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Industrial Control Systems (ICS) and SCADA (Supervisory Control and Data Acquisition) systems are
typically used in industries such as electricity generation and supply, gas supply, logistics, manufacturing
and hospitals and are considered critical national infrastructure. The evolution of these systems from
isolated environments into internet connected ones, in combination with their long service life and real-
time nature have raised severe security concerns in the event of a cyber-attack. In this paper, we review
the current literature surrounding the threats, vulnerabilities, exploits and existing approaches to securing
vulnerable SCADA systems. We then focus specifically on the development of a distributed online runtime
monitor to detect violations of safety properties. We conclude with suggestions for further research needed
to progress the state of the art in the area of distributed online runtime verification of SCADA systems.
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1. INTRODUCTION

ICS and SCADA systems are typically used for the
control of systems used in electricity generation
and supply, gas supply, logistics, manufacturing and
hospitals. Their uninterrupted and safe operation
is critical to the safety of human lives and a
nation’s security. Typically these systems operate
continually and have lifespans measured in decades.
Whilst cyber attacks against SCADA systems are
rare, occurrences are on the increase and the
consequences can be severe. Let us consider just
the following examples:

In 2009 a hospital security guard installed malware
on hospital machines and took control of the systems
controlling heating and air conditioning (Nicholson
et al. 2012).

In 2010 the Stuxnet worm was discovered in Iran’s
power plants. The worm had been introduced on
removable media and propagated from the corporate
network to the SCADA network where it searched
for specific models of PLC and rewrote the program
logic to alter centrifuge timings to decrease their
service life (Falliere et al. 2011).

In December 2015, the Ukrainian power grid suffered
a cyber attack which caused 225,000 customers

to lose power for several hours while the SCADA
systems were manually restored (E-ISAC 2016).

Current efforts in SCADA security focus on the
development of more secure architectures, message
logging for offline analysis, encryption and firewall
improvements. We find that current methods offer
limited protection for ‘semantic attacks’ where the
system continues to operate but in a subtly different
way – as was the case with the 2010 Stuxnet
attack. We therefore propose to pursue distributed
online runtime monitoring as offering an additional
layer of protection for vulnerable SCADA systems
by inspecting and verifying states of distributed
components at runtime. There are several crucial
requirements associated with runtime monitoring
which are particular to ICS/SCADA including the
limited bandwidth available for communication thus
not allowing heavy control protocols, the time critical
nature of observing issues and addressing them,
and the expected incomplete understanding of
system configuration and implementation details.

The rest of this paper introduces the history
and typical problems with SCADA systems in
section 2, considers common efforts to securing
SCADA systems in section 3 and then turns it is
attention to where we believe progress is required:
the distributed monitoring of ICS/SCADA systems
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(Section 4). We conclude the paper with a vision
of the research aspects to be addressed to achieve
effective protection at runtime.

2. HISTORIC DEVELOPMENT AND TYPICAL
CONCERNS

Traditional SCADA systems centred around central
mainframe computer which communicated with field
devices such as Programmable Logic Controllers
(PLCs), Remote Terminal Units (RTUs), Intelligent
Electronic Devices (IEDs) and HMI (Human Ma-
chine Interface) workstations. Local devices commu-
nicated over a serial bus, whilst remote devices com-
municated via telephone lines or radio technology.
These early systems relied on physical security and
each implementation used proprietary protocols of-
fering ‘security by obscurity’ (Nicholson et al. 2012).

Through the 1980s and 1990s, SCADA architectures
followed the trend of general information systems
towards a distributed architecture in order to balance
reliability across nodes and to take advantage the
increasing computational power across the network.
This led to the adoption of ‘standard’ network
protocols such as TCP/IP to provide LAN and
WAN communications with the existing proprietary
protocols laid on top.

In the new millennium the overlap between traditional
information systems and SCADA has continued.
The introduction of open standards and off-the-
shelf hardware, reduced the effect of ‘security by
obscurity’. Where there had once traditionally been
an ‘air gap’ between the standard corporate network
and the SCADA network, these are often connected
such that the SCADA databases can be read from
or cloned in the corporate network for reporting,
monitoring and remote management purposes.

