) + El(D0)]] I L ` a: d�� + d0��[[� ` Jc(C):El(Dp+qD0)]] I L ` ��1a: (p+qhd; d0i)��where �:L�(p+qhd; d0i)�� �= L�(d�� + d0��):� T-Exponential Externalisation[[� `M :El(Dp*qD0)]] I L ` a: (p*qhd; d0i)��[[� ` If(M):El(D)*El(D0)]] I L ` �a: d�� *d0��[[� ` F :El(D)*El(D0)]] I L ` a: d�� *d0��[[� ` Jf(F):El(Dp*qD0)]] I L ` ��1a: (p*qhd; d0i)��where �:L�(p*qhd; d0i)�� �= L�(d�� *d0��):� Universal Type Retraction[[� ` E:Tdom]] I L ` hid; ei:T !�Û[[� ` Ret(E): dom]] I L ` hid; ret ei: !�Ûwhere ret:T Û ! Û is the retraction morphism in Fib(1).By inspecting the above relations we can see that they give rise to partial functionsin the following way. Given a judgement J and \semantic sequents" S and S 0, if[[J]] I S and [[J]] I S 0 then S = S 0 in C. Thus if we are given a structure Sg in Cthe assignments � 7! [[� ctxt]]�; � 7! [[� ` � type]]�;M; � 7! [[� `M :�]]�; �;�0 7! [[�: �! �0]]give rise to partial functions. If one of these partial functions is de�ned at anargument J then we write [[J]]+. 153

Models of FIX�= TheoriesThe notion of satisfaction of judgements arising from FIX�= signatures is complicatedby the type dependency. We give the de�nition of judgement satisfaction next,where it should be noted that in each instance of \J is satis�ed i� S" the categoricalstructure S is unique.1. � ctxt is satis�ed i� [[� ctxt]]+.2. � ` � type is satis�ed i� [[� ` � type]]+ :3. � `M :� is satis�ed i� [[� `M :�]]+.4. �: �! �0 is satis�ed i� [[� ctxt]]+ and [[�0 ctxt]]+.5. � = �0 is satis�ed i� [[� ctxt]] I L and [[�0 ctxt]] I L.6. � ` � = �0 is satis�ed i� [[� ` � type]] I L ` F and [[� ` �0 type]] I L ` F .7. � ` M = M 0:� is satis�ed i� [[� `M :�]] I L ` a:F and [[� `M 0:�]] I L `a:F .8. � = �0: � ! �0 is satis�ed i� [[�: � ! �0]] I l:L ! L0 and [[�0: � ! �0]] Il:L! L0.Given a FIX�= theory Th and a structure M, then we say that M is a model of Thif it satis�es the rules for introducing the Th axioms; (these rules can be found onPage 135).The Substitution LemmaThe following lemma describes how the substitution of types and terms in the syntaxof a FIX�= theory is modelled by the categorical structure of a FIX category withattributes.Lemma 9.3.1 Suppose that [[�: �! �0]] I l:L! L0: Then it is the case that� [[�0 ` �0(~y) type]] I L0 ` F 0 implies [[� ` �0(�) type]] I L ` l�F 0.� [[�0 `M 0(~y):�0(~y)]] I L0 ` a0:F 0 implies [[� `M 0(�):�0(�)]] I L ` l�a0: l�F 0:� [[�0: �0 ! �00]] I l0:L0 ! L00 implies [[�0 � �: �! �00]] I l0 � l:L! L00.Proof The proof proceeds by induction on the derivation of the various judge-ments. 2
154

The Soundness TheoremTheorem 9.3.2 [\FIX�= Soundness"] Suppose we are given a FIX�= theory Thover a FIX�= signature Sg. The collection of judgements of the theory Th whichare satis�ed by a structure in a FIX category with attributes C is closed under therules (see Page 135) for derivation of judgements in Th. Consequently a model Mof Th satis�es all the judgements which are theorems of Th:Proof Once again, the proof proceeds by an induction on the derivation of thevarious judgement forms; the previous Lemma will be used throughout the proof.2

