
Markov-HTN Planning Approach to Enhance Flexibility of Automatic Web
Services Composition

Kun Chen, Jiuyun Xu
School of Computer & Communication

Engineering
China University of Petroleum

China, 257061
ck_star@126.com;

xujy@mail.hdpu.edu.cn

Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester
University Road,

Leicester, LE1 7RH
United Kingdom
srm13@le.ac.uk

Abstract

Automatic Web services composition can be

achieved by using AI planning techniques. HTN
planning has been adopted to handle the OWL-S Web
service composition problem. However, existing
composition methods based on HTN planning have not
considered the choice of decompositions available to a
problem which can lead to a variety of valid solutions.
In this paper, we propose a model of combining a
Markov decision process model and HTN planning to
address Web services composition. In the model, HTN
planning is enhanced to decompose a task in multiple
ways and hence be able to find more than one plan,
taking both functional and non-functional properties
into account. Furthermore, an evaluation method to
choose the optimal plan and some experimental results
illustrate that the proposed approach works effectively.

1. Introduction

Web services are defined as software systems
which are described with functional and non-
functional capabilities and can enable improved
coordination among multiple computing platforms,
applications, and business partners. Because a single
Web service usually can not fulfil the requirements of
users, Web service composition provides a mechanism
to combine different services together to handle
business process. Automated Web service composition
is valuable in many domains, typical of e-commerce.
However, with the rapid increase of Web services and
more complex requirement of business process in the
real world, automatic service composition requires a

more flexible mechanism to deal with unexpected
exceptions. AI planning for automated Web services
composition has been adopted, as exemplified by the
methods presented in [1-4] to handle this issue.

In [4], an HTN planning method has been
suggested to handle automatic Web services
composition. This method translates OWL-S Web
service descriptions to a SHOP2 domain and then a
business plan is achieved by decomposing complex
tasks. Considering the procedure of task
decomposition, this method mainly is concerned with
the feasibility of task decomposition; that is can one
plan be found? However, a plan may fail for various
reasons, such as a service instance no longer exists or
feature interaction in Web services [5]. In the real
world, there usually are several possible plans which
can solve one specific high-level business process. For
instance, a user wants to attend an exhibition in
another city in a few days. On the condition of
satisfying user’s requirements, he can make a choice of
taking a flight or a train to the city and then attend the
exhibition. In this situation, the user always wants to
know what options he has and which is of the best
quality (that is satisfying his non-functional criteria
such as cost considerations).

This paper addresses the aspect of finding multiple
composition plans and then selecting the most
appropriate for a user. We propose an enhanced
approach for Web services composition based on the
combination of HTN planning and a Markov decision
process model. With this approach, several highly
suitable Web service plans will be obtained providing
different solutions to a business process using Web
services composition and hence offering a much more

flexible solution to the customer. To make sure these
plans are indeed some of the best solutions available
we use an evaluation mechanism to illustrate the
optimal solution amongst those multiple solutions
using a Markovian decision process. In this way, the
optimal solution not only meets the requirements of the
business process in its functional aspects, but also
satisfied the expectations that the solution is of the best
quality based on requirements considering non-
functional aspects.

The rest of the paper is organized as follows: in
section 2, an overview of Web services composition
using HTN planning is introduced. section 3 gives an
overview of the composition model and section 4
details the process of model solving. In section 5 a
case study is introduced and experimental results are
presented. Finally, we conclude and provide an outline
of further research.

2. An Overview of Web services

Composition using HTN Planning

HTN (Hierarchical Task Network) is a technique
of AI planning based on control knowledge with a
closed world assumption (informally, that means that
all “building blocks” are known a-priori). HTN
planning provides hierarchical abstraction with a
powerful strategy to deal with the complexity of large
and complicated real world planning domains. The
purpose of an HTN planner is to produce a sequence of
actions that perform some activity or task.

