
A Utility-Aware Runtime Conflict Resolver for Composite Web services

Xiao Ning, Jiuyun Xu, Nan Xu, Di Li
School of Computer and Communication Engineering

China University of Petroleum(China East)
Qingdao, China

xiaon2013@gmail.com, jiuyun.xu@ieee.org,
xuxinanzi@gmail.com, zazadeanlee@gmail.com

Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester
Leicester, UK

srm13@le.ac.uk

Abstract—Web services are developed independently and
deployed in a distributed environment, new service can be
obtained by composing existing ones. The rapid introduction
of new services also results in undesirable interactions between
services. These conflicts are not mismatches of interfaces, but
are usually based on the data in the executing instance and
therefore runtime management of conflicts in Web services
should be considered. We study the problem from the per-
spective of user’s revenue, and propose an online approach to
resolve conflicts is proposed1.

Keywords-Composite Web service; Conflict Resolution; Bi-
Objective Optimization; Runtime Solution

I. INTRODUCTION

Services assumption, which are theoretically met at de-
sign time but are violated at runtime may lead to unexpected
and often undesired interactions between services negatively
affecting user satisfaction. It is important to note that not
all interactions are necessarily bad; some might be positive
for example such where services have special preferential
relations with one another. [1] describes these conflicts as
Web services Feature Interaction (WSFI) problem.

Currently, existing methods for conflict management
focus on offline methods using formal verification and
online methods based on behaviour grammar descriptions.
Challenges lie in the facts that Web service are develop-
ment independently from each other with internal logics
unavailable for business reasons. That means there is a
main obstacle to describe each service accurately for for-
mal method approaches. Second, conflicts caused by Web
services are often dependent on data (either data from user
profiles for personalizable services or runtime data in the
process). Consequently, there will be conflicts appearing at
run time which cannot be detected and resolved at service
and process design time. So it is meaningful and urgent to
design runtime conflict management methods.

In our previous work [2][3], we presented run-time
conflict detection methods. Meanwhile, resolving conflicts
is the ultimate aim of conflict management and this paper
presents a novel online approach to conflict resolution.
Prototype system experiments illustrate that our approach

1Acknowledgement: The work is fully supported by grants
(13CX06009A and 14CX06007A)from the Fundamental Research
Funds for the Central Universities. Part of this work was conducted while
Reiff-Marganiec was on study leave from the University of Leicester.

is efficient for resolving conflicts at runtime taking into
account the constraints and preferences of the users.

II. THE PROPOSED APPROACH

We use three fundamental concepts as follows: (1) a
service plan p is a composite service which satisfies a user’s
demand, (2) a service model M is a set of available service
plans for achieving a user’s requirements and (3) the plan
utility up which is the utility value of a service plan. The
plan p ∈ M with maximal utility will be the preferred
execution plan; all others plans are candidate plans.

Conflict	  Manager	  

Service	  Model	  

Webservice	  12	  

Webservice	  11	  

Webservice	  1k	  

…	  

Plan1	  

Webservice	  22	  

Webservice	  21	  

Webservice	  2l	  

…	  

Plan2	  

Webservice	  n2	  

Webservice	  n1	  

Webservice	  nm	  

…	  

Plann	  

…	  

Conflict	  Resolver	  
Rollback	  Cost	  
Calculator	  

Service	  Broker	  

Conflict	  Detector	  

U@lityCost	  
Calculator	  

Op@mizer	  

Execu@on	  
Engine	  

UDDI	  

COMMS	  BUS/	  INTERNET	  

Figure 1: System Architecture

The architecture of the conflict resolution system is
shown in Figure 1. The service broker allows providers
to register services in an UDDI registry (registering both
capability and QoS of the service). The conflict manager
consists of the conflict detector(described in Ref.[2]) and the
conflict resolver (the key contribution of this work). Once
a conflict between services is detected the conflict instance
is passed to the conflict resolver. The conflict resolver will:

1) Calculate the roll-back service set and respective cost;
2) determine Pareto solutions for the service plan (II-A);
3) rank strategies and propose the best resolution (II-B);
4) and the process execution engine applies the conflict

resolution strategy.



A. The bi-objective model based-on users revenue
The conflict problem is expressed as bi-objective opti-

mization problem with constraints. The corresponding bi-
objective optimization model is established and a set of
Pareto solutions is obtained. The solutions are ranked to
identify the optimal roll-back strategy and the new plan.

