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Abstract—The Internet of Things, large scale sensor networks
or even in social media, are now well established and their
use is growing daily. Usage scenarios in these fields highlight
the requirement to process, procure, and provide information
with almost zero latency. This work is introducing new con-
cepts for enabling fast communication by limiting information
flow through filtering concepts combined with data processing
techniques adopted from complex event processing. Specifically
we introduce a novel mediation services architecture using filter
policies to reduce latency. The filter policies define when and
what data services need to provide to the mediator and thus save
on bandwidth. The filter policies describe temporal conditions
between two events removing the need to keep a complete history
while still allowing temporal reasoning. Promising experimental
results highlight the advantages to be gained from the approach.

I. INTRODUCTION

The vision of the Web has changed over the past few
years. This is triggered by several aspects, such as (1) the
paradigm shift to services, (2) an increasing use of mobile
devices and (3) new intelligent objects providing continuous
access to data. Besides classical static web pages there are
services and other data sources, such as sensors and devices.
The term “Internet of Things” was coined, reflecting the trend
that more and more data sources and services will be available
in the future to provide a wider variety and broader set of new
information, such as environmental information, geo location
or social interactions. On the other hand there is an increasing
demand from users to have access to information from all
kinds of different devices (phones, PC, etc.). This information
needs to be available in close to real-time in order to reply
to requests, make decisions and stay competitive. This adds
new requirements to middleware handling these devices and
information, caused by a huge data volume produced by a
large number of sources that need to be procured, processed
and provided with almost zero latency. We should note that the
huge data volume does not arise (at least in the scenarios we
consider and address) from large single items of data that occur
in scientific computing but rather from a very large amount of
small items such as sensor readings.

We will now consider a fleet management system as a
motivating example, however the approach is not limited to this
scenario and can be applied in a wide variety of applications
where services are selected from a large set of potential

providers, such as sensor network, logistics, industry, military
or consumer space. In fleet management, like taxi companies,
with a large amount of taxis it is almost impossible to use the
classical request-response approach to find the nearest taxi for
a given user location. Therefore, the fleet management must be
aware of the taxis location at any given time. The management
system only requires the latest data to process a user request
to locate the nearest taxi, thus there is no necessity to persist
the data for later use. In the scenario (see Figure 1) there is
a customer with a given context, his geo location, requesting
a taxi. The fleet management system has to identify the most
relevant taxi in terms of (1) availability and (2) proximity to
the customer’s location. There are two taxis, A and C, which
are close to the customer’s location, but they are not available.
Taxi B is the closest which is available. Of course the fleet
management could take traffic information into account, and
then maybe taxi D becomes the best solution because it is
reasonably close, available and might arrive earlier because of
beneficial traffic conditions.
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Fig. 1: Fleet Management Sample

This scenario shows (1) how different kind of properties
of taxis (here: availability and geo location), (2) properties
of different services (here: taxi and traffic) are used to select
services, and (3) that taxis have to pro-actively inform the
fleet manager about their location to enable fast and reliable
responses to customer requests. Furthermore, the geo location
and the traffic information are data which changes rapidly and
it does not make sense to store all of this data because it is
only short-lived and hence only the current values are relevant
when a service has to be selected.

To achieve almost zero latency data processing, data must



be available at the place where the user needs it. So, instead
of pulling data at request time from data sources or services,
data should be pushed to a middle layer (here mediator). This
is only the first step towards a faster processing of data in
terms of providing results with low-latency. If the data sources
are continuously pushing data to the mediator there is a vast
amount of overhead by unnecessarily transferring data – a
waste of bandwidth. The mediator informs the sources under
which changing situation (when) the sources should inform
the mediator about the change of their properties (what). What
and when can be expressed with policy obligations which are
injected into the data sources, so that we can really make use of
their intelligence. Thus, each data source will be responsible
to make the projection from its own fine-grained, raw data
to some more high-level, complex data the mediator – and
ultimately the user – is interested in. The obligations can be
as smart as possible by using various sets of information, such
as the prioritization of the data. Consider for example an alarm
situation with cascading alarms. Such a system has to ensure
that the most severe alarms are delivered and the bandwidth
is not occupied with unimportant information. Thus, policy
obligations executed on smart data sources – intelligent objects
or services – should enable low capacity filtering by being
context-aware.

