
Int. J. Web and Grid Services, Vol. x, No. x, 1–22 1

Run-Time Resolution of Service Property Conflicts in
Web Service Composition

Jiuyun Xu, Xiao Ning
School of Computer & Communication Engineering,
China University of Petroleum, Qingdao, China
E-mail: jiuyun.xu@ieee.org; xiaon2013@gmail.com

Stephan Reiff-Marganiec

Department of Computer Science, University of Leicester, UK
E-mail: srm13@leicester.ac.uk

Qiang Duan

Information Sciences and Technology Department, Pennsylvania State
University, USA
E-mail: qxd2@psu.edu

Zibin Zheng

School of Data and Computer Science, Sun Yat-sen University, China
E-mail: zibin.gil@gmail.com

Abstract: With rapid development of Web service technologies, service
composition has become a common approach to realizing complex business
processes. Due to the large number of services developed and deployed
independently by various providers, undesirable interactions between properties
of different service components may occur when they are composed into a
composite service. Such service property conflicts become a serious obstacle for
service composition to meet users’ requirements. Although traditional feature
interaction techniques may prevent some property conflicts in service design
stage, many conflicts occur during execution based on certain run-time data;
therefore must be resolved online. In this paper, we propose a scheme to address
the problem of run-time resolution of service property conflicts. We first formulate
the conflict resolution problem with a bi-objective optimization model based on
user’s revenue, which represents the QoS and success rate of a service. Then
we solve the bi-objective optimization model to obtain a set of Pareto solutions
and rank the solutions to identify the optimal one, which gives the best roll back
strategy and alternative service plan for resolving a service property conflict. We
also implement the proposed scheme in a prototype of online shopping application
and evaluate performance of the scheme through experiments. The obtained
experimental results indicate that our scheme is effective and efficient in resolving
service property conflicts at runtime.

Copyright © 2009 Inderscience Enterprises Ltd.

2 Xu J. et al.

Keywords: Web service composition; service property conflict; bi-objective
optimization; runtime.

Reference to this paper should be made as follows: Xu, J., Xiao N., Duan Q., Reiff-
Marganiec S. and Zheng Z. (2015) ‘Run-Time Resolution of Service Property
Conflicts in Web Service Composition’, Int. J. Web and Grid Services, Vol. x,
No. x, pp.xxx–xxx.

Biographical notes: Jiuyun Xu received the Ph.D. degree in Computer Science
from China University of Posts and Telecommunications in 2004. He is now a
Professor of China University of Petroleum (Eastern China). His research interests
include service computing and feature interaction. He has published in excess of
30 papers.

Xiao Ning received her Master Degree in Computer Application at China
University of Petroleum. She is an engineer of China National Offshore Oil corp.

Stephan Reiff-Marganiec received the Ph.D. degree in Computer Science from
the University of Glasgow (UK) in 2002. He is now a Senior Lecturer at the
University of Leicester where his research focuses on service computing, feature
interaction and business processes. He has published in excess of 50 papers and
co-edited a number of books and conference proceedings.

Qiang Duan is an Associate Professor of Information Sciences and Technology
Department at Pennsylvania State University Abington College. His current
research areas include the next generation Internet, network-as-a-service,
software-defined networking, network virtualization, Cloud computing, and Web
services. He has published over 70 technical papers in international journals
and conference proceedings and authored 5 book chapters. Dr. Duan is the
editor-in-chief of Journal of Advanced Computer Science and Technology, an
associate editor for 6 international research journals, and a regular reviewer for
some prestigious journals including IEEE JSAC, IEEE TNSM, IEEE TPDS,
IEEE TCC, ACM TAAS, etc. He has also served on the technical program
committees for numerous conferences including GLOBECOM, ICC, ICCCN,
AINA, WCNC, etc. Dr. Duan received his Ph.D. degree in electrical engineering
from the University of Mississippi. He holds a B.S. degree in electrical and
computer engineering and a M.S. degree in telecommunications and electronic
systems.

Zibin Zheng is an associate Professor at Sun Yat-Sen University, China. He
received his Ph.D. degree from The Chinese University of Hong Kong in 2011. He
received Outstanding Thesis Award of The Chinese University of Hong Kong at
2012, ACM SIGSOFT Distinguished Paper Award at ICSE’10, Best Student Paper
Award at ICWS’10, and IBM Ph.D. Fellowship Award 2010-2011. His research
interests include service computing, cloud computing, and software engineering.

Run-Time Resolution of Service Property Conflicts in Web Service Composition3

1 Introduction

The past few decades have witnessed the proliferation of Web services developed and
provisioned by various service providers. In a competitive Web service market, multiple
services developed and deployed by different vendors often provide the same service
functionality. Service providers tend to add extra features to their services in order to gain
competitive advantage. In addition, services with the same functionality may be hosted on
heterogeneous platforms by different providers; thus showing different run-time features
when being executed. Such features are referred to as properties of Web services.

Service composition has been widely applied to form business processes for meeting
diverse user requirements. When individual Web services are composed, their properties
may interact with each other in unexpected and often undesirable ways, which will degrade
Quality of Service (QoS) or even cause execution failure of the composite service. We
refer to such undesirable interactions between service properties as Web service property
conflicts. With rapid increasing in the number of available Web services that may be involved
in service composition, service property conflicts become more likely to occur and their
negative effect on service performance becomes more severe. Therefore, how to resolve
service property conflicts in Web service composition is an important research problem.

Currently available approaches to addressing the Web service property conflict issue
are mainly either offline methods using formal verification Michael et al. (2004, 2007) or
online methods based on behavior descriptions Zhang et al. (2006, 2007b,a). However,
these methods are constrained by some limitations. First, independence of Web service
development and distribution of service deployment make internal logics of services are
often unavailable; therefore it is difficult to obtain accurate service descriptions required
by the formal verification methods for resolving service property conflicts. Second, many
service properties are determined by data that become available only during execution, for
example data about user profiles and service host environments. This makes some property
conflicts only appear at run-time thus cannot be detected and resolved on the service design
stage with offline methods. Therefore, it is important to development technologies for run-
time detection, recovery, and resolution of Web service property conflicts Babak et al.
(2004).

As an example of run-time service property conflicts, we consider an online shopping
system that consists of atomic services of online shops, bank payment, and product delivery.
If a customer is a VIP member of the provider A of delivery service (thus receiving discount
for delivery cost), then the service composition at the design stage will choose provider A
for the delivery service to minimize the total service cost. Suppose the online shop service
has a property of free delivery provided by B for any customer whose purchase amount
is greater than a threshold, then such a property might cause a conflict with the delivery
service provided by A when the customer purchases more than a certain amount. Occurrence
of such a conflict depends on the value of some run-time data (in this example customer
purchase amount). The conflict will degrade service performance (cause extra service cost
in this case) unless it is detected and resolved at run-time.

