
Automated Context-aware Service Selection for
Collaborative Systems

Hong Qing Yu and Stephan Reiff-Marganiec

University of Leicester, Department of Computer Science, Leicester, UK
{hqy1,srm13}@le.ac.uk

Abstract. Service-Oriented Architecture (SOA) can provide a paradigm
for constructing context-aware collaboration systems. Particularly, the
promise of inexpensive context-aware collaboration devices and context-
awareness for supporting the selection of suitable services at run-time
have provoked growing adoptation of SOA in collaborative systems. In
this paper, we introduce an approach for selecting the most suitable ser-
vice within a SOA based collaboration system, where suitability depends
on the user’s context. The approach includes context modelling, gener-
ation of context-aware selection criteria and a suitable service selection
methodology.

Key words: Context-awareness, SOA, Service Selection, Collaborative
Systems

1 Introduction

Collaboration systems are becoming more and more important for facilitating
team work and e-activities (e.g. e-business, e-government or e-education). In
particular, context-aware and dynamically configured collaboration systems are
demanded in order to support collaboration activities, which are progressively
flexible due to changes in modern work environments. While context-aware fea-
tures can not be found in some legacy collaboration systems [Dus04], these sys-
tems are static in their architecture and hence the functionality that they offer.
With widespread deployment of inexpensive context-aware devices and the in-
novations brought by the SOA paradigm, we get an opportunity to reconstruct
collaboration architectures with context-awareness and dynamic configuration
at its centre. For example, the inContext project1 has defined a platform, called
PCSA (Pervasive Collaboration Services Architecture) [RMTC+09] to support
context-aware collaboration services by working closely with industry users and
studying their collaboration needs. The PCSA mainly includes three subsystems:

1. The Access subsystem controls the user and service registration and system
access.

1 www.in-context.eu

2 Hong Qing Yu and Stephan Reiff-Marganiec

2. The service management subsystem, most relevant to this work, is in charge
of maintaining the service repository which includes a categorisation of ser-
vices and details of NFPs (non-functional properties) of the registered ser-
vices. It also provides functionality to look up services and to obtain service
suggestions based on suitability.

3. The Context management subsystem maintains context data of registered
users, based on a specified context model.

One of the major challenges of the PCSA is to select collaboration services
based on user context information by matching services according to their non-
functional properties – clearly the decision is made in the service management
subsystem, but is based on the data obtained by the context subsystem.

Before we consider the challenges in more detail and provide an overview of
the results of this paper, we consider two motivating examples, which highlight
the challenges that modern collaborative systems need to adapt to.

Organising an emergency meeting is a typical e-business and e-government
collaboration activity. Notifying all participants to attend the meeting
is an important and difficult task because different participants may be
in different context situations including different in locations and time
zones, they are available on different devices, have diverse contact pref-
erences/rules. For example, a participant may be on holidays in a foreign
country and only has a mobile phone with him, or the participant has
switched off his mobile phone to save power but is online using IM (In-
stant Messenger).

In this scenario, the service selection challenge becomes to select the most suit-
able one. This decision has to be based on dynamically obtain user’ context
information, with the user being passive in that they cannot be asked upfront
which service is most suitable for them.

In contrast to the first scenario, the second case study is concerned with
selecting a medical support service during a park fair:

It is expected that a large number of people joins the fair and incidents
are expected. Two medical tents are prepared in different locations for
providing aid. Efficient collaboration between fair assistants and tents
is essential. One tent (Service 1) has more staff and is meant to cope
with minor injury cases. The other tent (Service 2) has fewer staff, but
more advanced equipment to deal with severe incidents as well as minor
injuries. One assistant team scours the park to locate incidents and re-
ports to the most suitable medical support service based on injury level,
location of the incident, availability of the tents and response times. For
example, if the injury has been reported close to Service 2, but it is not
severe then which medical support service should receive the report from
the assistant?

Automated Context-aware Service Selection for Collaborative Systems 3

Successfully supporting such a collaboration system, requires the service selec-
tion method to recognize both users’ (member of assistant team) current context
and the services’ current NFPs.

These two examples highlight a number of challenges to be addressed in
context-aware collaboration service selection.

1. The users’ runtime context information needs to be dynamically gathered
and aggregated in a structured form.

2. The context information needs to be an input to the service selection ap-
proach, requiring a link between user context and the relevant non-functional
properties of services.

