
MSSF: User-friendly multi-cloud data dispersal

Rafael M. de O. Libardi1, Stephan Reiff-Marganiec2

Luiz Henrique Nunes1, Lucas J. Adami1, Carlos H. G. Ferreira1 and Julio C. Estrella1
1University of São Paulo, São Carlos - SP - Brazil

2University of Leicester, Leicester - UK
mira@icmc.usp.br, srm13@le.ac.uk, {lhnunes, ljadami, chgferreira, jcezar}@icmc.usp.br

Abstract—Using a multi-cloud storage solution requires a
user to make complex decisions. Making these decisions can
be a problem for regular users who are not familiar with
multi-cloud storage. We propose MSSF, a Multi-cloud Storage
Selection Framework to automatically select a storage dispersal
strategy. MSSF formalises the selection process using a knapsack
optimisation problem using integer linear programming along
with a rule-based system to select a multi-cloud storage strategy
that fits the user needs and requires only simple inputs from
the user. Our experiments show the performance and usability
aspects of our solution, making it useful in real environments.

Keywords—Dispersion algorithms, Cloud services, Multi-cloud
selection, Cloud Storage

I. INTRODUCTION

Multi-cloud environments created a new research area with
novel challenges to distributed computing. The Multi-cloud
paradigm is a natural evolution of the cloud paradigm, in which
instead of dealing with one cloud provider, systems have to
integrate and manage several cloud providers to offer a better
service to the user. In the storage context, this enables users
to experience service improvements over the traditional single
cloud paradigm. Using multiple clouds, users can avoid vendor
lock-in [1] and improve the security, availability and durability
of their storage. The current multi-cloud storage platforms
depend on user configured parameters rather than providing
an user-friendly and intelligent approach [2].

Several traditional techniques can be applied in this new
environment. Encryption [3], [4], compression [5], and infor-
mation dispersal algorithms [6], [7] are some traditional tech-
niques used to improve the storage quality metrics. However,
due to the large amount of available modules and their distinct
properties, it is impractical to bother a regular user to choose
the desired dispersal configuration.

In this paper, we present the Multi-cloud Storage Selection
Framework (MSSF). Very early ideas for the framework have
been presented in [2], but this paper significantly extends on
these ideas with a complete framework, well-defined selection
mechanisms and extensive testing not presented before. MSSF
is an automated framework, which implements an internal
referral strategy, taking into account several distinct storage
properties, such as performance and cost. MSSF is composed
of a simple user interface, a repository containing modules
and providers’ QoS (Quality of Service) properties and an
automated selection engine. MSSF is able to select the best
storage configuration transparently to the user.

The best Multi-cloud dispersal technique is chosen us-
ing storage rules, predefined file types, user parameters and

integer optimisation. Storage rules are predefined minimum
requirements that the dispersal process needs to achieve, such
as security requirements. The file types are based on four
main categories classified according to file properties, such
as access pattern, MIME type (or file extensions) and file
size. User parameters define user preferences, such as security,
availability, durability and cost. Finally, when the framework
has to decide on the best technique, it solves a knapsack
optimisation problem created according to user parameters
and the file type. A selected dispersal technique is composed
of three categories of modules: a dispersal algorithm, an
encryption module and a compression module.

Our novel contributions can be summarised as:

• clear identification of requirements to store files using
multi-cloud storage environments (based on literature
analysis);

• a framework for file dispersal called FlexSky;

• a multi-cloud storage selection process modelled as a
knapsack optimisation problem able to select the opti-
mum cloud dispersal strategy according to predefined
parameters;

• a rule-based system to adjust and calculate weights for
parameters based on rules considering file character-
istics; and

• an evaluation showing MSSF performance and usabil-
ity aspects.

The remainder of this paper is organised as follows:
Section II analyses and discuss previous work relevant to this
paper. Section III introduces the FlexSky test bed and its
main aspects. Section IV review some important parameters
and features in multi-cloud storage environments. Section V
present the MSSF selection process and architecture. Section
VI investigates MSSF performance and usability. Section VII
summarises the achievements and identifies future work.

II. RELATED WORKS

There are several approaches to aggregate cloud providers.
Usually they provide a restricted set of options, forcing the user
to make manual choices or restricting the properties available
to them. A cloud evaluation and selection review is presented
in Alabool and Mahmood [8]. It shows most used selection
techniques, metrics and QoS parameters to evaluate, compare
and select cloud service providers (CSPs). Rehman et al. [9]
studies one of these techniques, called MCDM (Multi-criteria



decision-making). It compares some MCDM techniques and
shows that they are suited and effective to select cloud services.

The multi-criteria cloud selection problem was further for-
malised [10] into a rigorous mathematical model and a simple
selection methodology that leverages only cloud providers
performance was proposed. A more complex MCDM cloud
selection approach is presented in Le et al. [11], which uses
fuzziness alongside MCDM techniques to deal with uncertain-
ties and interdependence in the selection process. Rehman et
al. [12] proposes a framework to automatically select cloud
providers in enterprise environments that consider enterprise
policies and user requirement inconsistencies.

