
Optimized Composite Service Transactions
through Execution Results Prediction

Jiuyun Xu, Zhaotong Li,Huanxing Chi
Muhan Wang, Chao Guan

School of Comp. & Commun. Eng.
China University of Petroleum

Qingdao, Shandong 266580
Email: jiuyun.xu@ieee.org
lizhaotong@s.upc.edu.cn

Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester
LE1 7RH, Lecester, UK
Email: srm13@le.ac.uk

Huilin Shen
School of Geoscience

China University of Petroleum
Qingdao, Shandong, China 266580

email:hlshen@upc.edu.cn

Abstract—Traditional web services transaction processing
mechanism handle exception by forward recovery and back-
ward recovery. These compensation mechanisms often lead
to waste of resources and time. In this paper, we propose a
framework for predicting outcomes of service executions as
part of service compositions which allows to choose service
instances that are likely to lead to a successful result in
the first instance and thus reduces the need for invoking
costly recovery mechanisms. The framework makes use of
watchdogs to maintain an awareness of service availability and
a pre-coordinator which has oversight of the whole composite
Web service and acts as a control center. An analysis of a
scenario shows that we cannot only provide users with a more
satisfactory result, but also can reduce the overhead costs of
resources and waste.

Keywords-Transaction processing; Flow prediction; Skyline;

I. INTRODUCTION

Web service technology has become a widely deployed
basis for distributed applications. It provides users with a
loosely coupled, cross-platform heterogeneous application
integration mechanism allowing for rapid changes to systems
and easy integration of third party functionality. Complex
systems are an economy of independently provided Web
services that collaborate to achieve a larger goal – referred
to as composite (Web) services. However, this kind of
collaborative, distributed computing and resource sharing
approach to running systems can inevitably lead to faults
and unexpected results occurring at runtime; which in turn
leads to a decrease of the systems reliability and consis-
tency. In order to ensure that the composite Web service is
executed correctly and achieves the overall desired result, it
is necessary to provide transactions support for web services.
At present, Web transaction mechanisms have been devel-
oped to mimic traditional transaction mechanisms, however
accommodations have been made to address specific needs
in Web service transactions. To name a few such needs:
complex services can be long running; ‘undoing’ is not
always possible (at least not without a potential cost), and
transactions might be nested in various ways across systems
that operate in parallel. In general this means that the ACID
properties that are seen as highly desirable for database
transactions do not all hold in this space. However, the quite

flexible nature of the systems also allows for new approaches
to overcome problems, such as replacing a failed service
with a different one. In the light of these common recovery
mechanisms in Web service transactions include forward
and backward recovery. Forward recovery attempts to reach
the original goal of the composite service by retrying or
replacing components and continuing the process; backward
recovery is essentially a form of rollback that unrolls the
transaction and restores the original state of the system – or
at least as closely as possible. The last point refers to the
fact that sometimes a compensation mechanism has to be
invoked to undo a step which might come at a cost itself.
To exemplify these issues, let us consider a composite
service for booking a holiday: An airline ticket might be
booked in an early stage followed by a hotel booking attempt
– it turns out that no hotel is available and hence the airline
ticket needs to be cancelled. Such a cancellation might mean
that a percentage of the original cost is lost to the user as
a penalty. There might also be other change to the state,
especially if physical tickets have been posted – maybe these
need to be returned which is a different aspect that was not
part of the original process.
As should be obvious from the above explorations, the cost
of a failed transaction can be significant; even if in the
case of forward recovery the original aim is achieved there
might have been a cost incurred due to recovery issues in
the process and there certainly would have been extra time
added to achieve the aim.
In this paper, we present a novel approach to increase the
success of transactions. The proposed framework allows to
gather an understanding of the likely success of the transac-
tion, which is used for instantiating the abstract services in
the process and to guide the execution. Data about individual
service candidates will be provided watchdog runtime mon-
itoring modules and the search space for the instantiation
problem is pruned using a skyline approach [1] to ensure
that we can efficiently find the optimal instantiation.
We implemented and tested the approach with an online
ticket booking system in the travel domain as example.
Travel booking is often used as an example for composite
services and has drawn criticism. However, for our purpose



the travel booking is ideal as it shows the complexities
required (it is heavily dependent on the output data from
services and there are many alternatives and the operating
environment is very dynamic) while being easy to explain.
The remainder of the paper is organized as follows: Section 2
provides an overview of the framework, Section 3 describes
the proposed transaction mechanism for composite web
service. A case study is presented in section 4 together with
some experimental analysis. Section 5 discusses the related
work and Section 6 concludes the paper.