3. The service selection method needs to be automatic.

In this paper, we are going to illustrate our novel contributions to address these
challenges. Specifically we are presenting the following:

1. An OWL/RDF based user context model, with a link connecting to the
service NFPs.

2. A method for dynamically generating context-aware service selection criteria
based on the service category.

3. A TLE (Type-based LSP Extension) service selection method using the
context-aware criteria.

The reminder of this paper is organised as follows. In section 2, we present
the context modelling techniques and the details of the model. In section 3,
we discuss the connection of the context model to the service’s non-functional
requirements. In section 4, we explain the TLE method, thus providing a so-
lution to the service ranking issue. Implementation and evaluation results are
presented in section 5. We then discuss some current related work and finally
draw conclusions.

2 User Context Modelling

To allow for selecting the most suitable service for a user, the user’s context
needs to be evaluated, which is only realistically feasible if it is well defined and
organized. In addition, the context information might be distributed and must
be easily retrievable. Based on these requirements, we use OWL [OWL] to model
user context information and RDF [Gro04] to store context data. By analysing
the motivating scenarios and context information in general, our context model
has been divided into 4 packages. A simplified top level OWL context model is
shown in Figure 1.

User profile context (Profile) stores a user’s personal data. The profile links
to other context properties: Language shows which languages this person
knows and their proficiency level; ContactInfo connects to possible contact
details of a particular person such as postal address, contact number or

4 Hong Qing Yu and Stephan Reiff-Marganiec

Fig. 1. The integration of 4 packages context model

online contact details. For service selection, Language can be used to filter
services that are usable by the user; ContactInfo might indicate which way
of contact is preferred by the person. Person details make use of the FOAF
ontology 2.

Resource context (Resources) includes both electronic documents and ar-
tifacts, as well as physical resource such as devices available. The resource
context allows determination of which devices, software and documents are
available.

Activity context (Activity) describes everything a person is doing (maybe
performed by a service) in order to fulfil a goal. The Goal property uses
ontology-based keywords to describe the task and its desired outcomes. It
also allows for special variants for e.g. emergency situations. These properties
imply the functional requirements of the service. The Situation property
influences the importance of different non-functional properties. For example,
emergency situation change the weights applied to certain criteria.

The physical location context (Location) is the detailed ontology for Lo-
cation property. It indicates the location and time related constraints. A
fixed location may have different representations such as GPS Coordinate or
PostalAddress; [FipD07] provides more detail.

2 http://xmlns.com/foaf/0.1/

Automated Context-aware Service Selection for Collaborative Systems 5

3 Context-aware criteria generation

3.1 Services categories with meta data

Services are traditionally categorised by their functional properties, e.g. in the
categorisation system used in UDDI [Org04]. This kind of service categorisation
is insufficient for automatic service selection processes because it does not specify
NPFs that are essential to differentiate functionally similar services in different
situations. We propose to extend the functional properties based categorisation
with details of NFPs, following a well-structured data model. We refer to this
additional data as service meta data. Different service categories have different
sets of relevant meta data. For example, printing services can consider colour
options, while communication services might consider the transmission mode
(e.g. synchronous).

Fig. 2. The conceptual model of category, service and service registration

The service registration process (see Figure 2) builds a link between the service
and the category. Meanwhile, the OWL-S description of the service should specify
the meta information data which is defined by the category. In the following we
provide more details about the category, meta data (Meta) and service.

Each category has a name, which identifies the category (there is also an
identifier for computer rather than human use). This is useful for service devel-
opers who wish to register a new service, however for searches and finer grained

6 Hong Qing Yu and Stephan Reiff-Marganiec

understanding of what the category represents a number of keywords describing
the functional properties of services (or better operations) in the category are
provided. A detailed description adds further detail for human use. Each cate-
gory has a set of meta data associated to it, which captures the non-functional
properties.

Each meta data element has an AbstractType, which is used to identify the
correct evaluation function for this type of data. The associated WeightSet re-
flects the importance of this particular non-functional property in the category,
from a service provider point of view. However, different situations require a shift
in importance, as do individual users. So weights are more flexible in that they
provide the default weight as specified by the provider, they allow for an emer-
gency weight (usually defined for the application domain) and custom weights
(usually defined by the end user).