Considering composing Web services using HTN
planning, generally the planning domain, planning
problem and the process of planning are to be
described within the Web service domain. The
description of a planning domain includes a set of
operators (which will be web service operations), and
also a set of methods, each of which is a prescription
for how to decompose a task into its subtasks (smaller
tasks). The description of a planning problem will
contain an initial state which is the same as that of
classical planning, but instead of a goal formula, the
problem specification will contain a partially ordered
set of tasks to accomplish. The process of HTN
planning proceeds by using the methods to decompose
tasks recursively into smaller and smaller subtasks,
until the planner reaches primitive tasks that can be
performed directly using the planning operators. For
each non-primitive task, the planner chooses an
applicable method, instantiates it to decompose the
task into subtasks, and then chooses and instantiates
methods to decompose the subtasks even further.
When the constraints on the subtasks or the

interactions among them prevent the plan from being
feasible, the planning system will backtrack and try
alternative methods. More details discussed on HTN
planning found in [6].

The OWL-services language (OWL-S), is a set of
ontologies for describing the properties and
capabilities of Web services. Currently, Web services
mostly are described by OWL-S since it supports
effective automation of various Web services related
activities including service discovery, composition,
execution, and monitoring (it provides a richer
framework than WSDL). Especially, the structure of
OWL-S is propitious to exploit AI planning techniques
for automatic service composition by treating service
composition as a planning problem. In OWL-S,
services can be described as composite or atomic
processes with preconditions and effects. The concept
of composite process decomposition in OWL-S
process ontology is very similar to the concept of task
decomposition in HTN planning. Hierarchical
modelling is the core of the OWL-S process model to
the point where the OWL-S process model constructs
can be directly mapped to HTN methods and
operators. Thus, HTN planning is especially promising
for OWL-S Web services composition, which has been
shown in [4, 7, 8].

3. The Formal Model of Markov-HTN
planning for Web services composition

So far, many existing Web services composition
models based on HTN planning are not powerful
enough to support the idea that consider the functional
aspects together with the non-functional, and also find
multiple optimal plans in the planning process.
Therefore, we put forward a formal model extended on
the basis of composition model used by SHOP2 in [4].
The formal approach of Markov-HTN planning is able
to support a choice of Web services composition plans,
and considers the non-functional aspects of Web
services, which enhances the flexibility of automatic
Web services composition. The definition of the
formal model is as follows.
Definition 1 (Markov-HTN planning Model for
Web Services Composition).

The OWL-S Web services composition problem is
defined as , , , ,S T D Q P< > . In the 5-tuple model,

 S is the initial state of the problem.
 T is the task list, which contains the tasks that the

user needs to solve.
 D is the description of a planning domain

includes a set of operators and a set of
decomposition methods, and D can be translated

from a collection of OWL-S process models.
 Q is a set of QoS vectors, the attributes of which

include the response time, cost, availability and
reliability.

 P is a set of optimal solutions which are available
in the solution space.

On the basis of the above definition, solving the 5-
tuple can return an optimal plan

1 2(...)optimal nP O O O= , that is, a sequence of
instantiated operators that will achieve T from S in D,
and an optimal combination sequence with the best
quality with respect to the non-functional aspects.

The model solving consists of three processes.
First, the initialization of the description of the
planning domain; second, the search for the best plans
in the solution space based on HTN planning and
thirdly, the evaluation of the optimality in the
availability plans.

4. The Approach of Web service
composition using Markov-HTN Model

4.1. Initialization for the description of the
planning domain

The 5-tuple model for OWL-S services
composition is based on HTN planning. So, the
beginning to do is translating the description of OWL-
S services to a description of planning domain.

Let 1 2{ , , . . . , }mK K K K= be a col-
lection of OWL-S process models. Then,
Let ()D TRANSLATE PROCESS MODEL K= − − .
This process is achieved by using the translating
algorithm provided in [4]. Details of the translation
and assumptions the translation based on are all kept
unchanged.

