
An Empirical Evaluation of Extendible Arrays

Stelios Joannou and Rajeev Raman

University of Leicester, Department of Computer Science, University of Leicester,
University Road, Leicester, LE1 7RH.

Abstract. We study the performance of several alternatives for imple-
menting extendible arrays, which allow random access to elements stored
in them, whilst allowing the arrays to be grown and shrunk. The study
not only looks at the basic operations of grow/shrink and accessing data,
but also the effects of memory fragmentation on performance.

1 Introduction

Dynamic (internal-memory) data structures are ubiquitous in computing, and
are often used in on-line, continuously running, software that responds to exter-
nal events (such as “daemons”). Many classical data structures (heaps, dynamic
trees etc), are developed in the pointer machine model [17]; this paper is not
primarily concerned with these, but with the rapidly increasing number of RAM
dynamic data structures (e.g [1]) that have been recently proposed, particu-
larly succinct data structures [12, 4, 11, 5, 13]. An important feature of these data
structures is that they repeatedly allocate and deallocate variable-sized pieces
of memory. The memory usage can be measured in two ways:

– In the memory manager model the algorithm calls built-in “system” proce-
dures allocate and free. The procedure allocate(x) returns a pointer to the
start of a sequence of contiguous (unused) memory locations, and increases
the memory usage of the algorithm by x units. The procedure free(p) takes
as an argument a pointer p to a contiguous block of memory locations that
was previously allocated, and frees the entire block; the memory usage of the
algorithm reduces by the requisite number of units.

– In the classical RAM memory model, the algorithm has access to memory
words numbered 0, 1, 2 . . .. The space usage at any given time is simply s+1
where s is the highest-numbered word currently in use by the algorithm [6].

Although many dynamic succinct data structures [4, 9, 2] work in the memory
manager model, this model does not charge the data structure for space wastage
due to external fragmentation [16, Ch 9]. It is known that if N is the maximum
total size of blocks in use simultaneously, any memory manager needs Ω(N lgN)
words of memory to serve the requests in the worst case [14, 15, 10]. (If data is
always allocated in fixed-size chunks, there is no serious issue with fragmentation;
we also do not consider situations where the memory manager can move an
already allocated chunk of memory to a different address.)



Fragmentation is problematic for a number of reasons. If the memory allo-
cator is directly allocating physical memory, then fragmentation results in sig-
nificant underuse of physical memory. Of course, most computing devices run
operating systems that provide per-process virtual memory, but this is not uni-
versal: operating systems such as Android do not support virtual memory, and
this appears to be relatively widespread when the secondary storage is based
on solid-state technology, due to the current tendency for upgrades to degrade
solid-state memory1. Even when virtual memory is supported, it is not axiomatic
that virtual memory is unlimited — a notable example is the Java VM, which
is limited to 2GB of virtual memory. Finally, when virtual memory is effectively
unlimited (as it would be on a 64-bit machine), when the data being stored is
close to the physical internal memory on a machine, fragmentation may lead to
“thrashing”, and on smaller input sizes, poor usage of TLB.

Unfortunately, the memory-manager model is the only memory allocation
method available for normal application programmers, and it is inconvenient
(as in [11, 5, 13]) to simulate the RAM memory model through the memory-
manager model (in practice such simulation is impossible if the data structure
is to be used as part of a large, complex application). Our aim, therefore, is
to find fragmentation-friendly dynamic data structures, which (ideally) achieve
fragmentation-friendliness through self-tuning, and not by means of parameters
that the user sets, since these parameters may be highly data-dependent (e.g.
they may depend upon the relative amount of textual and markup data in an
XML document, the distribution of keys to be hashed in a dictionary etc.).