In order to indicate that a small value is desirable, weights take on negative
values in the range of]0,-1], if a larger value is desirable values come from the]0,
1] interval. In addition, an absolute value of 1, means that the criteria is a hard
constraint (that is it must be satisfied, or we are not interested in the service).
Examples for these cases are cost (the smaller the better), speed (the faster the
better) and availability in a certain country (e.g. a retail service not shipping to
the UK would be of no interest to a UK customer).

While some meta data can be found in the service profile (for example the
speed of a printer, or whether it prints in colour), there are some criteria that
depend on the service context and need to be more up to date (e.g. the length
of a print queue). To obtain such data the ServiceQuery specifies a SPARQL
[Gro08] query statement which can be used to locate this kind of information
from the service context.

A service is described by typical elements, such as information about its
provider. the service. OWLURL is a link to the location of the OWL-S descrip-
tion file of the service, which should contain the required data for the non-
functional attributes. WSDLURL provides a link to the services WSDL file, as
is required for using the service in current web service technologies.

Registering a service involves linking this to the service category model, that
is assigning a category for each service (or operation). This has the side effect
of linking the service to typical non-functional criteria for which users might
require values and this data is populated from the services OWL-S file.

3.2 Automated criteria generation

Based on the user context model and the service category model, we define
context-aware criteria that link the two sides of user context and service non-
functional properties and are generated automatically. Context-aware criteria
consists of a number of criteria that are initialised from the meta data of the
correct service category.

The idea is that this brings together the data required to evaluated the
service. For example when considering a transport service from Leicester, it is
clear that the user would specify some values for locations, services would provide

Automated Context-aware Service Selection for Collaborative Systems 7

to be queried on those and more over the two values need to be available for
evaluation. The same has to be done for every other criteria of relevance.

In detail the context-aware criteria consists of data from the service profile
as well as data from the user context. It presents itself with an AbstractType
which is used to identify the related evaluation function. In terms of user data it
contains a value and a weight set, which are both derived automatically from the
user’s context using the context query. The context query is a SPARQL query
extracting context information from the user context repository (the repository is
structured according to the context model presented earlier). The AbstractType
and name of criteria as well as the service query are extracted from the service
profile. This process of extracting and merging data is completely automatic.

4 The TLE Service Selection Method

In sections 2 and 3 we have discussed the context model and how it is linked
to the services’ meta data. We will now focus on the service selection process.
There are two major steps in the service selection process: First we need to
evaluate each criterion of each service. Then we need to aggregate all criteria
evaluation results to get an overall score for each service in order to select the
most suitable service for the user. To complete these two steps, we use a Type-
based LSP (Logic Scoring Preference [Duj96]) Extension (TLE) method which
has been introduced in our previous work [YRM08]. The TLE method includes a
type-based single criterion evaluation process and an extended LSP aggregation
function.

4.1 Type-based evaluation process

Most current criteria evaluation functions strongly rely on human input; usually
this means that evaluation functions are designed and assigned to each criterion
by hand, providing excellent results by allowing fine tuning of measurements.
However, in the dynamic context, the evaluation function often requires to be
adapted at runtime as the relevant criteria change. Therefore, human interaction
is not acceptable and the method needs to be automized.

The type-based evaluation process is designed to automatically match evalu-
ation functions to the criteria at runtime based on each criteria’s abstract type.
Various types can be defined for different evaluation contexts and environments
to extend this type-based evaluation process. Currently, there are four abstract
types which proved sufficient for our work.

The Numerical type is used for criteria which take numerical input to the
evaluation method such as cost, time and other quantitative measurement values.
The evaluation function is given by Formula 1:

ε =

{
1−(vmax−v)
vmax−vmin

iff W ≥ 0,
vmax−v

vmin−vmin
otherwise

(1)

8 Hong Qing Yu and Stephan Reiff-Marganiec

where w is the weight of the criterion. vmax is the maximum value of all compet-
ing services, v is the value for the service under evaluation. vmin is the minimum
value of all competitive services (if user context does not indicate a minimum
value constraint, in which case that value is used). For example, the price crite-
rion or service response time.

The Boolean type is used for criteria which are evaluated to 1 or 0. The
function is:

ε =

{
1 if criterion is met,
0 otherwise.

