
Policy Support for Business-oriented Web Service Management

Stephen Gorton and Stephan Reiff-Marganiec

Department of Computer Science
University of Leicester

University Road,
Leicester LE1 7RH
United Kingdom

Email: {smg24, srm13}@le.ac.uk

Abstract

Policies have been adopted for many reasons within
web services and Service-oriented Architecture in general.
However, while they are a favoured method of management,
this only occurs at the service level and in the software do-
main. Policies already exist in a narrow variety more fo-
cussed on service properties such as authorisation. As a
significant number of web services become available, more
emphasis needs to be placed on management of services
in the business domain. In this paper, we propose a pol-
icy framework that can be used to express business require-
ments for web services, at a business level that is more ab-
stract than the current high-level composition and orches-
tration technologies.

1. Introduction

The deployment of software as reusable services avail-
able on a network is the core idea behind the loosely-
coupled, open standards-based Service-oriented Architec-
ture (SoA), of which Web Services [1] is an implementa-
tion. Whilst still a relatively young technology, Casatiet
al [4] note that as a substantial number of Web Services be-
come available, so the attention shift will be from service
infrastructure (i.e. discovery, description and composition)
to service management.

Often, the enterprise architectural layer of web services
is regarded as a mangement layer, with technologies such as
BPEL1 providing a means to composition and orchestration
of composite services. However, approaches such as BPEL
are based upon a technical perspective which is of little use
in a business domain where the primary user is a business

1http://www-128.ibm.com/developerworks/library/specification/ws-
bpel

analyst. It also assumes that the underlying business pro-
cess is pre-defined, despite the fact that business needs in-
clude adaptation to technological and political changes. In-
stead, management of web services should be from a busi-
ness perspective, focussing on the agility and adaptability
of services that can fulfil business requirements. In addi-
tion, there is an increasing requirement to align IT objec-
tives with business objectives. This need has been recog-
nised by industry and a recent report (“IBM has high hopes
for ’Next Big Thing’ in software”, Financial Times Online,
April 3, 2006) reported that IBM has doubled its business in
SoA and stated that “Things really rub on each other - it’s
[SoA] the intersection of technology and business”.

Our approach is to use policies to manage services, in
terms of business requirements. Policies are defined in the
business domain and express what a service should do. In
addition, policies define sequences of events and responses
to specific activities. In [6], we presented a context in which
policies are used. This paper describes policies in more de-
tail, including their structure and possible implementation
with APPEL [12], a policy description language designed
for the telecommunications environment. APPEL is made
available to end-users through the use of wizards.

In section 2, we give a general overview of SoA, together
with policies and their current uses. In section 3, we de-
scribe the adapted APPEL framework with respect to web
services. In section 4, we present an initial APPEL imple-
mentation for SoA, before concluding section 5.

2. Background

SoA, and its implementation as Web Services, provides
an opportunity to achieve dynamic applications through au-
tomated discovery and composition of services. Services
are deployed and made available with well-defined inter-
faces, so that the implementation details are hidden. This

1



is suitable for the business domain, where the required per-
spective is a complete picture of the external quality of the
interactions, as perceived by the customers [4].

Policies are defined as “...information which can be used
to modify the behaviour of a system” [8], without the need
for re-compiling or re-deploying. Thus we consider poli-
cies as loosely coupled with the systems they interact with.
Furthermore, we refine the definition of a policy in the con-
text of our web service management system as“a high level
statement as to how business requirements should be pro-
cessed in the management system”(refined from [9]).

The most accepted policy type to be implemented with
web services is the access control rule. Ponder [5] pro-
vides a framework for specifying authorisation, obligation
and delegation properties for allowing specific activities,
forcing some event or specifying a delegate, respectively.
Other policy approaches include KAoS [3], which express
constraints on allowable actions by particular subjects, and
Rein [7], which expresses constraints over resources such
as services and actions. WSPL [2] is another access control
policy language, based on XACML2.

The Web Services Policy Framework (WS-Policy) ex-
presses capabilities and constraints of a particular web
service, in conjunction with various other specifications
such as WS-PolicyAttachment and WS-ReliableMessaging.
These specifications3 have service-specific applications in
the lower layers of the web service stack.

Thus we can see that policies are a popular approach for
many aspects of web services. Though despite the number
of uses, policies have yet to be applied to a business man-
agement framework. Our work is aimed at developing a
business policy framework for the management of web ser-
vices in the business domain.

The use of policies that we propose is orthogonal to a
graphical modelling language, such as the one presented in
[6] or similar to UML activity diagrams. Each task within
a task map represents a unit of business activity that con-
tributes to the satisfaction of the wider business goal. Tasks
are encoded with policies and may be subjected to external
policy inputs, or global policies. The notation includes op-
erators that allow tasks to be carried out sequentially and in
parallel, whilst addressing synchronisation issues.

3. APPELPolicy Framework

3.1. Overview

APPEL is a generic policy description language created
for the telephony call control domain [11]. It was used for
specifying policies. It is defined by an XML grammar, en-

2http://www.oasis-open.org/committees/xacml/
3located at http://www-128.ibm.com/developerworks/webservices/

abling the use of many common tools and parsers. We be-
lieve there are similarities between telecommunications and
SoC, thus by specialising APPEL to the service domain, we
can take advantage of its current features.