Collections of extendible arrays. We focus on the above issues in a collection
of extendible arrays (CEA), which is arguably the simplest dynamic random
access data structure, but can be used to build complex data structures [11,
13]. A CEA maintains a collection of extendible arrays (EAs); each EA in the
collection is a sequence of n records. Each record is stored in a single word and
is assigned a unique index between 0 and n− 1. The operations supported are:

– create(r): create an new empty EA and return its name,

– destroy(A): destroy the EA A, and

– access(i, A): access (read/write) the record with index i in the EA A,

– grow(A): if the EA A currently has n records, add a new record to the end
of A with index n.

– shrink(A): if the EA A currently has n records, delete the record in A with
index n− 1 (the last record).

Although there have been several studies of memory fragmentation in general
[3, 8, 7], we believe this the first study where the effect on fragmentation of a series
of allocations/deallocations by a specific data structure is studied.

1 This is especially problematic when the amount of secondary memory is limited, as
memory locations will be written to repeatedly by the virtual memory system.



2 Data Structures

We now describe our data structures. A CEA is represented by a vector (as
described below) which contains pointers to the individual EAs; the handle of
an EA is simply the index in this vector that contains the pointer to the EA.
We consider the following implementations of an individual EA:

Vector. This is the standard data structure, which stores an EA with n records
in an array of size at most 21+dlog2 ne records. To handle an intermixed sequence
of grow and shrink operations, a rule for resizing the array might be as follows:
double the array size whenever there is no more room to accommodate a grow
and halve the array size whenever a shrink causes it to become less than 1/4 full.

Remarks. The time for access is worst-case O(1), grow and shrink take O(1)
amortized time each and and create/destroy take O(1) time each. However, a
vector of size n may have internal fragmentation of Θ(n) words2. Furthermore,
assuming a first-fit allocator, it is easy to come up with a sequence of operations
that yields n vectors of total size O(n) records that occupy a range of memory
addresses spanning Θ(n log n) words (details omitted).

Simple. To reduce the internal fragmentation, the simplest idea is to choose
a fixed integer parameter b > 1 (ideally a power of 2). Records are stored in
fixed-size data blocks of b words each. For each EA with size n, we store a
vector (called the index block) that contains dn/be pointers to each data block;
to perform access(i), we access the (i mod b)-th entry in the bi/bc-th data block.

Remarks. This gives O(1) worst-case time for access and O(1) amortized time
for grow and shrink, and O(1) time to create and destroy empty EAs. The use of
equal-sized data blocks means that a CEA built upon this EA is less susceptible
to external fragmentation. The index block occupies O(n/b) words, this overhead
can be minimized by choosing a large value of b. However, if the collection
contains a significant proportion of small (size� b) EAs, there could Θ(b) words
of internal fragmentation per EA, and the internal fragmentation could be even
more than for the vector CEA. Thus, the parameter b must be chosen based
upon knowledge of the way the DS will be used (which may not be available),
and this DS is not “self-tuning”. Furthermore, from an asymptotic viewpoint,
the fact that index blocks are Θ(n) in size may mean that external fragmentation
caused by index blocks is relevant.

Brodnik. In [4] a vector of size n is divided into consecutive (conceptual)
superblocks of size 1, 2, 4, . . . , 2blog2 nc. A superblock of size 2k is represented
as up to 2dk/2e data blocks of size 2bk/2c each, and memory is only allocated for

2 By internal fragmentation we mean memory allocated by a data structure but not
used, analogous to the operating systems term [16])



non-empty data blocks. An index block contains pointers to all data blocks and
is represented as a vector. The access(i) function is a little complex:

access(i):
1. Let r denote the binary representation of i+1, with all leading zeros removed.
2. The desired element i is element e of data block b of superblock k, where:

(a) k = blog2(i + 1)c,
(b) b is the bk/2c bits of r immediately after the leading 1-bit, and
(c) e is the last bk/2c bits of r.