The increased use of standard PC hardware,
operating systems and infrastructure reduced cost
but opened the system to new threats as they
were then exposed to the vulnerabilities common to
these general computer systems (Worms, Viruses,
Trojans spear phishing attacks etc.). This allows
unique exploits due to the combination of the
insecure nature of the proprietary protocols and the
connected nature of the systems (Nicholson et al.
2012; Cárdenas et al. 2008). We explore these
vulnerabilities in Section 2.3.

2.1. Threats

The threats to reliable and safe SCADA operation
can originate from (1) operator or programming error
from lack of training or experience, (2) malicious
access to process communication channels leading
to potential loss of intellectual property, (3) malicious

alteration of process engineering data whilst it
traverses the network or (4) flooding the network with
malformed or spurious messages(Giani et al. 2009).

2.2. Attackers

Nicholson et al. (2012) highlight the following poten-
tial attackers of a SCADA system: (1) State spon-
sored cyber-warfare, (2) Terrorist Organisations, (3)
Hackers / Organised Crime, (4) Employees / Inside
attacks (5) ‘Script kiddies’ and Hobbyist Hackers and
(6) Hacktivists.

In the case of cyber-warfare and terrorist organisa-
tions, the motivation is to cause as much disruption
as possible. A state sponsored attack has almost un-
limited resources and funding. Organised criminals
are more likely to be motivated by the theft of insider
knowledge or to include a SCADA attack in part of a
larger criminal activity. This could include espionage
from other companies with the motivation to give
them a competitive advantage. Such an attack is
likely to be more subtle and current techniques are
less likely to offer quick detection.

Hackers and ‘script kiddies’ probably have less
inside knowledge of the plant they are attacking
but will be seeking known exploits and weaknesses
such as default passwords and known yet unpatched
vulnerabilities. They could be motivated either to
cause disruption to the plant or for the personal
challenge. Hacktivists could be motivated to attack
critical infrastructure to draw attention to their goals
and to cause disruption, for example an anti-nuclear
energy protest disabling a nuclear power station.

Some attacks may be unmotivated, but instead
caused by accidents as a result of lack of employee
training or system faults which result disruption to
normal operations of the SCADA facility.

2.3. Vulnerabilities

Due to the nature of SCADA systems, they operate
continuously with infrequent maintenance windows.
Test and/or development environments are not
available and depending on the nature of the system
there may be a strict certification process required
before changes can be implemented. This means
that whilst robust procedures may be established
for installing patches and updates in the corporate
network segment, it is very common for the SCADA
segment to remain unpatched for a significant
amount of time. (Cárdenas et al. 2008). As the
complexity of the systems increases so does
the occurence of bugs, and hence the need for
patching. Cárdenas et al. (2008) indicate that flexible
configuration options such as remote management
via a web server increase the surface area for attack.
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Traditional SCADA systems were physically isolated
from the internet, hence physical security was
considered to be adequate protection. Now that
these systems which were designed to be isolated,
are connected to the internet, this approach no
longer offers adequate protection (Cárdenas et al.
2008; Vukovic et al. 2012; Cárdenas et al. 2008).
Worse still, older devices using open protocols
cannot easily be upgraded to include authentication
or encryption, they must either be replaced or
augmented with additional hardware. However, this
would require taking the systems offline for an
unacceptable period of time and be prohibitively
costlyTsang and Smith (2008).

SCADA systems historically used proprietary ad-
hoc protocols: even the same models of equipment
deployed by the same engineers could vary between
implementations. This caused problems during
maintenance and prompted the development of
more standardised protocols such as ELCOM-90,
Modbus, DNP, Fieldbus and ASCII (Kalapatapu
2004). Whilst this enables interoperation to occur
between vendors of SCADA equipment, the use of
open protocols also makes it easier for a would-be
attacker to familiarise themselves with the system.
The open design does however allow for the
easier identification and correction of bugs 1, which
could go undetected (but therefore unexploited) for
years in a proprietary system (Cárdenas et al.
2008). Adopting the use of commodity IT extends
further to hardware and operating systems, so that
SCADA systems inherit the vulnerabilities of these
components (see e.g. (Cárdenas et al. 2008)).