After the completion of this process, the element D
in the 5-tuple model is described by a set of operators
and a set of decomposition methods. Each operator is a
description of what needs to be done to accomplish
some primitive task, and each method tells how to
decompose some compound task into a set of partially
ordered subtasks. The control knowledge base for
HTN planning consists of operators and methods. The
definition of operators and methods are the same with
its description in SHOP2 domain description [4,6], as
follows:

Definition 2 (Operator). An operator is an expression
of the form (h(v→) Pre Del Add) where

 h(v→) is a primitive task with a list of input

parameters v→.
 Pre represents the operator’s preconditions.
 Del represents the operator’s delete list which is

described as a conjunction of logical atoms that
will become false after operator’s execution.

 Add represents the operator’s add list which is
described as a conjunction of logical atoms that
will become true after operator’s execution.

Definition 3 (Method). A method is an expression of
the form (h(v→) Pre1 T1 Pre2 T2 …) where

 h(v→) is a compound task with a list of input
parameters (v→).

 Each Prei is a precondition expression.
 Each Ti is a partially ordered set of subtasks.

In the process of model solving, the part that

initializes the description of the planning domain does
not always need be done. The description of the
planning domain, element D in the 5-tuple model,
needs to be updated synchronously, only when the
collection of OWL-S process models is changed.

4.2. Planning with Multi-decomposition for
tasks

In this paper, the process of HTN planning is
improved in the second step, that is searching for
plans, in order to be able to produce more than one
good solution within the available solution space.
Specific details of the improvement focus on
decomposition for non-primitive tasks when a task can
be decomposed by more than one method.

The improved decomposition method changes the
way of decomposing when a task can be decomposed
by multiple methods. The method chooses each
method to decompose a non-primitive task instead of
choosing any one of the ones applicable in the current
state. Also, a control strategy is embedded into the
planning process to decide whether a branch will be
decomposed further. The detail of improved non-
primitive tasks decomposition is presented in Fig. 4.1.

Fig. 4.1 Decomposing a non-primitive task

The improved decomposition is superior to the
decomposition presented in [4] on the strategy of
searching for solutions. For decomposing a non-
primitive task with every available method, the current
state (S) and task list (T) must be copied, and the
number of the replications is the same as the number of
available methods. After this, every branch can be
considered by the planning method. If one branch
cannot be decomposed further, that is all the subtasks
are primitive tasks, the found plan will be added to the
set of plans (P). In the subsequent recursive process, a
similar situation that a subtask may have more than
one available method to be decomposed will occur.
With the number of such situations increasing, the
solution space that will be searched is growing and the
planning process will be more and more complex. So,
we apply a control strategy to decide whether a branch
will be decomposed further.

Before the definition of the control strategy, the
concept of immediate reward needs to be introduced.
Immediate reward: An immediate reward is a utility
value to measure the quality of a decomposition
method. A method decomposes a task into primitive
subtasks or non- primitive subtasks. A primitive task
can be performed directly using a service operation (or
planning operator in planning terms). Clearly,
operations suggested by a decomposition method have
a direct impact on the overall quality of the solution.
On the basis of this, the immediate reward of a
decomposition method can be calculated by using the
QoS (Q), and the corresponding Web services are
mapped into operators produced on the certainty
branch, which does not have a subtask that can be
decomposed by more than one method in the
remaining decomposition process until planning is
completed.

Since the construction of a plan is a sequence of
operators, the immediate reward can be defined by
formula (1), which is similar to [9, 10].

N N

3 j 4 j
j=1 j=1
N N

1 j 2 j
j=1 j=1

w Availability(ws) w Reliability(ws)
1

w Cost(ws) + w Response T ime(ws)
R

N

+
=

∏ ∏

∑ ∑
 (1)

where N is the number of Web services which are
mapped into the operators produced on the certainty
branch. 1 4, ,w wK indicate the importance a service
integrator (or user) gives to a particular QoS attribute.
In formula (1), there is a special case that some free
and fast services will lead an infinity value of R. Thus,
the effect of availability and reliability are neglected.
This case often occurs on the bottom tasks
decomposition when the services less on certainty

branch are all free and fast. So, there is a little effect on
the whole plan, and which can be taken no account in a
whole plan evaluation mentioned in section 4.3.