We deal with multi cloud storage selection problems, which
can be formalised as a web services composition selection
problem. Zeng et al. [13] present a generic knapsack opti-
misation problem formalisation for QoS aware web services
composition selection along with several techniques that can
be used to solve the problem. One of these solving techniques
is based on Integer Linear Programming. Ruiz-Alvarez and
Humphrey[14] uses such an approach to select the best cloud
storage allocation technique using an integer linear program-
ming solver. It shows through experiments that this technique
is reliable and scalable in this context. [15] proposes an XML
schema to describe the storage entities and a matching system
that uses user requirements to select the best storage strategy
to use regarding only cost and performance aspects.

Although these works offer very interesting solutions to the
cloud storage selection problem, they are limited to individual
cloud provider selection and hence not suited to multi-cloud
environments, in which several providers must be selected
along with a dispersal strategy that satisfy the overall user
requirements. A review leveraging multi-cloud environments
is presented in [16]. It also proposes a multi-cloud taxonomy
along with issues and requirements to tackle when creating
multi-cloud middleware. Their paper offers a good background
on multi-cloud service selection, but does not comment on
multi-cloud storage.

Several multi-cloud storage architectures were proposed,
implemented [17] and reviewed [18]. They usually ask the user
to select the desired dispersal strategy, which can be a hard task
for a regular user. Scalia [19] proposed to automatically select
a multi-cloud storage strategy without user intervention. It uses
historical data, file access patterns, file lifetime to continuously
optimise data placement at multiple cloud providers. However,
it leverages only provider parameters, such as cost, availability
and durability lacking other parameters, like security for ex-
ample. In addition, Scalia lacks support for different dispersal
strategies and data transformations. [19] also lacks scalability
experiments to check whether this selection approach is suited
for real environments.

Our work differs from these related works by providing a
selection mechanism that considers distinct dispersal strategies,
providers, and transformation modules, such as encryption
and compression algorithms. We also combine integer linear
programming with a specialist rule-based system to enable a
simple and easy to use user interface, increasing the usability
of our solution and selection method.

III. FLEXSKY

MSSF was embedded in the FlexSky test bed; however,
it could be used in other frameworks. The FlexSky test bed
eases the study and comparison of several multi-cloud dispersal
features in a real environment using real providers infrastruc-
ture. Due to its flexibility to design and execute experiments
considering several features and parameters, FlexSky aims to
be easily extensible.

Manager

MSSF
Metadata 
Storage

Blob Storage

Logger

Experiment 
Planner

4

1b

User 
Interface

1a

(3)

2

5

Fig. 1. FlexSky Overall Architecture

Figure 1 describes the overall FlexSky architecture and its
integration with MSSF. Currently, MSSF can be used from
the experiment planner and from the user interface, which
will receive user parameters and choose the best strategy to
disperse a file (step 3). Then, it provides to the manager module
the strategy selected, including which servers will be used in
the dispersal process and the required modules. Finally, the
manager executes the blob storage module to store the file
(step 4) and provides the metadata to the metadata storage
module (step 5).

The MSSF architecture enhances the design concepts of
FlexSky and offers the possibility to test several selection
methods through a common interface. This increases the
flexibility and the possibility to test and compare several multi-
cloud storage selection techniques performance aspects, such
as the selection time.

IV. FEATURES FOR SELECTING THE DISPERSAL METHOD
AND MODULES

A. Availability and Durability

Two important storage quality parameters to study are the
availability and durability. The former is defined as “the ratio
of (a) the total time a functional unit is capable of being used
during a given interval to (b) the length of the interval.” [20]
and is related to the probability that the system is working
when required. Durability, on the other hand, can be defined
as “a weaker property that ensures that data can be eventually
retrieved, but with some delay if it is currently unavailable”
[21]. In summary, availability measure the likelihood to re-
trieve the data when needed, while durability measures the
probability that no data loss occurs over time.

Cloud providers need to provide higher levels of data
availability and durability for their users, but it is not rare
to find events when those properties are not respected1. One
way to increase those properties’ levels is by using multiple
cloud providers’ storage using erasure encoding. When using

1http://goo.gl/S8H4AV



this method, those properties can be aggregated according to
the Equations 1 and 2, which measures availability (A) and
durability (D), respectively.

A =

m∑
i=n

m∑
P∈Fi

∏
i∈P

Ai
∏
j∈P c

(1−Aj) (1)

D =

m∑
i=n

m∑
P∈Fi

∏
i∈P

Di
∏
j∈P c

(1−Dj) (2)

These equations are based on the cumulative distributed
function of the Poisson Binomial distribution [22]. Equation
1 represent the probability that from m servers with distinct
availability levels A1, A2, ..., Ai, at least n servers will be
working when needed to retrieve the file. Equation 2 represent
the probability that from m servers with distinct durability
levels D1, D2, ..., Di, at least n servers will not lose the data
stored within a time period. Fi is the set of all subsets of
i providers that can be selected from the providers set and
P c is the complement of P . It is possible to notice through
the equation that the bigger the difference between m and n,
the more computationally complex it is to compute in practice
(combination problem). However, there are more efficient ways
to compute or approximate the result [22].

