
Towards a software framework for the autonomous
internet of things

Marco E. Pérez Hernández, Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester, UK
Email: {meph1,srm13}@le.ac.uk

Abstract—IoT promises a world where Smart Objects (SO)
are able to autonomously communicate and work together to
make the (human) user’s life easier. Popular approaches for
development of IoT applications take for granted that on-object
resources are evenly constrained. As consequence, we observe
a trend towards a data-feeder architecture in which “smart
objects” are simple data gatherers and senders. Raw data is
stored and processed in cloud platforms feeding web applications
and services. The autonomy of SO is then compromised as they
are not able to operate without these platforms. We propose a
framework and architecture for the development of IoT applica-
tions where smart objects exhibit autonomy in regards platforms
and human users. We completed the successful evaluation of
our proposal with the implementation of a prototype and the
execution of a use case for physical resources provisioning.

Index Terms—IoT Framework; IoT Software Architecture;
Web Agents; Smart Objects; Autonomous IoT.

I. INTRODUCTION

The future internet brings the promise of smart devices
exhibiting some degree of intelligence and autonomy. In a
first stage, the research community have been working ac-
tively to tackle the open challenges of device connectivity,
interoperability, data gathering and processing, among others.
The next stage implies supporting on these advances to build
truly autonomous IoT systems.

IoT Software frameworks become crucial for this purpose.
They provide blueprints and models for the development of
IoT applications and allow for sharing expertise in the shape of
behavioural and structural solutions. Development frameworks
support the design of IoT software architectures ready to fit
all the pieces of the puzzle, namely: heterogeneous cyber-
physical objects, sensors, networks, traditional systems and
cloud resources; with the challenge of keeping the human users
in the centre of any solution.

One desired feature of IoT applications is to exploit the
resources (local, remote, cloud) and take advantage of the
unique situation of the distributed devices within the smart
environments. In doing so, however, there is a risk that
applications end up sub utilising device capacity and losing the
expected autonomy by fully relying on platforms and remote
resources.

Smart objects must exhibit functionality to cooperate with
others and use remote resources but also they must keep con-
trol of their key data and functions, make their own decisions
and take the most of the advantage of local capabilities. The

goal of this paper is to propose a software framework aimed
at enabling the development of IoT applications with these
features. We work with agents and services as the building
blocks of autonomous smart objects.

The main contributions of this paper are: (1) a novel
approach for IoT applications that makes intensive use of
local resources;(2) An IoT software architecture providing
autonomy not only from human user perspective but also from
remote platforms/gateways. (3) Demonstration of an enhanced
use of agent concepts in the context of IoT applications
compared to state of the art solutions.

The remainder of this paper is organised as follows: First,
we bring some context about the gap in IoT applications we
are tackling. Second, we describe our proposal including the
framework an IoT software architecture. Then, we describe
our implementation approach. Next, we detail the evaluations
carried out and we discuss the findings. We finally offer the
relevant conclusions and our future lines of work.

II. BACKGROUND

Well known challenges in the IoT arena include hetero-
geneity and autonomy. Multiple solutions have been proposed
to deal with heterogeneity at different levels and to endow
autonomy to the Smart Objects (SO). We review some of the
pertinent works in section VI. Service Oriented Architectures
(SOA) and Agent paradigms, have been popular approaches
for dealing with these challenges. SOA brings, among others,
modularity, reusability and helps to reduce the problem of
heterogeneity to the interoperability of the nodes. In the other
side, agents and Multi-agent Systems (MAS) are also used to
provide abstraction over SO differences and are the preferred
choice to endow autonomy. We share the view that these are
mature-enough tools for tackling aforementioned challenges,
however we note the lack of a consistent approach to use them
inline with the IoT common requirements.

The per se diversity of the IoT scenarios, requires an
approach for the use of MAS and services in IoT solu-
tions, avoiding the incorporation of even more complexity.
A consolidated view beyond adding interfaces or translation
entities into the systems architecture, would bypass the hetero-
geneity of two different programming models. Classifications
of the existing approaches for agent/service integration were
attempted for example in [1] and [2]. They made evident, the
need of a joint perspective building over every paradigm’s



strengths. While the former work indeed propose an approach,
from the industrial automation field, the latter gives attention
to the IoT middleware. Although attempts have been made to
use both models in middleware or specific solutions, to the best
of our knowledge, there is no conceptual framework to guide
the IoT application development using agent and services from
a consolidated perspective.