Due to the nature of changing requirements, particularly
in the telecommunications domain with switchable features
such as call forwarding, it was important to have some con-
trol mechanism over call features in such a way that core
software did not need changing together with recompiling
and redeployment. Web services are similar in that we often
need to combine more than one together in order to achieve
the results we desire. One specific advantage of SoA is ser-
vice level reuse, where services are loosely coupled to their
clients and can be invoked many times over. In a similar
way, web services have the potential to satisfy our software
requirements through the use of composition when (atomic)
services are not able to individually. One should note at
this point that APPELand other policy languages arepolicy
description languages(PDL), and policies are those docu-
ments borne out of implementing rules using a PDL.

3.2. APPEL Description

APPEL [11] is a generic policy description language de-
veloped for use in telecommunications through language
specialisation. More specifically, it is used to specify poli-
cies that govern call control with respect to call features
such as call forwarding and call barring. APPEL is defined
by an XML schema, although a wizard was created for the
initial implementation to increase expressive power in the
end user domain and allow non-software experts a simpler
method of defining their own policies.

A basic APPEL policy defines a number of policy rules,
each of which specifies a set of triggers, a set of conditions
and a set of actions. The first two sets may be empty, but the
last cannot be, thus APPEL has the ability to express ECA
rules and user goals.

The policy itself has an owner and may be applied to a
user, a set of users or a domain (identified through email-
like addresses). Policies can specify modalities through the
preferencesmust, should andprefer, plus their negations.
No specification of preference would indicate that the user
was neutral about a subject.

Policies are interpreted by a policy server, implying that
they have little use other than specification at the end user
point. Policy servers are able to link to policy stores that
contain information required for policy processing, such as
protocol to policy terminology mapping.

3.3. Extension Actions

We extend the initial implementation of APPELby intro-
ducing the following (informally described) actions:



Corporate Space

Project Space

Service Space

TaskTaskTask

WSWSWS

Business Domain

Web Service Domain

WSWSWS
WSWSWS

WSWSWS

TaskTaskRule
TaskTaskRule

Tasks map to 
(composite) servicesComposition / 

Orchestration 
Mechanisms

Figure 1. Cross-domain system layout

User Interface Layer

Policy Server
Layer

Service
Layer

Policy Server Policy Server Policy Server

Service Service Service Service Service Service Service

Web-based 
GUI

Policy Store Policy Store

Context

Figure 2. Policy architecture

Prompt: allows the user to enter parameters directly. The
actionprompt(String dataName) asks the user for a value that
refers to the parameterdataName .
Display: outputs a result or query as specified by the
user. The actiondisplay(Data data) displays service re-
sponse data, as either a list or a singular object. The ac-
tion display exception(Exception exception) outputs excep-
tion messages to the user, and the actiondisplay empty()

outputs a default message in the case of an empty response.

3.4. Management System Architecture

The context of our research is shown in Fig. 1. We use
policies to drive composition by encoding requirements and
rules, more specifically as the details of tasks which them-
selves are located in the corporate space, constrained by in-
dividual task rules and overarching corporate rules.

In Fig. 2 (adapted from [10]) , the bottom service layer
represents the original web service stack (including mes-
saging, discovery and description). We propose an intuitive
addition of layers to address policies and policy interfaces
(e.g. wizards), since we are concerned with increasing the
level of abstraction towards and into the business domain.

The policy server layer contains the policy management
systems, together with web service search and matching en-

gines. There may be repositories which can store persistent
policies as required by policy servers, who can also share
repositories. Many policy servers may exist, depending on
demand and processing ability. Other aspects, such as me-
diation and negotiation, can also be addressed in this layer.

The user interface layer allows business users to create
new policies and activate their business requirement model.
Due to the diversity of services that can exist, we must al-
low for a number of different interfaces, for example PDAs,
PCs, mobile phones and televisions. The interface should
include wizards to aid in the creation of policies as we do
not expect business users to be familiar with low-level code.
Wizards may be customised to their particular platform.

4. Language Specialisation for Web Services

4.1. Events

An event can be defined as either a message being passed
in a system (as in event-driven programming) or a change
of properties (as in telecommunications). A specified event
acts as a trigger to a policy. In the context of web service
management, we define simple events to be:

• Message events: occur when a message is sent or re-
ceived. A message includes a record of its source and
destination, plus a description of the message and the
actual message data.

• Time events: are either absolute (prescribed), peri-
odic (regular periods or relative (absolute time calcu-
lated according to some criteria, e.g. start and end
times). They are modelled by standard XML times-
tamps where possible.

• Change events: occur when system properties change,
originating from either an internal or external source.

• Service events: are generated before a service is in-
voked or afterwards (potentially before or after a re-
sponse is received). These events are based on the
afore-mentioned message events.