B. Performance

The performance is an important metric to consider when
dealing with multi-cloud dispersal methods because some of
these methods are computationally quite expensive. This metric
aggregates two sub metrics: provider performance and module
performance.

The provider performance is measured using the historical
provider throughput and calculating an average and is related
to the upload/download speed of the cloud providers. The
module performance is measured comparing the modules’
throughput using a benchmark on the same testing machine
creating a performance linear ranking for distinct file sizes.
Both the provider and module measures are then normalised
and inserted in the database to be used by the optimisation
module.

C. Confidentiality

This metric defines how likely your data can be accessed by
unauthorised entities. Several factors can influence the storage
confidentiality, such as the dispersal algorithm used, number
of parts required to retrieve the file, the encryption level and
the providers confidentiality features.

The dispersal algorithm can offer weaker or stronger levels
of confidentiality depending on its construction [23], which
influences the overall security level. The number of parts
required to retrieve the file also influences confidentiality,
because the larger the number of parts to retrieve, the less
information each part can reveal on its own. The encryption
level, which relates to the encryption algorithm and key size,
also influences the confidentiality level. On the provider side,
the number of confidentiality features, such as credential
protection, physical security and communication protection
also influence in each providers confidentiality.

There is a trade off between confidentiality and perfor-
mance. The confidentiality level is indirectly proportional to
the performance, because a higher confidentiality level requires
stronger security mechanisms which create a performance
overhead[24].

D. Storage overhead

The Storage Overhead is a metric that represents the
amount of extra space the file takes after being dispersed. It
is given by the ratio Sizefinal

Sizeinitial
. Some dispersal algorithms

present distinct characteristics regarding this property due to
the algorithms nature. In addition, the compression algorithm
and compression level influence this metric, by making the
files final size smaller. Although this metric is related to the
costs, we decide to separate it, thus allowing to analyse the
influence of this property separately from the provider costs.

E. Costs

The costs to store, maintain and retrieve the data is relevant,
because these costs can influence and even be the decisive
factor to choose the dispersal configuration. The main costs
involved in the multi cloud storage are the storage cost and
the bandwidth cost.

The storage cost is the price needed to pay to keep the
data stored in the providers for a time. The bandwidth cost
is the price to transfer data between the provider and the
client computer. This cost is categorised into input and output
bandwidth cost. The former is the cost to write data to the
provider and the latter is the cost to read data from the provider.

The storage and in/out bandwidth costs are present in
SLAs (Service Level Agreements) for the major cloud storage
providers and are already widely used to price their services
offer. As an example, Amazon S3 offers several storage offers
with distinct prices and properties2.

It is important to notice that the dispersal processing costs
are not leveraged because all the dispersal process is executed
locally and hence assumed free. Although this cost can be
easily added to our selection proposal if required. A summary
of all QoS parameters and the categories that influence them
are shown in Table I.

QoS Parameter Providers Dispersal
Algorithm Encryption Compression

Availability X X
Durability X X

Read Performance X X X X
Write Performance X X X X

Confidentiality X X X X
Storage Overhead X X X

Storage Cost X
Bandw. Cost (IN)/ GB X

Bandw. Cost (OUT)/ GB X
TABLE I. SELECTION CATEGORIES INFLUENCES ON QOS

PARAMETERS

F. File classification

A preliminary survey for this research revealed that the
users expect different dispersal methods for different file char-
acteristics. We propose a classification based on data access
patterns to identify user’s required storage needs.

2http://aws.amazon.com/pt/s3/pricing/



File type Access
pattern

Parameters to
maximise

Parameters to
minimise

Working
High reading

and High
writing

Read and Write
Performance,

Availability, Durability

Storage Overhead,
Bandwidth In/Out
Cost, Storage Cost

Active
High reading

and Low
writing

Read Performance,
Availability, Durability,

Write Performance

Storage Overhead,
Bandwidth In/Out
Cost, Storage Cost

Backup-Active
Low reading

and High
writing

Write Performance,
Availability, Durability,

Read Performance

Storage Overhead,
Bandwidth In Cost,

Storage Cost,
Bandwidth Out

Cost

Backup-Inactive
Low reading

and Low
writing

Durability, Availability,
Read Performance,
Write Performance

Storage Overhead,
Storage Cost,

Bandwidth In/Out
Cost

TABLE II. SUMMARY OF FILE TYPES AND CHARACTERISTICS

Our classification is shown in Table II and shows four
types of files classified according to their access pattern and
the desired optimisation parameters to maximise and minimise
according to their weight levels (from most important to less
important) in the dispersal process. The file classification can
be provided by the user or automatically inferred according to
its properties and attributes [25].

V. MULTI CLOUD STORAGE SELECTION FRAMEWORK
(MSSF)

Having understood the multitude of parameters needed to
enable appropriate storage, we now focus on the developed
system, consider how the user interface captures key facts, and
then show how these are used to enable dispersal technique
selection.