3. Let3 p = 2bk/2c + 2dk/2e − 2.
4. Return the e-th element of the (p + b)-th datablock.

Remarks. Brodnik et al. [4] show how to implement access in O(1) worst-case
time. The amortized time for grow and shrink is clearly O(1), and O(1) time is
needed to create and destroy empty EAs. It is easy to see that “wasted” space
(internal fragmentation plus the index block) is O(

√
n) words. Brodnik et al. [4]

show that this level of wasted memory is optimal. However, it is possible to give
a sequence of grow and shrink operations that creates O(n) vectors of total size
O(n), but occupying Θ(n log log n) words of memory (details omitted).

Modified Brodnik A modification of Brodnik et al.’s data structure is as
follows. All data blocks in a given EA are of the same size b (which is a power of
2), initially b = 2. There is initially an index block of size i (also a power of 2),
initially i = 1. A grow or shrink adds/deletes elements from the last data block,
allocating a new data block or freeing a newly-empty one, as needed. Consider
now a sequence comprising solely of grow operations. If the index block is full,
we alternate between two courses of action: doubling i and doubling b; in the
latter case we take pairs of existing data blocks, and copy their data into a newly
allocated data block of size 2b, and free the existing data blocks (this has the
effect of making the index block half-full). For a mixture of intermixed grow and
shrink operations, if the index block occupancy drops below 1/4 after a shrink we
undo the last “adjustment” operation (i.e. we halve b or i, whichever variable
was doubled most recently). The access operation works as in Simple.

Remarks. This gives O(1) worst-case time for access and O(1) amortized time
for grow and shrink, and O(1) time to create and destroy empty EAs. However,
the CPU cost of the access instruction is significantly lower. Again, the wasted
space is O(

√
n) words and, as with Brodnik, it is possible to give a sequence

of grow and shrink operations that creates O(n) vectors of total size O(n), but
occupying Θ(n log log n) words of memory.

Global Brodnik. Both Brodnik-style data structures above potentially suffer
from external fragmentation when used in a CEA. This is because different EAs

3 The formula p = 2k − 1 in [4] is (clearly) wrong: there are O(
√
n) data blocks.



in the CEA will have different data block sizes (we ignore external fragmen-
tation due to index blocks since the index blocks are typically a small overall
component), so a mixture of block sizes will typically be in the process of alloca-
tion/deallocation. We now use some ideas from [13] to “self-tune” block sizes. If
t is the number of EAs currently created, N is their total size, and b the current
block size, then the worst-case internal fragmentation is O(bt), and that due to
the index blocks is O(t + N/b). Balancing the two gives the optimal block size
as b = Θ(

√
N/t). The algorithm tries to maintain an ideal block size of c

√
N/t

for some constant c > 0, and whenever the real block size is more than a factor
of two away from this “ideal” value, it is either doubled or halved, resulting in
a re-organization of all EAs in the CEA.

Remark. The time for access is clearly O(1), and in [13] it is shown that the amor-
tized time for grow, shrink and create is O(1); however, this analysis assumes that
the number of EAs in existence at any given time is within a constant factor
of the maximum number of EAs that were ever in existence in the past. The
internal fragmentation is clearly O(

√
Nt) words; representing each EA individu-

ally using Brodnik would lead to internal fragmentation of O(
∑t

i=1

√
ni) words,

where ni is the size of the i-th EA, which is better than O(
√
Nt) unless all EAs

have roughly the same size.

3 Experimental evaluation

The aforementioned data structures have been implemented in C++ and a va-
riety of tests were conducted to study the speed as well as the memory us-
age/fragmentation of the implementations together with the C++ STL vector,
which we now describe. The test machine that was used to run these tests was
a Intel Core 2 Duo 64-bit machine with 4GB of main memory, 3.16GHz CPU
and 6MB L2 cache, running Ubuntu 10.04.1 LTS Linux. The compiler version
was g++ 4.4.3 with optimization level 3. The CEAs all stored 4-byte integer
records; note that pointers are 8 bytes each. To measure the memory, both vir-
tual memory (VM) and resident memory (RES) that was used by the tests,
/proc/file/stat was used. For the speed tests clock() method was used to
measure CPU time and the /usr/bin/time command for wall time.