Many of the systems still in use today were designed
before the strong need for encryption and due to
their low computing power are unable to handle the
additional complexity. Also where a SCADA system
is currently in use or widely distributed, retrofitting
encryption must be done in an incremental approach
as it is infeasible to upgrade the entire system
concurrently (Dawson et al. 2006). This leaves such
systems vulnerable to eavesdropping, man-in-the-
middle and replay attacks.

SCADA systems operate within strict timing con-
straints which must be observed to ensure safe
operation. Many of these network links are running
at peak load and cannot cope with the additional
overhead introduced by the use of authentication
headers and encryption which could effectively act
as a denial-of-service attack against nodes unable
to cope with the additional computation.

Rule sets used for intrusion detection work well
in a standard corporate network where the attack
1Assuming the relevant patches are deployed, see 2.3

patterns are common and are relatively easy to
identify. In a SCADA environment the attacks are
infrequent and likely to be unique to the specific
environment under attack, therefore rule sets built
from the analysis of one attack are unlikely to detect
future attacks (Hadžiosmanović et al. 2014).

Existing intrusion detection systems (IDS) inspect
network traffic on a corporate network which is
using common protocols such as TCP/IP, SMTP,
POP3, IMAP, FTP, HTTP, HTTPS etc. They do not
deeply inspect the SCADA traffic and are unable to
identify messages which are semantically invalid, for
example the activations of the heating element in a
water heater when no water is present. This kind
of semantic violation was the basis for the Stuxnet
attack (Janicke et al. 2015).

It is suggested by Cárdenas et al. (2008), that
one of security challenges that separates SCADA
security from general ICT security is that SCADA
systems interact with the physical world in ways that
general ICT security measures are not designed to
consider. This is further aggravated by the need
to locate RTUs and IEDs in remote and hostile
locations (electrical substations or pumps on arctic
oil pipelines for example), so physical security
remains an issue, Retrofit security technologies to all
these nodes concurrently while the system remains
active throughout, the ability for mixed operation and
to secure the infrastructure in stages is required
(Dawson et al. 2006). These matters also apply to
the fledgling Internet of Things (IoT) domain which
will benefit from the considerations in this paper
while possibly offering some low cost options for
additional monitoring in SCADA if an appropriate
secure monitoring solution can be found.

3. SECURING ICS/SCADA

We shall now proceed to discuss some related
works from the literature with a focus on, identifying
techniques for the security of ICS/SCADA systems.

3.1. New Architectures

Many new architectures have been proposed which
increase the resilience and security of SCADA
systems. Whilst these could be applicable to newly
developed control systems, they do not address
vulnerabilities in systems which will continue to be
operational for decades to come. Some examples of
these architectures include:

A modified version of fieldbus including a GPS
receiver for time synchronisation and the use of
a Hamming encoding to allow for the detection
and correction of bit-level errors with a predictable
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correction rather than requiring the data to be
retransmitted (Erdner and Halang 2004).

A combination of Wireless Sensor Networks, Mobile
Ad-Hoc Networks and the internet to produce a
secure attack-resistant architecture (Kumar et al.
(2014)) which they benchmarked against the
existing techniques: Vukovic et al. (2012)’s NAMDIA
(Network-Aware Mitigation of Data Integrity Attacks),
Morris and Pavurapu (2010)’s Retrofit IDS (Intrusion
Detection System), and Fovino et al. (2012)’s CSBF
(Critical State-Based Filtering).

The use of an agent-based decision support system
for the automation of control decisions in large and
complex control processes has been suggested in
(Prayati et al. 2007). A new agent-based architecture
to allow for greater configuration and adaptability on
production lines where the products to be produced
are customisable / change frequently Dionisio Rocha
et al. (2015) follows similar premises.