In this paper we attempt to tackle the problem of run-time property conflicts of Web
services. A solution to this problem comprises two aspects: run-time conflict detection of
service properties and run-time resolution of service property conflicts. In our previous
work we developed a run-time conflict detection technique based on the situation calculus
Xu et al. (2010) and proposed the STRIPS method for detecting service property conflicts
Xu et al. (2011). Therefore, in this paper we focus our study on run-time resolution of

4 Xu J. et al.

service property conflicts and propose a novel online approach to conflict resolution based
on bi-objective optimization. Specifically we make the following contributions in this paper.

• We formulate run-time resolution of Web service property conflicts as a bi-object
optimization problem.

• We propose a bi-objective model to obtain a set of Pareto solutions to the problem and
develop an algorithm to identify the optimal roll-back strategy and alternative service
plan for resolving service conflicts.

• We implement the proposed resolution scheme in a prototype and conduct experiments
on the prototype to verify the effectiveness of our proposed approach.

The remainder of the paper is organized as follows. We first describe a system
architecture for run-time service management and present an illustrative example scenario
in Section 3. In Section 4 we formulate service property conflict resolution as a bi-objective
optimization problem and propose algorithms for solving this problem to obtain optimal
resolution strategy. Experimental results are reported in Section 5 to verify effectiveness
of the proposed model and algorithms. We discuss related work in Section 6 and draw
conclusions in Section 7.

2 An Architectural Framework of Run-Time Resolution for Service Property
Conflicts

A business process may be constructed through Web service composition with two steps.
First a set of abstract services (or called tasks) are selected and composed to form a workflow
for meeting the user’s requirement. We assume that there are multiple specific services
(referred as services for simplicity in the rest of this paper) available for realizing each task
in the workflow; that is, there is a set of available services that all provide the functionalities
required by the task. Then the second step is to select one service for each task of the
workflow to construct a service plan; thus forming a composite service for realizing the
workflow. There may be multiple service plans for a given workflow based on different
service composition strategies.

We first explain the following concepts then describe the system architecture of service
management with run-time detection and resolution of property conflicts.

• Service plan p is a sequence of atomic services that implement all the tasks of a
workflow to meet user’s business requirement.

• Plan utility up is the utility value of a service plan, which can be computed using a
suitable method during the process of constructing the service plan.

• Service modelM is a collection of all possible service plans of a workflow for achieving
a user’s requirements. It is denoted as a set M = {p1, p2, · · · , pk}. The plan p ∈M
with the maximal utility value will be the preferred plan for executing the composite
service; all others plans are candidate plans.

• Executed planpe is the part of a service plan that has been executed. it can be represented
as a sequence of pairs {〈s1, ws1〉 , 〈s2, ws2〉 , . . . , 〈sn, wsn〉}. Each pair < si, wsi >
denotes the initial state si before the execution of servicewsi. In the sequence, s1 is the

Run-Time Resolution of Service Property Conflicts in Web Service Composition5

initial state before any service is executed, sn is the initial state before the last service
is executed. Each 〈si, wsi〉 for 1 < i < n is the only successor of

〈
s(i−1), ws(i−1)

〉
and the only predecessor of

〈
s(i+1), ws(i+1)

〉
. Furthermore, wsi for 1 ≤ i ≤ n will

be executed when si satisfies its preconditions.

Roll back
calculator

Web Service_n1

Web Service_n2

Web Service_n3

UDDI Register

Service Plan_n

Service Execution Engine

Service
Broker

conflict
detection

conflict resolution

Utility
calculator

optimization

Web Service_21

Web Service_22

Web Service_23

Service Plan_2
Web Service_11

Web Service_12

Web Service_23

Service Plan_1

run-time service conflict
management

Figure 1: System architecture of service management with run-time conflict detection and
resolution.

An architectural framework of run-time service management is shown in Figure 3. The
key components of the system include a the service broker, a service execution engine, and
a conflict manager that consists of a conflict detector and a conflict resolver.

The service broker maintains an UDDI registry where service providers register their
services and publish service descriptions. A service description contains meta data that
describes the capability and QoS of a Web service. Upon receiving a service request from a
user with a requirement specification, the service broker starts a service composition process.
The broker will obtain a service model that includes all possible service plans that meet the
user’s requirement and then evaluate the utility value for each plan. The service plan with
the maximal utility value will be selected for execution. The execution engine orchestrates
execution of the atomic services in the selected service plan. During service execution,
the conflict detector keeps checking property interactions among individual services and
informs the conflict resolver with a conflict description if any conflict is detected. The
conflict resolver is responsible for coming up with an optimal strategy for resolving the
conflict in order to recover the execution from failure caused by the conflict. Specifically,
the process of conflict resolution performed at the conflict resolver has the following steps:

1. Calculate the roll-back service set and respective cost.

2. The bi-objective algorithm determines Pareto solutions for the service plan

3. The optimality algorithm determines the rank of the strategies; the top ranked one is
the best strategy and others are candidates.

4. The execution engine in the system continues to execute the service plan by invoking
Web services in line with the conflict resolution strategy.

6 Xu J. et al.

Start End

……

Taobao

eBay

Amazon

DangDang

Shop_1

Shop_4

Shop_3

Shop_2

Shop_5

Shop_7

Shop_6

……

……

……

Bank_ICBC

Bank_CCB

Bank_ABC

Bank_CMB

Bank_BOC

Alipay

Paypal

……

……

……

……

EMS

Express_STO

Express_YTO

Express_ZJS

……

……

Sales
platform

Shops
Express
logistics

Banks
Payment

intermediation

Figure 2: An illustrative scenario of run-time service property conflict.

As an illustrative scenario we consider an online shopping application in which the
business process comprise the sequence of tasks – accessing sale platform, purchasing
in shops, paying through a bank account and payment partner, and delivery via express
logistic. Multiple services are available for each task, as shown in Figure 4. Descriptions
of these available services are published at an UDDI registry. When a customer wants to
start online shopping for purchasing some products, she submits a service request with
some specification information to the service broker. Upon receiving a request, the broker
searches available services to find all possible service plans and constructs a service model
(the collection of all feasible service plans). The broker also evaluates the utility value of
each service plan and choose the one with the maximal utility value as the preferred plan
for execution. For example, six plans are feasible in this case, as shown in Figure 4, and
their utility values are given in Table 2. Then the plan P2 is selected by the broker as the
result of service composition. The broker provides the service model and selected service
plan to the service execution engine, and the latter will start invoking services by following
the selected plan.