155

156

Chapter 10Prospects for Further Research10.1 Loose Ends and Future TasksWe give a concise review of what has been achieved; in particular we highlightloose ends and indicate possible further lines of research. The following commentscoincide roughly with the order of presentation of material in the thesis.Modular Approaches to Program SemanticsEach of the logics FIX=, FIX and FIX�= builds upon the computational let calculus.The fundamental notion underlying the let calculus is the separation of compu-tations from values. The extensions we have considered provide expressive logicswhich allow us to reason about one particular notion of computation. The devel-opment of metalogics which combine di�erent kinds of computation is clearly animportant issue; for related work in this area see [Mog90b] and [Mog90a]. Mostof the work to date concerns the combining of various monads (representing di�er-ent forms of computation, such as those presented at the end of Chapter 1) at anequational level rather than at the level of predicates. The investigation of mon-adic predicate logics where one is able to vary the underlying monad is yet to beundertaken.Domain Theoretic Properties of FIX=In a FIX= theory we always have �xpoints of terms at the higher order type (�)T�)) �) T�: All concrete models presented in this thesis are domain theoretic,thus by de�nition objects and morphisms have an associated order. When weconsider �xpoints arising from the properties of FPO's in these categories, it isalways the least such which is delivered. As we saw in Chapter 3, FIX categories(and hence FIX= theories) have properties reminiscent of concrete categories ofdomains and axiomatic domain theory. The precise relationship between FIX= andaxiomatic approaches to domains needs to be established. One line of investigationis to consider what formal orders can be imposed on FIX= and their connection toformal �xpoints.An example of a formal order is the following; we give the merest sketch of details.We shall need the notion of canonical and non canonical terms. These arise fromthe introduction and elimination rules in the FIX= logic. More precisely, the (raw)157

canonical terms are given by the grammarC ::= hi j hM;Ni j Inl�(M) j Inr�(M) j ��(F) j Val(M) j O j Suc(N) j ! j �(E)and the non canonical terms byNC ::= Fst(P) j Snd(P) j fF;Gg(C) j FM j Let (E; F) j FN(M) j It(F;N)We can de�ne an operational reduction scheme where C + C, Fst(hM;Ni) +M andso on. Write M [CL=~x] for the substitution of closed terms CL for the object levelvariables in M and �M for the ordered list of subterms of M (e.g. M is a subtermof hM;Ni). Then de�ne the simulation ordering by the following �xpoint: Say thatM � N i� 8CL, M [CL=~x] + M 0 implies N [CL=~y] + N 0 and �M 0 � �N 0. Somework along these lines has been carried out by Smith for the simply typed � calculusaugmented with surjective pairing and natural numbers. In [Smi89] Smith showsthat the formal �xpoint obtained from iterating the term ? def= (�x:x(x))(�x:x(x))coincides with that arising from the usual �xpoint combinator Y , where the coin-cidence is de�ned up to the equivalence generated by a simulation ordering ratherlike the one sketched above. However, the proof techniques are a little unwieldy. Itmight be possible to obtain similar results for the FIX= logic via a logical relationsargument. Using the above ordering on terms of FIX=, a partial order could beimposed on the collection of global elements of a type �. The de�nition of thecategory Lr could be changed so that the relation C of an object (D;C; �) satis�esd � d0 ^ d CM ^ d0 CM 0 �M � M 0:With such a relation it should be possible to see that the selection of a least �xpointby a FPO in the �rst coordinate will force a proof of the same fact for the thirdcoordinate.Categorical Semantics of FIXThe semantics of FIX is in a rather unsatisfactory state. The de�nition of a FIXhyperdoctrine is complex and one would prefer more of its properties to be dedu-cible from others. Originally a semantics which mimics the domain theoretic modelof FIX was pursued, modelling FIX propositions via a distinguished class of sub-objects in a suitable category (c.f. the hyperdoctrine model with �bres composedof inclusive subsets of !cpo's). In order to set up a categorical logic correspond-ence one has to manufacture a FIX category together with a distinguished classof subobjects from the FIX logic (this is essentially the Grothendieck constructionapplied to the initial FIX hyperdoctrine). However, the category arising from sucha construction is not cartesian closed; and it is not clear how to alter the FIX logicalsystem in a consistent way to ensure cartesian closure. If this could be achieved onewould hope that some of the conditions ensuring FIX soundness would come forfree: consider the �brewise induction conditions of a FIX hyperdoctrine (imposed)and the result which shows that Peano's axioms hold in a topos (toposes modelpredicates by subobjects). 158