(2)

The Set overlap type is used to define criteria which are measured by matching
on instances on am enumerated set:

ε =
ε1 + ε2 + ... + εi

n
(3)

with εi being a score for each element of the set. For example, the constraint
value of the available devices criterion is Cad = mobile, PAD, laptop, IM in our
first notification service selection scenario.

The Distance type is used to evaluate the criteria which are measured by
distance between two locations expressed by latitude and longitude.

ε =

{
R× c iff c ≥ 1
R× 2× arcsin(1) otherwise

(4)

with c = 2× arcsin
√

sin 2(|L2−L1|
2) + cos(L1)× cos(L2)× sin2(|G2−G1|

2), L1 =
latitude of the first point, G1 = longitude of the first point, L2 = latitude of the
second point, G2 = longitude of the second point and R = the Earth’s mean
radius of 6371 km. For example, the distance between injured person and the two
medical support services is the crucial selection criterion in the medical support
service scenario.

We found these types sufficient for our case studies, but we do not claim
them to be complete. However, more types can be simply added by specifying
an evaluation function and type name; the type name is then used in the service
meta data definition.

This method provides a link between the evaluation function and the spe-
cific criteria under investigation, and the appropriate function can be chosen at
runtime. The table 1 shows the criteria examples of select a notification service.

4.2 Extended LSP aggregation function

Having defined how individual criteria cam be evaluated, we turn our attention
to the criteria aggregation function: vital for computing overall scores for a
service. The LSP aggregation function [?] modifies the traditional weighted sum
aggregating function, to capture concepts such as replaceability (the fact that
one criteria might be replaced, that is ignored, if another criteria is extremely well

Automated Context-aware Service Selection for Collaborative Systems 9

Table 1. Selection Criteria and Service NFPs Meta

Criteria ID C1 C2 C3 C4 C5 C6

Criteria Name Location Devices Price Time Privacy PCW

Criteria Type Boolean Set overlap Numerical Numerical Numerical Set overlap

Weight 0.9 0.9 0.5 0.3 0.7 0.8
PCW = Prefer Contacting Way.

suited) or an mandatory-ness (the fact that a criteria can under no circumstances
be ignored no matter how low the score is compared to other criteria). These
concepts are captured in the power (r) that is applied to each factor (see 5).

E = (
n∑

i=1

WiE
r
i)

1
r (5)

LSP was developed for manual evaluation, we extended the LSP function with
an automatic process to determine the correct value of r based on the weight
values of different criteria. The extended function is shown in formula 6, where
Wi can be less than 0 to express that a smaller value is desirable for numerical
type criteria (e.g. think about minimizing cost).

E = (
n∑

i=1

|Wi | Er
i)

1
r (6)

If we refer back to the table 1, then the evaluation function should like equation
7

E =|WC1 | Er
C1+ |WC2 | Er

C2 + ...+ |WC6 | Er
C6 (7)

Details of the evaluation function have been introduced in [YRM08]. In this
paper we added the link to context information, so that the service selection
decision can be made automatically.

5 Evaluation

While the ranking approach is implemented in terms of the relevance engine
in the inContext platform, the engine itself is developed as a Web service so
allows for easy embedding in different environments. For more detailed analysis
we have developed a testbed that also considers the generation of the criteria as
described here. The testbed includes an OWL/RDF context store, a repository
that is organised by service category, but is enhanced with the meta data model
and information and the relevance engine performing the TLE selection process.
The evaluation reported here considers scalability and was conducted through
3 evaluation cases for notification service selection scenarios. Within inContext
the ranking method has been evaluated further on real case studies, focusing on
functional correctness rather than scalability.

10 Hong Qing Yu and Stephan Reiff-Marganiec

Fig. 3. Evaluation results for increasing numbers of services with a fixed number of
criteria.

The first series of tests focuses on measuring the selection time when the
number of services increases. There was a fixed number of criteria that was used
to evaluate the services here (there were 6 criteria). We considered up to 1000
services.

Figure 3 shows that the approach is essential linear with respect to the num-
ber of services.

The second evaluation case was to evaluate the selection time in the light
of increasing the number of criteria. We fixed the number of services to 4, but
tested up to 192 criteria. The test results are shown in Fig. 4. We can again see
that the approach is linear with respect to the number of criteria.