II. THE PROPOSED FRAMEWORK

The proposed framework aims to achieve a higher success
rate in successfully completing composite services at the first
attempt, thus reducing reliance on compensation mechanism-
s. With a focus on transactions, we are looking at runtime
executions and problems occurring at that stage rather than
planning type problems.
When executing composite services in the framework the
input is an abstract process instance, that is a process that
describes the structure of the problem, but in which no
concrete service instances for fulling the tasks have been
bound. For our work we have used an abstract BPEL process,
but the methods presented are independent of a specific
implementation mechanism.
We further assume that for each Web service (abstract
and concrete) a profile exists which – as a specification –
describes the precondition, results, postcondition and some
declared constrains expressed as logical expressions. Addi-
tionally, concrete Web services, also have a description of
their QoS attributes.
The next two subsections will discuss the structure of the
framework as well as the process when a composite service
is triggered respectively.

A. Structure of the Framework

The main components of the framework are users, services,
watchdogs and the pre-coordinator – however users and
services are clearly not deeply embedded. An overview of
the framework structure is shown in Figure 1.
A user interacts with the system by providing their abstract
composite service and a description of their expectation-
s (overall costs, time constraints, and other configuration
aspects for the composite service). The process, once in-
stantiated, will be executed through Web services which are
expected to already exist and to be generally available.
The two core components of the framework are the pre-
coordinator and the watchdog modules, detailed as follows:

• Pre-coordinator module: this module forms the cen-
tral part of the system. It is in charge of receiving
the user request, deciding on concrete services and in-
stantiating the process, and finally starting the concrete
process with the parameters provided by the users.

• Watchdog module: each service has an associated
runtime monitoring module, which can record the da-
ta of the service and the restrictions. The watchdog
module interacts with the Pre-coordinator to provide

information on the service and can temporarily hold
resources of the service.

Note that the mentioned holding of resources by the watch-
dog is only in relation to information available to the pre-
coordinator – if the service is invoked through a different
avenue then the service information will change in the
watchdog, and might become temporarily out of sync with
the information passed to the pre-coordinator.

User

ServiceA ServiceB ServiceC ServiceN

Fig. 1: Chart of the module structure

B. Process for Managing a Composite Service

The main communications in the framework are between the
watchdogs and the Pre-communicator, the former interact
with the services and the latter with the user. Services might
directly interact with the user (as they would if they were
not part of the framework) and we do not wish to take
control over that. More importantly there is no need for the
individual watchdogs to coordinate with each other, keeping
dependencies at a minimum.
The overall process for managing a composite service con-
sists of two parts: a background process between each watch-
dog and its associated service and the process of receiving a
new user instruction. Dealing with a user instruction involves
getting the composite service instantiated and executed.
Background Process:
Every Web service has an associated watchdog process
which is monitoring the service. We are not concerned
with the exact details of the monitoring in this paper as
work on runtime monitoring exists. We rather assume that
a watchdog is able to provide, when asked, details about
the service’s situation, which includes the logical expression
of precondition, postcondition, constrain and possible other
aspects of the service.
Note that run-time monitoring of web services is non triv-
ial; some work in this area has been conducted (e.g. [2])
and some tools are available (usually additions to network
monitoring tools).
User Instruction:
Step 1:. A user provides a new abstract composite ser-
vice description together with invocation parameters and
requirements (such as maximal cost and duration) to the
Pre-coordinator (PC), thus starting a new process.



TABLE I: Requirements of four Users

Name of demond User1 User2 User3 User4

Account() 1300 1005 1220 400
Num ticket() 1 5 4 2
Num room() 1 3 2 1
WantT ime() 6 7 6 5
WantWaitT ime() 2 3 1 2
WeightofT ime 1 2 1 2

TABLE II: Description of Precondition and Potential Result
of Web services used in the example

ServicesŃame Preconditions&Results guarantees

ServC

Num acc() ≥ 700,
Num ticketCF () = 9,
Num ticketCG() = 12,
Num ticketCH() = 33,

Account() ≤ 300,
T ime() ≤ 5

ServF
Num acc() ≥ 500,

Num roomFI() = 13,
Num roomFJ() = 4

Account() ≤ 250

ServG Num acc() ≥ 500,
Num roomGJ() = 1, Account() ≤ 250

ServH Num acc() ≥ 500,
Num roomHJ() = 8, Account() ≤ 250

Step 2: The PC contacts watchdogs and extracts information
about the relevant services.
Step 3. The PC applies a skyline algorithm with transaction
pro-detecting to quickly filter service candidates to identify
the most promising ones for closer analysis.
Step 4. The PC selects concrete service candidates to
optimize the overall selection and instantiates the service.
Step 5. The PC starts the concrete process instance.

