
Dynamizing Succinct Tree Representations

Stelios Joannou and Rajeev Raman

University of Leicester, Department of Computer Science, University of Leicester,
University Road, Leicester, LE1 7RH.

Abstract. We consider succinct, or space-efficient, representations of
ordinal trees. Representations exist that take 2n+ o(n) bits to represent
a static n-node ordinal tree – close to the information-theoretic minimum
– and support navigational operations in O(1) time on a RAM model;
and some implementations have good practical performance.
The situation is different for dynamic ordinal trees. Although there is
theoretical work on succinct dynamic ordinal trees, there is little work
on the practical performance of these data structures. Motivated by ap-
plications to representing XML documents, in this paper, we report on a
preliminary study on dynamic succinct data structures. Our implementa-
tion is based on representing the tree structure as a sequence of balanced
parentheses, with navigation done using the min-max tree of Sadakane
and Navarro (SODA ’10). Our implementation shows promising perfor-
mance for update and navigation, and our findings highlight two issues
that we believe will be important to future implementations: the differ-
ence between the finger model of (say) Farzan and Munro (ICALP ’09)
and the parenthesis model of Sadakane and Navarro, and the choice of
the balanced tree used to represent the min-max tree.

1 Introduction

A number of applications that involve indexing and processing textual or semi-
structured data now need to deal with increasingly large volumes of data. Typi-
cally, these applications do not have satisfactory external-memory solutions and
so the data has to be held and processed in main memory; examples include
the various applications of suffix trees and a number of XML processing tasks
(including XQuery search, XSLT transformation). An important bottleneck in
many such applications is the space required to represent some kind of tree-
structured object: in such applications, succinct, or highly space-efficient, repre-
sentations of trees[18] are having increasing impact. The focus of this paper is on
ordinal trees, which are arbitrary rooted trees where the children of each node
are ordered. As there are 1

n

(
2n−2
n−1

)
ordinal trees on n nodes, storing an ordinal

tree requires 2n − O(lg n) bits, as opposed to the standard representation that
takes asymptotically Θ(n) words, or Θ(n lg n) bits, of memory. In recent years,
a number of representations of static ordinal trees have been developed [14, 15,
5, 13, 20] that use 2n+o(n) bits of memory, and support a wide range of naviga-
tional operations in O(1) time assuming the RAM model of computation with
word size Θ(log n) (the default theoretical model that we will assume in this

paper). The excellent practical performance of succinct ordinal tree represen-
tations has been shown in many papers including [8, 12, 2]. For example, when
representing XML documents, which are essentially ordinal trees, a standard
pointer-based representation [1] has five pointers per node1 (320 bits per node
on a 64-bit machine) to represent the tree structure and support fast navigation;
thus, the attractiveness of a representation that takes just a few bits per node
but supports operations quickly in practice, is clear. Indeed, succinct ordinal
trees have been successfully applied to several XML applications [25, 9, 3, 7].

Despite the success of static succinct data structures, more needs to be done.
For example, in the XML context, efficient support for updates to documents
is fundamental: the W3C standard DOM API specifies a number of methods
for modifying XML documents [24]. In discussions with industry contacts we
have found that there are few “purely static” real-world XML applications that
deal with large documents. While static succinct trees have received a lot of
attention, there has been much less work on dynamizing them, in theory or in
practice. Farzan and Munro [10] and Sadakane and Navarro [20] studied the
theory of dynamic succinct ordinal trees. Practical studies of dynamic succinct
data structures are few, and we are only aware of one work that discusses the
implementation of a dynamic succinct ordinal tree [25]; however, they implement
a theoretically non-optimal tree, and also their (good) perfomance results are
for their entire system, rather than the tree in isolation.

In this paper, we consider practical performance issues in implementing dy-
namic succinct trees. The operations we consider are:

– Basic navigation: first-child, last-child, parent, next-sibling,
prev-sibling.

– Updates: insertion and deletions of leaves.

Furthermore, we are concerned not just with the performance of individual op-
erations, but also focus on traversals, or relatively long sequences of navigational
operations. We give a brief introduction to the approach we take to dynamiza-
tion, before summarizing our main contributions.

