
Using Effect Systems for Automating Model
Extraction

R. L. Crole (R.Crole@mcs.le.ac.uk) & A. Furniss (mjf29@le.ac.uk)

Department of Computer Science,
University of Leicester,

University Road,
Leicester,

LE1 7RH, U.K.

Abstract. We present a programming language called Do which has
an effect system. Do is motivated by Wadler’s extension of the compu-
tational lambda calculus. Do is specified by augmenting (the language
of) the extension with a set of predefined effects and with provision
for programmers to create their own application-specific effects. Do is
accompanied by Dome (Do model extractor), a tool to extract models
of Do programs for model-checking. Models are created with regard to a
particular computational effect or set of effects. A key difference between
our approach and previous approaches is that vertices in program graphs
represent the effect behaviour of statements, rather than the statement
itself.

1 Introduction

Model checking [10] is a verification technique that determines if a specification
in a temporal logic such as linear temporal logic or computation tree logic holds
for a model of a system, represented as a transition system consisting of states
connected by transitions. Model checkers exhaustively search the possible states
of the model in order to find a counter-example - a state path that demonstrates
that the specification does not hold for the model.

As current model checkers can only represent a limited number of states and
the number of states in a typical program is potentially very high, the construc-
tion of a considerably simplified abstract model is often required. When creating
a model one must ensure that it is a correct representation of the program, in
that the model displays every behaviour of interest contained within the program
and does not introduce additional behaviour that is not present in the program.
Models are often created by hand or with a user-defined translation table to di-
rectly translate a program into the model checker definition language, but these
methods introduce the potential for human error. Techniques for automatically
deriving models from programs are therefore desirable, and we pursue this goal
here.

Our aim here is to present a method for creating models of the interactions of
a computer program (and constituent threads) with the computer system state.

We are currently implementing this method in our Dome (Do Model Extractor)
tool to allow the automatic generation of models of Do programs for the Spin
model checker.

We proceed as follows: We review the relevant background literature in the
next section. In Section 3 we explain some foundational properties of states,
effects and dependencies. In Section 4 we specify an operational semantics for
the Do language. In Section 5 we specify a graph extraction algorithm. In Sec-
tion 7 we explain the model extraction process. Finally in Section 8 we draw our
conclusions.

2 Background

2.1 Effect systems

Effect systems make explicit the effect of executing a statement or expression by
incorporating details of the effects carried out by the statement into its type. As
a consequence one is able to determine not only what the return or result type of
a statement is, but also the actions that the statement will have upon the state
of the system. Effects are annotated with a region to indicate which resource
or part of a resource they act upon. The terminology stems from research into
region-based memory management in which the heap is partitioned into sections
called regions, and memory effects are annotated with the region they act upon.
The term tag is also used (for example in [12]) to indicate the same type of
annotation.

Lucassen and Gifford [11] describe an effect system with types, effects and
regions, and effects of reading, writing or allocating memory locations. They give
an operational semantics for their type and effect inference rules and introduce
the idea of effect masking, in which effects that are local to an expression appear
only in contexts in which they are observable. This is accomplished through a
’PRIVATE’ expression that creates an anonymous region which is inaccessible
after the expression or statement has finished executing.

Marino and Millstein [12] provide a framework for a generic effect system, and
demonstrate how memory effects and transactional memory can be implemented
in terms of their generic framework. They use sets of privileges defining which
effects a given section of a program may carry out, and show how the privileges
may be enforced during type-checking. Although the effect system here (and
other effect systems in the literature) are oriented more towards the description
of effects carried out by code rather than restriction using the notion of privileges,
we can consider the set of privileges required by a given section of code equivalent
to the set of effects that the code performs.

2.2 Computational Monads and Monadic Effect Systems

Moggi [13] introduces the notion of computation types. Given a type τ one also
has a type Tτ which designates computations which may deliver a result of

type τ . For example the type might be int and Tint = int⊥, the type of all
programs that may be non-terminating but otherwise return an integer. In [13],
Moggi considers non-deterministic computation, side-effects and continuations.
Computation types allow many different types of computations and effects to be
treated in a uniform manner, and forms the basis for the effect system described
in [15]. Crole has investigated the use of computation types in giving semantics
to IO effects [5], and there are connections between the IO semantics and the
Do semantics seen in the current paper.