In this paper we provide an approach to overcome the prob-
lem of procurement, processing and provision of information
in real-time in combination with optimising the data traffic. We
use concepts adopted from complex event processing to enable
a real-time view of service properties to enable a fast and
accurate view of their values with an application in real-time
service selection. Initial ideas from [20] and [21] are refined
in this paper, and we add a clear definition of the service
properties as a projection of the policy obligation injected
on data sources, such as services. The novel contributions
of the paper are (1) a middleware architecture, data model
and selection process to put the above into practice, and (2) a
clear and well founded definition of policy obligations using
context information expressed at an abstract XML level as
well as formally through ITL (Interval Temporal Logic). Our
approach can be seamlessly integrated with existing service
selection approaches.

Section II provides some essential background work. Sec-
tions III and IV are the core of the paper and present
the architecture and selection process respectively. Section V
provides a formal description of the policy-based filtering
approach based on temporal projection. Section VI provides
an extended example to demonstrate the approach and section
VII presents discusses experimental results. Section VIII points
to some related work while section IX concludes the paper and
considers further work.

II. BACKGROUND

This section introduces the basic ideas which we combine
to improve service selection and mediation approaches for
consumer requests in real-time. As we formally model the
temporal abstraction, we will also provide a short introduction
to interval temporal logic.

A. Non-functional Properties

Non-functional and functional properties are used for ser-
vice selection or context-based service discovery. Typically
the properties are pulled from service repositories (that is
from service metadata) or possibly from the services directly
before an algorithm determines the most relevant service for
a given context. Repositories are useful for static data and
polling services directly works for small numbers of properties
of a small number of services. The examples highlighted
an emergent need to enable the continuous evaluation of
functional and non-functional properties with a large number
of services. We define static properties ps as constant over time
(e.g. the location of a printer) and dynamic properties pd are
changing over time (e.g. the length of a print queue). Non-
functional properties NFP are defined as a tuple of static and
dynamic properties: NFP (t) = 〈ps, pd〉

For the fleet management scenario the schema of the non-
functional properties might look as follows:

<NFProperties>
<Static>

<TaxiId type="xs:string"/>
</Static>
<Dynamic>

<GEOLocation id="x">
<Longitude type="xs:int"/>
<Latitude type="xs:int"/>

</GEOLocation>
<PassengerNumber type="xs:int"/>

</Dynamic>
</NFProperties>

This presents a snapshot in time, with temporal aspects
covered by events: we would see different data at different
points in time.

Policies refer to obligations placed on a services to actively
communicate dynamic information, with respect to a given
data-schema, triggered by events and time. Informally this
means that a policy defines the granularity over time at which
data is pushed up the service chain to aggregating services
and end-users. In this work the policies are modelled similar
to the well-understood Event-Condition-Action paradigm [9],
[23]. However, the novelty of the policies used in this work
is that they use temporal conditions that describe the distance
between two consecutive actions that push data to aggregating
services, rather than defining condition on the system state.
The advantage of this approach, compared to existing temporal
conditions [13], [11], is that the condition bridges between two
events, thus does not require the storage of large amounts of
historical data. Informally a policy is a set of rules of the
following structure:

<Policy> <!-- send to Service -->
<Rule>
<Target>...</Target>
<Event>...</Event>
<Condition>...</Condition>
<Action>...</Action>

</Rule>
<Rule> ... </Rule>

</Policy>

The <Target> of a rule is a list of services on which the
<Action> of the rule is invoked if the rule is triggered. The



<Event> of a rule is an event descriptor that determines when
the <Condition> of the rule is evaluated. The descriptor
is a predicate build from primitive domain dependent events
(e.g. a GPS-Update) defined in the service description. Con-
ceptually the event descriptor describes an abstraction of the
event trace over which the <Condition> is evaluated. The
<Condition> describes the distance between events that are
communicated upstream to aggregating services as a temporal
formula. The syntax that is used is an XML representation of
Interval Temporal Logic formulae described next.