Our approach is to represent the current n-node ordinal tree as a balanced
parenthesis (BP) sequence of length 2n (see Fig. 1). For specificity, assume that
a node is represented by the opening parenthesis of the pair representing it.
We obtain the BP sequence representing a tree by going through a tree depth-
first, outputting an opening parenthesis when a node is first encountered and
a closing one when every node of its sub-tree has been encountered. The BP
sequence is divided into blocks of size Θ(B) for some parameter B–in theory
B = Θ((log n)2)–and a min-max excess tree, a balanced binary tree, is stored
over the blocks to perform excess search [17, 20] (see Section 2 and 4 for details).
So far, we are following the approach proposed by [20], who show that if some
details are handled carefully, this approach yields an implementation with space
bound 2n+ o(n) bits, and time bounds O(log n) for both navigation and update
operations; the time bound can further be reduced to O(log n/ log log n) while

1 Parent, first child, last child, previous sibling and next sibling.

C

E F KD

G H

I J

A

B L

1 2 3 4 5 6 7 8 9 10 11 12

A B C D E F G H I J K L

(((() ((() (() ()) () ())))))

 1 2 4 5 6 7 9 10 11 12 13 14 15 16 17 19 21 22 23 3 8 18 20 24

Fig. 1. Example ordinal tree and its BP representation (left), the min-max tree (right).

maintaining the space bound. However, more work needs to be done to obtain
a satisfactory practical data structure from this idea, as we now discuss.

Parentheses versus Fingers. The first question that arises is what the precise
interface through which the data structure implements the navigation opera-
tions should be. Navigation in the BP is usually understood [15] in terms of the
following two operations:

– findclose(i): if the i-th parenthesis is an opening parenthesis, then find the
position of the matching closing parenthesis (findopen is similar).

– enclose(i): find the opening parenthesis that corresponds to the parenthesis
pair that most closely encloses position i.

In this scenario, we may, for example, number the nodes 1, . . . , n in depth-
first order, and the operation next-sibling(i) may take a node number as
an argument2. In this case, we need to proceed as follows:

1. Find the position of the opening parenthesis corresponding to i, say p.
2. Let q = findclose(p).
3. Inspect the q+1st parenthesis of the sequence, and if it is a closing parenthe-

sis, then return null. Otherwise, the next sibling is the node whose opening
parenthesis is in at position q + 1.

4. Determine the number j such that the parenthesis at position q + 1 is the
j-th opening parenthesis; return j.

Unfortunately, all four of the above steps require Ω(log n/ log log n) time if we
wish to support updates to the BP string in at most poly-log n time, by reduc-
tions [6, 10] to the well-known list-ranking and subset-sum problems [11]. This
appears to be a high price to pay for dynamizing, considering that operations
take O(1) time in the static case,

2 This is the approach taken by the implementation of [2].

An alternative is the finger model [10, 19, 16], where the key object is a finger
f, on which the following operations may be supported: (a) initialize the finger
to the root of the tree (b) perform operations such as f.op where op is one of
the navigation operations mentioned above. The result of an operation f.op is
either true, in which case the required node (parent, next sibling etc.) exists,
and the finger is moved to that node, or false, i.e. the node does not exist, and
the finger does not move. Updates are limited to occurring in the vicinity of the
finger. Interestingly, in the finger model, navigation operations can in fact be
performed in O(1) time [10]. While the approach proposed by [10] appears to be
complex and unsuitable for a practical implementation, the simpler and practical
approach of [20] that we are following appears inherently to take time Ω(log n)
for an individual operation. This raises the question: in an implementation of
dynamic succinct ordinal trees based on [20], is there any practical difference
between the finger model and the parenthesis-position model?

We show that the answer is “yes”. For traversals, this is partly because we
can largely omit steps (1), (3) and (4) above in the finger model, but also because
(2) turns out to be significantly cheaper than “logarithmic” for many practical
traversal seqeuences. For updates, we show that a simple strategy of “buffering”
updates (only possible in the finger model) greatly improves the speed of updates
for some update patterns (in our implementations we assume that we have only
one finger, but the principle easily extends to multiple fingers).

