
Fast Data Processing for Large-Scale SOA
and Event-Based Systems

Marcel Tilly
European Microsoft Innovation Center, Germany

Stephan Reiff-Marganiec
University of Leicester, UK

ABSTRACT
The deluge of intelligent objects that are providing continuous access to data
and services on one hand and the demand of developers and consumers to
handle these data on the other hand require us to think about new
communication paradigms and middleware. In hyper-scale systems, such as
in the Internet of Things, large scale sensor networks or even mobile
networks, one emerging requirement is to process, procure, and provide
information with almost zero latency. This work is introducing new concepts
for a middleware to enable fast communication by limiting information flow
with filtering concepts using policy obligations and combining data
processing techniques adopted from complex event processing.

Keywords: Data Processing, SOA, Event-Based, Big Data, Fast Data, Internet
of Things

INTRODUCTION
Today, there are various mega trends; people are talking about big data, cloud
computing, service-oriented architecture (SOA), or the Internet of Things
(IoT); just to name a few. All these trends have at least one common aspect:
Data! There is a huge amount of data produced by a vast amount of
heterogeneous sources, e.g. sensors, phones, cars, etc.. This data needs to be
filtered, processed, and procured. Besides simply collecting all this data, there
is rapidly growing demand to create timely insights into data. These insights
can provide competitive avantages to business. Extracting relevant
information from data or correlating data with other data sets as fast as
possible is becoming a key factor for success. Latency, the time data needs to
get processed, is getting more and more critical.
Some questions, which need to be answered, are:

• How can this data get processed as fast as possible?
• How can relevant data be separated from irrelevant data?
• How can data get filtered efficiently and scalable?
• How can data from distributed, heterogeneous data sources and

services be integrated into a system?
• How to combine different technologies, different interaction patterns to

make data flow efficient?

This paper is providing answers to these questions. To achieve almost zero
latency data processing, data must be available at the place where the user
needs it, such as a data provider. So, instead of pulling data at request time
from data sources, data should be pushed to such a data provider. This is only
the first step towards a faster processing of data in terms of providing results
with low-latency. If the data sources are continuously pushing data to a data
provider (e.g. the selector) there is a vast amount of overhead by
unnecessarily transferring data - a waste of bandwidth.
For mobile devices the cost of bandwidth needs to be taken into account. Let's
assume the data provider, the one who interacts with the user, knows when
the user needs updated data and the intelligent data sources know about their
situation. Thus, the data provider informs the sources under which changing
situation (when) the sources should inform the data provider about the change
of their properties (what). What and when can be expressed with event
policies, which are injected into the data sources, so that we can really make
use of their intelligence.
Thus, each data source will be responsible to make the projection from its
own fine-grained, raw data to some more high-level, complex data the data
provider - and at the end the user - is interested in. The obligations can be as
smart as possible by using various sets of information, such as the
prioritization of the data. Consider for example an alarm situation with
cascading alarms. Such a system has to ensure that the most severe alarms are
delivered and the bandwidth is not occupied with unimportant information.
Thus, event policies executed on smart data sources - intelligent objects -
should enable low capacity filtering by being context-aware.
There are already approaches available, which cover parts of the problem.
Research has provided approaches to handle and process data with low
latency, such as complex event processing (CEP). There are also approaches
to distribute processing, such as the actor model. Most of the approaches are
tackling only one specific aspect of big data, cloud computing or SOA. No
approach is really trying to find a holistic answer to solve new mega trends,
such as the Internet of Things.