The execution engine collects data from invoked services during service execution.
The collected data will be processed by the conflict detector to search run-time property
conflicts that may degrade service performance. For example, the service customer is an
VIP member of STO who receives discount for online shopping delivery; therefore STO
service is selected in the preferred plan. However, Shop4 offers free EMS delivery when a
customer’s shopping amount is greater than a certain threshold, which is met by the current
customer. Then there exists a conflict between the properties of Shop4 and STO services
in the selected service plan P2. Such a conflict has to be detected run-time because it is
trigger by certain run-time data at a service (in this example the purchase amount at Shop4).
The conflict resolver, when informed by the detector about a found conflict, will start a
resolution process to come up with a roll back strategy and an alternative service plan. For
example in this call the strategy is to roll back to Alipay service and then take P3 as the
alternative plan.

3 An Architectural Framework of Run-Time Resolution for Service Property
Conflicts

A business process may be constructed through Web service composition with two steps.
First a set of abstract services (or called tasks) are selected and composed to form a workflow

Run-Time Resolution of Service Property Conflicts in Web Service Composition7

Table 1 Utility Values and Textual Representation of Plans

Plan (p) Utility Value (U(p)) Services
P1 2.5 Taobao, Shop1, ICBC, Alipay, STO
P2 4.8 Taobao, Shop4, ICBC, Alipay, STO
P3 3.6 Taobao, Shop4, ICBC, Alipay, EMS
P4 3.0 Taobao, Shop4, BOC, Alipay, ZJB
P5 4.3 Taobao, Shop5, BOC, Paypal, STO
P6 3.5 eBay, Shop6, BOC, Paypal, STO

for meeting the user’s requirement. We assume that there are multiple specific services
(referred as services for simplicity in the rest of this paper) available for realizing each task
in the workflow; that is, there is a set of available services that all provide the functionalities
required by the task. Then the second step is to select one service for each task of the
workflow to construct a service plan; thus forming a composite service for realizing the
workflow. There may be multiple service plans for a given workflow based on different
service composition strategies.

We first explain the following concepts then describe the system architecture of service
management with run-time detection and resolution of property conflicts.

• Service plan p is a sequence of atomic services that implement all the tasks of a
workflow to meet user’s business requirement.

• Plan utility up is the utility value of a service plan, which can be computed using a
suitable method during the process of constructing the service plan.

• Service modelM is a collection of all possible service plans of a workflow for achieving
a user’s requirements. It is denoted as a set M = {p1, p2, · · · , pk}. The plan p ∈M
with the maximal utility value will be the preferred plan for executing the composite
service; all others plans are candidate plans.

• Executed planpe is the part of a service plan that has been executed. it can be represented
as a sequence of pairs {〈s1, ws1〉 , 〈s2, ws2〉 , . . . , 〈sn, wsn〉}. Each pair < si, wsi >
denotes the initial state si before the execution of servicewsi. In the sequence, s1 is the
initial state before any service is executed, sn is the initial state before the last service
is executed. Each 〈si, wsi〉 for 1 < i < n is the only successor of

〈
s(i−1), ws(i−1)

〉
and the only predecessor of

〈
s(i+1), ws(i+1)

〉
. Furthermore, wsi for 1 ≤ i ≤ n will

be executed when si satisfies its preconditions.

An architectural framework of run-time service management is shown in Figure 3. The
key components of the system include a the service broker, a service execution engine, and
a conflict manager that consists of a conflict detector and a conflict resolver.

The service broker maintains an UDDI registry where service providers register their
services and publish service descriptions. A service description contains meta data that
describes the capability and QoS of a Web service. Upon receiving a service request from a
user with a requirement specification, the service broker starts a service composition process.
The broker will obtain a service model that includes all possible service plans that meet the
user’s requirement and then evaluate the utility value for each plan. The service plan with
the maximal utility value will be selected for execution. The execution engine orchestrates
execution of the atomic services in the selected service plan. During service execution,

8 Xu J. et al.

Roll back
calculator

Web Service_n1

Web Service_n2

Web Service_n3

UDDI Register

Service Plan_n

Service Execution Engine

Service
Broker

conflict
detection

conflict resolution

Utility
calculator

optimization

Web Service_21

Web Service_22

Web Service_23

Service Plan_2
Web Service_11

Web Service_12

Web Service_23

Service Plan_1

run-time service conflict
management

Figure 3: System architecture of service management with run-time conflict detection and
resolution.

the conflict detector keeps checking property interactions among individual services and
informs the conflict resolver with a conflict description if any conflict is detected. The
conflict resolver is responsible for coming up with an optimal strategy for resolving the
conflict in order to recover the execution from failure caused by the conflict. Specifically,
the process of conflict resolution performed at the conflict resolver has the following steps:

1. Calculate the roll-back service set and respective cost.

2. The bi-objective algorithm determines Pareto solutions for the service plan

3. The optimality algorithm determines the rank of the strategies; the top ranked one is
the best strategy and others are candidates.

4. The execution engine in the system continues to execute the service plan by invoking
Web services in line with the conflict resolution strategy.

As an illustrative scenario we consider an online shopping application in which the
business process comprise the sequence of tasks – accessing sale platform, purchasing
in shops, paying through a bank account and payment partner, and delivery via express
logistic. Multiple services are available for each task, as shown in Figure 4. Descriptions
of these available services are published at an UDDI registry. When a customer wants to
start online shopping for purchasing some products, she submits a service request with
some specification information to the service broker. Upon receiving a request, the broker
searches available services to find all possible service plans and constructs a service model
(the collection of all feasible service plans). The broker also evaluates the utility value of
each service plan and choose the one with the maximal utility value as the preferred plan
for execution. For example, six plans are feasible in this case, as shown in Figure 4, and
their utility values are given in Table 2. Then the plan P2 is selected by the broker as the
result of service composition. The broker provides the service model and selected service
plan to the service execution engine, and the latter will start invoking services by following
the selected plan.