III. CASE STUDY

We used the travelling scenario as an example, as it contains
the main aspects of concern to us namely a wide range
of services available, an easy to explain need to compose
services and a dependence on the results which are based in
real resources (e.g. limited seats on a plane).
Typical user requirements are shown in Table II: how much
money is available for the trip, numbers of rooms and tickets
needed and criteria related to time are upper limits on the
timing QoS criteria of the composed service. Typical service
descriptions are provided in Table II showing the description
of the precondition, potential results and the guarantees the
service gives (in terms of upper limits on costs and time).
Service selection methods in the literature are either ap-
proaches aiming to achieve global optimal solutions (select-
ing services for a whole process with a view to optimizing
the overall QoS) or approaches that try to make the best
decision for an individual service in the environment and
context that it is being invoked – which computationally is
much simpler. In this paper, we adopt the latter to select the
suitable concrete web services for each abstract service.
We use skyline optimization to identify suitable service
candidates quickly. As it is a multiple objective optimization
method it allows us to consider the criteria we like to
optimize over. For our example we frame the candidate
service set as a double objective optimization problem based
on travel time and cost. We obviously know that time and

Fig. 2: Transaction flow nodes

money interact in such a way that faster approaches are
usually more expensive.
Each transaction node has a watchdog module, which record-
s parameters about the node. Let us look at an example
for node F where the data might be the cost in terms of
time or money from one node to the next CostT imeCF ,
CostT imeBF (time overhead from C or B respectively
to F), CostMoneyCF , CostMoneyBF (financial over-
head) and waiting time or restrictions at F WaitT imeF ,
RestrictF . Restrictions could be no availability of tickets,
traffic jams and other emergencies. RestrictF is a boolean
indicating whether a restriction exists or not.
Note that we use a simple variant for RestrictF here; in
general a more detailed type could be used and evaluated
as maybe not all limiting conditions are quite as black and
white as captured here.
Suppose the Pre-coordinator has calculated to select the node
ServC from ServA and thus now makes node ServC the
basic point for further considerations and service ServF ,
ServG, or ServH are potential next steps.
First, we calculate the skyline (CostT ime, CostMoney)
for Nodes ServF , ServG and ServH . If the values for
ServF and ServG are quite similar but both smaller than
those for ServH , we give up node ServH , and we proceed
with nodes ServF and ServG.
Second, the pre-coordinator calculates the optimal solution
service to identify the best candidate from the set from the
last step. Let us compute the QoS for F on the basis of
C: QoSCF = CalCostMoneyCF + CalCostT imeCF .
CalCostT imeCF and CalCostMoneyCF are weighted
calculations using the watchdog data on service F in re-
lation to C. These can employ complex user requirements
were users have to define weights for all factors. Similar
calculations are performed for ServG and service with the
minimal score is chosen as candidate. Let us assume it is
ServF .
Last, we determine the feasibility of ServF . If
RestrictF = true or CostMoney = CostMoneyAC +
CostMoneyCF > sum or WaitT imeF > WantT ime,
that is if the limiting conditions of F are true, or the account
balance is insufficient or the time we have to wait in F is
larger than desired, then the node F cannot be chosen and



the Pre-coordinator has too choose the second best node.
If all nodes can be successfully instantiated then the process
will be executed; if no instantiation can be found feedback
is provided to the user and the composed service is not
executed (execution would lead to failure and thus a need
to backward recover and hence undesirable costs).
To demonstrate the proof of concept, we have implemented
the prototype using Java. The snapshot of our prototype
system is shown in Figure 2. The experimental data was
derived from travel booking data and guest room price
data obtained according to the scenario about travelling and
accommodations from Beijing to Qingdao1. We only used a
subset of the available data for the demo.

IV. RELATED WORK

Research such as [3] has shown that there are crucial dis-
tinctions between Web Service transactions and traditional
transactions, hence new ideas were introduced, crucially
compensation. These ideas manifest themselves in forward
recovery e.g. [4] and backward recovery e.g. [5] techniques.
Realising that not every step can be returned to its original
situation and that for some steps this is not even desirable
from a business perspective [6] allows to specify what steps
are part of a transaction.
Work in web service transactions is usually showing the
need of effort to ‘repair’ transactions when exceptions occur
and this effort is costly in terms of resources. The work
presented here attempts to predict success of the diverse
steps in a process and selects services in order to reduce
the time overhead and resource waste by trying to ensure
that more steps succeed in the first instance.
Prediction of execution results has been considered in [7]
and [8] who consider predicting the quality of a service that
can be achieved based on past execution history and criteria
such as availability and reliability of services. They do not
consider transactional concepts.
Much work has been conducted in the area of service
selection. Global optimizations approaches (e.g. [9]) achieve
solutions that consider the interplay of service QoS values,
but are less fault tolerant and flexible as the whole instantia-
tion is preplanned. Local selection methods (e.g. [10], [11])
consider criteria effecting the selection of an individual ser-
vice and essentially rank services. They are computationally
quite efficient and can be applied ‘just in time’ increasing
the chance of a relevant service being selecting.
In this paper, the primary selection criteria is the anticipated
success of the transaction and the secondary criteria consider
ensuring good quality of service, so in that sense it is not
trying to make a specific contribution in the area of service
selection.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework to improve and
optimize the success rate of transactional composite services