IoT solutions require the adequate exploitation of both the
internet resources and the ones from the SOs to provide ser-
vices suitable to user demands in regards proximity, reliability,
timing and privacy among others. The popular architectural
approaches favour the sub-exploitation of SO’s resources. One
way to ensure uniformity is to pair SO to the lower capacity.
It is common, that IoT platforms conceive SOs as nodes that
are just able to gather and distribute raw data and actuate on
the environment upon request. It is clear that IoT devices are
constrained, but they are not equally constrained and SOs need
to take advantage of the most of resources available on object
to truly offer smart capabilities beyond connectivity, digital
representation and access to data and standard operations.

As more IoT connected devices are quickly permeating
homes, offices, cities and every physical environment, hu-
man users are facing the need to deal with the configu-
ration/programming of many devices, every brand with its
own ad hoc operating options, models and environments.
One way to tackle this heterogeneity, is to promote, from
the engineering of the IoT systems, an uniform operating
model. In the same way that operating systems provide a
set of standards functionality to users, with abstraction of
the hardware platform, this uniform model for SOs can ease
the task of programming/configuring multiple devices when
required.

It is necessary to rethink how IoT solutions are built and
the role of the SO to be able to attain more responsibilities
to it, establish frontiers between what is done on-object and
what is done remotely and ease its programming. Services and
agents provide rich tools to tackle the mentioned challenges.
Of course, this requires a minimum of hardware capacity in the
SO, but it will promote higher utilisation of local resources.
As a collateral advantage, this can allow users to gain control
over tasks and data that, so far, are handled remotely with its
advantages and also concerns.

III. OVERALL APPROACH

A. Software Framework for Autonomous Things

The proposed framework is intended to serve as blueprint
for the software engineering of IoT applications and middle-
ware for Smart Objects as autonomous systems. It provides
both concepts and an architecture that fit them all for the
development of IoT applications based on agents and services.
We built over existing concepts and principles from agent and
cognitive systems literature [3][4][5] [6].

Since SOs are embedded in a cyber physical environment,
they are not merely software agents. The physical dimension
and the localisation of the software functions have impact in

Fig. 1. Conceptual view of the Software Architecture for Smart Objects

the autonomy and these are aspects to be considered in SO’s
software architecture.

The framework is intended to drive the development of IoT
applications by addressing the heterogeneity and autonomy of
SOs. It aims to enable encapsulation of platform-dependent
functions and communication protocols through the service
abstraction. In addition, the IoT application is built over a
set of minimum functions that can be extended according to
different SO configurations. we address autonomy with regard
not only to the human user, but to other SOs and platforms.
We adopt the view that autonomy depends on three factors:
Sensing, Actuating and Reasoning. These functions can be
either direct, if localised on-object, or indirect if localised in
others (SOs, platforms, etc.).

We propose a decentralised approach for engineering of
IoT applications based on autonomous SO. This entity is
a cyber-physical object that exhibits autonomous behaviour
based on the existing and available resources, capabilities
and the programmed activities. The autonomous SO is able
to keep up and running even if remote and powerful nodes
(e.g. gateways) or platforms are not available. In contrast to
other devices in the IoT spaces, autonomous SO not only offer
basic features (e.g. connectivity or digital access), these SOs
have control of the data they gather and are able to make
decisions about what to do, when, where and how in behalf
of the human users. Decisions might be regarding their own
maintenance operations and also about what is expected from
them in fulfilment of their intended purpose.

A graphical representation of the proposed architecture
is depicted in figure 1. We observe that as multi-purpose
computers are able to run multiple applications based on
their hardware resources, SOs play different roles based on



the services they can offer. Therefore, conceptually SOs are
boxes where roles can be either “installed” or “uninstalled” to
achieve a particular behaviour in pursuit of some goals. The
services are just wrappings of SO’s cyber physical capabilities,
that enable modular development. Although there are common
roles the SOs can play, each SO has specific roles according
to its particular capabilities, hardware platform and purpose.

The software for autonomous SOs is organised around a set
of management functions which provide the infrastructure for
the development and operation of the SO. From these func-
tions, services are built to encapsulate particular functionality
provided by the SO and to extend the infrastructure functions.
On top of these services, an agents layer is intended to
provide a framework for programming SO operation through
configuration of knowledge items including representations
for roles, activities and actions among others. Infrastructure
functions and layers are described below.