Traversals vs. Individual Operations. An implementation of static succinct or-
dinal trees, based on the approach of [20], was reported in [2]. As with the
dynamic approach of [20], the implementation of [2] also has Θ(log n) worst-case
time for individual operations. On the other hand, the implementation of [12]
is in principle O(1) time per operation. The starting point of our investigation
was that the implementation of [2], on traversals of ordinal trees derived from
some typical “benchmark” XML files, apparently had linear—rather than the
expected Θ(n log n)—behaviour. The basic cause of this is that if the answer
to a findclose or enclose operation is at distance d from the argument, then
the answer is usually found in O(log d) rather than O(log n) time. This led us
to investigate some “worst-case” trees for the implementation of [2]. While this
investigation (see Section 3) produced some interesting results, the real insight
was to try and directly exploit the “locality” of typical traversal sequences.
As noted above, in the data structure of [20], the min-max tree built over the
blocks needs to be a balanced binary tree, but the choice of balanced binary tree
is not specified (however, a kind of (a, b)-tree is needed to obtain the optimal
O(log n/ log log n) time bound). The desire to exploit locality led us to consider
using a splay tree [22], which has a number of interesting locality properties
[4, 22], conjectured, others proven. In the traversals we considered, using splay
trees allowed our example files to be traversed in linear observed time in some
cases. The time spent on splay tree operations (measured by number of nodes
accessed) appears sub-logarithmic in all the cases we considered. We do not yet
have a theoretical understanding of this phenomenon.

Structure of Paper. The rest of the paper is structured as follows. Section 2
summarizes the approach of [20, 2], Section 3 summarizes our experiments on
static trees, Section 4 summarizes our dynamic implementation, which is followed
by an empirical evaluation in Section 5.

2 Preliminaries

Consider the BP bit string of length 2n where 1 represents ‘(’ and 0 ‘)’. The
excess at any position i is the number of 1’s minus the number of 0’s prior to
position i. The excess of an opening parenthesis is also the depth of the node in
the ordinal tree. We use the terms global excess for the excess as defined above,
and local excess relative to some sub-string of the BP bit string for the excess of
a position, measured from the start of the sub-string. We also use the term sum
(relative to a sub-string again) for the excess at the end of the substring (which
is 0 for the entire BP). We use the terms min excess and max excess to denote
the minimum and maximum excess reached in a sub-string of the BP bit string.
A key step in [2, 17, 20] is excess search, which is as follows:

– fwd excess(i, rel): starts at position i going forward in the bit string search-
ing for the leftmost node after i that has relative excess to i equal to rel;

– bwd excess(i, rel): starts at position i going backward in the bit string
searching for the rightmost node before i that has relative excess to i equal
to rel.

Using the operations fwd excess(i, rel) and bwd excess(i, rel), the operations
findclose(i), findopen(i) and enclose(i) can be implemented. For example,
findclose(i) = fwd excess(i,−1).

Excess Search and the Min-Max Tree. As noted above, the BP sequence is par-
titioned into blocks of size B each. These blocks are placed at the leaves of a
tree such that each node contains the minimum, maximum (local) excess and
sum of the concatenation of blocks under it. In the static case, this min-max
tree is implemented as a binary tree stored in an array using the “heap-like”
numbering; in the dynamic case, an unspecified balanced tree is recommended.
An excess search starting at a block p and ending at a block q 6= p will navigate
up to the lowest common ancestor of p and q in the min-max tree from p, and
down again to q, see [20] or Section 4 for details.

3 Traversals on Static Trees

Input trees and traversals. Although a number of real-life “benchmark” XML
files are available [9], we did not use them extensively, for a variety of reasons.
Firstly, the files were relatively small – the largest, although 600MB in size,
had only about 25 million nodes: if stored in the information-theoretic mini-
mum amount of space, the tree would almost completely fit into a 6MB cache.

Clearly, experiments on such trees would not give a complete account of the
performance of our data structures for very large trees, particularly since cache
misses are an important cause of poor performance in succinct data structures.
Furthermore, our aim was to detect patterns of performance and to find “worst-
case” instances. (Although not reported here, the results we got from the larger
real-life benchmark XML files were in line with those we have reported.)