3.1 Implementation Details

For all of these DS, except Global Brodnik, a common collection manager class
was used, to allow multiple instantiations of EAs, choosing the DS using compiler
options. The collection manager uses an array of pointers to store the memory
locations of each instance of the DS. Every time the array is full it doubles its
size. The EAs are allocated in memory using the new keyword.

Vector. We used the standard STL implementation, which uses doubling if the
underlying array is full, but when elements are removed, the underlying array
size does not change in any way.



Brodnik. This implementation of this DS is based on the original paper. To
optimize the speed of access (and also shrink and grow), a number of values are
stored in the header block of this DS, giving a relatively large header size of 41
bytes. Further, to optimize access(i), some operations (e.g. bx/2c, dx/2e) were
written using bitwise operations. To compute blog2 xc (the left-most set bit in an
integer x) the folklore trick of casting x to a float is used. We access this memory
as an integer, use bitwise operations to extract the exponent, then subtract the
bias, and the result is the position of the left-most set bit. Finally, a table of
size at most 64 integers was used to map the number of the superblock that
the i-th record is located in, to the number of data blocks prior to the specified
superblock. These optimizations greatly increased the speed of access(i).

Simple. This DS is implemented with the data block size (which must be a
power of 2) being a constructor parameter. In the access function, operations such
as division by b and modulo b are implemented by shifts and masks, respectively.
We used b = 26 = 64 throughout in our tests. Again a number of header variables
are used and the header block size is 29 bytes.

Modified Brodnik. The access(i) operation is similar to Simple, it uses mask-
ing and shifting to get the location of element in a data block and the location
of that data block in a super block. Since the size of these data blocks changes
over time as elements are added or removed, a static array of masks was used.
Since growing the index block and data block alternates, a boolean was used to
check what was doubled last (the index block size or the data block size). This
DS has a header size of 30 bytes.

When the data blocks need to double, every two data blocks are merged into
a new one with double the size. This new data block is stored in the already
existing index block starting from the beginning (thus avoiding the creation of
a new index block). Similarly where access is worst-case O(1), grow and shrink
would take O(1) amortized time each and and create/destroy applied to a new
EA/empty EA would take O(1) time each. However, a vector of size n may have
internal fragmentation of Θ(n) words. Furthermore, assuming a first-fit allocator,
it is easy to come up with a sequence of creates, grows and shrinks that yields
n vectors of total size O(n) records, occupying a range of memory addresses
spanning Θ(n log n) words in total. When shrinking, either the size of the index
block or the data block will be halved. When data blocks need to shrink, one
data block is split into two and this is done by storing the new bigger data block
into a new index block of the same size as the original one. The old data blocks
and index blocks are subsequently deleted.

Global Brodnik. Each individual EA has a header size of 25 bytes. The col-
lection maintains the total number of elements t in all the instances of the EAs
that it contains. We derive from the current data block size b (a power of 2)
an upper bound U = 2b and lower bound L = b/2. After each grow/shrink we



use calculate an ideal block size b̂ =
√
t/N , where N is the number of EAs. We

maintain the condition that L < b̂ < U : if this condition is violated then the
data block size is doubled/halved, along with U and L, to restore this condition.
We avoid doing a square root calculation every time there is a grow or shrink by
checking if t/N ≥ U2 for the upper bound and similarly for shrink. The values
U2, L2 are recomputed every time U and L change.

The access method is the same as modified Brodnik and an array of masks
is used. The index block of an individual EA is doubled when it gets full, either
to accommodate one new data block, or because the size of the data blocks is
halved. An index block is halved when its occupancy drops below a quarter of
its capacity (by a shrink on an individual EA).