B. ITL

ITL [5] is based on the concept of an interval which
is an (in)finite sequence of states σ0, σ1 . . .. Each state σi
maps from the set of variables Var to the set of values Val .
The length |σ| is one less than the number of states in the
interval. The syntax of ITL is given in Figure 2 where µ is a
constant value, a is a static variable (does not change within an
interval), A is a state variable (can change within an interval),
v a static or state variable, g is a function symbol and p is a
predicate symbol. The syntax is based on [5], however uses the
projection operator f1∆f2 as primitive and derives the operator
f∗ as introduced in [16].

Expressions
e ::= µ | a | A | g(e1, . . . , en) | ©v | fin v

Formulae
f ::= p(e1, . . . , en) | ¬ f | f1 ∧ f2 | ∀v q f |

skip | f1 ; f2 | f1∆f2

Fig. 2: Syntax of ITL

The informal semantics of the most interesting constructs
are as follows:

• skip: unit interval (length 1, i.e., an interval of two
states).

• f1 ; f2: (“chop”) holds if the interval can be decom-
posed (“chopped”) into a prefix and suffix interval,
such that f1 holds over the prefix and f2 over the
suffix, or if the interval is infinite and f1 holds for
that interval. Note the last state of the interval over
which f1 holds is shared with the interval over which
f2 holds.

• f1∆f2: (“projection”) is defined to be true on an
interval σ iff two conditions are met. First, the formula
f2 must be true on some interval σ′ obtained by
projecting some states from σ. Second, the formula f1
must be true on each of the subintervals of σ bridging
the gaps between the projected states.
In the interval σ the value of K increases from
0 to 8 in steps of one. The interval σ satisfies
(len(2))∆(K gets K + 2). (len(2)) is true if the
interval is of length two and (K gets K + 2) is true
if the K increases by 2 from state to state. The gaps
between the projected states (highlighted in red) are
bridged by the formula len(2). The formal definition
of this operator is given in [16].

• ©v: value of v in the next state when evaluated on an
interval of length at least one, otherwise an arbitrary
value.

• fin v: value of v in the final state when evaluated on
a finite interval, otherwise an arbitrary value.

We also introduce a number of derived constructs, but here
we only show the subset directly used in this paper (more
details are available in [5]). The binary operators ∨ (or) and
⊃ (implication) are derived as usual.
©f =̂ skip ; f (read “next f”), means that f holds

from the next state; more =̂ ©true means the non-empty
interval; empty =̂ ¬more means the empty interval; halt f =̂
2(empty ≡ f) means terminate the interval when f holds;
v gets e =̂ 2(more ⊃ (©v) = e) assigns v the value
of e evaluated in the previous step (except the initial state);
and f∗ =̂ f∆true] (read “f chopstar”) holds if the interval
is decomposable into a finite number of intervals such that
for each of them f holds, or the interval is infinite and can
be decomposed into an infinite number of finite intervals for
which f holds. Also,

len(e) =̂


false if e < 0

empty if e = 0

skip ; len(e− 1) if e > 0

holds if the interval length is e;

III. BASIC CONCEPTS

It is quite challenging to obtain an accurate view of
data coming from a huge number of different sources (here:
services) with classic request-response approaches which are
usually employed in SoC. Consider the number of printers
within a company or all taxis of a company within a city.
The number of possible services is high. In addition the
dynamic properties such as the length of the print queue or
the geo location of taxis change very frequently. Using a
typical request-response approach every time a user asks for
a taxi the system has to poll all the taxis’ geo locations and
other properties – this polling approach cannot scale and as
a consequence a consumer will not get a reasonable response
to his request. In such realistic settings it is becoming quite
challenging to answer a simple question such as “find the
nearest taxi to my location” quickly.