The experiments we performed were on four kinds of trees, of sizes approxi-
mately 64, 128, 256 and 512 million nodes. These were:

– Trees of about the above sizes obtained from XML files generated by the
XMark synthetic benchmark generator (this is a standard generator for test-
ing XML systems) [21].

– Regular k-ary trees of height h: we looked at the case k = 2 and h =
25, 26, 27 and 28 (referred to as binary trees henceforth), and h = 2 and
k = 8000, 11314, 16000 and 22618 (henceforth k-ary trees).

– A “centipede” tree, where a tree with n nodes (n odd) has a path of (n+1)/2
nodes, with each non-root node on this path having a leaf as a right sibling.

We considered two kinds of traversals: a non-recursive depth-first traversal
(DFS) and the all root-leaf (ALR) traversal [9], where we do DFS, but whenever
the DFS encounters a leaf we trace the path back to the root.

Fig. 2. Performance of the static implementations of Geary et al. (GRRR) and Ar-
royuelo et al. X-axis is the number of nodes (log-scale). (Left) Y-axis is the time for
traversal divided by the number of nodes. (Right) number of tree nodes visited by
Arroyuelo et al.’s implementation (ACNS) divided by the number of nodes.

Input trees and traversals. We timed the static implementations of [2, 12], code
obtained from Sadakane, on the above sets of trees (see Figure 23). Timings
were only taken for the following pairs of inputs: XMark, Binary and Centipede
with DFS, and k-ary with ALR.4 It should be emphasized that we cannot really

3 Some plotted data sets have y-values close to 0, hence they are not clearly visible
4 This is mainly for succinctness, though clearly it is infeasible to run ALR on Cen-

tipede for our data sizes.

compare the two data structures against each other: the code of [2] is a 32-bit
C implementation that takes about 2.3 bits/node with the default parameter
settings, while the code of [12] is a 64-bit C++ implementation that takes just
over twice as much space with the default parameter settings. We note that the
time for DFS (per node) varies greatly with the tree for both implementations:
Centipede is an order of magnitude slower. Also, for DFS on Xmark, Centipede
and the binary tree, the implementation of [2] shows linear behaviour, but for
ALR traversal on k-ary trees it clearly shows Θ(n log n) behaviour. The loga-
rithmic growth of numbers of tree nodes visited per input node is clearly visible
in both the (Centipede, DFS) and (k-ary, ALR) pairs in the graph on the right.
As expected in Geary et al.’s implementation, the traversal time per node is
constant for all traversals.

We explain this by looking at the traversal distance of a traversal on a BP
sequence: if the ith step of the DFS moves from a node whose parenthesis is at
position p to one at position q, we set di = |p− q|, and the traversal distance is
simply

∑
i di. It is easy to see that (i) the traversal distances of DFS and ARL

on a k-ary tree are Θ(n) and Θ(n2) respectively, and (ii) the traversal distance
of DFS on a binary tree and Centipede is respectively Θ(n log n) and Θ(n2). In
general it is easy to show (proof omitted):

Lemma 1. The traversal distance of non-recursive DFS on an ordinal tree with
n nodes of height h is O(nh).

Since the XMark files have a small (fixed) depth, the traversal distance for DFS
on XMark files is also linear.

Using the heuristic that a navigation operation with traversal distance d
usually takes O(1+logdd/Be) time (since the start and end points will be dd/Be
blocks apart), we see that the time spent in the min-max tree for a traversal
over a tree with n nodes with overall traversal distance D would be O(n(1 +
logdD/(nB)e)). This provides some explanation of the observed data (albeit
partially) – for example, we do not see a logarithmic growth in time for Arroyuelo
et al.’s implementation when running DFS on Centipede. However, the traversal
distance argument does suggest that in the dynamic case, a normal balanced tree
(e.g. red-black) will also have relatively poor performance in cases such as ALR
traversal on k-ary trees; one may get better performance by exploiting locality
directly (e.g. successive leaf-to-root traversals in ALR traversals will tend to visit
many min-max tree nodes in common, and have high temporal locality).