The Existence and Disjunction PropertiesThe results about existence and disjunction in the FIX logic work only for closedterms. It is possible to envisage relativised versions of these theorems, for exampleone could investigate for which propositions �(x) a judgement�; x:�;�(x) ` 3(E(x); y:	(x; y))in the FIX logic entails that there is a term in context �; x:� ` M(x) for which�; � ` E(x) = Val(M(x)) and �; x:�;�(x) ` 	(x;M(x)):Computational Adequacy Results for PCFThe results of Chapter 6 concerning computationally adequate translations of PCFinto the FIX logic were proved using a technique due to Plotkin [Plo85]. It wouldbe nice to see such results proven by a gluing argument. A skeleton of ideas forsuch a proof might be as follows: De�ne an operational semantics on the terms ofthe FIX logic with judgements of the form � ` E � M :� where � ` E:T�. Thiswould be de�ned inductively by rules such as� ` E �M :� �; x:� ` F (x):T� � ` F (M)�M 0: �� ` Let (E; F)�M 0: �The operational semantics of FIX would be set up to ensure that m + c i� [[m]]n �dce; moreover if � ` [[m]]n � V , then V � dc0e for some unique c'. The idea is thento use the equality ` [[m]]n = [[c]]n to deduce that [[m]]n � dc0e and hence m + c0, byway of a logical relations gluing argument. For example, recall the category Lr ofChapter 5. If the de�nition of the relation C of an object (D;C; �) had a clause ofthe form e CT� E i� e = [d] � 9M :�:E �M (�)we could use this (together with the formal adequacy of the FIX logic which showsthat if ` [[m]]n = [[c]]n = Val(dce) then the !cpo interpretation of [[m]]n is not bottom)to show that [[m]]n � dc0e. The major obstacle here is that the terms E andM aboveare equivalence classes up to FIX logic equality. This problem could, perhaps, besurmounted by working at a 2-categorical level. Thus the initial FIX category Fwould be replaced by an initial \FIX 2-category". The latter would have typesas objects, pure FIX terms as morphisms and 2-cells given by suitable reductionsin the FIX logic, for example Let (Val(M); F) 7! F (M). The notion of a FIX 2-category morphism would have to be formulated carefully, together with a proofthat a category similar to Lr but de�ned using the clause (�) is indeed a FIX2-category.Semantics of PCFThe full abstraction problem for PCF has been investigated by a number of re-searchers [Plo77], [Sto88]. The FIX logic semantics given to PCF in Chapter 6 may159

throw some light on the intricacies of full abstraction and possibly simplify knownresults; this is just speculation at the time of writing.Adequacy Results for Languages with Recursive TypesWe have not presented any applications of the FIX�= logic. A �rst step would be tostate and prove adequacy results for a PCF style programming language with re-cursive types. For example, if xi ` � were a type in context of the programming lan-guage, it would be translated to a judgement of the form xi: dom ` [[�]]: dom. In par-ticular, a recursive type xi ` �x:� would be translated as xi: dom ` Fix(x:[[�]]): dom.Synthetic Domain TheoryLittle is known about the exact links between the work of this thesis and similarideas from synthetic domain theory. It is the case that complete �-spaces form a(constructive) model of the FIX= logic; for material relevant to synthetic domaintheory see [Hyl82] and [Pho90]. One could perform a routine inter-translation ofthe systems to gain further incites into how they relate.10.2 Final ConclusionsWe have presented three logical systems which can be used to interpret program-ming languages. These logics can be used to give meaning to both call by nameand call by value languages in a uniform way. Each logic has a clean categor-ical semantics together with a domain theoretic model. We have seen that one ofthese logics can be used to give computationally adequate interpretations of smallprogramming languages. In essence, immediate future work consists of trying tosimplify some of the categorical semantics, giving more extensive examples illus-trating the use of the logical systems as program logics and in particular extendingthe applications to languages with recursive types.