A. User parameters

The user interface of MSSF requests the following set of
input parameters from the user, which is deliberately kept as
simple as possible: (a) File path, (b) Number of provider fail-
ures to support (redundancy level), (c) Confidentiality (None,
Confidential, Very Confidential) and (d) File type (according
to the file characteristics)

Fig. 2. MSSF user interface

Figure 2 shows the MSSF user interface. MSSF needs three
user inputs for each file (in addition to the actual file). The
first is the number of provider failures to support, which is
the redundancy level desired (if up to this number of provider
fails, the user can still access their files). The second is the
confidentiality level desired and the third is the type of the file,

according to the predefined file types. These sets of inputs will
define the corresponding optimisation model parameters, such
as the features weight and the constraints to be satisfied.

The predefined confidentiality levels available to the user
are none, confidential, and maximum confidentiality. The level
none means that there is no special requirement regarding the
confidentiality of the file. The level confidential means that
the file is confidential and thus requires a high confidentiality
level, but not at too high a cost on other factors. The maximum
confidentiality requires the best algorithms and providers re-
garding the confidentiality to store the file, even if this incurs
high cost elsewhere.

The user will choose the file type according to the file char-
acteristics represent in Table II. By doing this, the framework
can tweak the optimisation parameters to suit the user needs.

B. Optimisation model and engine

The core module of MSSF is its optimisation engine, which
is loaded with a knapsack optimisation mixed integer model
to select the best combination of modules respecting user
requirements and needs.

The mixed integer optimisation approach was chosen be-
cause the dispersal process is based on three module categories
(dispersal, encryption and compression) and the number of
providers, which is limited. For example, it is unlikely that the
system will need to choose between thousands of modules and
providers in reality. Our model is based on the multi-criteria
global optimisation linear programming method presented in
[26] and comprises three elements: the objective function,
the decision variables and the set of constraints. This model
allows to maximise a set of parameters while minimising
others, which is particular useful for our mechanism. The
chosen method to solve the optimisation problem uses integer
linear programming [26], [27]. It requires integer decision
variables representing whether a specified module is selected
for a category. It also requires some constraint rules to limit
the search space and direct the optimisation model. Although
it is an NP-hard process, we show with our results that
considering current cloud storage environments, it is a feasible
solution. The equations that compose this optimisation model
are outlined below:

Objective function:

Maximise:

(

3∑
j=0

(
Qmax

j −Qk,j

Qmax
j −Qmin

j

∗ wj

)
+

7∑
j=4

(
Qk,j −Qmin

j

Qmax
j −Qmin

j

∗ wj

)
)

(3)

Subject to:

j∑
i=0

wi = 1, wi ∈ [0, 1] (4)

Nida∑
i=1

Di = 1, Di ∈ {0, 1} (5)



Nenc∑
i=1

Ei ≤ 1, Ei ∈ {0, 1} (6)

Ncomp∑
i=1

Ci ≤ 1, Ci ∈ {0, 1} (7)

Qk,j ≥ Quser
j (8)

Nprov∑
i=1

Pi = Preq, Pi ∈ {0, 1} (9)

Equation 3 is the objective function of our model, and aims
to minimise the storage overhead (j0), provider storage cost
(j1), provider bandwidth input cost (j2), provider bandwidth
out cost (j3) and maximise the confidentiality (j4), perfor-
mance (j5), availability (j6) and durability (j7).

Qk,j is the aggregated value for the jth QoS attribute,
offered by the kth combination of modules and wj is the
normalised weight for the jth QoS attribute. Qmax

j is the
maximum aggregated value and Qmin

j is the minimum ag-
gregated value for QoS attribute j offered by all the possible
combination of modules.

Equation 4 defines that the sum of all normalised weight
(wi) parameters equals 1 to ensure that all weights are using
the same scale.

Equations 5, 6 and 7 are responsible to select the modules.
Variables Nida, Nenc, Ncomp represent the amount of modules
available in each category. The decision variables Di (dis-
persal), Ei (encryption), Ci (compression) indicate whether
the module i will be chosen (=1) or not (=0). Note that
the dispersal algorithm (Equation 5) is always required to be
selected while the selection of the encryption and compression
module are optional.

The QoS user requirements constraints are satisfied by
using Equation 8. Again, variable Qk,j is the aggregated value
for the jth QoS attribute, offered by the kth combination of
modules. Quser

j is the user required value for QoS attribute j.
This ensures that the solution satisfy user’s hard requirements
for the desired QoS attributes.

The provider selection is represented by Equation 9. Nprov

is the number of available providers to choose. Pi is a decision
variable used to indicate whether the provider i will be chosen
(=1) or not (= 0) and Preq is the number of providers that
the model needs to choose for the dispersal process. Table III
summarises the model variables.