B. Infrastructure Management Functions

Service Management : These functions cover the basic
service life cycle operations from the registry, discovery,
selection, binding and execution. For the sake of autonomy,
service discovery is intended to be decentralised.

SO Agent Management : These functions give support to
the agent layer enabling the SO management and interfacing
with services. It includes operations for the initialisation of
the SO, including the loading of all the roles playable by
the SO as well as the available capabilities (services). In
addition, it provides operations for the discovery and selection
of goals and roles and the triggering of the ad hoc activities.
For the sake of autonomy, role discovery is intended to be
decentralised.

KB Management : These include the configuration
of SO’s Knowledge base (KB) and operations for enabling
addition, update and removal of knowledge items. These
functions also convert data gathered from sensing services into
knowledge items exploitable by reasoning services. Knowl-
edge items include conceptual representations of, for example,
services, actions, roles or neighbour SOs.

C. Services Layer

SOs wrap capabilities as services that can be consumed
either locally or remotely. The SO is both service consumer
and provider. If a service is device-dependant, it includes
functionality and routines to carry out the device management
including the configuration (e.g. sensor, actuators or hardware
interfaces) relying on the manufacturers APIs. Each SO has
a local path where implementation of the services are stored.
On SO booting, the management functions query and gen-
erate knowledge items (documents) with the interfaces for
each service. These documents are independent of the pro-
gramming language of the implementation. This mechanism
enables decoupling of concrete action implementations from
the overall SO sytem behaviour. Multiple SO behaviors can
be programmed without changing services at this level and the

same services can be easy deployed by copying the implemen-
tation in a SO with the required hardware configuration (e.g.
sensor or actuator). Services also wrap protocols and message
processing for communication on top of supported network
interfaces and protocols.

The proposed service layer of the SOs is a mix of common
and specific services. Each mix is particular to the SOs
capacity, with a set of minimal common services. The more
the hardware resources in the SO, the greater the quantity of
services or the complexity of them. Adding new capabilities
becomes a process of deploying, on-object, new services that
wrap the operations supporting the capability. As result, the
SO becomes compact and able, not only to make their own
decisions, but also to carry out fundamental tasks in line with
these decisions.

Communication Services: These services include oper-
ations for the configuration of network and human interfaces
and the processing required for receiving or sending messages.
Network-aimed services receive as arguments: a transmitter,
the message type, the message contents and a receiver; and
using the supported protocols, they build (disassemble) the
message and carry out the transmission (reception) using the
configured interfaces. These services ensure at least support to
bidirectional communication with other SO or remote systems.
Human-aimed services enable the SO to receive/send messages
from/to human users, while the communication principle is
the same that the Network-aimed, the output of these services
must be complemented with specific services for the deliv-
ery/recognition of the message. For example, a message can
be delivered/recognised through a display/touch screen or a
speech synthesizer/recogniser, in either case it is constrained
by the hardware platform and would require a specific process
which is out of the scope of the communication services.
Communication services enable SO to indirectly sense and act,
which is enough in certain IoT scenarios, e.g. when sensors
are offered by other Smart Objects.

Decision-making (Reasoning) Services: Multiple ap-
proaches exist for reasoning (e.g. theoretical, practical, rule-
based, ontology-based, case-based, probabilistic, etc) and so
multiple services could perform different kinds of reasoning
based on user-defined rules, preferences, data sensed or de-
fined knowledge models. Although they are resource inten-
sive, reasoning services are essential for SO autonomy which
imposes the requirement of at least a minimum of them be
localised on-object. The service approach allows definition of
basic reasoning services giving support to a (enough although
non-optimal) local decision-making, that can be extended with
remote services.

Actuating Services: These services include functionality
for modifying the status of (resources and properties of) the
SO’s and the Smart space (SS). This functionality depends on
the hardware platform and the specific nature of the object.
Actuating on other SOs or human users is only possible
indirectly through communication services. Autonomy of SO
is increased when the actuating services provided by the SO
allow control of the SO’s properties of interest. e.g Would be



desirable that a microwave oven controls the oven temperature
based on the conditions of the meal instead of an fixed pre
defined time. For that to be possible, the oven should be
capable of either decrease or increase the temperature when
required.