160

Bibliography[Bee85] M. Beeson. Foundations of Constructive Mathematics. Springer-Verlag,1985.[Ben85] J. Benabou. Fibred category theory and the foundations of naive categorytheory. Journal of Symbolic Logic, 50(1):10{33, March 1985.[Car86] L. Cardelli. A polymorphic lambda calculus with type:type. TechnicalReport 10, Systems Research Center, 130 Lytton Avenue, Palo Alto, CA,1986.[Car86] J. Cartmell. Generalised algebraic theories and contextual categories. An-nals of Pure and Applied Logic, 32:209{243, 86.[CGW89] T. Coquand, C. Gunter, and G. Winskel. Domain theoretic models ofpolymorphism. Information and Computation, 81:123{167, 1989.[CP90] R. L. Crole and A. M. Pitts. New Foundations for Fixpoint Computations.In 5th Annual Symposium on Logic in Computer Science, pages 489{497.I.E.E.E. Computer Society Press, 1990.[CP92] R. L. Crole and A. M. Pitts. New Foundations for Fixpoint Computations:FIX Hyperdoctrines and the FIX Logic. Information and Computation,98:171{210, 1992. LICS '90 Special Edition of Information and Computa-tion.[Cro90] R. L. Crole. Categories, Equational Logic and Typed Lambda Calculi.Hand-Written Notes for a Graduate Lecture Course, University of Cam-bridge Computer Laboratory, 236 pages, September 1990.[Dum77] M. Dummett. Elements of Intuitionism. Oxford University Press, 1977.[Gir89] J.-Y. Girard. Proofs and Types. Cambridge Tracts in Theoretical Com-puter Science. Cambridge University Press, 1989. Translated and withappendices by P. Taylor and Y. Lafont.[HP89] J.M.E. Hyland and A.M. Pitts. The theory of constructions: Categoricalsemantics and topos-theoretic models. In Categories in Computer Scienceand Logic, volume 92 of Contemp. Math., pages 137{199, 1989.161

[Hyl82] J.M.E. Hyland. The e�ective topos. In A.S. Troelstra and D. van Dalen,editors, The L.E.J. Brouwer Centenary Symposium, Studies in Logic andthe Foundation of Mathematics. North Holland, 1982.[Joh77] P.T. Johnstone. Topos Theory. Academic Press, 1977.[JP78] P.T. Johnstone and R. Par�e, editors. Indexed Categories and their Ap-plications, volume 661 of Lecture Notes In Mathematics. Springer-Verlag,1978.[Jun88] A. Jung. Cartesian closed categories of algebraic cpo's. Technical Report1110, Technische Hochschule Darmstadt, January 1988.[Kah88] G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Program-ming of Future Generation Computers, pages 237{258. Elsevier SciencePublishers B.V. North Holland, 1988.[Kel82] M. Kelly. Basic Concepts of Enriched Category Theory. Cambridge Uni-versity Press, 1982.[Laf88] Y. Lafont. Logiques, Cat�egories et Machines. PhD thesis, Univ. Paris VII,1988.[Lan64] P.J. Landin. The mechanical evaluation of expressions. Computer Journal,6:308{320, 1964.[Law69] F.W. Lawvere. Adjointness in foundations. Dialectica, 23(3/4):281{296,1969.[LS80] J. Lambek and P.J. Scott. Intuitionist type theory and the free topos.Journal of Pure and Applied Algebra, 19:215{257, 1980.[LS81] D.J. Lehmann and M.B. Smyth. Algebraic speci�cation of data types: Asynthetic approach. Mathematical Systems Theory, 14:97{139, 1981.[LS86] J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Lo-gic. Cambridge Studies in Advanced Mathematics. Cambridge UniversityPress, 1986.[Mac71] S. Mac Lane. Categories for the Working Mathematician, volume 5 ofGraduate Texts in Mathematics. Springer-Verlag, 1971.[Man76] E. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathem-atics. Springer-Verlag, 1976.[Mog89a] E. Moggi. Computational lambda calculus and monads. In Fourth annualsymposium on Logic In Computer Science, pages 14{23. I.E.E.E. ComputerSociety Press, 1989.
162