Wadler and Thiemann [15] modify an existing effect system to produce one
based upon computation types by labelling each (standard) computation type
with a set of effects so that a computation of type τ but with an explicit effect
σ actually has type Tστ . The semantics of the Do language is based upon the
systems specified in this paper. Like [11], Wadler and Thiemann give a type and
effect inference algorithm, in which type and effect reconstruction is performed
by creating and solving systems of constraints.

2.3 Program slicing

A program slice consists of a subprogram that computes or performs compu-
tation using a specific variable or set of variables at a particular point in the
program. This variable or set of variables and program location is referred to as
the slicing criterion. Slices are either forward slices, which include all elements
of the program that could be affected by the slicing criterion, or backward slices
that include all elements of the program that could affect the computation of
the slicing criterion. Techniques in the literature generally either perform static
slicing to compute a slice for all possible execution traces of the program, or
dynamic slicing to create a slice of all parts of the program that affect a specific
execution trace. The slicing criterion in this paper differs from those discussed
elsewhere as it consists of a set of effects to include in the generated model.
To extract a model the original program is reduced to one that solely includes
all possible paths that include effects contained within the slicing criterion –
essentially a series of static backwards slices.

The most common approaches to static backwards slicing in the literature
have been graph-based. Hatcliff et al [8] consider program slicing in the context
of model production for their Bandera tool using a control-flow graph. They
show how to extract slicing criteria from a LTL formula, and prove that their
slicing algorithm preserves the properties of the model that satisfy the criteria,
allowing an optimised model to be constructed for each formula.

Horwitz, Reps and Binkley [9] discuss program slicing using dependence
graphs. They start with a description of slicing programs with a single pro-
cedure or function using a program dependence graph. Such graphs have an
entry vertex, variable declaration and variable final use vertices for each variable
in the procedure, along with data and control dependence edges. They then ex-
tend the program representation to a system dependence graph to allow slicing
of programs with multiple procedures or functions by introducing function call

site, formal in, formal out, actual in and actual out vertices, along with func-
tion call edges, parameter in and out edges. Their slicing algorithm operates in
two stages. In the first stage the slice is computed by starting from the vertex
representing the initial node of the slice, marking nodes that are either in the
same function or are in functions that have called the function containing the
initial node. In the second stage, the slicing algorithm traverses functions that
are called by the function containing the starting point of the slice. The final
slice is the union of the sets of vertices marked during the two stages.

Zhao [16] describes multi-threaded dependence graphs, an extension of the
program dependence graphs used in methods of slicing sequential programs
(most notably from [9]). Multi-threaded dependence graphs provide a thread
dependence graph for each individual thread with edges to represent communi-
cation dependencies or synchronisation dependencies between threads. Commu-
nication dependencies occur when the result of a statement or expression in one
thread is influenced by the result of a statement or expression in another thread.
Synchronisation dependencies occur when the concurrency features of Java such
as notify(), wait() and join() are used to synchronise threads.

2.4 A Note on Implementation Details

Appel and Palsberg [1] provide an overview of compiler design and related is-
sues including type checking and symbol tables, which are an important aspect
of both the model extractor and interpreter. They distinguish between impera-
tive and functional symbol tables. Imperative symbol tables perform destructive
updates on a single instance of the symbol table and have an ’undo’ stack that
restores the previous state upon leaving the scope. Functional symbol tables
create a new instance of the symbol table when adding an entry, allowing the
previous version to be restored upon leaving the scope. Strategies for efficiently
implementing the different types of symbol table are also discussed. Muchnick
[14] provides a further in-depth discussion of symbol tables, including their im-
plementation using hash-tables for languages with different scoping rules.

The lexer and parser have been generated using Flex and Bison. During
this process, the Flex documentation [7], Bison documentation [3] and C++
Flex/Bison example by Timo Bingmann [2] were useful.

3 States, Effects and Dependencies

Our aim is to present a method for creating models of the interactions of a
computer program (and constituent threads) with the computer system state.
We consider a system with concurrently and autonomously executing program
threads, which carry out computations that may or may not interact with the
state of the system. Here regions are labels that are used to identify system
state such as memory locations or other system resources. An effect describes
how a computation changes the state of the system or depends upon the state
of the system. Each effect acts upon one or more regions. We further distinguish

between atomic effects, which are ’indivisible’ primitive effects on the system,
and composite effects which are composed of two or more primitive effects.