C. Provider Parameters Retrieval

It is important to retrieve the providers’ QoS parameters to
provide the optimisation model with the last values. To obtain
these, we designed a local daemon service. It retrieves some of
the providers data automatically. It populates the database with
the respective values for availability, read performance, write
performance, storage costs and bandwidth costs. Availability

TABLE III. MODEL VARIABLES

Name Type Description Source

Qk,j Integer
Aggregated value for jth QoS
attribute, offered by the kth

combination of modules
Solver

Qmax
j Integer Maximum aggregated value for QoS

attribute j
Solver

Qmin
j Integer Minimum aggregated value for QoS

attribute j
Solver

Di, Ei,
Ci

Binary
Decision variables to indicate

whether module i will be selected
for each category

Solver

Pi Binary Decision variable used to indicate
whether the provider i will be chosen Solver

Nida,
Nenc,
Ncomp

Integer Number of modules available in each
category Database

Nprov Integer Number of providers Database
Preq Integer Number of providers to choose Specialist system

wj Float Normalised weight for jth QoS
attribute Specialist system

Quser
j Integer User required value for QoS attribute

j
Specialist system

is given by periodically checking if the service is available.
Read and write performance are calculated by the average
throughput (KBps) of each operation and the costs are retrieved
directly from the providers website through JSON. Storage
cost is the cost to store one gigabyte of data for one month.
The bandwidth cost is the cost to transfer one gigabyte of
data. Durability is retrieved from the provider SLA and is
measured in number of nines. Table IV shows the providers
(anonymously) and the selection parameters used.

TABLE IV. PROVIDERS

Prov. Avail. Dur. Read
perf.

Write
perf. Confid. Cost

sto. BwIn BwOut

P1 99.9 9 350 80 75 10 0.02 0.02
P2 99.99 11 653 115 75 15 0.06 0.06
P3 99 8 832 80 75 10 0.05 0.05
P4 99.999 12 221 35 75 7 0.01 0.01

D. Rule-based QoS parameters weight specialist system

The QoS parameter weight for confidentiality is directly
based on the user set of inputs. The other QoS parameter
weights are defined based on a specialist system composed of
predefined rules that leverage the user set of inputs, file size
and file extension. The rules can increase or decrease each
weight to reflect the desired dispersal characteristics.

850 MBRetrieve size

Retrieve file MIME type

Rule matching

Match?

Calculate weight using 
match rule

Calculate weight using 
generic size rule

NOYES

video/avi

Rule Movie

Fig. 3. Rule-based specialist system



Figure 3 shows the specialist system flow. The figure also
shows as an example (rounded dashed shapes) a movie file (.avi
extension with 850 MB) chosen to be dispersed. The MSSF
system is able to recognise that this file is a movie (because of
the file MIME type and file size) and will calculate (increase or
decrease) the QoS parameter weights according to the ”movie”
rule. The rules were created based on a survey3, the literature
and feedback from storage specialists. If there is no match,
then the generic rule based on the file size is used. The rules
are encoded in a database, but to give an idea of the content we
will show the video and the generic rule as examples (using a
condition-action notation) now:

Rule Movie:
if File.MIME=video && File.SIZE >= 600MB
then w_prf_rd=*1.25 and w_prf_writ=*0.6 and w_sto=*1.15

and w_stcost=*1.15 and w_bw_in=*0.7 and w_dur=*1.15

Rule BigFile:
if File.SIZE >= 100MB
then w_perf_rd=*0.6 and w_avail=*1.2 and w_dur=*1.2

As can be seen, the rules describe the change one would
like to see to weights for the individual factors based on the
file type. The rules multiply the initial QoS user parameters
according to the desired specialist storage strategy; for example
for a movie, it will be more likely to be read then written often
so read performance is important. Using the rules above, the
specialist system increases read performance weight by 25%,
decreases write performance by 40%, increases storage weight
by 15%, increases storage cost weight by 15%, the dispersal
bandwidth weight decreases by 30% and the durability weight
increases by 15%.

E. Workflow

MSSF is composed of three main modules, the graphical
user interface (GUI), a specialist system and the integer linear
programming solver. Figure 4 shows the workflow for the
dispersal selection process. First, the user needs to provide
the input parameters for the desired file. Then, the specialist
system uses some predefined rules to determine weights for
each QoS parameter. Finally, MSSF runs the solver with the
calculated QoS parameters and selects the optimum dispersal
option (which providers to use, dispersal algorithm and mod-
ules) to disperse the file.

Input user parameters

Calculate QoS weights

Optimization

GUI

Specialist
System

ILP Solver

Fig. 4. MSSF workflow

VI. EXPERIMENTS

MSSF was evaluated using two distinct experiments. The
first experiment evaluates MSSF performance to check whether

3https://www.surveymonkey.com/results/SM-FML36X87/

it is a feasible solution for public cloud storage environments
using a performance evaluation. The second experiment is
composed of an usability test with real users to check if
our solution is easy to use and is able to select an adequate
dispersal configuration according to user needs regarding their
profile and file properties.