Sensing Services: Sensing services enable the SO to
be aware of an updated view of itself and the environment
which is needed for a proper decision-making. These services
include configuration (based on manufacturers APIs) and
operations for data reading from sensors. Autonomy of the
Smart Object is as constrained by the actuating services as
it is by the sensing ones. Continuing with the microwave
oven example, these sensing services enable the oven to read
meal temperature, appearance or smoke presence on-object,
and then enable required actions without relying on connection
health or remote platforms availability.

Management Services: These services extend the basic
infrastructure functions offering common operations for dif-
ferent SOs that can afford it. Some of these services include:

• Monitoring Services: Watch over the operation of the
attached devices and hardware platform of both physical
and digital resources.

• Cost Management Services: Calculate and monitor cost
of services in terms of resources used, transform this
information into knowledge items.

• Continuity Services: Manage replication and backup of
KB.

• Security Services: Provide operations for ensuring data
integrity and proper access to resources.

D. Agents Layer

We built this layer over the existing agent theory [5] [7]. A
software agent gives digital identity to the SO and provides
the standard behaviour of checking pending goals and work
to achieve them. To do so, it uses communication and sensing
services to update status from itself, the environment, other
SOs and user preferences. With this updated view, reasoning
services are used to identify actions to trigger which are
calls to actuating and communication services with knowledge
items as arguments. This layer is aimed to provide abstractions
for a light programming based on the definition of:

Properties of Interest: These are a narrowed subset of
the relevant properties from the environment (Smart Space)
and the agents (SOs, human users or other software agents)
of a particular IoT scenario. The status of these properties is
sensed directly through sensing services or indirectly shared
as messages received by other agents. Similarly, actuating
services are used to directly modify some of these properties,
but for others it is only possible to asks for an update through
communication services. These properties are the basis for
defining goals, trigger conditions, activity inputs and outputs.

Goals: Goals are defined as target states of the properties
of interest. Multiple roles can be set to a SO establishing
hierarchy relations between them.

Roles: They group a set of activities the SO can perform
for a scenario. A role specification is common for all SOs
within a particular smart space. Therefore, any SO able to
play an specific role will carry out the same activities. This
implies that, in some scenarios it is not necessary that a
particular SO be available but any SO playing the required
role can carry them out as long as it has the required input
knowledge. It is also foreseeable that in some scenarios,
although two SOs can play the same role, it is required that a
particular one take over one activity, that should be specified
as conditions for the activity. Properties of interest, enable a
general specification of roles, providing a common behaviour
playable for multiple SOs in diverse scenarios differing only
in the properties checked. For example, the SO Resource
Manager role includes activities for resources monitoring and
notification to the human users (or other SOs) about the lack
of SO’s resources and asking for replacements; or the SS
Resource Manager role can include the same activities but
applied to smart space resources.

Activities: These include the intended behaviour of the
agent playing a role. Activity specifications include the in-
puts, triggers and outputs in terms of knowledge items (e.g.
properties of interest) and the actions. The same activity can
be implemented in two different SOs using different actions
(according to their capabilities). At this level, it does not matter
how the action is actually implemented, as long as the output
is the expected according to the specification. The output of an
activity includes the effect it has on a knowledge item. e.g. an
activity of SO can have the effect “ increase” of the property
of interest: “lighting” in a room. Since, ultimately activities
are composed by a set of services, one activity can be seen as
a service orchestration, where Agent Management functions
include a single point of control based on the sequence and
dependencies defined within the activity. Data flow is also
ensured by the definition of the input and output knowledge
as pre and pos conditions of each activity.

Actions: Actions are the glue between services and agent
activities. They are atomic an specify a particular use of the
available services. An action include the arguments to pass
in to the service in terms of knowledge items. An activity
can be dependent on updated observations of the properties
of interest or from knowledge base. For example, sending
a message to other SO, requires the selection and use of a
communication service. The asynchronous nature of an agent’s
message is implemented through services, sending and receiv-
ing the message in source and target SOs respectively. The
message itself in this example, is composed by data gathered
through sensing services and also from pre-configured rules in
Knowledge base.