Definition 4 (Control Strategy). There is threshold
value (0)λ λ ≥ , which is a standard to measure the
immediate reward value R of a decomposition method
m. If mR λ≥ , the planner uses the method to

decompose further, else if mR λ< , the planner stops

to decompose this branch. For 0λ = , all the branches
will be extended.

Figure 4.2, shows a search tree for a planning
problem. In node 2, the branch will not be extended by
decomposition method m23, because 23mR λ< . The
same applies to the branch to be extended by
decomposition method m22 in node 4.

23mR λ< 22mR λ<

Fig. 4.2 A search tree for a planning problem

Because of the control strategy, we cannot only

make it easier to reduce the size of the solution space
that is searched, but can also find better solutions
addressing different demands of users. To some extent,
the speed to find plans and the number of plans that
will be found can be controlled by changing the
threshold value λ . Since the immediate reward value R
measures the quality of a decomposition method, it can
also be used to evaluate the quality of plans. More
details will be introduced in section 4.3.

As Fig. 4.2 shows, a node (,)n T π= in the
search tree implies the current state. T is the task list
which needs to be solved and π is the current partial
plan. In the planning process, the state at each node
can be reached by the initial state S and the current
partial plan π. The node that has any child in the search
tree is called a terminal node. If the terminal node has

a null task list, the corresponding π is a feasible
solution for initial tasks of users and which is
composed of operators.

On the basis of the given description, the algorithm
for HTN planning used is as shown in Fig. 4.3.

Fig. 4.3. HTN planning algorithm for complete decomposition

Note that all branches in the planning process will

be considered when a task can be decomposed by
multiple decomposition methods. At that state, the
immediate reward of the decomposition methods is
calculated which determines whether a branch will be
extended further. It may be possible that branches
which could lead to better utility in further process will
be cut away, but that has little consequence to the
better quality plans found. In view of the reliability of
plans during actual execution, the partial plan
composed of the operators which are found on an
anterior branch is more important than the one found
on the posterior branch. Consequently the plans
produced by the HTN planning algorithm for complete
decomposition are ensuring better quality. Moreover,
the solution space searched for large-scale and
complex problems can be controlled by adjusting the
threshold λ of the control strategy.

4.3. Optimality Evaluation by MDP

After the completion of the HTN planning step,
several good plans can be provided to users, but it is
the optimal plan that users are most concerned about.
Hence, we propose a method to evaluate the optimality
using a Markov decision process (MDP) is proposed.
MDPs provide a mathematical framework for
modelling decision-making in situations where
outcomes are partly random and partly under the
control of the decision maker. MDPs are useful for
solving a wide range of optimization problems.

In the process of HTN planning, the choice of
multiple decomposition methods can be seen as a
decision-making process and the decision-making only
connects with the current state. So we construct a MDP
model by introducing the probability and reward value
for choosing a decomposition method and solve the
model to find the optimal plan. The time to choose a
method is a decision-making time t, such as the nodes
(1, 2,3,4) in Fig. 4.2. First, a list of four objects in

MDP should be described as (, , (,), (,))a aS A P R⋅ ⋅ ⋅ ⋅ ,
where,

 S is the state space.
 A is the available action set, which is the same

with the available decomposition methods set.
 (, ')aP s s is the probability that action a in state s

at time t will lead to state s' at time t + 1.
 (, ')aR s s is the immediate reward received after

transition to state s' from state s.

Calculation of transition probability and reward. In
the MDP process, the calculation of the transition
probability and reward is the core. The probability for
choosing a decomposition method in HTN planning is
related to the preconditions of the method. Fewer
constraints of preconditions will have less risk of
failure in actual execution process. Hence, a less
restrictive method has a higher probability of being
selected.