4 Engineering a Dynamic Succinct Implementation

Our base implementation divides the BP sequence into blocks of size B, which
are leaf nodes in a binary min-max tree. Each node of the min-max tree contains
the data mentioned in Section 2, see Figure 1 (right) for example. Similarly to
[20, 2] we use the excess to navigate around the succinct tree and find the matches
of our parentheses.

Forward excess search using the min-max tree is shown below (backward
excess is similar). The function E(i) returns the global excess at position i. In

Step 1 we use the length information in the min-max tree to locate the block in
which parenthesis i is located, starting from the root of the tree and descending
(this is needed as the number of parentheses in the blocks is not equal). The base
implementation is static and we initialize by bulk loading it. Bulk loading splits
the full BP string of a tree in equal sized blocks (except the last) and builds the
min-max tree on top of them, which results in a complete balanced binary tree.

forwardExcess (i, d)
1. Use the min-max tree to locate the block in which i resides keeping track of

global excess at beginning of block
2. Scan the block of i for the next parenthesis j where i < j and E(j) = E(i) +d

– If found return j
3. Search min-max tree for lowest common ancestor of block containing i and

block containing E(i)+d using minimum and maximum excess adjusting global
excess at start of block while moving between nodes

4. Search min-max tree for a leaf where min excess ≤ (E(i) + d) ≤ max excess
starting from right child of lowest common ancestor, by moving to the right
child of current node when E(i) + d not within range of excesses of left child

5. Scan the current node and find position j such that E(j) = E(i) + d

Finger Model We add the finger model to our base implementation. A finger
sits at a node (the finger node) and contains the block in which the parenthesis
representing the finger node lies, its local position in the block, its current local
excess and the excess at the beginning of the block. Clearly, Step 1 above is not
needed in the finger model.

In addition to bulk loading, we also provide the following dynamic operations
for modifying the finger model:

– insert-first-child(): insert a leaf as the first child of the finger node
– insert-next-sibling(): insert a leaf as the next sibling of the finger node

Operations delete-first-child() and delete-next-sibling() are analogous.
This API can also be used to create an ordinal tree.

Implementation of Updates To insert a new leaf we shift all the parenthesis
in the block to the right of the finger to make room for the leaf node. Observe
that the sum of a block does not change by adding a leaf, and neither does
the minimum excess. The maximum excess increases by 1, but only if a leaf is
inserted at a position where the excess is already maximum. Thus, we do not
need to scan the block after an insertion. Deleting a node is similar, but if the
excess at the node to be deleted is the same as the current maximum excess in
the block we will need to rescan the block to discover if there is another node
that has the same excess, or if the block maximum excess has changed. In all
cases though, the length values (if needed the excess values) of all ancestors of
the block in the min-max tree have to be updated.

When the block is full, it is then split into two new blocks, each containing
half of the parentheses of the previous block. To improve the space usage of

blocks (as low as 50% in the above), we implemented incremental copying of the
blocks. We start off with a block of size B. When the block gets full we increase
its capacity by a word, with an upper bound of 2B. When the block size is 2B
we split the block as above. Furthermore, we buffer all updates that occur in a
block so long as the finger does not move to a different block. When the finger
moves we flush the excess and length changes to all the ancestors of the block
before leaving the block.

The min-max tree was implemented as a splay tree [23]. When the finger
moves to a new block, then the parent of that block (which is an internal node)
is splayed to the top of the tree. This results in the last accessed nodes to be
closer to the root of the tree.

5 Experimental evaluation

The data structure as well as the tests were written in C++. The machine that
was used to run these tests was an Intel Pentium 64-bit machine with 8GB of
main memory and a G6950 CPU clocked at 2.80GHz with 3MB L2 cache, running
Ubuntu 10.04.1 LTS Linux and g++ 4.4.3 with optimization level 3. The Xerces-
C++ 2.80 was used. Furthermore, we use the code from [2], henceforth referred
to in this section as ACNS.