Effects describe transformations in the state of the system. We write σ(s) to
denote the result of updating the state of the system s with effect σ, and σ1 ; σ2

to denote composition of effects. For all effects σ1 and σ2, σ1 ; σ2(s) = σ2(σ1(s)).
We define traces of effects in a conventional manner. A trace is a sequence of
effects σ1 → σ2 → . . .→ σn−1 → σn where n is 0 in the case of the empty trace.
The concatenation of traces is defined as expected.

One of the key aspects of our approach concerns the dependence or indepen-
dence of effects. An effect σ1 is dependent upon another effect σ2 if the result
of carrying out σ1 can alter depending upon how or if σ2 has previously been
carried out. For example, consider a system with memory locations, a get effect
that describes accessing a memory location and a set effect that describes updat-
ing a location. The result of accessing a memory location is dependent upon the
value that has previously been stored there, so the get effect is dependent upon
the set effect. However, the converse does not hold, as the result of updating a
memory location will be the same irrespective of how the location has previously
been been accessed. We write the relationship of dependency as σ1 adep σ2.

Once we understand the relationships between effects, we can use them to
reason about the result on system state of performing computation; in partic-
ular we include effects and effect dependencies as “first class” citizens in the
Do Language. To do this we first need to introduce effect and dependency sets.
The effect set of a trace is the set of effects that the trace performs (in a sim-
ilar manner to the concept of a sort in CCS). Note that we can consider a
computation to be a trace of length 1, in which case the effect set is simply
the effect of the computation. The effect set of a trace t = σ1 → ... → σn is
Eff (t) = {σi | σi ∈ t}. Given the effect set we can now define the dependency
set, which is essentially the set of effects which may influence the outcome of the
trace. The dependency set is constructed from the set of all effects upon which
any effect in the effect set of the trace is dependent upon. The dependency set
of a trace t is Dep(t) = {σ′ | σ ∈ Eff (t), σ a+

dep σ
′} where + denotes transitive

closure.

To return to the previous example of memory locations, if we wanted to create
a model of memory accesses it would not be enough to simply include all of the
get effects in the model, as we cannot accurately represent the result of memory
access without also including the effects that set the contents of the location.
When we decide to include a type of effect in the model, we must also include
all of the effects that it is dependent upon. Due to the nondeterministic nature
of concurrent execution we cannot know what order the effects of the various
threads will be performed, and it is difficult or impossible to know which sections
of program code can be executed concurrently with each other. In the interest
of simplicity, we do not attempt to determine which sections of the program
may be run concurrently, and instead consider potential interactions between all
instances across the entire program of the effects in question.

We include the notion of effect environments in the semantics of Do ranged
over by β, a function from the set of identifiers to the set of effects. βid denotes
the effect environment β with the identifier id removed from its domain.

The notion of effect dependencies is important because it enables the system
to determine which effects need to be included in extracted models when slicing.
We determine the dependencies of an effect using an effect graph, with vertices
representing effects and edges representing dependencies. We define the depen-
dency set of a statement or expression to be the union of the dependency sets of
each effect contained within the type of the expression or statement. The depen-
dency set is determined using a breadth-first search to calculate the transitive
closure of effect dependencies, following dependency edges and marking nodes
to avoid infinite loops. Once the set cannot be expanded further, the effects
represented by the marked nodes form the dependency set.