The use of Component Oriented Programming
(COP) as opposed to Object Oriented Programming
(OOP) in large-scale and distributed SCADA
systems. This has the advantage of distributing the
requirements of resources and provides examples
of automated discovery. However, it is not clear
how this could be applied or integrated with existing
infrastructures and how timing constraints could be
guaranteed due to the discovery process (Anh and
Chau 2009).

3.2. Message Logging

Message logging can be used for offline analysis
of the network and to identify traffic patterns during
normal operation as well as highlighting traffic
deviations from normal. Morris and Pavurapu (2010),
propose a data logger for serial communication
based on MODBUS and DNP3 which can be
retrofitted to existing applications.

Tupakula and Varadharajan (2014), suggest adding
a Virtual Machine based Attack Detection Agent
(ADA) and Attack Detection Servers (ADS) to the
infrastructure to monitor and detect anomalies in the
control system. However, their monitor validates the
the runtime state of the system “at random intervals”,
which raises the question of whether the monitor
may miss unsafe states. Detection rules are initially
manually configured, requiring detailed knowledge
of the process under observation and they are later
manually refined by log file analysis.

3.3. Encryption

Several attempts have been made to implement en-
cryption between components of SCADA networks
and also in efficient key management.

The security of unattended remote stations cannot
be assumed and techniques such as Wright et al.
(2004) and Tsang and Smith (2008) could be
thwarted bcause messages could be injected into
the encrypting device (Giani et al. 2009). However,
if physical access to a remote station is gained then
“greater disruption and damage can be caused by
other means” (Wright et al. 2004).

Key management is crucial for all encryption ap-
proaches. Beaver et al. (2002) present a crypto-
graphic key management algorithm for SCADA sys-
tems which uses a combination of symmetric and
public keys, the mechanism differs between master-
controller and peer-to-peer links. Dawson et al.
(2006) builds on the work of Beaver et al. (2002),
by providing both a unified communication technique
for master-controller and peer-to-peer connections
using only symmetric keys instead of public keys in
order to to reduce network traffic load. Choi et al.
(2009) present a solution to the problem of broadcast
communications, to be used in the event of, for
example broadcasting alarm states. Lee et al. (2008)
integrate Choi et al. (2009) with the Iolus framework
(Mittra 1997) to break down key distribution into hi-
erarchies to ensure efficient distribution of new keys
and revocation of expired keys, whilst still supporting
broadcast messages.

Pitre-Cambacds and Sitbon (2008); Pal et al.
(2009), provide overviews of the constraints and
requirements for key management and current key
management practices and their applicability to
SCADA.

3.4. Firewall and Intrusion
Detection Systems

The move to standard PCs and network hardware
and connection to the corporate network opens vul-
nerable SCADA systems to the internet. Firewalls
are generally deployed at the boundaries between
the internet, corporate network and SCADA network,
however they are not typically designed to inspect
SCADA-specific protocols and offer limited protec-
tion for the SCADA network. There have been previ-
ous works on incorporating SCADA traffic monitoring
into firewalls and IDS (Intrusion Detection Systems),
such as the VIKING project by Giani et al. (2009),
which suggests using an application-level module in
the IDS to detect data anomalies and suspicious
traffic.

Hadžiosmanović et al. (2014) used a network tap
to capture and inspect raw network packets at the
PLC interface. Their approach inspects the content
of messages and categorised them as (1) control, (2)
reporting, (3) measurement and (4) program state.
Variables in program state are then categorised as
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(a) changing continuously, (b) changing gradually
over time, (c) attribute data from a fixed set of
values, or (d) never change. Statistical models are
then used to ensure that messages do not deviate
from their observed categorisation. This assumes
that the traffic offers a true representation of state;
that messages have not been forged or manipulated
and that all behaviour is observed and categorised,
which may not be the case for alarm triggers and
recovery operations.