In the last test we evaluated the selection time against both an increasing
numbers of criteria and services. We defined a number of test groups with dif-
ferent service numbers and evaluated these against an increase in criteria. The
evaluation results are shown in Fig. 5.

From the results, we can see that the scalability will be not dramatically
decreased with an increasing number of criteria if the number of services is not
too large (e.g. less than 16 services) or if we consider large number of services
but smaller numbers of criteria (less than 96 criteria).

This merits some more general discussion: in the real world service selection
scenarios, we do not expect there to be vast numbers of criteria, so around 100
seems a good pragmatic upper bound. Also, in terms of competing services, while
we expect these to increase with more services becoming available, it seems safe

Automated Context-aware Service Selection for Collaborative Systems 11

Fig. 4. Evaluation results for increasing numbers of criteria with a fixed number of
services.

Fig. 5. Results for increasing number of services and criteria.

12 Hong Qing Yu and Stephan Reiff-Marganiec

to claim that a choice of 20 services fulfilling our functional requirements and
hence been drawn into the comparison should be already a significant number.

Additionally, we should see that the services are chosen in a matter of sec-
onds based on the prototype implementation (which has not been designed with
performance in mind, but rather with functional correctness). When considering
real service selection scenarios, the runtime of services usually exceed this time
by far, and being presented with the best possible service will be ‘worth the
wait’, even more so if we consider this selection to form part of a longer running
business process possibly containing human tasks.

It may be more helpful to evaluate the selection correctness from user point
of views. However, correctness is difficult to be defined in general because it de-
pends on different views and concerns. It is more like a multiple criteria decision
problem, you can tell which decision is wrong, but it is very hard to say which
one is much better than others from human and that is a key reason we need
assistant from machine to get a tough decision. Therefore, we will not make a
evaluation on the correctness from user side.

6 Related Work

Several research approaches have considered using context information for select-
ing suitable services for the end-user. Location, which is introduced in Cooltown
project [Pac04], [RT06] and the Jini [KEKW04] service discovery protocol, is the
earliest form of context information used for service selection. These approaches
can discovery and select the service nearest to the user. Nerveless, the context
information is limited to location context only.

[CKL05] and [LH03] extended the context information by adding so called
dynamic and static service attributes. The dynamic service attributes are those
characteristics of a service whose values change over time. Other attribute are
said to be static. Since there is more than a single context constraint, these
works make use of weighted vector based aggregation functions for ranking the
services and returning the top matches to the user. However, there are two main
drawbacks:

1. the work is reliant on a syntactic representation of contextual information of
services. Consequently, it is very difficult to apply more advanced semantic
level searching, matching and reasoning techniques.

2. they only focus on modelling services’ attributes/context information with-
out specifying the user’s context information. Thus, context-awareness means
service non-functional properties awareness.

Work in [ESB06] addressed the first drawback by utilising concepts from the
Semantic Web. However, it does not address the second problem of considering
and modelling user context information. In contrast, [SVC+03] makes a lot of
efforts on defining user’s context information in details and identifies nine cate-
gories expressing user context: User information, Personal Information, Activity
Information, Social Information, User Defined Rules, Environment Information,

Automated Context-aware Service Selection for Collaborative Systems 13

Application Information, Terminal Information and Network information. How-
ever, this work then expects service developers to build suitable new services in
order to satisfy these context constraints.

In summary, current context-aware service selection methodologies do not
bridge the gap between user’s context and service’s context. Few approaches
provide a clear picture of using the user’s context information for generating the
service selection criteria/constraints. Furthermore, the ranking methods are far
more simplistic than what is really required to cope with the context mapping
between user and services. The presented work bridges between service and user
context and provides a powerful, yet scalable ranking approach.

7 Conclusion and Future Work

In this paper, we developed a context model including four aspects typical for
collaborative systems: user profile, resources, activities and physical environ-
ment. In order to link the user context information to the service selection, we
defined a meta data based category system and context-aware criteria which
can be automatically generated by querying both user context and service non-
functional meta data. Context-aware service selection also requires a suitable
selection method to use the criteria. Therefore, we introduced the TLE selection
method, which is based on type-based evaluation functions and an extended LSP
aggregation method. Our evaluation results show capability in both increasing
numbers of services as well as increasing numbers of criteria. We illustrated the
need for this work through two typical scenarios.