We first aim to justify the use of the finger model in a dynamic succinct
data structures. As noted previously, the base implementation is based on the
parenthesis model, and therefore each navigation operation is based upon the
findopen(i), findclose(i) and enclose(i) operations, where i is the position of
a parenthesis in the BP bit string. The first step in these operations is to start
from the root of the min-max tree to locate the block in which the ith parenthesis
lies. This step is unnecessary if no updates are made to a bulk-loaded tree, as in
this case all blocks are equal-sized; we augment the base implementation with
an array containing pointers to each block and find the block containing the
ith parenthesis by indexing into this array. This is the base + pointer array
implementation. Using the trees in 3 we perform traversals on a bulk-loaded
base implementation and the base+pointer array implementation, and also on
the ACNS implementation (as a “control” test).

Nodes ACNS Base Impl
Base + Pointer

Impl

64M 0.049 0.336 0.060

128M 0.049 0.361 0.060

256M 0.049 0.383 0.060

512M 0.049 0.407 0.060

Nodes DOM Splay Trees

16M 46.17 31.95

32M 90.83 65.05

64M 204.04 128.37

Table 1. (Left) DFS Traversal per-node time of ACNS, ”base implementation” +
pointer array, ”base implementation” in µs (Right) Parsing time of XMark file for
DOM and Splay tree implementation. Results measure CPU time in seconds.

Table 1 presents the time it took to do a DFS traversal on XMark files of
size 64, 128 and 256 million nodes. We observe from the the results of the test
that ACNS and Base + Pointer implementation are showing O(n) behaviour for
XMark files. However, “base implementation” shows O(n log n) increase and is
much slower. Since the only difference is that to access any block we need to
descend the tree, it is clearly shown that this has a significant impact on the
performance of the navigational operations.

For our second test, we test the speed of the insertions. Since there is no
existing succinct dynamic tree implementation we compare with Xerces-C++.
This is accomplished by using a SAX parser. A SAX parser will go through an
XML file and raise an event when an opening/closing XML tag was encountered.
We use that with our finger implementation to create an ordinal tree using
insert-first-child, insert-next-sibling and we compare the parsing time
by creating a Xerces-C++ DOM tree using a similar method. For the DOM case
all nodes are named “a”. In these tests we used XMark files up to 64M nodes.
Larger sizes were not attempted due to the memory usage of DOM.

The creation time for our finger model is faster. This can be partially ex-
plained by the cache effects. Due to the small number of nodes, most of the tree
will easily fit to cache in the finger model case. It was 40% faster in the case of
32 million nodes and 60% faster in the case of 64 million nodes. In that specific
case the fact that the percentage was so high might have been due to the exces-
sive memory usage of a Xerces-C++ DOM tree (for 64M nodes virtual memory
exceeded 12GB). Also the speed difference seems to diverge slightly with the last
test. The gap seems to be widening due to thrashing.

As a third test, we compare the traversal times for a splay tree against a bulk
loaded tree. To do these we check both against 64, 128 and 256 million nodes
generated by XMark, as well as with k-ary trees with similar number of nodes.

Nodes
XMark k-ary tree

ACNS Balanced Splay ACNS Balanced Splay
DFS ALR DFS ALR DFS ALR DFS ALR DFS ALR DFS ALR

64M 3.17 130.15 1.77 155.83 2.06 144.22 2.03 99.38 0.86 163.21 0.7 145.71

128M 6.35 261.25 3.54 310.76 4.15 281.45 4.05 209.60 1.74 330.36 1.41 294.29

256M 12.70 550.00 7.10 628.82 8.31 573.43 8.11 448.65 3.45 667.01 2.76 591.84

Table 2. DFS and ALR traversal comparison with using balanced tree and splay tree.
Results are in seconds

From Table 2 it is clear that for DFS our data structure, both with the
balanced tree and splay tree on top is faster than the ACNS data structure.This
is possibly a result that was influenced from the different block sizes used between
ACNS and the rest of the data structures that were traversed. Using a balanced
tree appears to be faster for DFS, but when the ALR is used then Splay trees
shows its possibilities, compared with the balance tree. Looking at Figure 3 we
see that the splay tree will always access fewer nodes of the min-max tree, hence

Fig. 3. Comparison of Splay trees and balanced trees. X-axis is number of nodes (log-
scale). Y-axis is nodes of min-max tree visited divided by number of nodes

proving that previously traversed nodes are closer to the top so the distance
to the parent that was accessed ”recently” is relatively small and justifying the
splay tree being faster compared to the balanced tree for ALR.