A. Performance Evaluation

The first set of experiments was designed to evaluate the
performance of MSSF, its performance and suitability for real
cloud environments with several servers and modules. The goal
was to evaluate only the selection mechanism performance and
not the other aspects, such as communication The environment
used for the tests was a laptop with Intel Core i3-2330M
2,2 GHz, DDR3 4 GB, Windows 7 SP1 with GLPK solver
v4.55[28]. The goal was to evaluate the selector performance

We design a full factorial experiment using our framework.
We analysed the response variable selection time with ten
replications for each experiment. The selection time represents
the time needed for the integer linear optimiser engine to
discover the combination of modules and servers that leads
to the optimal solution. Table V shows the factors and levels
considered. The number of modules is the total number of
modules (IDA, encoder and compression) loaded in the system.
The providers are the possible places to store the slices. The
set of input selection parameters used was:

MIN_SEC=10;MIN_PERF=10;MIN_STO=10;
WEIGHT_SEC=0.4;WEIGHT_PERF_READ=0;
WEIGHT_PERF_WRITE=0.1;WEIGHT_STO=0;
WEIGHT_STOCOST=0.1;WEIGHT_BWCOST_IN=0.1;
WEIGHT_BWCOST_OUT=0.1;WEIGHT_AVAIL=0.2;
WEIGHT_DUR=0;PROV_REQ=75%.

Additionally, a Scenario XML Configuration file for
FlexSky is available for this experiment (included as Appendix
for completeness).

Factor Levels
Number of Modules 300, 3000, 30000
Number of Providers 100, 1000, 10000

TABLE V. EXPERIMENT I FACTORS.

Providers

Modules

10
00

0
10

0010
0

30
00

0
30

0030
0

30
00

0
30

0030
0

30
00

0
30

0030
0

8000
7000
6000
5000
4000
3000
2000
1000

0

Se
le

ct
io

n 
Ti

m
e 

(m
s)

95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

Interval Plot of Selection Time

Fig. 5. Results for selection time.

Figure 5 shows the selection time. The x axis represents
the experiment factor combinations and the y axis represents
the selection time in milliseconds. Even with values as high



as ten thousand providers and thirty thousand providers, the
selection time average was under seven seconds, for the large-
scale scenario. For the small scenario (100 providers and
300 modules), more likely for a regular user, the selection
time average was 180,6 milliseconds. This indicates that our
solution is fast and can be scalable.

Term

AB

B

A

140120100806040200

A Providers
B Modules

Factor Name

Standardized Effect

2,0

Pareto Chart of the Standardized Effects
(response is Selection Time; α = 0,05)

Fig. 6. Factors statistical influence

We also want to determine the influence of factors on
the selection time. Figure 6 shows the Pareto chart of these
influences. The bar size indicates the influence of the factor
on the response variable. According to this statistical analysis,
the factor number of providers has slightly more influence on
the selection time than the factor number of modules.

B. Qualitative Test

A usability test was designed and executed to check MSSF
selection accuracy according to user needs. The usability
test was conducted with five users from distinct backgrounds
(academic, IT, business and personal) aiming to check if the
users would be able to insert the right input parameters using
the graphical user interface according to each type of file. It
was composed of four tasks involving four distinct file types
presented below:

1) A document file (.docx) of a business report with the
financial data of their company that they are working
on.

2) A public instructions manual (.pdf) they need to read
every day at their work.

3) A picture file (.jpg) from their childhood.
4) An access log from a company that is automatically

written.

We used the think aloud method [29] for the usability test.
This method encourages the user to talk about what they are
thinking when performing the actions. This is useful to verify
if the users thinking flow correspond with the desired thinking
flow for our solution and if the user parameters selection is
adequate for the user. For this test we used five users, which
is shown to be enough to detect most of usability issues [30].

The tasks along with a brief description of the file types
and the think aloud usability-testing method were presented to
each user. Then we show the folder where the files are located
and we start the test. After finishing, we compare the dispersal
selection result from the test with the most suited selection

according to a storage specialist. We can then evaluate whether
if the user input parameters is suited to the file characteristics
and discover usability errors on the UI.

TABLE VI. USABILITY TEST RESULTS

User/Task Task
1

Task
2

Task
3

Task
4 Usability Obs.

User 1 Comfortable

User 2 Folder instead of file selection;
Comfortable

User 3 Comfortable

User 4
Asked for the advanced interface;

Wanted to limit by budget;
Comfortable

User 5 Comfortable

Table VI summarises the usability test. All users were able
to complete all the tasks according to the specialist. The input
parameters were slightly different, but the system loaded with
the predefined rules was able to adjust the parameter weights
that lead to an adequate multi cloud storage strategy. The users
also felt comfortable with the input parameters.

User 2 suggested a folder-based strategy instead of a file-
based strategy, because for him it was more practical to
select these properties for each folder and then store his files
according to the desired folder. User 4 (IT background) asked
for an advanced interface in which he were able to control
all the parameters directly. He also asked for a budget option
to limit the maximum storage price for the selected storage
strategy. Although our model leverages the storage cost, we
decided not to ask for this input from the regular user because
it might be impractical for normal users. Most of the public
storage providers business plans are based on the storage folder
size available on the provider and not on the amount of stored
data, so in real scenarios it is not feasible for the user to specify
storage cost prior to uploading files. Although we decided
not to ask for this information from our user in the simple
interface, our model could support such a parameter and an
advanced user interface would be able to provide such options
for the user.