3.2 Speed Tests

We tested the time for access(i) (specifically a read — writes were not tested). In
all cases EAs were created sequentially, i.e., the i-th EA was created and grown
to its final size before creating and growing the (i+1)-st EA. We considered two
access patterns: sequential and random. For the sequential access test elements
were accessed in the order in which they were grown. In the random access test,
we instead made uniform random accesses equal to the number of elements in
the CEA. The random test was essentially run only in the case where all EAs
in the CEA are equally sized, and the number of EAs and elements per EA are
both powers of two. In this case we used one call to the lrand48() method in
the C++ cstdlib. This generates a number in the range of [0, 231): we use the
most-significant bits to select an EA and the least-significant bits to select an
element within that EA. This avoids making two calls to lrand48() (which is
relatively slow), but limits the total number of elements t that can be used for
this test to 231. This was not a limitation as data sizes such as these would have
exceeded the RAM of our machine.

A variety of values of N (the number of EAs) and k (the size of each EA)
was used. The values used were N = 16 and k = 16777216 (a few large EAs),
N = k = 16384 and N = 2097152, k = 128 (many small EAs, relevant to some
succinct dynamic data structures). Each test was run five times and the average
of these times is included in this paper. Table 1 gives the results.

As can be seen, all the data structures are significantly faster than Brodnik for
sequential access. This is very much as expected (and Brodnik is not particularly
“slow” in absolute terms). Also vector is slightly faster than other EAS in all the
tests. The random tests show more interesting structure. In the first test, most
data structures are similar except for Simple, which is a bit slower. All the data
structures used for these tests except for the vector require two memory accesses
to retrieve the required element due to indirection cause by the index blocks.
This is the main reason why in general the vector is faster than the other DS
that were tested. However, in the first test the size of the index blocks in all but
Simple are very small (they grow as

√
n, where n is the size of an individual EA)

and so fit in cache. However, this pattern is not repeated in the other tests, since
the overall size of the index blocks (as a proportion of data blocks) increases



EAs x Elements DS Grow Sequential Random

16 x 16777216

Vector 2.38 0.25 22.65
Brodnik 2.93 1.90 28.66
Simple 1.87 0.31 40.53

Modified Brodnik 1.69 0.29 20.63
Global Brodnik 4.95 0.33 23.96

16384 x 16384

Vector 1.90 0.25 24.03
Brodnik 3.12 1.87 57.46
Simple 1.85 0.32 44.35

Modified Brodnik 2.39 0.30 48.05
Global Brodnik 4.93 0.34 44.46

2097152 x 128

Vector 3.12 0.29 44.69
Brodnik 6.31 2.09 86.45
Simple 2.11 0.43 56.28

Modified Brodnik 6.21 0.58 54.04
Global Brodnik 6.26 0.48 58.26

Table 1. Growing time, Sequential and Random access time test results (in seconds)

as n decreases. There is a slight advantage to the Global and Modified Brodnik
in terms of access times, we believe that this may be because the regular re-
arrangement of data in Global and Modified results in more compact storage;
but this requires further investigation.

3.3 Memory Usage Results

Worst Case for Brodnik DS. We now discuss a potential worst-case scenario
for the Brodnik DS. The scenario is constructed assuming that there is some
“first-fit-like” behavior in the memory manager and will be tested experimentally
against the real-life Linux allocator.

The Brodnik DS, as mentioned before, has a header block, an index block
and data blocks grouped into virtual superblocks. The test proceeds in rounds
0, 1, 2 . . .. In round i, Ni EAs of size ki are created sequentially (see beginning of
3.2); in rounds i > 0 this creation is accompanied by shrinking (in a round-robin
manner) the EAs created in round i − 1. We choose j0 to be an even integer
and let k0 = 2j0+1 − 1; in subsequent iterations we take ji+1 = 2ji+1 + 4 and
ki+1 = 2ji+1+1−1. We always maintain N0k0 = N1k1 = N2k2 and so on, so that
the total number of elements in the CEA stays the same.