The execution engine collects data from invoked services during service execution.
The collected data will be processed by the conflict detector to search run-time property
conflicts that may degrade service performance. For example, the service customer is an

Run-Time Resolution of Service Property Conflicts in Web Service Composition9

Start End

……

Taobao

eBay

Amazon

DangDang

Shop_1

Shop_4

Shop_3

Shop_2

Shop_5

Shop_7

Shop_6

……

……

……

Bank_ICBC

Bank_CCB

Bank_ABC

Bank_CMB

Bank_BOC

Alipay

Paypal

……

……

……

……

EMS

Express_STO

Express_YTO

Express_ZJS

……

……

Sales
platform

Shops
Express
logistics

Banks
Payment

intermediation

Figure 4: An illustrative scenario of run-time service property conflict.

Table 2 Utility Values and Textual Representation of Plans

Plan (p) Utility Value (U(p)) Services
P1 2.5 Taobao, Shop1, ICBC, Alipay, STO
P2 4.8 Taobao, Shop4, ICBC, Alipay, STO
P3 3.6 Taobao, Shop4, ICBC, Alipay, EMS
P4 3.0 Taobao, Shop4, BOC, Alipay, ZJB
P5 4.3 Taobao, Shop5, BOC, Paypal, STO
P6 3.5 eBay, Shop6, BOC, Paypal, STO

VIP member of STO who receives discount for online shopping delivery; therefore STO
service is selected in the preferred plan. However, Shop4 offers free EMS delivery when a
customer’s shopping amount is greater than a certain threshold, which is met by the current
customer. Then there exists a conflict between the properties of Shop4 and STO services
in the selected service plan P2. Such a conflict has to be detected run-time because it is
trigger by certain run-time data at a service (in this example the purchase amount at Shop4).
The conflict resolver, when informed by the detector about a found conflict, will start a
resolution process to come up with a roll back strategy and an alternative service plan. For
example in this call the strategy is to roll back to Alipay service and then take P3 as the
alternative plan.

4 Run-Time Resolution for Service Property Conflicts

In this section we propose a run-time scheme for resolving service property conflicts in Web
service composition. We assume that service property conflicts may be detected by some
suitable method for example Xu et al. (2010); therefore we focus on determining a conflict
resolution strategy based on the execution model M for meeting the user’s requirements.
The resolution scheme consists of two elements: a roll-back strategy that identifies part of
the current execution plane that needs to undertake compensation operation; and a strategy
for selecting an alternative execution plane that can complete the service for meeting user
requirements.

We transform the service property conflict problem to a bi-objective optimization
problem and then develop a bi-objective optimization model for obtaining a set of Pareto
solutions. Then we rank the Pareto solutions to identify the optimal one, which includes the

10 Xu J. et al.

Table 3 Description of web service QoS attributes

Quality Criteria Description Notation

Reliability(Rb) The trait of the service being
dependable or reliable

qRb(ws)

Response
time(RT)

The expected delay in seconds
between the moment when a
request is sent and the moment
when the result are received.

qRT (ws)

Cost(C) The fee that a service requester
has to pay for invoking the service

qC(ws)

Reputation(R) A measure of its trustworthiness
and defined as the average
ranking given to the service by
end users.

qR(ws)

Safety(S) Safety provided by the service
when use it

qS(ws)

Success
Rate(SR)

The probability that a request is
correctly responded.

qSR(ws)

optimal roll-back strategy and alternative execution plan. The method consists of four basic
steps: 1) identifying the expected utility of the service plan, 2) identifying the roll-back
cost, 3) establishing the bi-objective model, and 4) solving the bi-objective problem.

4.1 User Revenue-Based Utility Model for Web Service Composition

In this subsection we develop a utility model based on user revenue for evaluating the quality
of service plans as a basis of our resolution scheme for run-time service property conflicts.
User revenue is the benefit that a user gains from a service in a specific deployment and
running condition. User revenue may be influenced by multiple factors including service
function, QoS, and usage mode. For a service with a certain function and specific usage
mode, QoS is a critical impact factor of the user revenue. Therefore, we will first develop
an QoS model from a user perspective, which is called U-QoS in this paper.

QoS is a broad concept that encompasses a number of non-functional properties such
as availability, reliability, service cost, and reputation Justin et al. (2002). The U-QoS
model can be presented as a vector U −QoS = 〈qRb, qRt, qC , qR, qS , qSR〉 with multiple
parameters reflecting different aspects of service quality from a user perspective. The
detailed descriptions of these parameters are given in Table 3. Among the three typical types
of composite service plans with sequential, parallel, and conditional structures, we focus
on sequential service plans in this paper. The formulas for calculating QoS attributes are
shown in Table 4.

In order to model U-QoS for a service model that contains a list of service plans, we
defined a matrix Q = (qi,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m), where n is the number of composite
service plans,m is the number of QoS attributes with the encoding 1=reliability, 2=response
time, 3=cost, 4=reputation, 5=safety, 6=success rate, and qi,j denotes the value of attribute
j in plan i, (1 ≤ i ≤ n, 1 ≤ j ≤ m). Therefore, in the matrixQ each row qj corresponds to
a service plan p and each column corresponds to an QoS attribute.

Run-Time Resolution of Service Property Conflicts in Web Service Composition11

Table 4 Computation of Web services QoS Attributes in sequential execution

Quality Criteria Aggregation Function

Reliability(Rb)
∏n

i=1 qRb(wsi)
Response time(RT)

∑n
i=1 qRT (ws)

Cost(C)
∑n

i=1 qC(ws)
Reputation(R)

∑n
i=1 qR(ws)/n

Safety(S) min{qS(ws1), qS(ws2), · · · , qS(wsn)}
Success Rate(SR) min{qSR(ws1), qSR(ws2), · · · , qSR(wsn)}

if dj = 1,

q′i,j =

{
qi,j/

1
n

∑n
i=1 qi,j , if 1

n

∑n
i=1 qi,j 6= 0 and qi,j/ 1

n

∑n
i=1 qi,j < lj ;

lj , else;
(1)

if dj = 0,

q′i,j =

{
1
n

∑n
i=1 qi,j/qi,j , if qi,j 6= 0 and 1

n

∑n
i=1 qi,j/qi,j < lj ;

lj , else;
(2)

Some QoS attributes, such as service delay and cost, represent better quality with
lower values; therefore are referred to as negative attributes in the paper. Other attributes
are positive in the senses that higher values indicate better quality. In order to enable
a uniform process for both type of attributes, we define a direction vector D =
(d1, d2, · · · , di, · · · , dm), where di = 1 means the corresponding attribute is positive
and di = 0 means the attribute is negative. The limitation vector is defined as L =
(l1, l2, · · · , li, · · · , lm) , where each li captures the maximum value of the attribute. For
positive attributes, values are scaled according to (1). The values of negative attributes are
scaled according to (2). In equations (1) and (2), 1

n

∑n
i=1 qi,j is the average of a quality

attribute in matrix Q. By applying the equations to each element of Q, we obtain matrix
Q′ = (q′i,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m).