4 The Do Language

We have so far discussed effects as a mathematical abstraction, but we now
present concrete effects in the context of the Do programming language. Do
is a simple functional programming language with a conventional syntax and
semantics, but with the addition of an effect system. Types τ range over integers,
booleans, a unit type, and functions. Given a countable set Id of identifiers, the
(raw/untyped) Do expressions and statements are specified by

V ::= b | i | () | id values

values ::= ε | V values

E ::= b | i | id | uop E | E bop E | E E

uop ::= ∼ | ¬ and bop ::= + | − | / | ∗ | && | ||

S ::= skip | new τ id | get id | set id := E | let id := E in S | S ; S

| if E then S | if E then S1 else S2 | fun id params = S | return E

params ::= ε | id : τ params

Do has a ’small-step’ operational semantics. This is an adaptation and exten-
sion of the Effect language presented in [15] (and also motivated by the Monad
language loc. cit.). Do is call-by-value to simplify the order and sequence of eval-
uation (and hence simplify the extracted models of programs).1 Other common
constructs such as conditional statements are also introduced, along with the
ability to declare new user effects and dependencies between them. To specify

1 A simple form of concurrency has been introduced into the language with the addi-
tion of a split effect, which will cause a function to be used as the entry point for
a new thread running concurrently with the existing one—the details are omitted
from this paper.

the semantics we define a (countable) set of locations Loc to be a subset of the
(countable) set of Id of identifiers. A store is a function from locations to the
set Val of values. A semantic effect [15] f takes the form neweff (l), geteff (l) or
seteff (l) where l is a location.

The operational semantics is specified by using evaluation contexts C (see for
example [6]).

C ::= [] | uop C | C bop E | V bop C | C E | V C
| if C then S | if C then S1 else S2

| set id := C | let id := C in S

| C ; E | V ; C | return C

The operational semantics [4] transitions take the form (s, β,adep), X f−→
(s′, β′,adep′), X ′ where X is an expression or a statement, generalising the
transitions of [15]. In the case that no changes occur to s, β, or adep then we
write simply X −→ X ′. Much of the semantics is standard, but some of the
non-standard transitions are given in Figure 1.

new [l /∈ dom(s)]

(s, β,adep), new τ l→
neweff (l)
−→ (s ∪ {l→ 0}, β,adep), ()

get

(sl ∪ {l→ V }, β,adep), get l
geteff (l)
−→ (sl ∪ {l→ e}, β,adep), V

set

(sl ∪ {l→ V }, β,adep), set l := V ′ seteff (l)
−→ (sl ∪ {l→ V ′}, β,adep), ()

let2

let id = V in S → S[x := V]

funcall [fun id params := S]
id V1 . . . Va → S[params := V]

return
return V → V

The rule for evaluation contexts is

X
f−→ X ′

evcxt
(s, β,adep), C[e] f−→ (s, β,adep), C[e′]

Fig. 1. Operational Semantics for Do

5 A Graph Extraction Algorithm and Implementation

The remainder of this paper focuses on an example program P given in Figure 2.

new int a;
new int b;
new int c;

fun fib2 : int x : int y : int i : int = {
(1) if i = 0 then (2) return y;
(3) if i = 1 then (4) return x + y;
(5) set a := x + y;
(7) set b := (6) get a + y;
(8) set c := i - 2;
(14) return (12) (13) fib2 (9) (get a) (10) (get b) (11) (get c)
};

fun fib : int n : int = {
(15) let z := n - 1 in
(16) return (17) (18) fib2 0 1 z
};

fun main : unit d : unit = {
(19) return (20) (21) fib 42
};

Fig. 2. Progam P

One of the key aims during model creation is to limit the number of states
and transitions in order to ensure the tractability of queries upon the model.
To achieve this we create a control-flow graph representation of effects carried
out by the program and then select a slice (or subgraph) that includes only
behaviour matching a specified set of effects.

Our graph representation is based upon the system dependence graphs in-
troduced in [9], although it has some important differences. While vertices in
the system dependence graphs created by Horwitz et al represent statements
themselves, we create graphs in which vertices represent the behaviour of the
statement or expression in the form of its effect. Such graphs are therefore fun-
damentally a representation of the interaction of the program with system state
rather than statements of the the program itself.

We introduce an additional type of edge, corresponding to the sequential
order in which the effects represented by the vertices are performed. Unlike
the system dependence graphs outlined in [9] we do not consider data-flow. As
a result, the creation and slicing of the control-flow graphs described here is
somewhat simpler than system dependence graphs, as we do not create vari-

able definition and last-use vertices, or formal and actual parameter in and out
vertices.

However, the availability of data-flow information would enable a reduction
in the number of transitions and states in the model. In the method outlined
here we do not maintain a record of the state of regions, such as the contents
of memory locations. When considering a statement such as set a := b + 32
we record only that an instance of the set effect has occurred; the value actually
stored in the memory location represented by region a is not included in the
model.