Monitoring is also required at a semantic level,
as otherwise ordinary messages could occur in
dangerous sequences. For example, the activation of
a heating element in a water heater whilst it is empty.
It is therefore important to monitor in a way that is
aware of the current state of multiple components
throughout the system.

In the event of a Stuxnet style semantic attack,
where the traffic is altered in subtle ways to affect
the process under control (Janicke et al. 2015),
knowledge of the content of messages is essential
in order to protect the SCADA system from attack.
Due to the proprietary nature of the protocols still in
operation and the need to tailor the protection rules
specifically for the system in question, it is unlikely
that a one-size-fits-all set of firewall rules would offer
the same level of protection as a monitor capable
of checking the state of various components of the
system with rules governing safe operations.

4. RUNTIME VERIFICATION

Existing IDS techniques are unlikely to identify a
semantic attack where the messages are valid
according to the SCADA protocol, but the content
of the message has been altered in a way which
causes the overall system to behave incorrectly, as
in the case of Stuxnet. Runtime verification offers the
opportunity to build a safety monitor which is capable
of monitoring system states in real-time in order to
detect and react to safety violations.

Runtime verification differentiates itself from formal
model checking and theorem proving in that
properties of a program are checked by execution
instead of analysing the source or compiled code
to prove safety and security properties Leucker and
Schallhart (2009). Runtime verification can also be
applied either where no system model exists, or
to complement formal model checking by verifying
the implementation matches the specification. The
disadvantage of runtime verification is that it can only
verify observed behaviour, that is to say that it cannot
be used to reason about the system as a whole
unless every possible state occurs Leucker and
Schallhart (2009); Malakuti et al. (2011) during the

execution. Runtime verification leads to the potential
for a system to react and raise alarms or take
corrective action before faults become failures.

Runtime verification can either be performed online
whilst the target system is running, examining
program output during execution, or offline by
examining logs files and traces Leucker and
Schallhart (2009).

In the following we investigate the previous work in
runtime verification for embedded control systems in
general (4.1), SCADA systems (4.2), and distributed
systems (4.3).

4.1. Runtime Verification of Embedded Control
Systems

Embedded systems are constrained by low re-
sources and computational power, with requirements
for real-time and reliable operation. They are often
deployed in harsh environments and must accept
input from unreliable sensors yet they must provide
reliable real-time operation. In order to achieve this,
runtime verification has been given some attention in
the context of embedded systems.

Runtime verification is presented in the context of
ultra-critical embedded systems by Pike et al. (2011),
who define an ultra critical system as an embedded
system which senses and/or controls the physical
world within fixed and time-critical constraints.
Runtime verification of these systems must account
for hardware faults and random failures, in addition
to software design faults. The identified requirements
are: (1) Functionality (the presence of RV technique
cannot change the behaviour of the target system),
(2) Certifiability (the RV system must not require
the re-certification of the target system), (3) Timing
(the RV technique must not affect the timing of the
monitored system) and (4) Size, Weight, Power (the
RV system must not exceed these tolerances).

These constraints prohibit the use of traditional run-
time verification techniques such as instrumentation
of the target system for additional monitoring output.
Watterson and Heffernan (2008) present a method
for using the formal Java-MaC runtime verification
method to monitor a Java control system using
instrumentation: The control system and monitor are
implemented in a JOP (Java Optimised Processor)
software processor, embedded in an FPGA (field
programmable gate array) and run alongside the
control system

Neukirchner et al. (2012) investigate the monitoring
the timing of activation patterns for tasks at
runtime with verification against a timing model.
Uncharacteristically long or short activation times for
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a task could be indicative of a fault or tampering
with the system. Gu et al. (2014) combat the high-
overhead of control flow checkers (CFCs) by using
partial instrumentation to ensure that the worst-
case execution time (WCET) is acceptable in the
embedded environment.

TyTAN is proposed by Brasser et al. (2015), as
a secure architecture for low-resource embedded
systems supporting dynamic loading of secure tasks,
secure inter-process communication and real-time
guarantees.