In order to reflect the difference in users’ requirements regarding their preferences to QoS
attributes, we define a weight vector w = (w1, w2, · · · , wi, · · · , wm) where

∑m
1 wi = 1,

0 ≤ wi ≤ 1, i = 1, 2, · · · ,m. Applying the weight vector to the scaled quality matrix Q′

we can obtain a weighted QoS matrix as shown in (3).

QoS(wsi) =

m∑
j=1

wj ∗ q′i,j . (3)

In addition to service QoS, the successful switch rate of a service plan is another
important factor that impacts the user revenue from the service. Successful switch rate
is the probability that the service can be completed for meeting the user requirement by
successfully switching to an alternative service plan when an unexpected matter occurs
during execution of the current plan. It is denoted as RS(ws) = Ts/Tsum, where Ts is the

12 Xu J. et al.

sum of successful execution times and unsuccessful execution but successful change times,
meanwhile, Tsum is the total execution times of the plan.

U-QoS model and service successful switch rate are two dimensions of user revenue and
can be normalized to form the user revenue-based utility model for services. From (3) we
obtain QoS matrix QoS = (QoS1, QoS2, · · · , QoSm)T . Then we can get the normalized
QoS matrix QoS′ = (QoS′1, QoS

′
2, · · · , QoS′m)T by using equation (4)

QoS′i =

{
QoSi−QoSmin

QoSmax−QoSi
, QoSmax −QoSi 6= 0;

1, QoSmax −QoSi = 0;
(4)

Similarly, successful switch rate RS = (RS1, RS2, · · · , RSm)T is normalised to get
RS′ = (RS′1, RS

′
2, · · · , RS′m)T . Then the utility value of a composite plan can be obtained

by equation (5). The procedure for calculating utility values of a set of service plans in a
service model is given in Algorithm 1.

U = QoS′ +RS′ (5)

4.2 Web Service Roll-back Mechanism

The Web services transaction mechanisms offer a significant mean to ensure the reliability
of the service composition. They offer an efficient way to prevent resources being locked
for a long time and improve the degree of concurrency between transactions Laura et al.
(2003). The introduction of compensation transaction makes it possible to undo committed
transactions. With an event-driven mechanism, compensation operations will only be
performed when operations that affect the data or status of application system are concerned,
including: (1) database modification operations (such as insert, update, delete, etc.), (2)
coordination messages (such as begin, commit and abort, etc.); (3) user-defined critical
points, etc. Corresponding compensation events are produced dynamically during execution
of services.

In this paper, we employ a third-party Coordination Processing System (CPS) based
on Web services transactions to assist in solving service conflict dynamically. During the
execution of a composite service plan, each service submits a Committed message to the CPS
within time frame t after the successful execution. CPS packages all of the compensation
operations produced by the service into a compensating transaction and stores them in a
database. If a service submits a Failed message to CPS or failed to submit a Committed
message within time frame t, the service would be regarded as having failed, the service
will self-roll-back the executed operation. Throughout the execution cycle of the composite
service, the system can utilize the Cancel message to cancel a service. A compensation
transaction of a service can be invoked to return the service to a previous state.

However, rolling back a previously completed transaction is potentially expensive
Benchaphon et al. (2004). In order to get the optimal roll-back compensate strategy,
calculating roll-back compensation cost is necessary. The transaction QoS attributes are
defined as follows: execution fee of transaction ti is denoted as qpayti; execution duration
of transaction is denoted as qtimeti; and negative effect of transaction ti is denoted as qneti.
These attributes are normalised according to equation (6), where qmax and qmin respectively
represent the maximum and minimum values of all the dimensions, i.e. execution fee,
execution duration and negative effect. Afterwards, the character of normalised criteria is

Run-Time Resolution of Service Property Conflicts in Web Service Composition13

Algorithm 1 Calculation of utility value
Input: SM : Service Model,Q: quality criteria value SR: Successful Change Rate, W :

weight of criteria
Output: u: Utility value of the service plan
1: function Scale(criteriaV ector)
2: if qi is positive then
3: for all qi ∈ criteriaV ector do
4: if 1/n

∑n
i=1 qi,j 6= 0 then

5: q′i ←
qi,j

1
n

∑n
i=1 qi,j

6: else
7: q′i ← lj
8: end if
9: end for

10: end if
11: if qi is negative then
12: for all qi ∈ criteriaV ector do
13: if qi,j 6= 0 and

1
n

∑n
i=1 qi,j
qi,j

≤ lj then

14: q′i ←
1
n

∑n
i=1 qi,j
qi,j

15: else
16: q′i ← lj
17: end if
18: end for
19: end if
20: end function
21: q ←

∑n
1 wi ∗ qi

22: scale(Q)
23: scale(RS)
24: U ← Q+RS
25: return U

rx(ti) =
qx(ti)− qmin

x

qmax
x − qmin

x

where x ∈ {pay, time, negtiveeffect} (6)

14 Xu J. et al.

Costexec(ti) = w(p) ∗ rpay(ti) + w(t) ∗ rtime(ti) + w(n) ∗ rne(ti). (7)

rx(ti) ∈ [0, 1]. A lower value of rx(ti) indicates a higher priority of transaction ti. The
calculation of roll-back compensation cost is based on multiple criteria decision making
and the equation is

4.3 A Bi-Objective Model for Service Property Conflicts

Applying the bi-objective optimization Olivier et al. (2004) to Web services, we propose
two objective functions v1i = f1(c1, c2, p), v2i = f2(c1, c2, p). v1i is the profit gained from
the new execution plan, v2i is the compensation profit of roll-back, which is the opposite
of the compensation cost. The strategy space of a conflicting service is denoted as C =
{hold, drop}. For a service wsi the strategy is denoted as c1 ∈ C, where hold means
service wsi will continue to be used, and drop means service wsi will have to be rolled
back and compensated. Similarly, for wsi+1 we have c2 ∈ C2, with again hold meaning
that the service wsi+1 is retained, and drop means service wsi+1 is compensated. Further
recall thatM = {p1, p2, . . . , pi, . . . , pn} is the set of all plans. pi ∈M denotes a composite
service plan in the service model M , and the total number of execution plans is n. The
constraint condition of the feature service conflict bi-objective model is v1I ≥ λplan, v2I ≥
λcompensate. It means that the profit of the new execution plan should be equal or greater than
threshold λplan, and the compensation profit should be equal or greater than λcompensate.
The values of λplan and λcompensate are specified by the user.

