
A Study Case of Restful Frameworks in Raspberry Pi:
A Perfomance and Energy Overview

Luiz H. Nunes ∗, Luis H. V. Nakamura ∗, Heitor de F. Vieira ∗, Rafael M. de O. Libardi ∗,
Edvard M. de Oliveira ∗, Lucas J. Adami ∗, Julio C. Estrella ∗, Stephan Reiff-Marganiec †

∗ University of São Paulo (USP)
Institute of Mathematics and Computer Science (ICMC), São Carlos-SP, Brazil

Email: {lhnunes, nakamura, heitorfv, mira, edvard, ljadami, jcezar}@icmc.usp.br
† University of Leicester

University Road, Leicester, LE1 7RH - UK
Email: srm13@le.ac.uk

Abstract—This paper analyzes the execution behavior of web
services on devices with limited resources. The experiments
compare web services in the Axis2 and CXF frameworks
analyzing performance and power consumption. To determine
which framework is better suited for service provision, a testing
environment and a performance and energy evaluation between
them are presented. We show that the Raspberry Pi can be
useful in service-oriented applications for different types of
tasks. Bringing together the best features of small devices
and SoC, it is possible to provide diverse, mobile and green
applications.

Keywords-Web Services, Service-oriented Architecture, Qual-
ity of Service, Performance Evaluation, Apache Axis2, Apache
CFX, Raspberry Pi

I. INTRODUCTION

The combination of embedded devices, sensors and the
Internet allows to link the physical world with the cyber
space, expanding the Internet to the Internet of Things (IoT)
[3]. The increasing use of mobile and embedded devices
jointly with the expansion of IoT requires studies about
which tools, protocols, frameworks, and applications should
be used in order to increase efficiency of the systems while
reducing costs. Additionally, the economy of resources is a
recurrent goal in much recent work.

Due to service-oriented applications using other resources
to perform tasks, they can overcome these limitations and
improve the performance of embedded devices, including
the Raspberry Pi. However, the use of service-oriented ap-
plications in embedded devices still need to be investigated
with respect to other types of information, such as larger
messages that demand more resources. This study is very
relevant because services use large amounts of data to create
additional information in the message body, which increases
the size and processing time of those messages [4]. Another
important factor to investigate is the energy consumption to
perform such processing in embedded devices. In this paper,
we present a performance and energy consumption study
evaluating the behavior of RESTful web services using the

Raspberry Pi. To perform this evaluation, services with the
same features were developed using the Axis2 and CXF
frameworks developed by the Apache Software Foundation.

This paper is organized as follows: Section II presents
a literature review of embedded web services performance
evaluation studies and methodologies. Section III highlights
the characteristics of frameworks and technologies used
in this study. Section IV describes the methodology and
configurations used for the experiments. The results are
then discussed in Section V. Finally, the conclusions and
directions for future work are presented in Section VI.

II. WORK RELATED

Previous web services performance evaluation method-
ologies for embedded and mobile environments were cat-
egorized into two approaches: real device experiments and
simulation based on mathematical models. Real experiments
were found in [8], [9], [6] and [4] and are the most used.
In these approaches, real devices and prototypes are used
to measure response variables in a real environment using
replications for non-deterministic variables.

Although this is the widely used approach, it is quite
expensive, needs to follow a rigid methodology and requires
deep statistical analysis. Another methodology found in [10]
and [5] uses mathematical models and simulation tools
to evaluate proposed architectures. In these approaches,
mathematical models representing the system to be evalu-
ated are created. However, there is a risk that the model
is not realistic and that the environment is not truthfully
captured. We used real device experiments using a testbed
environment for this study.

As we know from the literature, RESTful are better
than SOAP for mobile devices, because they save a lot of
resources and energy and generate less overhead in data
transfers and spend less time to pack/unpack the request and
response messages. Nevertheless, there are different ways
to implement and deploy a RESTful web service. Thus,
this paper aims to complement these works to present an



energy consumption and performance overview of RESTful
frameworks in Raspberry PI.