In state s, a task can be decomposed by k methods
M. Each method (1)im i k< < in M has iN

parameters in its iPre . Then, the transition probability
is defined by formula (2).

1

1

()
1,

(| ') (| ') ,
0,i

k

j i
j i

a m k

j
j

N N
if Pre s

P s s P s s and
otherwiseN

θ
θ=

=

−
⊂⎧= = =⎨

⎩

∑

∑
 (2)

The reward calculation is the same with the
immediate reward introduced in section 4.2, also
defined by formula (1). QoS publication helps
selecting among services with the same functionality,

service composition based on QoS and evaluation of
alternative execution paths for process adaptation.
Moreover, QoS can be used as a basis for cost models
that drive process optimization[11].

Solution to MDP by the way of policy iteration. The
solution to a Markov Decision Process can be
expressed as a policy π, a function from states to
actions. The standard family of algorithms to calculate
the policy need calculate two variables repeatedly. One
is value V, which contains utility value of state s, and
the other is policy π which contains actions a. s’ is the
next state achieved by executing an action a from the
current state s. The two variables are calculated by
formula (3), (4).

()
'

() () (, ') (')s
s

V s R s P s s V sπγ= + ∑ (3)

, where γ is a discounting factor.

'
() arg max (, ') (')aa s
s P s s V sπ = ∑ (4)

After completing the second process of HTN
planning, the plan set P has N plans. So, policies,
available actions A and state space S in MDP can be
determined. Make each plan to be a policy, such as in
fig4.2, the plan p1 can be expressed as a policy

1 1 2:{(, 11), (, 21)}s m s mπ , and the expected utility
of a policy reflects the quality of the plan, and which
can be calculated by formula (5).

()
'

() () (, ') (')
i i s

s

E s R s P s s E sπ πγ= + ∑ (5)

, where s is the state in policy iπ . Formula (5)
calculates all the rewards on non-primitive tasks
decomposition during the production of a whole plan.
Considering the effect of each layered decomposition,
the high layers is more impact for the plan than the low
ones.

Then, the policy iteration algorithm is used to find
the optimal policy. Specific details are described as
shown in Fig. 4.4.

()
'

1
'

1

:
1.

1,2,...
2. () ,

() (, ()) (, ') (')

3. ,
() : argmax (,) (, ') (')

4.

i

i i i

i

i s
s S

i aa A s S

i

Policy iteration
start with an arbitraty initial policy
for i

compute E s for every s
E s R s s P s s E s

for every s
s R s a P s s E s

if

π

π π π

π

π

π γ

π γ
π

∈

+ ∈ ∈

+

=

⇒ = +

⇒ = +

∑

∑
1, . .i ithen exit is the optimal policyπ π +=

Fig 4.4. Policy iteration algorithm for MDP

The process will converge in a finite number of
iterations and the process ends with the optimal policy
(For a proof, we refer to [12]).

5. A Case Study

To demonstrate the feasibility of our composition
approach, the commonly used e-travel scenario will be
used. The e-travel scenario requires that first a
destination is reached and then after a few days touring
an exhibition is attended. Users may have more than
one plan to achieve the goal. We implement a system
by using our approach of Web services composition
based on the Markov-HTN planning model to simulate
the composition. We can get composition plans as
shown in Fig. 5.1.

Fig. 5.1. a sample of plans for e-travel

As Fig. 5.1 shows, there are 4 plans for composing

Web services in sequence; these can be found by using
our improved decomposition HTN algorithm. In
contrast, by using the SHOP2 algorithm, only the first
plan can be found and this might not be the users’
preferred option. After giving all the available plans
that can fulfil the task, users can choose the one that
they expect to execute, and also we use the MDP
method to identify the optimal plan based on non-
functional aspects. In Fig. 5.1 the optimal plan is
plan_4 (marked in broken line).