The reason why this pattern may result in fragmentation is as follows. We
hope that if we sequentially allocate Ni EA of size ki, the space between the
header blocks of EAs will be approximately equal to ki. Note that for EAs of
size 2x+1 − 1, the last superblock is of size 2x, and the size of the data blocks
in the last superblock is 2d

x
2 e. Thus, in the next round, the data blocks in the

last two superblocks of the newly created EAs will be of size 2ji+2 > 2ki. Thus,
we hope that all these data blocks (which total 3/4 of the EAs created in the
i+ 1-st phase) will be allocated in “fresh” memory.



In the test, we chose j0 = 4, giving k0 = 31, k1 = 8191 and k2 = 229 − 1 =
536870911. Assuming that N2 = 1, this would imply that N0 = k2/k0, but
our machine was unable to allocate so many EAs. Hence we chose N0 = 222,
N1 = N0k0/k1, N2 = 1, and k2 = N0k0 ≈ 227. The results are shown in Table 2.

i Ni ki VM (GB) RES (GB)

0 4194304 31 2.46 2.45

1 15873 8191 3.03 2.99

2 1 130023424 3.53 3.08

Table 2. The results of the Brodnik DS worst case

Although the real size occupied with the data blocks should be close to
507MB, due to the headers of the data structure it reaches the 2.46GB initially
as shown above. In subsequent phases, there is an increase of almost 570MB,
showing that in each case most of the memory allocated for the data blocks is
coming from “new” memory, not memory previously freed, even though the very
last EA is not quite as large as needed by the formula.

Random. For this test we start with N EAs sequentially created, each of size
k. Then we go through the CEA and shrink each EA once. We call this a pass.
After each shrink we grow one EA. The EA to be grown is selected based on
the following rule: the first 20% of the EAs should contain 80% of the elements.
This rule is applied recursively so 20% of the first 20% of EAs should contain
80% of the total number of elements of the first 20% of the EAs. We go through
all the EAs k times, so the EAs at the beginning of the CEA should be larger
and the EAs which have not been grown will have 0 elements.

To run this test the values N = 216 and k = 1024 were used. The gradual
increase after every pass is shown in Figure 1. Table 3 shows the initial memory
usage after creation and growing of the N EAs of size k and the resulting memory
usage after this test was run. The important thing to notice in this test is that
there has been a significant memory increase in all of the data structures without
adding new elements, just by redistributing the elements within the EAs.

DS
Initial Ending

VM (KB) RES (KB) VM (KB) RES (KB)

Vector 277648 266980 692040 603772

Brodnik 388228 377576 628456 523156

Simple 304276 293624 357080 343476

Modified Brodnik 328828 318264 577224 485612

Global Brodnik 328768 318208 372900 357440

Table 3. Memory usage before and after 80-20 test



Fig. 1. Virtual Memory (Top) and Resident Memory (Bottom) results of the 80-20 test



Thrashing. For the thrashing test we created N = 219 EAs sequentially, each
of size k = 1200, equating to about 2.4GB of useful data (recall that our machine
has 4GB RAM). We performed random access tests immediately after creation
and after growing and shrinking arrays as in the the 80-20 test described in
Section 3.34. We measured the following: (a) CPU time for the first random
access test (b) VM/RES before and after the 80-20 test (c) CPU/elapsed time
for the second random access test. The results for (b) and (c) are shown in in
Table 4 – we do not report (a) because they are in line with Table 1, except
that Brodnik was slower by a factor of 2 than expected (the initial VM was close
to the physical memory of the test machine). For (c), Brodnik and Modified
Brodnik fell foul of thrashing and took over 14 minutes to complete(thrashing
was verified by inspecting CPU usage and page faults using top). Vector, despite
a high VM, completed, albeit slowly, because it allocates contiguous chunks of
memory. Simple and Global Brodnik performed the best in this case.