• Interaction events: occur depending on what type of
service operation has been invoked. If the operation
returns a response, a call event is generated after re-
ceiving the reply. If the operation does not return a re-
sponse, then a signal event is generated on invocation.

Complex events can be built from simple events using
event composition primitives (e.g. conjunction), resulting
in event (or trigger) groups.

4.2. Conditions

Conditions are boolean values that must equate totrue
when the policy is triggered in order for the action section



to be invoked. It is either a simple parameter value check or
a condition group using condition composition primitives.
Parameter values may be subject to operators such as>,≥
, < or≤. Parameters are generally local variables that may
declared in the policy, or the wider policy system.

4.3. Actions

An action is a step towards fulfilling a business goal. In
the context of web services, an action may include the in-
vocation of a service. Actions may be atomic or composite
(action group) through the use of action composition prim-
itives. These primitives includeand , or , andthen and
else as defined by the APPEL language.

5. Conclusion

Policies are already in use for a wide variety of applic-
tions, specific to the management of distributed systems.
Futhermore, policies are often used in SoA to define ac-
cess control constraints on services. We have presented an
event-condition-action policy framework, derived from the
APPELpolicy language, to lift policies from the service do-
main into the business domain.

Our work is novel in that policies are used only in the
service domain thus far, rather than in the business domain.
The latter domain requires more of a business perspective
and the input of business metrics, such as quality. It also
requires agility in order to continually align corporate IT
objectives with key business objectives.

We have concentrated on the policy description language
here, but the framework includes an architecture that allows
for policies to be used in the selection of suitable services
and also to govern service execution.

The gain achieved by our work is that policies are a pow-
erful and flexible means of management in the face of dy-
namic environments, such as service composition. While
services may change through updates, removals, etc., poli-
cies can continue to express the constraints as required by
the end user. Therefore, the potentially long process of dis-
covering and composing the “ideal” service for a require-
ment is significantly reduced. APPEL, although a generic
policy framework, can be specialised to the service domain,
as it was with telecommunications. It allows us to express
a range of policies such as goals and ECAs, whilst using
XML as a widely-accepted interchange format.

Our further work involves improving the language spe-
cialisation for APPEL by defining more accurately the ex-
tended functions as previously described. We also plan to
add operational semantics to the language in an effort to
formalise it further. Finally, in conjunction with a business
modelling notation, we will look to integrate a system that
combines graphical modelling with underlying policies.

Acknowledgements

This work is funded by the IST-FET IST-2005-16004
project SENSORIA (Software Engineering for Service-
Oriented Overlay Computers).

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraiu.Web Ser-
vices: Concepts, Architectures and Applications. Springer,
2004.

[2] A. H. Anderson. An introduction to the web services pol-
icy language (WSPL). InPOLICY, pages 189–192. IEEE
Computer Society, 2004.

[3] J. M. Bradshaw, A. Uszok, R. Jeffers, N. Suri, P. J. Hayes,
M. H. Burstein, A. Acquisti, B. Benyo, M. R. Breedy, M. M.
Carvalho, D. J. Diller, M. Johnson, S. Kulkarni, J. Lott,
M. Sierhuis, and R. van Hoof. Representation and reasoning
for DAML-based policy and domain services in KAoS and
nomads. InAAMAS, pages 835–842. ACM, 2003.

[4] F. Casati, E. Shan, U. Dayal, and M.-C. Shan. Business-
oriented management of web services.Commun. ACM,
46(10):55–60, 2003.

[5] N. Dulay, N. Damianou, E. Lupu, and M. Sloman. A pol-
icy language for the management of distributed agents. In
M. Wooldridge, G. Weiß, and P. Ciancarini, editors,AOSE,
volume 2222 ofLecture Notes in Computer Science, pages
84–100. Springer, 2001.

[6] S. Gorton and S. Reiff-Marganiec. Towards a task-oriented,
policy-driven business requirements specification for web
services. In S. Dustdar, J. Fiadeiro, and A. P. Sheth, ed-
itors, BPM, Lecture Notes in Computer Science. Springer,
2006. To appear.

[7] L. Kagal and T. Berners-Lee. REIN: Where policies meet
rules in the semantic web. Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, USA, 2003.

[8] E. Lupu and M. Sloman. Conflicts in policy-based dis-
tributed systems management.IEEE Trans. Software Eng.,
25(6):852–869, 1999.

[9] S. Reiff-Marganiec and K. J. Turner. Use of logic to de-
scribe enhanced communications services. In D. Peled and
M. Y. Vardi, editors,FORTE, volume 2529 ofLecture Notes
in Computer Science, pages 130–145. Springer, 2002.

[10] S. Reiff-Marganiec and K. J. Turner. A policy architecture
for enhancing and controlling features. In D. Amyot and
L. Logrippo, editors,FIW, pages 239–246. IOS Press, 2003.

[11] S. Reiff-Marganiec, K. J. Turner, and L. Blair. APPEL: The
ACCENT policy environment/language. Technical Report
CSM-164, University of Stirling, Jun 2005.

[12] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray,
P. Perry, and J. Ireland. Policy support for call control.Com-
puter Standards and Interfaces, August 2005.