On one hand this reduces the amount of information stored for each state,
and therefore the amount of memory required, and as a result improving the
chance of creating a tractable model. However, as a consequence of this lack of
state we cannot evaluate the condition of conditional statements during model-
checking, so deterministic execution in the original program may become non-
deterministic in the model representing the program. Given a statement such as
if get a := 55 then set b := 12 else set c := 4 we cannot determine the
contents of region a, and hence have to consider that the statements contained in
either the true or false branches could be executed. It is likely that we will extend
our dependence graph representation at some point in the future to include data-
flow in a similar way to that described in [9].

We create a dependence graph for the program using the algorithm in Fig-
ure 3 for each statement s in the function. We use some notation to specify the
algorithm: Let C be a stack to contain references to vertices with conventional
pushC(v), popC and topC operations. Let t, ttrue, tfalse and texpr be variables,
each holding a reference to a vertex. We denote assignment to a variable with the
:= operator. t is always the last vertex to be created, ttrue, tfalse and texpr are
the last vertices of the true and false branches of a conditional statement, with
texpr the last vertex of the boolean expression that controls it. CreateGraph(F)
means that we create a function entry vertex ventry and function exit vertex
vexit, and perform pushC(ventry). CD, TR, and V stand for control dependence,
transition relation, and vertex.

The graph for program P is in Figure 4. Some simplifications have been
made in the graph shown in this paper (for reasons of clarity). Arguments in a
Do function call are applied one at a time, returning a function value after each
application to which the next argument is applied until all of the arguments have
been provided. A function call with n arguments in the program will therefore
produce n pairs of function call nodes in the dependency graph; for example,
each of the function calls in P will be represented by 3 pairs of vertices, each with
function call and return edges. Since the complexity is the result of the language
rather than the model extraction technique itself, we represent function calls in
the graph with a single pair of nodes.

Vertices in the graph are classified into several vertex types, with each vertex
having exactly one type. The different types consist of statement, expression,
function entry, function exit, function call and function return vertices. The
majority of statements in the source program are translated to vertices of the

set id := E get id

Create a V v labelled {set id}
Create a V v′ labelled the effect of E.
Add a CD edge from v to topC

Add a CD edge from v′ to v
Add a TR edge from t to v′

Add a TR edge from v′ to v
t := v

Create a V v labelled {get id}
Add a TR edge from t to v
Add a CD edge from v to topC

t := v

let id := E return E

Create a V v labelled the effect of E.
Add a CD edge from v to topC

Add a TR edge from t to v
t := v

Create a V v labelled the effect of E.
Add a CD edge from vexit to v.
Add a CD edge from v to topC

Add a TR edge from t to v
Add a TR edge from v to vexit

popt

if E then Strue if E then Strue else Sfalse

Create a V v labelled the empty effect
Add a CD edge from v to topC

Add a TR edge from t to v
pushC(v)
CreateGraph(E)
texpr := t
CreateGraph(strue)
ttrue := t
If execution of Strue can reach

the following statement
Create a V vend

Create a CD edge
from vend to v

Create TR edges from
ttrue to vend and texpr to vend

t := vend

Otherwise
t := texpr

popC

Create a V v labelled the empty effect
Add a CD edge from v to topC

Add a TR edge from t to v
pushC(v)
CreateGraph(E)
texpr := t
CreateGraph(strue)
ttrue := t
CreateGraph(sfalse)
tfalse := t
If execution of both strue and sfalse

can reach the following statement
Create a V vend

Create a CD edge from
vend to v

Create TR edges from
ttrue to vend and tfalse to vend

t := vend

Otherwise, if execution of only strue

can reach the following statement
t := strue

Otherwise t := sfalse

popC(v)

id params

Omitted for space reasons

E1 bop E2 uop E S1 ; S2

CreateGraph(E1)
CreateGraph(E2)

CreateGraph(E)
CreateGraph(S1)
CreateGraph(S2)

Fig. 3. Graph Extraction Algorithm

1

fib2 entry

2
3

4
5

6

7

8

9

10

11

12

13

14

fib2 exit

15

fib entry

16

17

18

fib exit

19

main entry

20

21

main exit

Fig. 4. Graph for Program P With Vertices Selected On First Stage of Slicing with
Criterion get < a >

statement vertex type, which are labelled with the effect performed by the state-
ment. The function entry and function exit vertices do not directly correspond
to statements in the program: they are created as entry and exit points for the
subset of the control flow graph corresponding to a particular function definition.
Likewise, function call and function return vertices are created at function call
sites to indicate the transfer of execution to and from another function.