VII. CONCLUSIONS

We presented MSSF (Multi-cloud Selection Storage Frame-
work), a QoS aware selection framework to select the optimum
multi-cloud storage strategy. MSSF is part of FlexSky, a highly
flexible multi-cloud storage architecture to ease the study
and comparison of several dispersal modules, algorithms and
infrastructure. MSSF’s goal is to improve and automate the
dispersal storage selection process. We first model the multi-
cloud dispersal storage as a knapsack optimisation problem
leveraging several QoS parameters, we then propose and
implement an integer linear programming solver to select the
optimum combination of providers, dispersal algorithm and
modules to store the file according to the desired requirements.
We also present a rule-based specialist system that uses file
characteristics to adjust the parameter weights provided by the
user interface.

Finally, we show the performance and the usability of
our proposed solution through performance evaluation and
usability experiments respectively. The further development
of our specialist system, using distinct approaches and the
development of a better user interface are left for future works.



ACKNOWLEDGEMENTS

The authors thank FAPESP, CNPq and CAPES for the
financial support. Part of the work was conducted while Rafael
M. de O. Libardi was at the University of Leicester supported
by FAPESP through process 2013/05567-9 and 2014/05888-2.

REFERENCES

[1] J. McKendrick, “Cloud computings vendor lock-in problem: Why the
industry is taking a step backward,” Forbes, November, 2011.

[2] R. De Oliveira Libardi, M. Naves Bedo, S. Reiff Marganiec, and
J. Estrella, “Mssf: A step towards user-friendly multi-cloud data dis-
persal,” in Cloud Computing (CLOUD), 2014 IEEE 7th International
Conference on, June 2014, pp. 952–953.

[3] M. D. Ryan, “Cloud computing security: The scientific challenge,
and a survey of solutions,” Journal of Systems and Software,
vol. 86, no. 9, pp. 2263 – 2268, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121212003378

[4] F. Kerschbaum and L. Chaves, “Secure sharing of item-level data in
the cloud,” in Cloud Computing (CLOUD), 2011 IEEE International
Conference on, July 2011, pp. 756–757.

[5] S. Agarwala, D. Jadav, and L. Bathen, “icostale: Adaptive cost op-
timization for storage clouds,” in Cloud Computing (CLOUD), 2011
IEEE International Conference on, July 2011, pp. 436–443.

[6] M. Li, “On the confidentiality of information dispersal algorithms and
their erasure codes,” CoRR, vol. abs/1206.4123, 2012.

[7] A. Juels and A. Oprea, “New approaches to security and availability
for cloud data,” Commun. ACM, vol. 56, no. 2, pp. 64–73, Feb. 2013.

[8] H. Alabool and A. Mahmood, “Review on cloud service evaluation and
selection methods,” in Research and Innovation in Information Systems
(ICRIIS), 2013 International Conference on, Nov 2013, pp. 61–66.

[9] Z. ur Rehman, O. Hussain, and F. Hussain, “Iaas cloud selection using
mcdm methods,” in e-Business Engineering (ICEBE), 2012 IEEE Ninth
International Conference on, Sept 2012, pp. 246–251.

[10] Z. ur Rehman, F. Hussain, and O. Hussain, “Towards multi-criteria
cloud service selection,” in Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2011 Fifth International Conference on,
June 2011, pp. 44–48.

[11] S. Le, H. Dong, F. Hussain, O. Hussain, J. Ma, and Y. Zhang, “Multi-
criteria decision making with fuzziness and criteria interdependence in
cloud service selection,” in Fuzzy Systems (FUZZ-IEEE), 2014 IEEE
International Conference on, July 2014, pp. 1929–1936.

[12] Z. ur Rehman, O. Hussain, and F. Hussain, “Multi-criteria IaaS service
selection based on QoS history,” in Advanced Information Networking
and Applications (AINA), 2013 IEEE 27th International Conference on,
March 2013, pp. 1129–1135.

[13] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,”
Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311–
327, May 2004.

[14] A. Ruiz-Alvarez and M. Humphrey, “A model and decision procedure
for data storage in cloud computing,” in Cluster, Cloud and Grid
Computing (CCGrid), 2012 12th IEEE/ACM International Symposium
on, May 2012, pp. 572–579.

[15] ——, “An automated approach to cloud storage service selection,” in
Proceedings of the 2Nd International Workshop on Scientific Cloud
Computing, ser. ScienceCloud ’11. New York, NY, USA: ACM, 2011,
pp. 39–48. [Online]. Available: http://doi.acm.org/10.1145/1996109.
1996117

[16] D. Petcu, “Consuming resources and services from multiple clouds,”
Journal of Grid Computing, vol. 12, no. 2, pp. 321–345, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10723-013-9290-3

[17] J. Spillner, G. Bombach, S. Matthischke, J. Muller, R. Tzschichholz,
and A. Schill, “Information dispersion over redundant arrays of optimal
cloud storage for desktop users,” in Utility and Cloud Computing
(UCC), 2011 Fourth IEEE International Conference on, Dec 2011, pp.
1–8.