Scenarios: These describe the activities (from different
roles) to be carried out in order to achieve a particular goal.
The scenario is a ordered list of activities from different roles
that can be defined either by the human users or calculated by
the SO. Definition of scenarios by human users is similar to
defining a library of agent plans, they are loaded in knowledge
base either in design or runtime. If scenario is not pre-defined,



Fig. 2. JSON Activity Definition

it can be calculated in runtime if the ad hoc reasoning services
are available. The reasoning services take the goals to achieve
as argument, determine the effect required on the properties of
interest to achieve that goal and look for activities producing
that effect on the property. In order to achieve one scenario,
SO might require cooperation from other SOs. Therefore, it
looks for SOs playing the role where the activity is included,
asks (send messages to) others to carry out activities, it shares
from its knowledge items to achieve the activity.

E. Implementation Approach

Implementation of autonomous SO-based IoT applications
is intended to be reduced to the traditional programming of
the specific services and the light programming for the agent
layer of the SO. Agent layer programming is based on the
common functions and is intended to be tailored through
the configuration of the needed entities using documents in
human-readable data formats e.g. (JSON, YAML. XML, etc.).
Optionally, additional user-interfaces can be programmed on
top of these documents, considering different user require-
ments.

Common functions, services, actions, activities and roles
are packaged as a middleware which is installed on top of
operating system of every SO. Middleware provides APIs for
access to common functions from the service implementa-
tions in specific programming languages. After middleware
is installed, up and running, services or elements from the
agent layer can be added, removed or updated in runtime.
Once services are implemented and deployed in the SO, the
service contracts are intended to be discovered and generated
automatically in runtime (part of the common functions).

Fig. 3. Scenario for Physical Resource Provisioning

IV. IMPLEMENTATION

We used the framework for the implementation of a pro-
totype. This consists of a middleware —common functions—
and a specific application —specific services—. The middle-
ware implementation was developed in Java using the EVE
agent platform 1 and CouchDB 2 for the Knowledge base. This
implementation is the second iteration over our initial release
presented in [2]. Some of the relevant enhancements include:
support to goal hierarchies, p2p role discovery, a message
protocol, decoupling of role and scenarios and separation of
device management functions. Specific services were imple-
mented in Java. JSON Documents were defined for properties
of interest, activities, and roles. Properties of interest for the
physical resource included usage level, the model/reference or
last date replaced. One example of the activities defined for
each role is presented in figure 2.

V. EVALUATION

We evaluated the framework covering three aspects: A.
Feasibility for IoT Development, B. Common features and C.

1http://eve.almende.com/
2https://couchdb.apache.org/



Basic performance. We approached these aspects respectively
in the tests described below:

A. Feasibility Assessment: Case Study

We considered a case with common IoT requirements
such as support to heterogeneous capabilities, physical data
gathering, adaptation based on the context and cooperation
among others.

The scenario is presented in figure 3 and describes the
steps for a physical resource provisioning, each swim lane
is a role. Everyday objects require consumables to operate.
For example, a printer requires printing cartridges/toners, a
vacuum cleaner requires filters, an air freshener a fragrance,
etc. With SOs in place, sensors detect promptly when the
physical resource get consumed and notify the operator, giving
also information about where to get the supplies from (local
stock or nearby supplier) or even trigger a purchase order.

The hardware architecture for the SOs was based on Rasp-
berry Pis Model B and B+ with WiFi dongles. On top of them
we installed Arch Linux 4.x, Open JDK Zero VM 1.7 and then
the middleware prototype. The middleware enabled an overlay
network between the participant SOs.

There was one SO per role, except for “Operator Notifier”
which was deployed in two SOs. These two SOs had a
different implementation of the task to notify the user. Here
we tested the tolerance to heterogeneous capability/service
implementations. We tested the autonomy from others by
running the scenario four times and shutting down a different
SO every time except the resource consumer. When Local
Inventory Manager, was not available, the Resource Consumer
could still notify the user about the lack of consumables. When
one of the SOs playing the notifier role was not available, the
one available made the notification.

The framework abstractions sped up the time to implement
each SO. Although every SO was based in the same hardware
platform they were heterogeneous in the capabilities (sens-
ing/actuating services) they hosted. Each other SO was able
to discover them when joining the network and identifying
which roles each SO was able to play. No central directory of
platform having all the available roles was required.

The framework applicability of course is not limited to this
scenario. Additional roles and scenarios can be defined even
using the same capabilities. For example, in the case of SO
having movement detection sensor, the sensing service can be
used for triggering an alarm, if it checks that it happened in
a building during non working hours. Then, security staff can
receive a notification in either a screen, a phone call or a voice
message depending on where they are and the nearby SOs In
other situation, the same sensing service can be used just to
activate the lights during a particular time.