We can define this more crisply as a need for an concept de-
livering responses with low latency based on dynamic service
properties at any time to consumer requests from huge lists of
services. Basically, we propose to combine existing request-
response approaches with publish-subscribe techniques. Ser-
vices offer dynamic properties to which consumer can sub-
scribe, such as the dynamic GeoLocation property of a taxis
service and the number of current passengers from which the
system can derive if the taxi is available or not.

We envision that our approach can be adopted easily as it
only requires the addition of two interfaces: (1) The publisher
endpoint is exposed on the service side to which the consumer
can register or subscribe to events and (2) the subscriber
endpoint is exposed by the Mediator to enable the services
to fire events in a fire and forget fashion.

The publisher interface which enables the registry to sub-
scribe to a set of dynamic properties provides two operations:
injectPolicy(policyObligation) : Id and unsubscribe(Id).
Here policyObligation describes the topic to be subscribed



to, the refresh interval, and the state changes which trigger
event notification and Id is a unique registration id for the
subscription. The subscriber interface offered by the Mediator
provides only one operation, notify(Event). An Event is a
tuple of values event = 〈se, ts, te, p〉 , containing the service
endpoint address se, time information ts and te, and the
payload p. The time information defines the valid start time
ts and end time te of the event and the payload is defined by
the type of the subscribed topic.

As described in [17] processing of streaming data is
an important practical problem that arises in time-sensitive
applications where the data must be analysed as soon as they
arrive, or where the large volume of incoming data makes
storing all data for future analysis impossible.

IV. ARCHITECTURE

As a central instance we use a Mediator (see Figure 3).
This Mediator encapsulates the processing of the incoming
request from the consumer side and the incoming events from
the service side and maps both. The Mediator is a service
and exposed operations (methods) map internally to specific
queries. Thus, during runtime the Mediator is receiving con-
tinuous streams of events from subscribed services. Incoming
consumer requests are handled as a query on subscribed service
properties. Instead of pulling data at request time the mediator
knows at any time the status of all services. Therefore, this
allows for service selection in real-time independent of the
number of services.

Service
1

Service
...

Service
n

Mediator

Information
Mediator

Event
Mediator

Consumer
1

Consumer
2

Consumer
...

Consumer
m

Continuous stream of 
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triggered by policy 
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Consumer request 
for given user 

context

inject new policy obligation

Reasoning over event stream and 
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Exception 
Handling

Event
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Mapping
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Event Policy 
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Fig. 3: Mediation service architecture

An event contains metadata ( information about the time
when the event was created on the publisher side) and a
payload (the schema of the subscribed topic, such as tempera-
ture or vibration). New policy obligations are injected via the
Mediator into the correct service (publisher).

The Event Mediator exposes an endpoint to collect all
incoming events from registered services. Its responsibility is
to normalize the incoming data streams. Usually, not all events
provide the same data structure and therefore the Request Me-
diator maintains a mapping table to transform incoming events
from endpoints into a normalised data stream. For example
two services might provide temperature readings, but they

use Celsius and Fahrenheit respectively. The Event Mediator
normalizes event streams internally before forwarding data to
the Information Mediator via the Event Processing component.

In addition the Event Mediator is able to detect missing
events since the refresh time is set within the subscription
process. It is possible to apply different retention policies to
react to missing events, such as simply ignore missing events,
use the latest event until a new event arrives, or raise an
exception because the absence of an event is an exceptional
case. How to handle missing events depends on the scenario
and does not require a general solution.

The Information Mediator maps consumer request to
queries on continuous event streams provided by the Request
Mediator. On the consumer side the framework still offers a
normal Web Service interface, which internally is transformed
into a query executed over the event stream. The Information
Mediator also ensures the quality of the events from event
streams, such as duplicated events or out-of-order events. Here,
our approach benefits from the existing work on complex event
processing (CEP), such as [14] or [15]. Valid start and end
times are generated by the service side but the Information
Mediator added internal time information (System time) to the
events. Clock increments internal to the Information Mediator
move time forward decoupled from external sources, thus
guaranteeing the order of events. (This idea is based on
standard CEP technology, e.g. [3]).