Despite not being SCADA specific, these techniques
are of interest as the runtime monitoring of timings
could be indicative of interference e.g. short delays
between packets in the case of a replay attack.
However, in order to thoroughly monitor the activity
in the system we must be able to examine variable
values for semantic correctness.

4.2. Runtime Verification of SCADA

CASPER was developed by Barbosa et al. (2012),
to monitor network traffic and uses Complex Event
Processing and Hidden Markov Models to predict
failures in distributed safety-critical systems. The
experiments monitored: (1) round trip time, (2)
message rate and (3) number of requests without
a reply. The Topology Detector Component builds
a graph representing the network by monitoring
network traffic sources and destinations. This is a
useful technique in re-discovery of topology in large
and complex SCADA systems, where a traditional
network scanner can cause PLC failure in the form
of a DOS attack.

Mao et al. (2015) built a non-intrusive monitor for
the runtime behaviour of open SCADA systems.
Their technique involved a Virtual Machine Monitor
(VMM) to capture network traffic travelling between
the PLC and the HMI. Messages are modelled and
marked with guard suffixes to identify messages
which cannot occur concurrently. At runtime the
Sort network monitor is used to capture all IP
traffic, filtering for specific packets relating to SCADA
protocols. The main stages of their monitor are (1)
Event Extraction, (2) Semantic Reconstruction, (3)
State Refinement and (4) Behaviour Checking. They
do not discuss the performance characteristics of the
monitor and their model is restricted to concurrency
and dependency relationships of messages, they do
not appear to model or verify the message content,
timeliness or source/destination of the message.

Janicke et al. (2015) developed a low-cost monitoring
solution based upon an Arduino Yun and Tempura,
an executable subset of Interval Temporal Logic
Moszkowski (1984); Cau et al. (2009); Hale (1988).

Their solution was tested using a Siemens S7-1200
PLC with the Arduino connected to the Profinet
interface. The advantage of the ITL-based monitor is
that ITL allows for a much richer specification of the
monitor, allowing for the specification of conditions
based upon the next state, sometimes true, always
true, never true and upon the number of states
between conditions. The solution allows inspection
of the PLC registers, as represented in the network
traffic, in order to identify subtle violations of safety
conditions.

Tupakula and Varadharajan (2014) present a virtual
machine monitor (VMM) based technique to detect
anomalies in network traffic and the state of
virtual machines operating the HMI, Historian
and current databases, and SCADA servers for
anomalous behaviour. The architecture is based on
the assumption that these servers are based on a
virtualisation technology, which is not necessarily the
case in existing SCADA systems especially in strict
real-time environments.

TAIGA (Franklin et al. 2014), is a system-on-
chip (SoC) solution which is installed between the
network or serial controllers of the PLC. It is capable
of capturing network traffic and program updates to
ensure that formal safety and liveness specifications
are not violated. Being an embedded system,
TAIGRA introduces minimal latency, however each
module only protects the single PLC in which is it
installed.

In the context of monitoring SCADA/ICS safety
and security, online runtime verification is the most
valuable technique as it allows violations to be
caught and alarms triggered in real-time. However,
this approach requires great care not to violate
fragile timing and functional constraints of the system
under observation.

4.3. Runtime Verification of
Distributed Systems

The approaches discussed in the previous section
were tested on small-scale SCADA systems,
typically on a single PLC. For practical runtime
SCADA monitoring at industrial scale, the model
and verification must cater for many PLCs in a
distributed environment. From our review of the
literature, little work appears to have been conducted
in this area, therefore this section will summarise the
current literature on runtime verification of distributed
systems in general, with a view to their application to
SCADA.

Malakuti et al. (2011), use static code analysis
techniques to build a causal model of distributed
Java RMI (Remote Method Invocation) calls by
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wrapping remote calls with a unique identifier. On
top of these, a model of the expected behaviour
of the application is imposed. In the context
of SCADA, their solution does not address the
timing constraints of a safety-critical system and
utilises instrumentation in the form of Aspect
Oriented Programming (AOP). As stated previously,
instrumentation is not a desirable solution in a
safety-critical system due to the risk of changing a
previously certified system.