B. Qualitative Assessment

The goal was to compare our framework with similar solu-
tions. For this part, we focused in the common characteristics
that were packaged as middleware. We used the criteria pro-
posed by Fortino et al. in [8] and the solutions there surveyed.

The aspects considered cover middleware requirements such
as support to heterogeneity and management of SOs; and some
specific features such as system programming, discovery and
knowledge management. The reader is advised to follow the
reference for further details on the criteria and the compared
middlewares. We present in table I the evaluation of our
solution based on this criteria.

There are conceptual and technological differences of our
proposal. One first difference is the way we address the SO
management. The infrastructure functions provide fixed and
minimun routines for management the SO. They are required
for the SO to run even with the simpest goal. Management
services are conceived to allow for extension of these func-
tions when the SO has enough resources to host them. Our
solution architecture and the underlying models (e.g. metadata)
introduce well known agent notions not exploited in surveyed
works such as roles, scenarios, activities or actions. We also
articulated them as part of a light programming model for
decoupling of the agent’s overall behaviour (Document-based)
from the concrete action implementation (Service/Object-
oriented). The combination of an agent model with a dis-
tributed discovery of SOs has not been achieved before in the
works under comparison. The distributed discovery is more
aligned with autonomy properties inherent to agent paradigm.

Technological differences are addressed to our prototype
implementation. Although we also used Java, we varied in the
agent platform. This decision required more effort and prevent
us for reusing robust facilities. It is justified in that chosen
platform give us independence from discovery and message
protocols, as well as a intrinsic agent/web service interaction.
These characteristics provide an open integration environment
for SO development [2].

C. Performance Assessment

The aim of this assessment was to check how key com-
ponents of the implementation behaved with different load
units. The data was taken from a Raspberry Pi B+ using
the Hyperic Sigar 3 for monitoring. We initially focused on
two key functions the capability/service loader and the SO
Discovery. For the service load, we simulated loading up to
30 services. The simulated services where very basic, since
the intention was to monitor the pure load process. The results
presented in 4 show that the memory usage increase is in the
order of KB, with an acute raise with more than 20 services.
CPU usage starts in around 21 seconds which is roughly
the time taking for SO booting, without triggering the SO
discovery. When the number of services is increased the CPU
usage rises at proportional pace.

For the SO discovery we simulated up to 20 nodes in
an Intel Core i5 laptop. The Raspberry Pi had to discover
them using our p2p protocol implementation. Demands of
memory for this function are at the order of MB. For the
CPU time, the difference between discovering 5 and 20 nodes
was in the range of 8 seconds. These measurements give us an

3https://support.hyperic.com/display/SIGAR/Home



order of magnitude of the variations in performance when the
load is increased. From the works reviewed we did not find
similar metrics to compare with. We plan to carry out further
measurements in different hardware platforms.

Our current prototype requires platforms with the java VM
support. Despite that everyday there are more IoT hardware
platforms supporting JVMs 4, it imposes a constraint about the
required resources for running the middleware. The frame-
work, however does not hold that restriction and we will
explore in the future other middleware implementations (e.g. C
and javascript/nodejs) with the idea of reducing the hardware
requirements. It is also true, that our architecture is aimed at
non-trivial objects, it is clear that in some scenarios with trivial
objects it is not worthwhile to endow autonomy. e.g. A pen,
at most it would be desirable to store owners information and
be able to be tracked if lost, probably also alert when ink is
about to gone, but in this case autonomy for the purpose of
the object is probably not worthwhile.

TABLE I
QUALITATIVE ASSESSMENT OF THE MIDDLEWARE COMPONENT

Characteristics Assessment of our solution
Heterogeneity &
Application Dev. Yes, see III-C.

Augmentation
Variation of SO Yes, see III-C

Management of SO Yes, see III-C
Evolution of SO
Systems Yes, by programming.

System Agent-based model &
Programming JSON & Java
System Distributed
Architecture based on EVE
Metada Properties, roles, agents,

activities & services with JSON.
Discovery Distributed

P2P / Web services
Communication Asyncronous Messages

over EVE JSON-RPC
Knowledge Management Local & remote

Document-oriented: CouchDB
SO Architecture Agent-based &

service components &
SO Proactivity By configuration
SO Cooperation Through roles &

services
SO Application Coupling Partial

VI. RELATED WORK

In addition to the works in [8] we used to evaluate the
middleware part of our framework (section V-B), we present
here literature with a different focus but tackling IoT chal-
lenges of heterogeneity management and the autonomy of the
IoT devices, using the agents paradigm. We distinguish three
groups: System engineering approaches, concrete IoT solution
architectures and domain-specific applications.