To control the event flow from services to the mediator
the services are accepting policy obligations as filtering rules.
These obligations are defining which state changes within a
service (on the source) trigger an event (such as “temperature
> 50.2C”) and the expected interval (refresh). The expected
interval would then also be used within an event so that the
start time is set when the event is issued on the service and the
end time is defined by the refresh interval. Section V will deal
with the specification of the required filters in detail. Being
able to set the event interval rate and condition helps to fine-
tune the system to obtain the appropriate balance between data
accuracy, response time and data traffic.

V. EVENT POLICIES

We will introduce event policies by two representative
examples. A simple example would reduce the number of
events communicated upstream:

Example 1 (Simple Event Filter):

<Policy> <!-- send to Service -->
<Rule>
<Target>Aggregation Service</Target>
<Event>GPSUpdate()</Event>
<Condition>
<LEN>2</LEN></Condition>

<Action name="notify">
<GPSLocation id="x"/></Action>

</Rule></Policy>

The policy stipulates to send the GEOLocation on every
second GPSUpdate() to the Aggregation Service. Another
example would lead to an update being send to the aggregation
service whenever the Euclidean distance between the last
update and the current position exceeds 50m:

Example 2 (Update based on Dynamic Attributes):
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Fig. 4: Policy-Based Event Stream Filter

<Policy> <!-- send to Service -->
<Rule>
<Target>Aggregation Service</Target>
<Event>GPSUpdate()</Event>
<Condition><NEXT><HALT><GT>

<FUNCTION name="EuclideanDistance">
<GPSLocation id="x"/>
<FIN> <GPSLocation id="x"/> </FIN>

</FUNCTION>
<CONST type="xs:int">50</CONST>

</GT></HALT></NEXT></Condition>
<Action name="notify">
<GPSLocation id="x"/></Action>

</Rule></Policy>

Building on earlier work [13], [11] in the context of access
control, the condition of a policy is a temporal description
of the filter that is applied to the selected event stream.
Conceptually the service is filtering its event stream as depicted
in Figure 4. Here the Service is processing its own stream of
events (Service Events) that define its internal behaviour. The
Event trigger in the definition of rules selects a sub-stream
that contains only those states in the Service’s behaviour at
which the Event was raised. The condition in the rule is
evaluated over this filtered event-stream and further restricts
the behaviour based on the condition expressed in the rules.
The condition is an interval temporal logic formula that defines
the distance between any two selected states. In theses states
an action is performed (e.g. “notify”) that exposes information
to other connected services, in this case the Aggregation
Service. As a result, the policy determines the externally
observable behaviour of the service. Connected services can
influence this behaviour by updating the event policies via the
injectPolicy() operation.

Services that support these policy filters can be combined
into hierarchies, yielding service compositions that fuse and
filter information defined in their NFP schemas based on
policies. The information will be provided on a PUSH model
with policies determining the frequency and conditions of
updates, yielding a flexible, policy-based publish-subscribe
infrastructure.

A. Formal Model

Let each service s ∈ Services be defined over a continuous
stream σs of events ei ∈ Eventss, observed by the service s.

This is modelled by representing σs as an ITL interval and
Events as a set of propositional state variables that indicate
the occurrence of events (recall that state variables can change
their value from state to state). This model allows for the
concurrent occurrence of events, e.g. ei ∧ ej (i 6= j), and
only captures the sequence of events, rather than their absolute
timing. The creation time of the event is stored explicitly as
part of the event tuple and can be referred to in the conditions
of policy rules. As described in section III an event is described
as a tuple 〈se, ts, te, p〉, denoting the service se creating the
event, the time-stamp when the event was created ts, te (based
on the clock of s) and an optional payload p. We use the
notation e.se, e.ts, e.te and e.p when referring to a specific
element of an event tuple e.

Evaluating the policy pols of the service s against this
interval is a two stage process. In this way filtering of event
streams based on simple events (evtr) can be implemented
very efficiently, and this reduction of events allows to signif-
icantly improve the evaluation of the conditions cndr, which
is more complex and can in certain cases grow linearly with
the number of states that are bridged.