MDP is an efficient method to solve an
optimization problem, like the decision of choosing a
decomposition method in HTN planning. In order to
demonstrate the feasibility and validity for using MDP
to solve the optimal plan, we experimented in our
system by using 10 groups of random QoS data set to
identify an optimal plan based on the structure of plans
shown in Fig. 5.1 shows. In Fig. 5.2, the abscissa X
indicates the labelling of the QoS data set, and the
ordinate Y indicates the expected utility value of a plan.
So, the point (,)X Y with different shape indicates
that a plan represented by the point shape has an
expected utility value Y calculated using QoS data set
X. The point on the line is the optimal plan under
current QoS data set. Our results show that the optimal

plan is almost always the plan with the highest
expected utility value, as Fig. 5.2 shows.

90

80

70

60

50

40

30

20

10

0 1 2 3 4 5 6 7 8 9 10

plan_1
plan_2
plan_3
plan_4

The optimal plan

Ex
pe

ct
ed

 U
til

ity
 o

f p
la

n

Qos data set

Fig. 5.2. The expected utility of plans and the optimal plan

It should also be noted that tasks with different
complexity have different size of solution space. Users
expect that sufficient and better plans can be provided,
but if the task is so complex that the search time is too
long and the plans have too much redundancy, we can
reduce the search space by increasing the threshold λ .
The value of λ is inversely proportional to the search
time and the number of plans found.

6. Related Work

Considering the related work, Zhang jianhong et
al.[13] proposed an enhanced HTN planning method
combined with partial-order planning(POP) for
service composition in which action decomposition are
used as plan refinements in POP. Comparing to the
pure HTN planning, this approach can solve certain
tasks, which are novel conjunctive goals. In our
approach, we also focus on the decomposition in HTN
planning, improving the decomposition for non-
primitive tasks, but in order to search more potential
feasible solutions.

Evren Sirin and Dana Nau et al.[7] presented a
HTN planning algorithm, ENQUIRER, designed for
planning domains and in which the information about
the initial state of the world may not be complete. By
using ENQUIRER, information is discoverable
through plan-time information gathering queries. In
ENQUIRER, some limitations in their previous work
[4] are overcome, which can make service composition
sound and complete. Based on the work in [4], our
approach improves the composition method to provide

multiple plans and consider the non-functional
properties of Web services in planning process in
addition for user’s flexible choice.

Incheon Paik and Daisuke Maruyama[2] suggested
a combined architecture, which consisted of HTN
planning and Constraint Satisfaction Problem(CSP) as
an underlying problem-solving engine to automate
Web service composition and especially for
composition problem with scheduling with many
parameters. In the architecture, a complete semantic
concept for CSP is provided by using OWL, which can
make solver agents automatically solve a given
problem with greater flexibility and intelligently. This
work focuses on the CSP for the semantic web, the
CSP solver is a part of the combined architecture but
independent of HTN planning. The CSP solver and
solver agents solve the problem collaboratively. In this
method, MDP for evaluating an optimal plan is
independent of HTN planning as well. But in our work,
MDP is used to select a whole plan based on multiple
plans. Likewise, it can be used on single Web Service
selection in other works [14].
 Prashant Doshi, Richard Goodwin et al.[15]
modeled the workflow composition problem as a MDP,
which handled non-deterministic behaviors of Web
services in dynamic environments with the phrase of
the plan execution. In that paper, a policy computed by
MDP for generating workflows is capable of optimally
recovering from Web service failures. While our work
is about services composition based on AI planning
during decomposing into the atomic tasks, in which
MDP is used to evaluate an optimal plan among
multiple available plans considering the non-
deterministic of non-primitive tasks decomposition in
HTN. It is different from work in [15].

7. Conclusion and Future Work

In this paper, a novel composition model based on
Markov-HTN planning has been proposed. With this
model, more than one plan can be found and the
evaluation mechanism in model can give an optimal
plan based on non-functional aspects.