1This data is partially from http://www.12306.cn.

by predicting how likely a service will lead to desired results
before including them as a candidate service in the process.
We used a case study based on realistic data and the
experimental result demonstrated that the approach improves
success rate of composite services completing successfully
and thus reducing the need to employ forward or backward
recovery approaches in many cases (they will still be needed
if services fail for other reasons).
In the future, we will investigate performance and scalability
of our approach. We will also investigate different approach-
es to watchdogs: at the moment we are monitoring each con-
crete service through its own watchdog; an alternative might
be to use watchdogs at the level of abstract services which
will decentralize the decision making (which at the moment
is conducted in the Pre-coordinator) and thus could bring
efficiency gains as well as allowing easy implementations
of load balancing.

ACKNOWLEDGEMENT

The paper is fully supported by a grant from the Fundamen-
tal Research Funds for the Central Universities (Project No.
13CX06009A and No. 14CX06007A). This work is a partial result
of Jiuyun’s visit to the University of Leicester supported by China
Scholarship Council.

REFERENCES

[1] Y. J. Wei Xiao-Juan, “Skyline query processing,” The Chinese Journal
of Software, vol. 19, no. 6, pp. 1386–1400, 2008.

[2] Y. Gan, M. Chechik, S. Nejati, J. Bennett, B. O’Farrell, and J. Wa-
terhouse, “Runtime monitoring of web service conversations,” in
Proceedings of the 2007 Conference of the Center for Advanced
Studies on Collaborative Research, ser. CASCON ’07. Riverton,
NJ, USA: IBM Corp., 2007, pp. 42–57.

[3] G. He-Qing, “A survey on web service transaction,” The Chinese
Journal of Computer Science, vol. 32, no. 5, pp. 13–16, 2008.

[4] P. Dolog, M. Schafer, and W. Nejdl, “Design and management of
web service transactions with forward recovery,” in Advanced Web
Services, A. Bouguettaya, Q. Z. Sheng, and F. Daniel, Eds. Springer
New York, 2014, pp. 3–27.

[5] J. El Hadad, M. Manouvrier, and M. Rukoz, “TQoS: Transactional
and qos-aware selection algorithm for automatic web service compo-
sition,” Services Computing, IEEE Transactions on, vol. 3, no. 1, pp.
73–85, Jan 2010.

[6] M. S. Ali and S. Reiff-Marganiec, “Autonomous failure-handling
mechanism for WF long running transactions,” in 2012 IEEE Ninth
International Conference on Services Computing, Honolulu, HI, USA,
June 24-29, 2012, 2012, pp. 562–569.

[7] V. Grassi, “Architecture-based reliability prediction for service-
oriented computing,” in Architecting Dependable Systems III,
R. Lemos, C. Gacek, and A. Romanovsky, Eds. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 279–299.

[8] W. Fang-Chun and Y. Jiang-Xia, “Qos prediction of web service
composition with transaction mechanism,” Journal of Electronics &
Information Technology, vol. 3, p. 047, 2008.

[9] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “An approach
for qos-aware service composition based on genetic algorithms,” in
Proceedings of the 7th Annual Conference on Genetic and Evolution-
ary Computation, ser. GECCO ’05. New York, NY, USA: ACM,
2005, pp. 1069–1075.

[10] F. Casati, S. Ilnicki, L.-j. Jin, V. Krishnamoorthy, and M.-C. Shan,
“Adaptive and dynamic service composition in eflow,” in Proceed-
ings of the 12th International Conference on Advanced Information
Systems Engineering, ser. CAiSE ’00. London, UK, UK: Springer-
Verlag, 2000, pp. 13–31.

[11] H. Q. Yu and S. Reiff-Marganiec, “A method for automated web
service selection,” in Proceedings of the 2008 IEEE Congress on
Services - Part I, ser. SERVICES ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 513–520.


	Introduction
	The Proposed Framework
	Structure of the Framework
	Process for Managing a Composite Service

	Case Study
	Related Work
	Conclusion and Future work
	References