The two objective functions used express the profit gained
from the new execution plan and the compensation profit
of roll-back, that is the opposite of the compensation cost.
The strategy space is C = {hold, drop}, that is we can
decide to retain or to drop a specific service. In order to
get the optimal resolution strategy for conflicts, we aim
to maximise the value of the two objective functions. The
model considers users’ QoS requirements as differentiating
factor between services. Compensation transaction make it
possible to undo committed transactions. However, com-
pensation is potentially expensive [4], so the calculation of
compensation cost is necessary. We consider the fee for the
transaction and the time needed to compensate.

B. Solving the Bi-Objective Model
The fundamental character of a bi-objective optimization

problem is the conflict between the two objectives. The
result of the bi-objective problem is not a unique solution,
but a set of Pareto solutions under constraints. In this paper,
the solution of the bi-objective model is a trade-off between
user expected utility of new plan and profit of roll-back.

Resolutions are ranked. Larger values represent closer
proximity to the ideal point; the highest value identifies the
optimal solution. If no solution satisfies the user constraints
for a given task, an execution exception will be raised and
the system will ask the user to relax their constraints.

III. EXPERIMENTATION AND IMPLEMENTATION

To study the performance of the proposed solution ap-
proach, we conducted experiments using a prototype sys-
tem. The service model for an e-shopping example is shown
in Figure 2, which also shows the utility values (in the
top left). p4 has the maximum expected utility value and
is chosen to execute. However, during execution a conflict
between service Shop 3 and service ICBC is detected.

start

executed

P1(2.5)
P2(3.0)
P3(2.8)
P4(4.2)
P5(3.7)
P6(2.1)
P1(4.0)

Taobao Shop_3 ICBC Paypal
Shen
Tong end

Shop_4

ABC

Shop_
1 IBC Alipay EMSEbay

Fast
Paymen

t

Shop_2

CM
Zhong
Tong

unexecuted

 

Figure 2: Composition services model of E-commerce

Assuming values for the backtracking cost of each service
an optimal solution can be calculated, which will show

which services to roll back and which plan to execute.
Experiments for different sizes of the service model (6, 9,
12, 15, 18 and 21) show a linear increase in run time. In
practice, the expected number of alternative service plans is
not very large. That is to say the conflict resolution approach
for composite Web service is efficient and feasible.

IV. RELATED WORK AND CONCLUSIONS

The feature interaction problem in the domain of Web
services has attracted a number of studies including [5], [6],
[1], which focus on the requirements analysis phase. But in
dynamic Web services composition, conflicts often occur
during the execution of Web services, which cannot be
completely avoided in the design phase. Therefore, in order
to improve the efficiency of Web services composition,
on-line management conflicts requires solving. Work in
this area concentrates on conflict detection [7] presents
an immune-inspired on-line detection system for WSFI
problem. [3], [2] adopt the method of situation calculus
to achieve a dynamic detection of feature interaction.

The presented work established a user-centred bi-
objective optimization model to obtain a strategy to dynam-
ically resolve conflicts in service compositions. Experimen-
tal results show that under the premise of fully considering
the user’s revenue we obtained optimal strategies for re-
solving conflicts. Future work will consider how to improve
the efficiency and robustness of the resolution mechanism as
well as combining the detection and resolution mechanisms.

REFERENCES

[1] M. Weiss and B. Esfandiari, “On feature interactions among
web services,” in Web Services, 2004. Proceedings. IEEE
International Conference on. IEEE, 2004, pp. 88–95.

[2] J. Xu, W. Yu, K. Chen, and S. Reiff-Marganiec, “Web services
feature interaction detection based on situation calculus,” in
Services (SERVICES-1), 2010 6th World Congress on. IEEE,
2010, pp. 213–220.

[3] J. Xu, K. Chen, Y. Duan, and S. Reiff-Marganiec, “Modeling
business process of web services with an extended strips
operations to detection feature interaction problems runtime,”
in Web Services (ICWS), 2011 IEEE International Conference
on. IEEE, 2011, pp. 516–523.

[4] B. Limthanmaphon and Y. Zhang, “Web service composi-
tion transaction management,” in Proceedings of the 15th
Australasian database conference-Volume 27. Australian
Computer Society, Inc., 2004, pp. 171–179.

[5] G. Huang, X. Liu, and H. Mei, “Online approach to feature
interaction problems in middleware based system,” Science
in China Series F: Information Sciences, vol. 51, no. 3, pp.
225–239, 2008.

[6] D. Amyot and L. Logrippo, “Feature interactions in web
services,” Feature Interactions in Telecommunications and
Software Systems VII, p. 149, 2003.

[7] J. Zhang, F. Yang, K. Shuang, and S. Su, “Immune-inspired
online method for service interactions detection,” in SOFSEM
2007: Theory and Practice of Computer Science. Springer,
2007, pp. 808–818.