There are some issues worth future exploration. On one hand, it would be
worthwhile to explore how other services selected as part of a workflow provide
additional context and requirements. In fact, we have recently started to look
at this issue and initial result has been presented in [YRMT08]. On the other
hand, it is worthwhile to enable reasoning on context information to determine
criteria weights automatically rather than statically providing weights for each
user or service domain.

Acknowledgments. This work is partially supported by EU inContext (In-
teraction and Context Based Technologies for Collaborative Teams) project:
IST-2006-034718.

References

[CKL05] S. Cuddy, M. Katchabaw, and H. Lutfiyya. Context-aware service selection
based on dynamic and static service attributes. Proceedings of IEEE
International Conference on Wireless And Mobile Computing, Networking
And Communications,Vol. 4, 2005.

[Duj96] J.J. Dujmovic. A method for evaluation and selection of complex hard-
ware and software systems. Proceedings of 22nd International Conference
for the Resource Management and Perfromance Evaluation of Enterprise
Computer Systems, Turnersville, New jersey, 1996.

14 Hong Qing Yu and Stephan Reiff-Marganiec

[Dus04] Schahram Dustdar. Caramba—a process-aware collaboration system sup-
porting ad hoc and collaborative processes in virtual teams. Distrib. Par-
allel Databases, 15(1):45–66, 2004.

[ESB06] A-R. El-Sayed and J.P. Black. Semantic-based context-aware service dis-
covery in pervasive-computing environments. Proceedings of IEEE Work-
shop on Service Integration in Pervasive Environments (SIPE), 2006.

[FipD07] European Union FP6 Framework and inContext project Deliveries. De-
sign and proof-of-concept implementation of the incontext context model
version 1 wp2.2, 2007.

[Gro04] RDF W3C Working Group. Rdf/xml syntax specification, 2004.
http://www.w3.org/TR/rdf-syntax-grammar.

[Gro08] W3C SPARQL Standard Group. Sparql query language for rdf, 2008.
http://www.w3.org/TR/rdf-sparql-query.

[KEKW04] N. Klimin, W. Enkelmann, H. Karl, and A. Wolisz. A hybrid approach for
location-based service discovery. Proceedings of International Conference
on Vehicular Ad Hoc Networks, 2004.

[LH03] C. Lee and S. Helal. Context attributes: An approach to enable context-
awareness for service discovery. Proceedings of SAINT’03, 2003.

[Org04] OASIS Organisation. Uddi version 3 specification, oasis standard, 2004.
[OWL] Owl web ontology language. http://www.w3.org/TR/owl-ref/.
[Pac04] Hewlett Packard. Cooltown project, 2004.

http://www.cooltown.com/cooltown/.
[RMTC+09] Stephan Reiff-Marganiec, Hong-Linh Truong, Giovanni Casella,

Christoph Dorn, Schahram Dustdar, and Sarit Moretzki. The in-
context pervasive collaboration services architecture. Proceedings of
Service Wave 2009; to appear, 2009.

[RT06] O. Riva and S. Toivonen. A hybrid model of context-aware service provi-
sioning implemented on smart phones. Proceedings of ACS/IEEE Inter-
national Conference on Pervasive Services, 2006.

[SVC+03] I. Sygkouna, S. Vrontis, M. Chantzara, M. Anagnostou, and E. Sykas.
Context-aware services provisioning on top of active technologies. Book
Series Lecture Notes in Computer Science: Mobile Agents for Telecommu-
nication Applications, Category Service Management - Service Provision-
ing, Subject Collection Computer Science, 2003.

[YRM08] H.Q. Yu and S. Reiff-Marganiec. A method for automated web service se-
lection. Proceedings of 2nd IEEE International Workshop on Web Service
Composition and Adaptation (WSCA-2008) Special Theme: Dynamic Ser-
vices Composition and User Steering held in conjunction with 6th IEEE
International Conference on Services Computing (SCC-2008), Honolulu,
USA., 2008.

[YRMT08] H.Q. Yu, S. Reiff-Marganiec, and Marcel Tilly. Composition context for
service composition. Proceedings of IEEE International Conference on
Web Service, WIP Track, 2008.