[Mog89b] E. Moggi. Notions of computation and monads. Theoretical ComputerScience, 93:55{92, 1989.[Mog90a] E. Moggi. A category theoretic account of program modules. Draft paperfor the CLICS Project, September 1990.[Mog90b] E. Moggi. Modular approach to denotational semantics, September 1990.Working Draft.[MR77] M. Makkai and G.E. Reyes. First Order Categorical Logic. Lecture NotesIn Mathematics. Springer-Verlag, 1977.[NPS90] B. Nordstr�om, K. Petersson, and J.M. Smith. Programming in Martin-L�of's Type Theory, volume 7 of Monographs on Computer Science. OxfordUniversity Press, 1990.[Pau87] L.C. Paulson. Logic and Computation. Cambridge Tracts in TheoreticalComputer Science. Cambridge University Press, 1987.[Pho90] W.K.-S. Phoa. Domain Theory in Realizability Toposes. PhD thesis, Uni-versity of Cambridge, 1990.[Pit87] A. M. Pitts. Polymorphism is set theoretic, constructively. In SummerConference on Category Theory and Computer Science. University of Ed-inburgh, Scotland, U.K., September 1987.[Pit89] A. M. Pitts. Notes on categorical logic. Graduate Lecture Course, Cam-bridge University Computer Laboratory, 1989.[Pit91] A. M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth HigherOrder Workshop, Ban� 1990, Workshops in Computing, pages 162{189.Springer-Verlag, Berlin, 1991.[Pit95] A. M. Pitts. Categorical logic. Technical Report 367, Cambridge Uni-versity Computer Laboratory, 1995. To appear in the Handbook of Logicin Computer Science, Oxford University Press.[Plo75] G.D. Plotkin. Call by name, call by value and the � calculus. TheoreticalComputer Science, 1:125{129, 1975.[Plo77] G.D. Plotkin. L.C.F considered as a programming language. TheoreticalComputer Science, 5:223{255, 1977.[Plo81a] G.D. Plotkin. Post-graduate lecture notes in advanced domain theory(incorporating the \Pisa Notes"). Dept. of Computer Science, Univ. ofEdinburgh, 1981.[Plo81b] G.D. Plotkin. A structural approach to operational semantics. TechnicalReport DAIMI{FN 19, Department of Computer Science, University ofAarhus, Denmark, 1981. 163

[Plo85] G.D. Plotkin. Denotational semantics with partial functions. Unpublishedlecture notes from CSLI summer school, 1985.[Sco69a] D.S. Scott. Models of the lambda calculus. Unpublished manu- script,1969.[Sco69b] D.S. Scott. A type theoretic alternative to CUCH, ISWIM, OWHY. Un-published manuscript, University of Oxford, 1969.[Sco70a] D.S. Scott. The lattice of
ow diagrams. Technical Report 3, ProgrammingResearch Group, Oxford University Computing Laboratory, 1970.[Sco70b] D.S. Scott. Towards a mathematical theory of computation. In 4th AnnualPrinceton Conference on Information Sciences and Systems, 1970.[Sco71] D.S. Scott. Continuous lattices. Technical Report 7, Programming Re-search Group, Oxford University Computing Laboratory, 1971.[Sco82] D.S. Scott. Domains for denotational semantics. In ICALP 1982, volume140 of Lecture Notes in Computer Science, pages 577{613. Springer-Verlag,1982.[See83] R.A.G. Seely. Hyperdoctrines, natural deduction and the beck condition.Zeitschr. f. math. Logik und Grundlagen d. Math, 29:505{542, 1983.[Smi89] S.F. Smith. From operational to denotational semantics. Technical Report89{12, The Johns Hopkins University, 1989.[SP82] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursivedomain equations. SIAM Journal of Computing, 11(4):761{783, 1982.[SS71] D.S. Scott and C. Strachey. Towards a mathematical semantics for com-puter languages. Technical Report 6, Programming Research Group, Ox-ford University Computing Laboratory, 1971.[Sto88] A. Stoughton. Fully Abstract Models of Programming Languages. ResearchNotes in Theoretical Computer Science. Pitman/John Wiley, 1988.[Str74] C. Strachey. The varieties of programming languages. Technical Report 10,Programming Research Group, Oxford University Computing Laboratory,1974.[Str89] T. Streicher. Correctness and Completeness of a Categorical Semanticsof the Calculus of Constructions. PhD thesis, Universitat Passau, 1989.Reference MIP - 8913.[SW74] C. Strachey and C. Wadsworth. Continuations{a mathematical theory forhandling full jumps. Technical Report 11, Programming Research Group,Oxford University Computing Laboratory, 1974.164

[Tay86] P. Taylor. Recursive Domains, Indexed Category Theory and Polymorph-ism. PhD thesis, University of Cambridge, 1986.[WL83] G. Winskel and K.G. Larsen. Using information systems to solve recursivedomain equations e�ectively. Technical Report 51, University of Cam-bridge Computer Laboratory, 1983.

165