Edges in the control-flow graph are classified in a similar manner to vertices,
with 4 different edge types: control dependency edges, transition edges, function
call and function call return edges.

We do not create nodes for region declaration, dependency declaration or
thread creation statements, as regions, dependencies and threads exist through-
out the entire life of the program and such statements cannot appear inside
functions.

To enable the creation of control-dependence edges during the creation of the
graph the last function entry or conditional statement vertex is tracked using a
stack, and control dependence edges are generated during the creation of each
new vertex by adding an edge to the vertex at the top of the stack. The transition
relation is generated by keeping track of the last generated vertex to enable a
transition edge to be added when a new vertex is created.

6 Slicing

Once the graph representation of program behaviour has been created we select
a subset of the vertices in the graph called a slice. The slice is created with
regard to a slicing criterion to obtain a subgraph containing only vertices with
effects specified in the slicing criterion and vertices representing control flow
statements.

Our slicing criterion and method differ from that described in [16] and [9]
in some important respects. In existing approaches to program slicing, the slic-
ing criterion consists of a variable x at a particular point in the program and
produces a subprogram consisting of all statements that are involved in the com-
putation of the value of x or can be affected by the x (depending upon whether
forward or backward slicing is being performed). In contrast, we use a set of
effects Σ = {σ1, .. σn} as the slicing criterion. Given a dependence graph g, we
produce a subgraph g′ containing only vertices labelled with instances of effects
in Σ ∪ Dep(σ1) ∪ Dep(σ2) ∪ ... ∪ Dep(σn) from the entire program. The sliced
graph for program P is in Figure 5.

In doing so, we produce a slice that includes all instances of the specified
behaviour from the entire program, and the effects of other statements (such
as conditional statements and function calls) required for these effects and ex-
ecution paths to be performed. The dependency relationships between effects
are important here as they enable us to create a model that includes not only
the behaviours specified in the slicing criterion but also behaviours that may
influence the outcome of those in the slicing criterion and therefore must also be
included. The dependency relationships bet-weens effects are important here, as

1

fib2 entry

2
3

4
5

6

7

8

9

10

11

12

13

14

fib2 exit

15

fib entry

16

17

18

fib exit

19

main entry

20

21

main exit

Fig. 5. Graph for P Sliced With Criterion get < a >

they enable us to create a model that includes not only the behaviours specified
in the slicing criterion but also behaviours that may influence the outcome of
those in the slicing criterion and therefore must also be included.

We utilise a breadth-first node-marking approach, in which vertices with
effects that unify with some element in our slicing criterion or its dependencies
are first marked and added to a queue. The nodes marked in this step are shown
in Figure 4. The vertex v at the head of the queue is then removed, and all
unmarked vertices immediately reachable from v via control dependency edges
are also marked and added to the back of the queue. The process is repeated until
the queue is empty, at which point the slice consists of the marked subgraph.

7 Model Extraction through a LTS

Once a subgraph of the graph from Section 5 has been created, we produce a
labelled transition system in the form of a stack automaton from which the final
PROMELA model is created. Each vertex v with label σ in the control flow
graph becomes a transition t labelled with σ between states in the automaton.

The stack in the automaton provides the ability to return to the appropriate
state after reaching the end of the states representing a function. Function call
and function exit vertices in the graph become transitions states at which the
stack must be manipulated or used to determine the next state in the model.

We denote transitions in the automaton with a quintuple (s1, s2, σ, w, r)
where s1 and s2 are the start and end states of the transition, σ is an effect, r is
the identifier of a state to be read from the top of the stack and w the identifier
of a state to push onto the stack (with λ indicating that nothing is to be read
from the stack or popped onto the stack). We assume that values read from the
stack are removed.