In regards engineering approaches, aspect-oriented agents
are jointly used with a Common Variability Language within a
Software Product Line process in [9]. Their goal is to provide a

4http://www.oracle.com/technetwork/java/embedded/overview/index.html

Fig. 4. Performance Metrics Local Service Load

Fig. 5. Performance Metrics SO Discovery

reusable approach for development of IoT application focusing
in self-management and heterogeneity. Other more conceptual
approaches are found [10] and [11]. In contrast to our work,
these ones do not provide insights of how well known agent-
world concepts such as roles, activities, actions fit in the IoT
application development as well as they are concentrated in
the autonomy from the user perspective.

Several IoT solution architecture have been proposed using
agents. Authors of [12] propose a 4-strata multiweb archi-
tecture for the management of diversified data. Authors of
[13] propose a lightweight approach with agent-based and
application-specific proxies to trigger services. In [14], an
agent architecture is proposed for dealing with heterogeneity
at device level. Their strategy rely on separate device-specific
functions from agent core with portable service abstractions
and using a message bus for communication. Agents are
intended to be deployed remotely to the objects and so they
inherently depend on the IoT platform. Finally, the work in
[15] proposes lightweight agents embedded in constrained
devices which are supported by an Agent Platform hosted in
a kind of gateway. They provide also a thorough use case
within an Intelligent Museum solution [16]. Our proposal is
different to these since we aim for independence of platforms
or gateways in order to offer a further degree of autonomy for



IoT devices.
Authors of [17] and [18] propose an architecture relying

on agents that can be deployed on the cloud or in the object
itself. Agents are avatars, that pro-actively search for phys-
ical actions called capabilities or higher level functionalities.
Reasoning is possible with ontologies and SPARQL queries.
Our approach is different since we rely not only in the use
agents but also roles and scenarios. Besides, we do not require
additional frameworks such as OSGI, that could demand more
hardware requirements. Finally, our architecture is tailored to
specifically to be localised on-object.

Some works for the ambient assisted living (AAL) domain
are found for example in [19] and [20]. The first solution
is based on the integration of agents embedded in wireless
nodes with a service-oriented architecture. They use SOAP and
FIPA/ACL for communication requiring translation between
each other. The second work includes a three-layer architecture
covering environment, reasoning and learning functionalities.
This solution is conceptual and is particularly constrained by
the domain since some of the agents are specific for it. We
try to offer a solution for multiple domains and avoiding the
need of a translation between agent and services by building
the agent behaviour from the service execution workflow.

VII. CONCLUSIONS AND FUTURE WORK

We introduced a novel framework for building IoT appli-
cations exploiting Smart Object’s local resources. Our frame-
work is built around an architecture composed by a set of
infrastructure management functions that give support to both
services and agents layers. Management functions provide
the necessary support for enabling basic agent and service
operations (e.g. life cycle, discovery, selection, etc.)

The service layer is intended to wrap the cyber physical
capabilities of the SO as services. These services include
communication, reasoning, actuating, sensing and manage-
ment. The agent layer is rich in the constructs used including
roles, activities, actions and properties of interest. Roles care
intended to be installed/uninstalled to endow SO with specific
behaviour based on the available capabilities.

We evaluated our proposal with the implementation of
an IoT application. The IoT application covered a common
scenario in multiple smart environments: the physical resource
provisioning. With our framework, the implementation was
based in a middleware deployed in every SO which enables the
reuse of common functions and reduced the implementation
effort of the whole system. The scenario was tested facing
unavailability of the participant SO and the system was able
to cope with the absence of them, which demonstrated the
autonomy of these SO not only in regards performing tasks in
behalf human users but also with regards the remote support
from platform or gateways.

We continue extending our implementation and making
improvements in our design. We plan to enhance reasoning
services aiming to a better adaptation in runtime based on
utility functions. We are implementing new roles for validation
of the framework in a smart building scenario. We will explore

the implementation of versions of the middleware in other
programming languages.

REFERENCES

[1] J. M. Mendes, P. Leitão, F. Restivo, and A. W. Colombo, “Service-
oriented agents for collaborative industrial automation and production
systems,” Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 5696 LNAI, pp. 13–24, 2009.