Past Time Distributed Temporal Logic (PT-DTL) and
DIANA (DIstributed ANAlysis) (Sen et al. 2004) are
presented as an efficient way to monitor safety in
distributed systems. They focus on a peer-based
decentralised approach where each node is aware
of other processes’ remote states where necessary,
but there is no single node with knowledge of
the state of the entire system. Therefore their
formalism, PT-DTL deals with ‘the last known
state’ of remote processes. Linear Temporal Logic
(LTL) is extended into PT-LTL by the inclusion
of constructs for “previously”, “eventually in the
past”, “always in the past” and “since”. Sen et al.
(2004) then extend PT-DTL further by including
temporal formulae which refer to the observed states
of remote nodes. They identify the following as
guidance for efficient distributed runtime monitoring:
(1) monitoring should be fast enough to be executed
online, (2) local monitors should operate with as little
memory overhead as possible and (3) the number
of additional messages sent for the purpose of
monitoring should be minimal.

DIANA, their implemented monitor would not be
directly applicable to an embedded control system
as it requires instrumentation of Java bytecode in
order to: (1) invoke monitors, (2) track internal
variable changes, (3) send messages and (4)
respond to messages by updating the local variables
representing external variables. This instrumentation
would pose challenges to in critical systems as
it may violate the requirements for Functionality,
Certifiability and Timing as identified in Pike et al.
(2011), as previously discussed in ??. The current
solution in Sen et al. (2004) deals only with safety
properties not liveness properties. Additionally, the
formal safety requirements must be defined upfront
manually by an expert.

5. A DISTRIBUTED RUNTIME MONITOR FOR
ICS/SCADA

Based upon our review of the literature, we see
the following areas of interest to advancing the
state of the art in distributed runtime verification in
an ICS/SCADA context. In particular we see three
intertwined aspects which bring understanding of

desired behaviour and runtime information together
in the physical setting of ICSs to bring more security
to the fore. The three parts are a model (the aspect
that attempts to capture the desired behaviour),
data sources (the runtime information) and hardware
and interfaces (influencing the location of solutions
technologies).

5.1. Model

Runtime monitoring examines an actual execution of
a system and compares this to some formal model
to determine whether the behaviour matches that
defined in the model – and needs to alert if there
is a mismatch as undesired (or at least unexpected)
behaviour has occurred.

For SCADA monitoring, this model must be specified
in a formal language which allows for the definition of
safety properties in a distributed fashion. A number
of formal modelling notations has been proposed
(typically some form of temporal or spatial logic).
Well known challenges exist in establishing the
model. At a basic level an expert could manually
define safety constraints. The coverage of this type
of model would be limited by the time / knowledge
constraints of the expert.

Alternatively, the model could be learned from
the behaviours of the system under observation
using either artificial intelligence or statistical
analysis techniques to learn what ‘normal operating’
behaviour is. This assumes that the system is
currently operating correctly and is limited in that only
the states encountered will be learned. It may trigger
false alarms or miss safety events during critical error
and recovery states which have not previously been
learned by the system. Such monitoring is still useful
in the detection of subtle semantic attacks leading to
a general degradation of equipment such as in the
Stuxnet attack. Additionally, they may also be able to
detect other kinds of attack such as a DOS attack
caused by increased traffic on the network.

A third approach would be to reverse engineer
the program logic in each PLC into a formal logic
which could be used to generate the monitor. This
would allow the monitor to ‘lock in’ the current logic,
assuming that logic is already correct.

A combination of the first and second approach
allows for a model which covers the core safety
concerns whilst also offering the extra coverage of
learning behaviours of which the expert may be
unaware. Combining the first and third approach
would allow the current program to be extracted
and abstracted such that it could be to presented
to an engineer to reason about the program and
even allow for model checking / theorem solving
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techniques to validate the safety of the model
for runtime verification. A combination of all three
approaches would provide the most robust model,
it would cater for ‘obvious’ safety concerns defined
by an expert, analyse trends to identify anomalous
behaviour and allow for static model check of the
current program to ensure that it meets it’s current
safety specifications.