III. FRAMEWORKS

A. Axis2 Framework

Apache Axis2 is a project implemented in the Java
language that facilitates the implementation of web services
for both client applications and service providers. Besides,
it offers a completely object-oriented approach and it is
built upon a modular architecture. The messages used in
this framework are built from the Apache Axiom library,
which provides a set of XML methods for the creation and
organization of objects into a tree [2]. Sending and receiving
messages is one of the key tasks of web services. The Axis2
architecture provides two pipes (or flows) to perform these
two operations. Therefore, the complex message exchange
(MEPs) are performed through the combination of these two
flows [7].

B. CXF Framework

Apache CXF is an open source framework that provides
easy development of web services in Java, for both SOAP
and RESTful architectural concepts. This framework uses
the Java API for RESTful Services (JAX-RS) for RESTful
architectural concepts, which provides the semantics for the
creation of RESTful web services and abstracts implemen-
tation details of their clients. The message flows in CXF
are handled by interceptors that perform a particular func-
tionality. They can be added to an interceptor chain, which
in turn are grouped and arranged in stages. The interceptor
chain manages resources and information from others CXF
components (Front-End, Protocol Bindings, Transports) to
handle the message and establish communication among
client and service [1].

IV. PERFORMANCE EVALUATION

Figure 1 illustrates the messages flows between the appli-
cations used in this paper (steps are marked 0 to 6).

Figure 1: Messages flow in the experiments.

The client device starts the application by generating
a sequence of random numbers and then performs the
serialization of this sequence into an XML message. Once
built, this message can be sent to a web service provided
by the server device. When the message arrives, the server
first deserializes the message, and then process its content
sorting the numbers that were received from the client, so a
new message with the ordered numbers is created, serialized
in XML format and sent back to the client device.

Finally, the client deserializes the response from the server
and ends its execution. To monitor the energy consumption,
we used Arduinos Nanos because they are capable to ensure
accuracy and synchronism in data collection through an
automated code to start and finish the measure. The Arduino
was used to collect data like time, voltage and current. These
data are collected 170 times per second from both client and
server devices through a shield that was made to measure
the energy, and are stored in a desktop computer using the
Mini-B USB interface.

A. Experiment Enviroment
Two Raspberry PI devices model B interconnected by a

gigabit switch. The configuration uses the standard CPU
clock (700Mhz) and a class 4 SD card with 8Gb. The
operational system used was the Raspbian GNU/Linux with
JDK (Java Development Kit) 1.6. The memory in JVM (Java
Virtual Machine) was set to 128Mb.

B. Experiment Design
The experiments were designed to gather as much infor-

mation as possible to compare the performance and energy
differences between two different development Frameworks
for web services (Axis2 and CXF) with light (100Kb)
and heavy (500Kb) messages. Four experiments involving
combinations of factors (Framework and Message Size)
with different configurations or levels were designed. Each
experiment was repeated 50 times in order to calculate the
average time and guarantee a statistically correct result.
Besides, the standard deviation and confidence intervals
(assuming a 95% confidence level) were also calculated for
each of the average times collected.

V. RESULTS

Table I shows the total time (T.T) and confidence interval
(C.I) in seconds to perform the request in server and client
side respectively. In both sides, the total time was propor-
tional to the size of the message, as the processing time
is directly proportional to the amount of data. Server side
shows that CXF framework requires less time than the Axis2
framework to execute services with 500Kb messages. This
reduction is explained by the use of the JAX-RS library,
which handles RESTful messages directly, whereas Axis2
has an overhead to convert REST to SOAP messages during
service execution.

Table I: Total Time of Server and Client Devices

Total Time

Side Server 700MHz Client 700MHz
M. Size 100Kb 500Kb 100Kb 500Kb

T.T C.I T.T C.I T.T C.I T.T C.I
Axis2 15.48 0.29 84.79 0.47 30 0.33 128,15 0,53
CXF 18.39 0.13 81.62 0.59 38.64 0.14 125,22 0,68

Client side considers serialization and deserialization
times, the network traffic, and the service execution time



on the server side. We can verify that Axis2 framework had
a better performance only for 100Kb messages while CXF
framework had a better performance for 500Kb messages.
JAX-RS libraries use methods of generic classes to handle
RESTful messages which has better performance for larger
messages. On the other hand, Axis2 framework handles
REST messages as SOAP messages in its core which causes
an overhead proportional to the quantity of converted data.