[2] M. E. Perez Hernandez and S. Reiff-Marganiec, “Autonomous and self
controlling smart objects for the future internet,” in Future Internet of
Things and Cloud (FiCloud), 2015 3rd International Conference on.
IEEE, 2015, pp. 301–308.

[3] H. Hexmoor, C. Castelfranchi, and R. Falcone, Agent Autonomy.
Springer Science + Business Media, LLC, 2003, vol. 1.

[4] C. Castelfranchi and R. Falcone, “Founding autonomy: The dialectics
between (social) environment and agents architecture and powers,” in
Agents and Computational Autonomy. Springer, 2003, pp. 40–54.

[5] M. Wooldridge, An introduction to multiagent systems. John Wiley &
Sons, 2009.

[6] D. Vernon, Artificial Cognitive Systems: A Primer. MIT Press, 2014.
[7] L. Sterling and K. Taveter, The Art of Agent-Oriented Modeling. The

MIT Press, 2009, vol. 47, no. 06.
[8] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Middlewares for

smart objects and smart environments: overview and comparison,” in
Internet of Things Based on Smart Objects. Springer, 2014, pp. 1–27.

[9] I. Ayala, M. Amor, L. Fuentes, and J. M. Troya, “A software product
line process to develop agents for the iot,” Sensors, vol. 15, no. 7, pp.
15 640–15 660, 2015.

[10] H. Yu, Z. Shen, and C. Leung, “From internet of things to internet of
agents,” in Green Computing and Communications (GreenCom), 2013
IEEE and Internet of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social Computing. IEEE,
2013, pp. 1054–1057.

[11] A. M. Mzahm, M. S. Ahmad, and A. Y. Tang, “Enhancing the internet of
things (iot) via the concept of agent of things (aot),” Journal of Network
and Innovative Computing, vol. 2, no. 2014, pp. 101–110.

[12] P. Leong and L. Lu, “Multiagent web for the internet of things,”
in Information Science and Applications (ICISA), 2014 International
Conference on. IEEE, 2014, pp. 1–4.

[13] T. Leppänen and J. Riekki, “A lightweight agent-based architecture
for the Internet of Things,” in IEICE workshop on Smart Sensing,
Wireless Communications, and Human Probes, 2013, pp. 2–4. [Online].
Available: http://www.greenorbs.org/events/IEICE13.html

[14] E. Jung, I. Cho, and S. M. Kang, “iotSilo: The Agent Service Platform
Supporting Dynamic Behavior Assembly for Resolving the Heterogene-
ity of IoT,” International Journal of Distributed Sensor Networks, vol.
2014, pp. 1–11, 2014.

[15] I. Ayala, M. Amor, and L. Fuentes, “The sol agent platform: Enabling
group communication and interoperability of self-configuring agents
in the internet of things,” Journal of Ambient Intelligence and Smart
Environments, vol. 7, no. 2, pp. 243–269, 2015.

[16] I. Ayala, M. Amor, M. Pinto, L. Fuentes, and N. Gámez, “imuseuma: An
agent-based context-aware intelligent museum system,” Sensors, vol. 14,
no. 11, pp. 21 213–21 246, 2014.

[17] M. Mrissa, L. Medini, and J.-P. Jamont, “Semantic Discovery and
Invocation of Functionalities for the Web of Things,” in 2014 IEEE
23rd International WETICE Conference, 2014, pp. 281–286.

[18] J.-p. Jamont, M. Lionel, and M. Mrissa, “A Web-Based Agent-Oriented
Approach to Address Heterogeneity in Cooperative Embedded Systems,”
Advances in Intelligent Systems and Computing. Trends in Practical
Applications of Heterogeneous Multi-Agent Systems. The PAAMS Col-
lection, pp. 45–52, 2014.

[19] D. I. Tapia, J. A. Fraile, S. Rodrı́guez, R. S. Alonso, and J. M. Corchado,
“Integrating hardware agents into an enhanced multi-agent architecture
for ambient intelligence systems,” Information Sciences, vol. 222, pp.
47–65, 2013.

[20] S. Ferilli, B. De Carolis, and D. Redavid, “An intelligent agent archi-
tecture for smart environments,” in Foundations of Intelligent Systems.
Springer, 2015, pp. 324–330.