We indicate a transition edge between vertices v and v′ in the graph as
(v, v′)T , a control dependence edge between v and v′ as (v, v′)D, a function call
edge between v and v′ as (v, v′)F and a function call return edge between v and
v′ as (v, v′)R.

We create the automaton as follows: Let L be a stack to contain references
to states with conventional pushL(s), popL and topL operations. Let E be a
stack to contain references to states with conventional pushE(s), popE and topE
operations. Let V be a list to contain visited vertices. Then proceed by applying
these steps

– M := ∅
– Create a start state Sstart and end state Send
– Create start and end states for the main function Smainstart and Smainend
– Add transitions (Sstart, Smainstart, empty, Send, λ)

and (Smainend, Send, empty, λ, Send)
– pushL(Sstart)
– If there is no v in the input graph such that (vstart, v)T

add a new transition (Sstart, Send, empty, λ, λ) to the automaton and finish.

– Otherwise process(Smainstart)
– popL

together with process(v) appearing in Figure 6. The automaton for P is in
Figure 7.

It is relatively simple to create a representation of the program from the au-
tomaton in the PROMELA input language of the Spin model checker. We use
a two-stage process. In the initial stage, the input program is read to build lists
of the regions, processes and effects from the top-level declarations. A standard
PROMELA program outline is used for elements common to all models of Do
programs such as the declaration of the process stack and stack pointer, current
state and last action variables. In the second phase, the automaton created from
the sliced program is used to generate the states of the model. Each state in
the automaton is numbered, and the behaviour of the model is produced by a
PROMELA do statement indexed by the current state number. Transitions be-
tween states in the automaton become assignments to the currentstate variable
in the model, and the lasteffect variable is used to record the effect label of
the last transition made by the model checker to bring it into the current state.
For reasons of space we omit the model for P from this paper.

8 Conclusions and Future Work

In this paper we have presented a method of creating simple models of program
behaviour from programs in a language with an effect system.

It would be possible to extend our models to include system state such as
the contents of memory regions rather than simply produce traces of effects that
occur. Such an approach would allow execution in the source program that at
present becomes non-deterministic in the generated model to be represented in
a deterministic manner, and therefore remove traces in the model that do not
correspond to possible execution paths in the program. Our graph representation
and slicing algorithm would have to be extended to consider data-flow as well as
control-flow in the original program, and we would need to consider additional
types of effect dependencies. For instance, when an expression appearing in the
condition of a conditional statement has an effect, we would need to include that
effect and its dependencies in the model to properly evaluate the conditional
statement. From the preliminary work undertaken here, we believe that such
extensions will be a considerable undertaking.

The automata and models produced by the method detailed in this paper
are certainly not minimal, so it would be possible to modify our algorithms to
produce fewer states and empty transitions or add an additional minimisation
stage before generating the final PROMELA model.

The Do language has a limited syntax and set of primitive effects. We intend
to extend the language with further control statements and additional effects
such as thread synchronisation and mutual exclusion, which would make the
system significantly more useful for verifying concurrent programs.

process(v) =
Let Sfunstart and Sfunend be the start and end states of the function containing v.
For each vertex v:

Function entry vertex:
• If v is marked and v /∈ V
∗ pushL(Sfunstart)
∗ V := V ∪ {v}
∗ For every v′ such that there exists a transition edge (v, v′)T in the input

graph process(v′)
∗ popL

Function exit vertex:
• Add a new transition (topL, Sfunend , empty, λ, λ).
• M := M ∪ {(v, topL, Sfunend)}
• V := V ∪ {v}

Function call vertex:
• If v is marked
∗ Add a function call return state Sreturn

∗ V := V ∪ {v}
∗ Add a transition (topL, sreturn , empty, λ, λ)
∗ pushL(sreturn)
∗ For every v′ such that there exists a transition edge (v, v′)T in the input

graph process(v′)
• For every marked vertex v′′ such that there exists a function call edge (v, v′′)F

in the graph:
∗ Create a transition (topL, v

′′
funstart , empty, λ, Sreturn) where v′′

funstart is the
start state of the function containing v′′

∗ process(v′′)
∗ Create a transition (v′′

funend , Sreturn , empty, Sreturn , λ) where v′′
funend is the

end state of the function containing v′′

• popL

Function call return vertex:
• For every v′ such that (v, v′) is a transition edge in the graph:
∗ If (v′, s, s′) /∈M or v′ 6= topL then process(v′)
∗ Otherwise add a transition (topL, s, empty, λ, λ) where (v′, s, s′) ∈M