With a choice of Web services composition plans,
users can be more flexible in accomplishing their tasks
in the most suitable way. They can adopt the optimal
plan that our method provides, but they can also
choose freely according to their own preference from a
number of alternatives. Moreover, when executing the
selected plan results in failure, candidate plans can
ensure the tasks will be completed without constraints
slacking or premises increasing.

While our method can provide multiple plans for
users, we will explore a re-planning mechanism to be
used when plan execution results in failure. Under this
mechanism, a process of plan execution can be
continued automatically from an appropriate service
node and the negative impact of a failure will be
minimized.

Acknowledgment Thanks to the anonymous
reviewers for the comments

Reference

[1] Hilmar Schuschel,M. Weske, "Automated Planning
in a Service-Oriented Architecture," Proceedings of the
13th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, 2004.
[2] Incheon Paik, Daisuke Maruyama, M. N. Huhns,
"A Framework for Intelligent Web Services:
Combined HTN and CSP Approach," IEEE
International Conference on Web Services (ICWS'06),
2006.
[3] Rama Akkiraju, Biplav Srivastava, Anca-Andreea
Ivan, Richard Goodwin,T. Syeda-Mahmood,
"SEMAPLAN: Combining Planning with Semantic
Matching to Achieve Web Service Composition,"
IEEE International Conference on Web Services
(ICWS'06), 2006.
[4] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler,
D. Nau, "HTN planning for Web Service composition
using SHOP2," Web Semantics: Science, Services and
Agents on the World Wide Web 2004, pp. 377-396.
[5] M. Weiss, B. Esfandiari, Y. Luo, "Towards a
classification of web service feature interactions,"
Computer Networks, vol.51, 2007, pp.359-381.
[6] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur
Kuter, J. William Murdock, Dan Wu,F. Yaman,
"SHOP2 ： An HTN planning system," Journal of
Artfficial Intelligence Research, vol. 20, 2003, pp.
379-404.
[7] Ugur Kuter, Evren Sirin, Bijan Parsia, Dana Nau,J.
Hendler, "Information gathering during planning for
Web Service composition," Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 3,
2005, pp. 183-205.
[8] Naiwen Lin, Ugur Kuter, James Hendler, "Web
Service Composition via Problem Decomposition
Across Multiple Ontologies," 2007 IEEE Congress on
Services (SERVICES 2007), 2007.
[9] Gerardo Canfora, Massimiliano Di Penta, Raffaele
Esposito, M. L. Villani, "An Approach for QoS-aware
Service Composition based on Genetic Algorithms,"

Genetic and Evolutionary Computation
Conference(ACM), 2005.
[10] LIU Shu-Lei, LIU Yun-Xiang, ZHANG Fan,
TANG Gui-Fen, JING Ning, "A Dynamic Web
Services Selection Algorithm with QoS Global
Optimal in Web Services Composition," Journal of
Software, vol. 18, 2007, pp. 648-656.
[11] Diego Zuquim Guimarães Garcia, M. B. F. d.
Toledo, "Semantics-enriched QoS policies for web
service interactions," Proceedings of the 12th Brazilian
symposium on Multimedia and the web(ACM), 2006,
pp. 35-44.
[12] Liu Ke, "Applied Markov Decision Process,"
Beijing:Tsinghua University publication, 2004, pp. 38-
40.
[13] Zhang Jianhong, Zhang Shensheng ,M. Y. Cao
Jian, "Improved HTN Planning Approach for Service
Composition," Proceedings of the 2004 IEEE
International Conference on Services Computing
(SCC’04) 2004.
[14] Dongjun Cai, Zongwei Luo, Kun Qian,Y. Gao,
"Towards Efficient Selection of Web Services with
Reinforcement Learning Process," Proceedings of the
17th IEEE International Conference on Tools with
Artificial Intelligence, 2005, pp. 372-376.
[15] Prashant Doshi, Richard Goodwin,R. Akkiraju,
"Dynamic Workflow Composition using Markov
Decision Processes," IEEE International Conference
on Web Services (ICWS'04), 2004.