Table II shows the total energy consumption (T.E.C) and
the C.I during the service execution in server and client side
respectively. Results shows that CXF consumes equal or
less energy than Axis2, except in 100Kb messages. Thus,
in general CXF framework presents better performance and
energy results than Axis2 for those experiments.

Table II: Energy Consumption of Server and Client Devices

Energy Consumption

Side Server 700MHz Client 700MHz
M. Size 100Kb 500Kb 100Kb 500Kb

T.E.C C.I T.E.C C.I T.E.C C.I T.E.C C.I
Axis2 31.98 0.57 164.41 1.27 58.73 0.62 233.87 1.31
CXF 35.01 0.32 157.68 1.62 70.72 0.25 223.66 1.1

VI. CONCLUSION

The Raspberry Pi offers a computational architecture with
a general purpose, low cost, and low power consumption.
In this paper, the performance and energy results showed
that Raspberry Pi resources are insufficient for the execution
of tasks that depend mostly on the processor. The CXF
framework proved to be more suiteble in this environment, as
it provides support for the creation of both service providers
and client applications. Furthermore, when using CXF in
service provider applications it achieves shorter overall times
for large messages (500Kb) while Axis2 is better for small
messages (100Kb).

In future work we intend to monitor the energy consump-
tion using batteries and also testing another kinds of appli-
cations, like IO-Bound services to verify the performance
of reading and writing data into SD card. We also intend to
monitor the energy consumption using batteries and evaluate
other kinds of applications (IOBound and MemoryBound),
devices (Parallela, BeagleBone, etc.), frameworks (Jersey,
Restlet, etc.) and protocols (Constrained Application Proto-
col (CoAP)).

VII. ACKNOWLEDGEMENTS

This project was financially supported by São Paulo
Research Foundation - FAPESP (processes 11/09524-7,
2013/26420-6 and 2011/12670-5) and National Council for
Scientific and Technological Development - CNPq (process
133841/2012-0).

REFERENCES

[1] Apache cxf - how it works. Avaliable in http://cxf.apache.
org/docs/custom-transport.html. Last access: 11/04/2014.

[2] Welcome to apache axiom. Avaliable in http://ws.apache.org/
axiom/index.html. Last access: 11/04/2014.

[3] P. fei Fan and G. zhao Zhou. Analysis of the business model
innovation of the technology of internet of things in postal
logistics. In Industrial Engineering and Engineering Man-
agement (IE EM), 2011 IEEE 18Th International Conference
on, volume Part 1, pages 532–536, 2011.

[4] C. Groba and S. Clarke. Web services on embedded systems
- a performance study. In Pervasive Computing and Commu-
nications Workshops (PERCOM Workshops), 2010 8th IEEE
International Conference on, pages 726–731, 2010.

[5] H. Hamad, M. Saad, and R. Abed. Performance evaluation
of restful web services for mobile devices. Int. Arab J. e-
Technol., 1(3):72–78, 2010.

[6] M. Jansen. Evaluation of an architecture for providing mobile
web services. International Journal On Advances in Internet
Technology, 6(1 and 2):32–41, 2013.

[7] D. Jayasinghe. Apache Axis2 Web Services, 2nd Edition.
Packt Publishing, February 2011.

[8] R. Mizouni, M. Serhani, R. Dssouli, A. Benharref, and
I. Taleb. Performance evaluation of mobile web services. In
Web Services (ECOWS), 2011 Ninth IEEE European Confer-
ence on, pages 184–191, 2011.

[9] A. Papageorgiou, J. Blendin, A. Miede, J. Eckert, and
R. Steinmetz. Study and comparison of adaptation mecha-
nisms for performance enhancements of mobile web service
consumption. In Services (SERVICES-1), 2010 6th World
Congress on, pages 667–670, 2010.

[10] Q.-D. Vu, B.-B. Pham, D.-H. Vo, and V.-H. Nguyen. Towards
scalable agent-based web service systems: performance eval-
uation. In Proceedings of the 13th International Conference
on Information Integration and Web-based Applications and
Services, iiWAS ’11, pages 481–484, New York, NY, USA,
2011. ACM.