In order to get the optimal resolution strategy for conflicts, we aim to maximise the
value of the two objective functions. Therefore, the bi-objective model established in the
paper is{

max[v1I , v
2
I]

v1I ≥ λplan, v2I ≥ λcompensate

A fundamental characteristic of a bi-objective optimization problem is the conflict
between the two objectives. The result of the bi-objective problem is not a unique solution,
but a set of Pareto solutions under constraints. In this paper, the solution of the bi-objective
model is a trade-off between user expected utility of new plan and profit of roll-back.

v1i = f1(c1, c2, p) denotes the revenue gained when service wsi adopts strategy c1,
service wsi+1 adopts strategy c2, and p is the new plan to be executed. Suppose a conflict
between wsi and wsi+1 is detected during execution of the service plan pexecuting , a
resolving strategy essentially includes the choice operation of wsi and wsi+1 and an
executable service plan pbackup.

When the choice operation ofwsi andwsi+1 are c1 and c2 respectively, if the state ofwsi
andwsi+1 in another service plan is in accordance with c1 and c2 , then we define the service
plan as backup service plan, denoted bypbackup. The set of all backup service plans is defined
as backup service plan set, denoted by Pbackup = {pbackup1

, pbackup2
, · · · , pbackupn

}. One
special case is when the choice strategy of wsi and wsi+1 is {hold,hold}, where the backup
service plan set will be empty: Pbackup = ∅.

Therefore, the formula to calculate revenue of the new service plan is:

v1I (c1, c2, p) =

{
U, if p ∈ Pbackup

L, others
(8)

Run-Time Resolution of Service Property Conflicts in Web Service Composition15

Equation (8) means that when service plan p is an executable plan; that is, the state ofwsi
andwsi+1 is in accordance with the choice of c1 and c2, the revenue is equal to user expected
utility. Otherwise, the revenue of the new service plan is L, where L is much less than the
minimum expected utility value of all the plans; i.e., L� min{u(p1), u(p2), · · · , u(pn)}.

Similarly, v2i = f1(c1, c2, p) represents the roll-back revenue gained when service wsi
adopts strategy c1, service wsi+1 adopts strategy c2, and p is the new plan to be executed.
When the strategy (c1, c2, p) is adopted, some executed services need to be rolled back. The
roll-back set RBset is obtained as follows. If p ∈ Pbackup, then RBset contains all the
heterogeneous service nodes between the service from the beginning to the right executing
service. Otherwise, if p /∈ Pbackup, thenRset = ∅. The roll-back revenue V 2

I is the negative
value of the sum of the roll-back cost of all the services in RBset, as shown in equation
(9), where rb(wsi) is the roll-back cost of wsi that can be calculated by using the method
provided in subsection 4.2.

V 2
I (c1, C2, p) = −

∑
Rset

rb(wsi) (9)

Following the efficient solution defined in Li et al. (1998), we designed Algorithm 2 to
obtain Pareto solutions to the bi-objective optimization problem.

Algorithm 2 ParetoSet Solution
Input: SM : Service Model,U :utility of every plan, Cost:roll-back cost
Output: ParetoSet
1: if holdDilemma is {hold, hold} then
2: Pbackup ← ∅
3: else
4: Pbackup ← {pi}
5: end if
6: if pi ∈ Pbackup then
7: v1I ← u
8: else
9: v1I ← L

10: end if
11: v2I ← −

∑
s∈RbSet Cost(si)

12: if v1I ≥ λplan and v2I ≥ λcompensate then
13: if Strategyi is not controlled by any other strategies then
14: ParetoSet← Strategyi
15: end if
16: end if
17: return ParetoSet

The efficient solution set of the bi-objective model reflects the relationship between the
utility of new service plan and the revenue of roll-back. Each point in setR∗pa represents an
independent solution that is not controlled by any other solution. That is, all the solutions
in R∗pa meet the demands of resolving the conflict. Algorithm 3 depicts how to select the
optimal solution from R∗pa.

In this paper, we assume that a larger value for the two objectives is better. That is, we
hope the distance between the solution and the positive ideal point is as small as possible,

16 Xu J. et al.

Algorithm 3 Optimal Solution
Input: ParetoSet
Output: OptimalStrategy
1: v1+I ← max{v1Ii}
2: v2+I ← max{v2Ii}
3: v1−I ← min{v1Ii}
4: v2−I ← min{v2Ii}
5: v+ ← (v1+I , v2+I)
6: for all si ∈ ParetoSet do
7: Ri ←

√
(v1Ii − v

1+
I)2 + (v2Ii − v

2+
I)2

8: ri ←
√

(v1Ii − v
1−
I)2 + (v2Ii − v

2−
I)2

9: ξi ← Ri/Ri + ri
10: end for
11: rank(ξi)
12: return ξ

and the distance to negative ideal point simultaneously as large as possible. The positive
ideal point means the two objective values are the maximal, the negative ideal point means
the two objective values are the minimal. We mark positive ideal points as v+ = (v1+I , v2+I)
and negative ideal points as v− = (v1−I , v2−I) ,where v1+I = max{v1Ii}, v

2+
I = max{v2Ii},

v1−I = min{v1Ii}, v
2−
I = min{v2Ii}. The distance to the positive ideal point is denoted by

Ri =
√
(v1Ii − v

1+
I)2 + (v2Ii − v

2+
I)2 and distance to the negative ideal point is denoted

by ri =
√
(v1Ii − v

1−
I)2 + (v2Ii − v

2−
I)2; Further, the relative distance to the ideal point is

denoted by ξi = Ri/Ri + ri.
Finally, we rank the resolutions. Larger ξi represent a larger distance to the ideal point.

And the highest ξi is the optimal solution. Other solutions can be used as alternatives, which
can be selected when further accidents occur in the current solution. If there are several
solutions with maximal distance, one of them is selected randomly. If no solution satisfies
the user constraints for a given task, an execution exception will be raised and the system
will ask the user to relax their constraints.

5 Performance Evaluation

In order to evaluate performance of the proposed resolution approach for run-time service
property conflicts, we implemented the proposed scheme in an on-line shopping application
system and conducted experiments using the prototype system. The business process for
the online shopping comprises the sequence of tasks – accessing sale platform, purchasing
in shops, paying through a bank account and payment partner, and delivery via express
logistic. Multiple services are available for each task of the workflow. The service model
that contains all possible service plans for realizing the workflow is shown in Figure 5.