1) Stage 1: For every rule r ∈ pols an abstraction of the
interval σs is generated based on the Event trigger evtr of
the rule r. Currently we only consider single event triggers,
however the formal model is supporting combined events
such as ei ∧ ej or state formulae (i.e. ITL formulae that
do not contain temporal operators). Conceptually this stage
is generating an abstracted interval σs,r of the interval σs
that contains only those states in which evtr is true. This
is depicted in Figure 5.

Service Events σs

Rule Events σs,r

Push Actions
actr actr actr

cndr cndr

evtr evtr evtr evtr

Fig. 5: Policy Rule Evaluation

2) Stage 2: For every rule r the condition of the rule cndr
is evaluated against the corresponding abstracted interval σs,r.
The condition defines the distance between two consecutive
actions triggered by the same rule. This means that the
temporal formula cndr must hold over the subintervals of σs,r
bridging the gaps between the projected states.

Formally this means that the policies relate the service’s
event trace, viz. the interval σs to actions that are performed
by the service as follows: σs |= ©halt (evtr)∆(cndr∆2actr).
Here ©halt (evtr)∆f conceptually yields the abstracted inter-
val σs,r over which the policy rule is evaluated. The condition
cndr of the rule then bridges between two consecutive actions
that are performed as a consequence of the rule.

The overall service specification is then constructed from
this (the specification of actr is not detailed here): σs |=∧

r∈pols
©halt (evtr)∆(cndr∆2actr)



The model can be implemented straightforwardly from
its semantics using AnaTempura [10], [5], resulting in the
following code for example 1:

/* run */ define example() = {
exists Evts :
{ /* create test event trace for the service */
list(Evts,3) and stable(struct(Evts)) and evtmodel(Evts) and
{ /* example rule evaluation */

(next halt(Evts[0]=1)) /* selecting events Evts[0] */
proj{ /* show selected events, testing only */
always format("Evts[0] = 1\n") and {
len(2) /* select every second event only */
proj{ /* show selected events, testing only */
always format("Action on every 2nd Evts[0].\n")

}}}}}}.

set assign_ahead = false.
define evtmodel(Evts) = {
Evts = [1,1,0] and skip ; Evts = [0,0,1] and skip ;
Evts = [1,1,0] and skip ; Evts = [1,0,1] and skip ;
Evts = [0,0,0] and skip ; Evts = [0,0,1] and skip ;
Evts = [1,0,0] and skip ; Evts = [1,0,0] and empty

}.

Here three events are modelled for the service, and an ex-
ample trace is generated by the function evtmodel(Evts).
AnaTempura can be run in a run-time verification mode and
could receive these events from an external program. The
event trigger for the encoded rule is Evts[0], where a value
of 1 indicates that the event occurred. This is encoded in
the first projection condition (next halt(Evts[0]=1)),
which in effect generates the more abstract interval σs,r over
which the second projection is taking place. In this example
the temporal condition is selecting every second of the events
(len(2)) on which the action of the rule is triggered. In this
proof of concept only a statement is printed out to the screen,
but instead a message could be easily send to another service.
The above code can be readily executed in AnaTempura
(available at http://www.cse.dmu.ac.uk/STRL/ITL/).

The advantage of the formal model is that one can reason
about the hierarchy of event filters throughout the service
infrastructure. Without loss of generality one can reason about
a general stream of events Esys that contains all events that
are observable in the system. Whilst the event streams Es are
generated by the individual services s, conceptually they can be
seen as a filtered event stream that selects from Esys only those
events that originate from s. This approach makes reasoning
about the interaction of the various event streams possible and
does not complicate the analysis as it uses the same policy-
defined event filters that are advocated in this work.

VI. EXAMPLE (CONT’D)

Let us go back to the taxi management scenario to illustrate
the presented theory with a simple example. In this example
users are interested in finding a taxi. They formulate their
needs in form of a request providing their location. The
Mediator is getting this request and is responsible for mapping
the user request to the available event streams coming from all
taxis. Here it is a query returning the closest available taxi.