6 Conclusions

We have performed an empirical evaluation of a first implementation of dynamic
succinct trees. We observe that the performance of static succinct tree imple-
mentations, particularly those based on the min-max tree which have (near-
)logarithmic worst-case per-operation time complexity, is very dependent on the
tree and the sequence of operations performed, more specifically, on the local-
ity properties of the sequence of operations. By using a self-adjusting tree (the
splay tree) as a basis for the min-max tree, we obtain good performance, which
is arguably superior to any other balanced search tree scheme. The dynamic im-
plementation compares well with static succinct implementations for navigation
operations and with pointer-based ones for update operations. However, further
work is required to expand the functionality, to better understand the effects of
the splay tree on traversal performance and to investigate implementations of
O(1)-time dynamic succinct trees.

References

1. Apache: Xerces-c++ xml parser (Jan 2012), http://xerces.apache.org/xerces-c/
2. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.

In: Blelloch, G.E., Halperin, D. (eds.) ALENEX. pp. 84–97. SIAM (2010)
3. Arroyuelo, D., Claude, F., Maneth, S., Mäkinen, V., Navarro, G., Nguyen, K.,

Sirén, J., Välimäki, N.: Fast in-memory xpath search using compressed indexes.
In: ICDE. pp. 417–428 (2010)

4. Badoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on
comparison-based dynamic dictionaries. Theor. Comput. Sci. 382(2), 86–96 (2007)

5. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

6. Chan, H.L., Hon, W.K., Lam, T.W., Sadakane, K.: Compressed indexes for dy-
namic text collections. ACM Transactions on Algorithms 3(2) (2007)

7. Delpratt, O.: The sixml project (Mar 2010), http://www.cs.le.ac.uk/SiXML/
8. Delpratt, O., Rahman, N., Raman, R.: Engineering the louds succinct tree repre-

sentation. In: Àlvarez, C., Serna, M.J. (eds.) WEA. Lecture Notes in Computer
Science, vol. 4007, pp. 134–145. Springer (2006)

9. Delpratt, O., Raman, R., Rahman, N.: Engineering succinct dom. In: EDBT. pp.
49–60 (2008)

10. Farzan, A., Munro, J.I.: Succinct representation of dynamic trees. Theor. Comput.
Sci. 412(24), 2668–2678 (2011), prelim. version ICALP ’09.

11. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic data structures.
In: Johnson, D.S. (ed.) STOC. pp. 345–354. ACM (1989)

12. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation
for balanced parentheses. Theor. Comput. Sci. 368(3), 231–246 (2006)

13. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms 2(4), 510–534 (2006)

14. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS. pp. 549–554. IEEE
Computer Society (1989)

15. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

16. Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees succinctly.
In: SODA. pp. 529–536 (2001)

17. Munro, J.I., Rao, S.S.: Succinct representations of functions. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP. Lecture Notes in Com-
puter Science, vol. 3142, pp. 1006–1015. Springer (2004)

18. Munro, J.I., Rao, S.S.: Handbook of Data Structures and Applications, chap. 37,
Succinct Representation of Data Structures. Chapman & Hall/CRC (2004)

19. Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP. Lecture Notes in Com-
puter Science, vol. 2719, pp. 357–368. Springer (2003)

20. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Charikar, M. (ed.)
SODA. pp. 134–149. SIAM (2010)

21. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
Xmark: A benchmark for xml data management. In: VLDB. pp. 974–985. Mor-
gan Kaufmann (2002)

22. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

23. Tarjan, R.E.: Data Structures and Network Algorithms. SIAM (1987)
24. W3C: Document object model (Jan 2009), http://www.w3.org/DOM/
25. Wong, R.K., Lam, F., Shui, W.M.: Querying and maintaining a compact xml stor-

age. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.)
WWW. pp. 1073–1082. ACM (2007)