In the service model, there are totally six service plans (p1, p2, p3, p4, p5, p6). According
to the user’s preference, which is specified by the weights for QoS attributes provided the
user, the expected utility of every service plan is calculated by using formulas (1) to (5), and
shown in Figure 5 (the values Pi(x) in the upper left). We can see that p4 has the maximum

Run-Time Resolution of Service Property Conflicts in Web Service Composition17

start

executed

P1(2.5)
P2(3.0)
P3(2.8)
P4(4.2)
P5(3.7)
P6(2.1)
P1(4.0)

Taobao Shop_3 ICBC Paypal
Shen
Tong end

Shop_4

ABC

Shop_
1 IBC Alipay EMSEbay

Fast
Paymen

t

Shop_2

CM
Zhong
Tong

unexecuted

Figure 5: Composition services model of E-commerce

Table 5 Solution of trade-off strategy and backup plans

Holding
Dilemma

Executable Plan Set

{hold,hold} Pbackup = ∅
{hold,drop} Pbackup = p5
{drop,hold} Pbackup = p3
{drop,drop} Pbackup = {p1, p2, p6}

Table 6 new plan Utility and rollback cost of different strategies

strategy

rollbackcost newplan
P1 P2 P3 P4 p5 p6

hold,hold L/0 L/0 L/0 L/0 L/0 L/0
hold,drop L/-0.8 L/-0.8 L/-0.8 L/-0.8 2.1/-

0.8
L/-0.8

drop,hold L/-0.8 L/-0.8 L/-0.8 L/-0.8 2.1/-
0.8

L/-0.8

drop,drop 2.5/-
4.0

3.0/-
2.3

L/ -2.3 L/-2.3 L/-2.3 4.0/-
2.3

expected utility value (4.2) thus is the best plan for meeting user requirements. Therefore, p4
is chosen for execution. However, during execution, a property conflict between the service
Shop_3 and service ICBC (as shown by the boxed area in Figure 5) is detected and needs
to be resolved.

Applying the method we developed in the previous section, holding strategies of services
Shop_3 and ICBC and backup service plans can be computed. The results are shown in Table
5. We assume that the cost of rolling back service Taobao is 1.7 , that of service Shop_3 is
1.5 and that of service ICBC is 0.8. The thresholds are λcompensate = −3.5, λplan = 0.5.

18 Xu J. et al.

Table 6 shows the related data including the expected utility value and roll-back cost of
different strategies.

- 1 0 1 2 3 4 5
- 5

- 4

- 3

- 2

- 1

0

1

- 1 0 1 2 3 4 5
- 5

- 4

- 3

- 2

- 1

0

1

IH

G
F

E

D

C

B

A

U s e r e x p e c t e d u t i l i t y o f n e w s e r v i c e p l a n

Pro
fit

of
rol

lba
ck

(a) Range set of Bi-Objective Optimal

- 1 0 1 2 3 4 5
- 5

- 4

- 3

- 2

- 1

0

1

- 1 0 1 2 3 4 5
- 5

- 4

- 3

- 2

- 1

0

1

(d r o p , d r o p , p 2)

(d r o p , h o l d , p 3)
(h o l d , d r o p , p 5)

U s e r e x p e c t e d u t i l i t y o f n e w s e r v i c e p l a n

Pro
fit

of
rol

lba
ck

(b) Efficient points set of Bi-Objective Optimal

Figure 6: Range set and efficient points set of Bi-Objective Optimal.

Figure 6a shows the image set of bi-objective optimization. In the paper, the two
objectives are the maximum value. Li et al. (1998) concludes that efficient point lies on the
boundary of image set F (R) and when the boundary AB of the image set in the second
quadrant is monotonically decreasing then AB is efficient point set. As shown in Figure
6b, the image set boundary in the second quadrant is R∗pa = {A,F,G, I}. But the user
expected utility of point A is 0, less than threshold λ = 0.5. Therefore, the effective points
set is R∗pa = {A,F,G}. Here L = 0.

Figure 6b shows that R∗pa ={(hold,drop,p5), (drop,hold,p3), (drop,drop,p2)}. In this
case,

Run-Time Resolution of Service Property Conflicts in Web Service Composition19

v1+I = max(2.1, 2.8, 3.0) = 3.0,
v2+I = max(−0.8,−1.5,−2.3) = −0.8,
v1−I = min(2.1, 2.8, 3.0) = −2.1,
v2−I = min(−0.8,−1.5,−2.3) = −2.3.
The distances between different solutions and the ideal point are ξ1 = 0.375, ξ2 =
0.406, ξ3 = 0.625 respectively. So the optimal solution is (drop, drop, p2). Therefore we
obtain the optimal strategy for resolving the conflict is to roll-back service Shop_3 and
ICBC, and execute service plan p2, which can successfully complete the service for
meeting the initial user requirements.

4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2
4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

2 0 0 0

2 2 0 0

Co
mp

uti
ng

tim
e(m

s)

S i z e o f s e r v i c e m o d e l

Figure 7: Average run time of the algorithm

Since the proposed scheme is for resolving run-time conflicts of service properties,
the response time of the resolution algorithm is an important aspect of performance
evaluation for the scheme. We conducted experiments with different sizes of service models
with different number of feasible service plans to measure the response time for conflict
resolution. We repeated the experiments for each service model size for 10 times and
calculated the average resolution response time as the measurement result. The obtained
results of average response time for different service model sizes are plotted in Figure 7.

we can see from Figure 7 that the response time of run-time conflict resolution increases
with the service model size. This is because a larger set of feasible service plans introduces a
large solution space in which the bi-objective optimization algorithm must search and rank
Pareto solutions in order to obtain the optimal roll-back strategy and alternative service plan.
This figure also indicates that for the largest size of service model tested in our experiments,
which has 21 possible service plans, the resolution response time is about 2 seconds. For
typically e-commerce service systems used in practice, the total number of feasible service
plans will be within this range. A response time of less than 2 seconds is prompt enough
for run-time resolution of service property conflicts.

We also noticed from Figure 7 that the response time increases with service model
size linearly. This implies that the proposed resolution scheme could have a long response
time for complex service provisioning systems with a large number of feasible service
plans. Therefore, we recommend application of the proposed scheme to small/medium size

20 Xu J. et al.

service composition systems, and plan to further improve the efficiency and scalability of
the resolution algorithm for large systems in our future work.