The user requests are joined with the event stream
coming from the taxis using temporal join-statements ex-
pressed through SQL-like expressions. For example Microsoft
StreamInsight 1 code would be as follows :

1http://msdn.microsoft.com/en-us/library/cc160860.aspx

time t

Taxi A
Taxi B

Taxi C

Taxi D

t1

A1 A2 A3
B1 B2

C1
D1 D2 D3

t2 t3

B3

User 1

User 2

User 3

Fig. 6: Event Stream Reasoning

/* define incoming streams */
var taxiStream = CEPStream<Taxi>(...);
var userStream = CEPStream<User>(...);
/* run standing query */
var result = FROM taxi IN taxiStream

JOIN user IN userStream
WHERE (taxi.Available

AND Min(Distance(User.GEOPosition, taxi.GEOPosition)))
SELECT taxi; /* create a result stream of relevant nodes */

Each taxi is sending an event to the Mediator when it
moves more than 50 meters or the number of passengers is
changing (Example 1). A so-called standing query consumes
the incoming event streams from all taxis and maps the user
request to the stream. The Mediator is aware of all state
changes and hence aware of the state of the entire system
and thus can reply to the request with almost zero latency.

Let’s assume we have four taxis (A,B,C, and D) (see
Figure 6). At time t1 a user is requesting a taxi. At that point
in time only taxi A is available so that the query will return
taxi A as result. Thus, taxi A is sending a new event (A2)
since it picks up the user. A new user requesting a taxi at time
t2 encounters a new situation with taxi B and taxi D being
available. The query will check if B or D is closest to user2.

Already this simple scenario highlights the low-latency data
processing capabilities of this approach.

VII. EXPERIMENTAL RESULTS

The mediator approach with filtering of events at the source
was developed to address two key problems, namely (1) a need
to provide replies with near zero latency and (2) a requirement
to reduce the amount of data transfer (recall that this was large
because of the amount of small messages). Validation was
geared towards proving these two aspects, so we conducted
two evaluations: (1) we measured the latency of finding a
result using the pull model compared with a push model and
(2) counted the number of messages occuring in a one second
time interval in the push and combined pull-push model. We
considered settings with up to 60000 services.

Testing pull and push approaches is quite complex since
there is a big number of data sources required to get some
significant results. There is also a need to distinguish between
pure latency as a result of the different concepts and system
or network latency and latency used by semantic processing.
Thus, for testing we decided to run everything on one machine
and to simulate each service as a small object. Due to this,
latency caused by the physical setup can be neglected. The
simulated services were holding a random value and the query
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was to find the object whose value is the closest to a given
number (in the taxi example the value would represent the taxi
position and the given number the customer position).

In the pull approach we are iterating over all objects (taxis)
and are trying to find min(value − number). In the push
approach the objects are pushing their number to the mediator
and we run a query over this data.

The results are presented in Figure 7. While the latency
is increasing linearly for the pull approach, it remains almost
constant for the push approach. Also, all values for the push
approach are far lower than those for the pull approach, with
for example approx 4ms vs 65ms for 60000 services. This
clearly indicates that the pull approach is superior to the push
approach in terms of latency. The trends show that for a
growing number of services we can deliver performance close
to no latency. We also want to point out that this is the pure
meassured latency ignoring network and processing delays –
these will make latency become rapidly worse for the pull
approach as much more communication and more processing
is needed compared to push approach which remains constant
for the full spectrum (albeit a little slower in real terms than
meassured in the isolated setting).

The drawback of push approaches is the number of data
items sent; we have introduced policies in our approach to
avoid that messages are polluting the network unnecessarily.
The second validation is comparing the number of messages
send in a one second interval in a pure push approach

compared with the number of messages which are sent in a
push approach with filtering. The latter is expected to send
fewer messages because of the injected policy. For testing we
extended the objects with another random value representing
the availability, either 0 or 1. The policy is saying that the
object should push only messages when the availability is
1 (means the taxi is available). Figure 8 shows the results
as we expected. With a trivial policy we can save around
50% of exchanged messages (based on the randomly changing
values). More specific policies (such as taxi should have moved
more then 50 meters before sending an update) and real data (a
specific taxi being available 50% of the time does not make
for a profitable business model!) the number of messages can
be further reduced.