Other vertex types:
• If v is marked, v /∈ V and v has a non-empty effect:
∗ Add a new state s
∗ Add a new transition (topL, s, Eff (v), λ, λ)
∗ V := V ∪ {v}
∗ M := M ∪ (v, topL, s)
∗ pushL(s)
∗ pushed := true

• If (v, s′, s′′) /∈M or s′′ 6= topL then process(v′)
• Otherwise add a transition (topL, s

′, empty, λ, λ)
• If pushed = true then popL

Fig. 6. Automaton Algorithm

11

13

14

15

16

17

18

19

12

6

8

9

10

7

1

3

4

5

2

(∅, λ, λ)

(∅, λ, λ)

(∅, λ, λ)

(∅, λ, λ)

(∅, λ, λ)

(∅, λ, λ)

(set a, λ, λ)

(get a, λ, λ)

(∅, 5, λ)

(∅, λ, 5)

(∅, λ, λ)(∅, λ, λ)

(get a, λ, λ)

(∅, λ, λ)

(∅, λ, λ)

(∅, λ, λ)

(∅, λ, λ)

(∅, λ, 18)

(∅, 18, λ)

(∅, 10, λ)

(∅, λ, 10)

(∅, 5, λ)

(∅, 5, λ)

(∅, 18, λ) (∅, 18, λ)

(∅, 10, λ)

(∅, 10, λ)

(∅, λ, 5)

(∅, λ, 5)

(∅, λ, 18) (∅, λ, 18)

(∅, λ, 10)

(∅, λ, 10)

Fig. 7. The Automaton for P

Do has a formal operational semantics, but our work so far has not led to
the formalization of the algorithms described and implemented here. Clearly a
more complete formalization together with proofs of mutual correctness would
be most desirable, and we plan to consider this in due course.

References

1. Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in Java.
Cambridge University Press, 2003.

2. Timo Bingmann. Flex bison c++ template/example 0.1.4.
http://idlebox.net/2007/flex-bison-cpp-example/.

3. Bison manual. http://www.gnu.org/software/bison/manual/.
4. R. L. Crole. Operational Semantics, Abstract Machines and Correctness, 2008.

Lecture Notes for the Midlands Graduate School in the Foundations of Computer
Science, LATEX format 91 pages with subject and notation index, plus slides 1-up
and 8-up.

5. R. L. Crole and A. D. Gordon. Relating Operational and Denotational Semantics
for Input/Output Effects. Mathematical Structures in Computer Science, 9:125–
158, 1999.

6. M. Felleisen and D. Friedman. Control Operators, the SECD-machine, and the
λ-calculus, pages 193–217. North Holland, 1986.

7. Lexical analysis with flex. http://flex.sourceforge.net/manual/.
8. J. Hatcliff, M.B. Dwyer, and H. Zheng. Slicing software for model construction.

Higher-order and Symbolic Computation, 13:315–353, 2000.
9. Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using

dependence graphs. ACM Transations on Programming Languages and Systems,
12:26—60, 1990.

10. Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reason-
ing About Systems. Cambridge University Press, Cambridge [U.K.], 2nd ed edition,
2004.

11. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings
of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 47–57, San Diego, California, United States, 1988. ACM.

12. Daniel Marino and Todd Millstein. A generic type-and-effect system. In Proceedings
of the 4th international workshop on Types in language design and implementation,
pages 39–50, Savannah, GA, USA, 2009. ACM.

13. Eugenio Moggi. Computational Lambda-Calculus and monads. Information and
Computation, pages 14—23, 1988.

14. Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-
mann Publishers Inc., 1997.

15. Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM
Trans. Comput. Logic, 4(1):1–32, 2003.

16. J. Zhao. Multithreaded dependence graphs for concurrent java programs. In Soft-
ware Engineering for Parallel and Distributed Systems, 1999. Proceedings. Inter-
national Symposium on, pages 13–23, 1999.