However, the anticipated solution needs to go
beyond this in that it needs to allow to combine
local understanding, generated by a mix of the above
methods, with global (i.e. component overarching)
understanding to address the complexity of today’s
SCADA systems. In particular it will need to cope
with missing information (not all code could be
re-engineered; experts are not all-knowing) and
imprecision (some parts of the overall system will
be better understood than others) – thus really
challenging current logic based models.

5.2. Data Sources

The models allow to understand the system, but
for monitoring purposes they depend on availability
of real-time data. One possible source of data is
analysis of the network traffic itself, by inserting
monitors in between the PLCs and the HMI in order
to intercept and extract data from the traffic. This is
the approach most frequently taken in the literature.
Potential issues with this approach are that: (1) it
assumes that the network traffic is trustworthy, (2)
the monitor can intercept and relay traffic without
violating real-time constraints (3) the necessary
values appear in network traffic (some values may
exist only within the PLC). This approach would also
need to cater for different network protocols which
may be in use.

A second approach to investigate is the possibility
of using a diagnostic port on the PLC to examine
the registers directly. A feasibility analysis would be
required to ensure that (1) such a diagnostic port
features on a sufficient number of PLC models and
(2) that the usage of the port does not incur any
performance penalty in the operation of the PLC.

A third approach examines values in the two central
databases, the first is frequently called the ‘current’
database which stores the last observed state of
registers from the PLC and is used to drive the HMI.
The second database is known as the ‘historian’
and stores historical values for trend analysis and
reporting. Since these databases are located closest
(and often mirrored in) the corporate network and
contain values passed from sensors via the PLC.
Therefore whilst they are the easiest to access, they
can be considered the least trustworthy option.

The needed solution will access data from different
sources, needs to aggregate this in a way that allows
to capture a certainty about its correctness and is
open to auditing on this account. It further needs to
be able to derive conclusions with certainty in the
absence of some detailed information as bandwidth
limitations or inaccessibility of PLCs might make it
impossible to obtain all the data one wants.

5.3. Hardware and Interfaces

A final consideration is the physical hardware of
the monitors. Examples from the literature include
various embedded solutions built upon FPGA
technology, as well as low-cost hobbyist devices
such as those in the Raspberry Pi and Arduino
families. If our monitors are intended to be deployed
alongside the PLC hardware then concerns need to
be addresses surrounding (1) cost, (2) powering the
devices, (3) networking them and (4) trust, in terms
of both reliability and that the devices themselves
have not been compromised.

Here we foresee that the ultimate solution will
be interfacing with existing components and add
hardware to others where possible, but will likely
need to make certain decisions remotely while
others need to be made locally (quite close to
the PLC) and both the models and data source
questions raised before need to support such a
distributed observation, aggregation and decision
making structure.

6. CONCLUSIONS

In this paper, we have reviewed the current literature
surrounding the threats, vulnerabilities and existing
approaches to securing vulnerable SCADA systems.
We then reviewed the literature surrounding current
approaches to securing SCADA systems and
specifically into usage of a distributed online runtime
monitoring approach to detect violations of safety
properties. We conclude with suggestions for further
research needed to progress the state of the art in
the area of online runtime monitoring of a distributed
SCADA system.

Having considered the current setting, state-of-the-
art and demands and directions of development of
ICS/SCADA Systems it seems clear that attacks
will be more nuanced and smarter and that only
distributed run-time monitoring which provides an
overall view of the controlled system (and possibly
some of its context) can successfully identify and
resolve threats as needed. Much work has been
done on individual aspects that can be combined and
integrated to move this agenda forward. A further
opportunity presents itself in adopting part of the
IoT offering (which in turn can gain many benefits
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from ICS/SCADA work). However, the challenges
are manifold and particularly lie in the strong
requirement of traceability and accountability in a
very distributed system operating in a very hostile
environment with very limited resources and spare
capacity.
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