DS
Initial Final

CPU Elapsed
VM RES VM RES

Vector 4.23 3.73 7.34 3.74 40.12 780

Brodnik 3.66 3.65 6.06 3.73 40.19 872

Simple 2.83 2.82 3.20 3.17 28.2 150

Modified Brodnik 3.15 3.14 5.71 3.67 43.28 1988.4

Global Brodnik 3.15 3.14 3.51 3.47 25.52 134.4

Table 4. Memory usage (GB) before and after 80-20 EA modification in thrashing
test; CPU and elapsed time for second random access test (s).

4 Conclusions

In this paper we have investigated a simple random-access dynamic data struc-
ture, the collection of extendible arrays. The standard solution would be to use a
number of vectors, but this solution runs into memory fragmentation problems.
We have demonstrated a sharp rise in virtual memory usage for the standard
solution. We have also conducted some tests that demonstrate that for appropri-
ate data sets that require memory close to the physical memory of the machine,
after running the 80-20 test described in section 3.3 the memory requirements
were greater than the physical memory of the machine, thus thrashing occured.
Unfortunately, the same is true for the data structure proposed by Brodnik et
al., which is aimed at solving this problem. We observe that the simple solution
of using indirection, together with the so-called “Global Brodnik” seem to avoid
this problem, but the simple solution requires parameter setting (which in turn

4 With a minor modification: we never let a shrink reduce the size of an EA below 200.



requires knowledge of how the data structure is used) which would appear to pre-
clude it as a general-purpose solution. However, “Global Brodnik” is relatively
slow when supporting the grow and shrink operations, which should be investi-
gated further. Another important task would be to compare their performance
on real-life inputs.

References

1. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees.
J. ACM 54(3), 13 (2007)

2. Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: Constant worst-case
operations with a succinct representation. In: FOCS. pp. 787–796. IEEE Computer
Society (2010)

3. Brodal, G.S., Demaine, E.D., Munro, J.I.: Fast allocation and deallocation with
an improved buddy system. Acta Inf. 41(4-5), 273–291 (2005)

4. Brodnik, A., Carlsson, S., Demaine, E.D., Munro, J.I., Sedgewick, R.: Resizable
arrays in optimal time and space. In: WADS. LNCS, vol. 1663, pp. 37–48. Springer
(1999)

5. Farzan, A., Munro, J.I.: Dynamic succinct ordered trees. In: ICALP (1). LNCS,
vol. 5555, pp. 439–450. Springer (2009)

6. Hagerup, T., Raman, R.: An efficient quasidictionary. In: SWAT. LNCS, vol. 2368,
pp. 1–18. Springer (2002)

7. Jr., P.W.P., Stigler, S.M.: Statistical properties of the buddy system. J. ACM 17(4),
683–697 (1970)

8. Knuth, D.E.: The Art of Computer Programming, Volume I: Fundamental Algo-
rithms. Addison-Wesley (1968)

9. Lee, S., Park, K.: Dynamic rank/select structures with applications to run-length
encoded texts. Theor. Comput. Sci. 410(43), 4402–4413 (2009)

10. Luby, M., Naor, J., Orda, A.: Tight bounds for dynamic storage allocation. In:
SODA. pp. 724–732 (1994)

11. Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees succinctly.
In: SODA. pp. 529–536 (2001)

12. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: WADS.
LNCS, vol. 2125, pp. 426–437. Springer (2001)

13. Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: ICALP. LNCS,
vol. 2719, pp. 357–368. Springer (2003)

14. Robson, J.M.: An estimate of the store size necessary for dynamic storage alloca-
tion. J. ACM 18(2), 416–423 (1971)

15. Robson, J.M.: Bounds for some functions concerning dynamic storage allocation.
J. ACM 21(3), 491–499 (1974)

16. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts, 7e. John
Wiley & Sons, Inc. (2004)

17. Tarjan, R.E.: Data Structures and Network Algorithms. SIAM (1987)