Overall, both simple tests highlight how (1) using the push
approach with mediator and (2) policy injection on the data
source can be combined to form a promising architecture
supporting low-latency for large systems.

VIII. RELATED WORK

While there is work on non-functional properties, service
selection, complex even processing and temporal logic there
is no work as far as we are aware which combines these
approaches to solve selection problems for large scale systems.
[4] describes a very interesting approach for using active
rules for pushing reactive services. But it does not take into
account temporal aspects or states. [18] presents a framework
for satisfaction of complex data needs involving volatile data.
The focus is on pull-based environments; we believe that our
approach is more promising for large scale systems. Push
based system research focuses mainly on aspects of efficient
data processing, where load shedding techniques [22] can be
applied in order to control what portion of the data to process.
Such systems include publish-subscribe (pub/sub) ([7]), stream
processing ([1]), and complex event processing, however there
is no consideration of bandwidth consumption.

As mentioned there is much work on service selection
based on NFPs, a survey can be found in [24]. Most work
concentrates on defining QoS (Quality of Service) ontology
languages and vocabularies and identification of various QoS
metrics and their measurements with respect to semantic
services. All these approaches are lacking temporal aspect.

The use of Event-Condition-Action (ECA) rules is well
established in Data-Stream Processing applications e.g. [6]
and ECA-based policy languages e.g. [23] are used to control
and manage distributed systems [19]. In our work, we are
however mainly concerned about the selection and propagation
of events. Our formalisation of event policies differs from
traditional ECA rules in that the condition does not only
describe a Boolean combination of events, but can address
the history of a selected event stream allowing to specify
the distance between propagated events using ITL [5]. Data
Stream processors such as SNOOP [6] and successors already
use event histories for detecting the order of events, making
this a natural model for expressing policies that also allows
for the efficient enforcement of such policies [12].

The use of policies together with a mediator has been
suggested in a different context in [8] with a focus on mining
transaction data for fraud detection. Their use of policies is



targeted to this particular application domain and is focused
on the detection of events.

The work that is possibly closest to ours is [2], which intro-
duces a framework for providing information based on sensors
to mobile users. The work is in some way complimentary to
ours, in that it proposes an approach that registers triggers
based on user demands in the SLIM Service. Data sources
report their data to the SLIM Service and the service reports
data back to users when the trigger conditions are met. Our
approach focuses on the reduction of traffic on obtaining the
values from the data sources based on the registered filters,
and then allows users to query the data in the mediator thus
not requiring users to pre-register for concepts of interests.

IX. CONCLUSION AND FUTURE WORK

We presented a new approach investigating service selec-
tion problems with a huge number of potential services and
highly dynamic service properties. By combining NFP-based
selection with ITL we have grounded dynamic properties on a
valid formal model. We presented a way to use ITL to express
policy obligations as ECA rules which should be executed
close to the sources to enable an accurate view of a large scale
system at any point in time and to reply to consumer requests
with almost zero latency. The sources (in our example taxis)
are notifying the mediation service about any state change
defined by policies thus the mediation service can (1) reason
about the incoming streams and reply immediately to consumer
requests and (2) the mediation service can make assumptions
in terms of missing data and forecast likely future behaviour.

So far, we have looked into the foundation aspects on how
to tackle scenarios with a vast amount of data sources and data
consumers. The next steps of our work will investigate more
complex policies to be executed at the sources, such as the
direction and speed of a taxi in addition to its position. We
will also look into the prediction capabilities of our approach.
Since the mediation service is aware of the lifetime of the
information of each node it can look into the future to predict
certain results. So far, the assumption is that the states are
discrete. But we could also use functions for continuous states
so that we have to address this problem during the selection
process. In future work we will also further validate and com-
pare our approach with others as well as consider alternatives
approaches to ITL to explore whether computational gains can
be made.
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