6 Related Work

Since the feature interaction problem in the domain of Web services was first proposed in the
International feature interaction workshop in 2003, the problem has attracted a number of
studies (Gang et al., 2008; Amyot et al., 2003; Michael et al., 2004, 2007; Luo et al., 2010).
Studies in feature interaction focused on the requirements analysis phase. But in the dynamic
Web services composition, conflicts often occur during service execution; thus cannot be
completely avoided in the design phase. Therefore, in order to improve the efficiency of Web
services composition, on-line solution of service property conflicts is needed. Dave et al.
(1998) presented an approach to automated detection and resolution of feature interactions
during runtime using techniques borrowed from transactions processing theory based on a
feature interaction manager, and proposed a simple on-line solution based on transaction
roll-back mechanism. Zhang et al. (2007b) presented an immune-inspired on-line detection
system for WSFI problem. Xu et al. (2011, 2010) adopt the method of situation calculus
to achieve a dynamic detection of feature interaction, while Chen et al. (2010) proposed
a multi-solutions service conflict resolver based on a Markov decision model. They also
presented a case study to analyse, but it does not make use of actual combination services
to conduct experimental runtime validation.

In this paper, we established a user-centred bi-objective optimization model to obtain
a strategy to dynamically resolve property conflicts in service compositions. Our method
considers user’s revenue as prime aim by obtaining the optimal strategy for process
continuation. By considering multiple QoS attributes in the model, our method achieves
the advantage of being able to guarantee optimal QoS performance while obtaining an
alternative service plan for resolving a service property conflict.

7 Conclusion

In the field of Web services, due to the large number of available services developed and
deployed independently by various providers, property conflicts between services become
a serious obstacle for service composition to meet users’ QoS requirements. Some service
property conflicts occur only during execution of composite services; thus must be resolved
online at run-time. In this paper, we tackled the problem of run-time resolution of service
property conflicts using a bi-objective optimization method. We first developed a user
revenue-based utility model for measuring QoS performance and successful rate of possible
service plans; and provided a method for calculating compensation cost for rolling back
executed services. Then we proposed an optimization model for simultaneously maximizing
service utility and minimizing roll-back cost when resolving service property conflicts. We
also design algorithms for solving the bi-objective optimization problem to get a Pareto
efficient solution set and sorting the set to obtain the optimal solution. The obtained solution
provides the optimal roll back strategy and alternative service plan that can complete
the service execution for meeting the user’s requirements. We implemented the proposed
resolution scheme in a prototype system of online shopping applications and conducted
experiments to evaluate performance of the scheme. Obtained results verified effectiveness

Run-Time Resolution of Service Property Conflicts in Web Service Composition21

of the scheme and indicated that its response time is reasonable for run-time resolution of
property conflicts in service compositions for typical small to medium size e-commerce
applications. As future work we plan to further enhance efficiency of the resolution scheme
for large service composition systems and integrate both detection and resolution of service
property conflicts into one unified run-time service management system.

Acknowledgement

The paper is fully supported by a grant from the Fundamental Research Funds for the Central
Universities (Project No. 13CX06009A and No. 14CX06007A).

References

D Amyot and L Logrippo. Feature interactions in web services. Feature Interactions in
Telecommunications and Software Systems VII, page 149, 2003.

Bocchi, Cosimo Laneve, and Gianluigi Zavattaro. A calculus for long-running transactions. In Formal
Methods for Open Object-Based Distributed Systems, pages 124–138. Springer, 2003.

de Weck and Il Yong Kim. Adaptive weighted sum method for bi-objective optimization. In
Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics &
Materials Conference, 2004.

Esfandiari and Vladimir Tosic. Requirements for web service composition management. In
Proceedings of the 11th HPOVUA Workshop, 2004.

Gang Huang, Xuanzhe Liu, and Hong Mei. Online approach to feature interaction problems in
middleware based system. Science in China Series F: Information Sciences, 51(3):225–239,
2008.

Chen Kun. Research on automated web service composition based on AI planning. Master’s thesis,
China University of Petroleum, 2010.

Benchaphon Limthanmaphon and Yanchun Zhang. Web service composition transaction management.
In Proceedings of the 15th Australasian database conference-Volume 27, pages 171–179.
Australian Computer Society, Inc., 2004.

Dave Marples and Evan H Magill. The use of rollback to prevent incorrect operation of features in
intelligent network based systems. In FIW, pages 115–134, 1998.

Justin O’Sullivan, David Edmond, and Arthur Ter Hofstede. What’s in a service? Distributed and
Parallel Databases, 12(2-3):117–133, 2002.

Michael Weiss and Babak Esfandiari. On feature interactions among web services. In Web Services,
2004. Proceedings. IEEE International Conference on, pages 88–95. IEEE, 2004.

Michael Weiss, Babak Esfandiari, and Yun Luo. Towards a classification of web service feature
interactions. Computer Networks, 51(2):359–381, 2007.

Jiuyun Xu, Kun Chen, Youxiang Duan, and Stephan Reiff-Marganiec. Modeling business process
of web services with an extended strips operations to detection feature interaction problems
runtime. In Web Services (ICWS), 2011 IEEE International Conference on, pages 516–523.
IEEE, 2011.

Jiuyun Xu, Wengong Yu, Kun Chen, and Stephan Reiff-Marganiec. Web services feature interaction
detection based on situation calculus. In Services (SERVICES-1), 2010 6th World Congress on,
pages 213–220. IEEE, 2010.

Luo Xiangyu, Tan Zheng, and Dong Rongsheng. Atutomated detaction method for web service feature
interaction. Computer Science, 37(012):106–109, 2010.

22 Xu J. et al.

Li Yisheng. The effective set points of bi-objective optimization and the arch dam bi-objective
optimization. water power, 11:10–13, 1998.

Jianyin Zhang, Sen Su, and Fangchun Yang. Detecting race conditions in web services. In
Telecommunications, 2006. AICT-ICIW’06. International Conference on Internet and Web
Applications and Services/Advanced International Conference on, pages 184–184. IEEE, 2006.

Jian-yin Zhang, Fang-chun Yang, and Sen Su. Detecting feature interactions in web services with
model checking techniques. The Journal of China Universities of Posts and Telecommunications,
14(3):108–112, 2007.

Jianyin Zhang, Fangchun Yang, Kai Shuang, and Sen Su. Immune-inspired online method for service
interactions detection. In SOFSEM 2007: Theory and Practice of Computer Science, pages
808–818. Springer, 2007.