[18] D. Slamanig and C. Hanser, “On cloud storage and the cloud of clouds
approach,” in Internet Technology And Secured Transactions, 2012
International Conference for, Dec 2012, pp. 649–655.

[19] T. G. Papaioannou, N. Bonvin, and K. Aberer, “Scalia: An
adaptive scheme for efficient multi-cloud storage,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 20:1–20:10. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389024

[20] F. Miller, A. Vandome, and M. John, Federal Standard 1037C. VDM
Publishing, 2010. [Online]. Available: http://books.google.co.uk/books?
id=SyEaYAAACAAJ

[21] G. Lefebvre and M. J. Feeley, “Separating durability and availability in
self-managed storage,” in Proceedings of the 11th Workshop on ACM
SIGOPS European Workshop, ser. EW 11. New York, NY, USA: ACM,
2004. [Online]. Available: http://doi.acm.org/10.1145/1133572.1133576

[22] S. Chen and J. Liu, “Statistical applications of the poisson-
binomial and conditional bernoulli distributions,” Statistica
Sinica, vol. 7, no. 4, pp. 875–892, 1997, cited By
(since 1996)46. [Online]. Available: http://www.scopus.com/
inward/record.url?eid=2-s2.0-0031313967&partnerID=40&md5=
3316a763aea912beb33d5bf32d2bd96b

[23] M. Li, “On the confidentiality of information dispersal algorithms
and their erasure codes,” CoRR, vol. abs/1206.4123, 2012. [Online].
Available: http://arxiv.org/abs/1206.4123

[24] V. Casola, A. Cuomo, M. Rak, and U. Villano, “Security and
performance trade-off in perfcloud,” in Euro-Par 2010 Parallel
Processing Workshops, ser. Lecture Notes in Computer Science,
M. Guarracino, F. Vivien, J. Trff, M. Cannatoro, M. Danelutto,
A. Hast, F. Perla, A. Knpfer, B. Di Martino, and M. Alexander, Eds.
Springer Berlin Heidelberg, 2011, vol. 6586, pp. 633–640. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-21878-1 78

[25] M. Mesnier, E. Thereska, G. Ganger, D. Ellard, and M. Seltzer, “File
classification in self-* storage systems,” in Autonomic Computing, 2004.
Proceedings. International Conference on, May 2004, pp. 44–51.

[26] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,”
Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311–
327, May 2004.

[27] D. Ardagna and B. Pernici, “Adaptive service composition in flexible
processes,” IEEE Trans. Softw. Eng., vol. 33, no. 6, pp. 369–384, Jun.
2007. [Online]. Available: http://dx.doi.org/10.1109/TSE.2007.1011

[28] A. Makhorin, “Glpk (gnu linear programming kit),” 2008.
[29] C. Lewis and J. Rieman, Task-centered User Interface Design: A

Practical Introduction. University of Colorado, Boulder, Department
of Computer Science, 1993. [Online]. Available: http://books.google.
com.br/books?id=j8mOYgEACAAJ

[30] J. Nielsen and T. K. Landauer, “A mathematical model of the finding
of usability problems,” in Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing Systems, ser.
CHI ’93. New York, NY, USA: ACM, 1993, pp. 206–213. [Online].
Available: http://doi.acm.org/10.1145/169059.169166

APPENDIX

<scenario name="CLOUD-Experiments" type="simulation">
<repeat>10</repeat>
<db resetOnStart="true">/data/.../CLOUD-experiments-files.db</db>
<log_db>/data/.../CLOUD-experiments-log.db</log_db>
<providerList amount=100></providerList>

<modulesList>
<module type="ida" amount=100></module>
<module type="enc" amount=100></module>
<module type="comp" amount=100></module>
</modulesList>

<operationList> <operation action="selectOnly">
<select_param name="MIN_SEC" value=10></select_param>
<select_param name="MIN_PERF" value=10></select_param>
<select_param name="MIN_STO" value=10></select_param>
<select_param name="WEIGHT_SEC" value=0.4></select_param>
<select_param name="WEIGHT_PERF_READ" value=0></select_param>
<select_param name="WEIGHT_PERF_WRITE" value=0.1></select_param>
<select_param name="WEIGHT_STO" value=0></select_param>
<select_param name="WEIGHT_STOCOST" value=0.1></select_param>
<select_param name="WEIGHT_BWCOST_IN" value=0.1></select_param>
<select_param name="WEIGHT_BWCOST_OUT" value=0.1></select_param>
<select_param name="WEIGHT_AVAIL" value=0.2></select_param>
<select_param name="WEIGHT_DUR" value=0></select_param>
<select_param name="PROV_REQ" value=0.75></select_param>

</operation> </operationList>



</scenario>