The approach described in this paper is trying to combine promising
approaches to enable fast processing of data in hyper-scale and distributed
setups. Hyper-scale means that there are millions of data sources as we can
find in IoT setups. Data sources here can be considered as services offering
data. This data can change over time, such as the temperature offered by a
temperature sensor. There are other services offering weather information or
traffic information for example.
Our solution of combining the classical request-response paradigm with
event-based approaches and technologies to process data and enabling
insights with low-latency is described in this paper. Some parts of this work
have been previously published ((Tilly & Reiff-Marganiec,
2011),(Marganiec, Tilly, & Janicke, 2014)), however in this paper our ideas,
our different contributions and a new detailed view on the architecture are
being brought together for the first time.
In combining existing paradigms, such as pub-sub approaches for processing
service offerings and mediations with classical request-response SOA
approaches for consumer requests facilitated by in memory data processing
technologies, such as CEP or, more general, stream event processing, can help
to overcome the afore mentioned challenges.
In addition it is worth to rethink the big data strategy to process all data in the
cloud: Sometimes it makes more sense to process or aggregate data at the
place where it is born.
By extending CEP queries and rules to be processed already on the service or
device side, close to the sources, it is possible to reduce the amount of data,
which needs to be send around. Queries can be used to correlate and
aggregate data (events) at its origin as event policies. This approach can be
used to overcome the scaling problem.
Mediation between consumer requests and service offerings is the most
challenging one because it requires pattern mining and detection. Pattern
mining and detection can be achieved by learning from interaction between
users and services. As soon the pattern is learned it can be expressed in terms
of a query on the stream of incoming data or can be pushed to the service
side.
Although there is some relevant work around convergence of SOA and event-
based systems, we think that our work goes behind this. Providing a concept
for convergence of SOA and event-based is almost a side-effect. Our
approach is going behind it since it targets the processing of data in such
setups.
Our approach is also not about purely handling big data. It provides an
approach to tackle setups which we typically find in IoT scenarios: huge
amount of sources providing data which needs to be processed and procured.
The fact that we have to deal with a huge amount of data is not the only one.
We have to tackle aspects of where and how to process the data to achieve an
optimized flow of data and create timely insights.

The presented arguments can be summarized into the following challenges:

• Speed: Speed means fast processing of data to provide timely insights.

There is a demand on getting results as fast as possible. New
paradigms are needed to improve the speed on processing service
requests or in processing data provided by data sources, such as
sensors. Basically, it makes sense to rethink classical request-response
SOA approaches and to ensure that service offerings process data in
almost real-time. This is a key challenge for moving forward towards
to the next generation of the SOA.

• Mediation: Here mediation is used to describe the combination of
request-response interaction pattern and event-based interaction. These
different pattern needs to be combined and there must be concepts
enabling their seamless integration.

• Scale: By combining interaction patterns the amount of transferred
data will be increasing. Even more so if we consider sensor, cars or
other data sources as service, which need to be integrated and their data
be processed. This data mainly coming from event-based sources has
to be optimized. Ideally a master service can control when data is
forwarded and which data is forwarded through terms of aggregation
or batching. A higher level of control of transferred data is required to
optimize data traffic. This enables scaling up to millions of services
sending data around.

The paper will provide a motivating example in section 2. Section 3 will give
some insights into used technologies as background for section 4 which will
introduce the core ideas of this work. The architecture and building blocks are
described in section 5. Section 6 will show some experimental results. We
conclude the paper with a look at related work and next steps.

MOTIVATING EXAMPLE
In real life there is plethora of example for hyper-scale setups, such as the
connected car green wave, friend-finder or smart cities. We will illustrate
some of these, before showing a working example that will be used
throughout the paper.
In the connected car green wave scenario, car data and traffic signal data
needs to be collected. The system will recommend to the driver the correct
speed so that she can, depending on current traffic, catch the next signal light
at green and does not need to stop. The current light signals state, the position
and speed of the driver and the speed of the drivers nearby are relevant to find
the correct speed. Clearly, some processing can happen in the cloud and
maybe some processing in each drivers car. The calculation of the speed is the
timely insight and has to happen ad-hoc and with low-latency otherwise the
driver would not need it.

The friend-finder scenario is based on the user’s social graph, their network of
friends. Then the geo-positions in relation to geo-positions of friends can be
considered. If one friend is near-by the system can inform the user. The
processing can happen in the cloud, but also locally in the phone of the user to
preserve privacy. In the privacy case the system would get only a region
where the user is and would correlate this with the friends’ regions.
Considering this would run for all Facebook users we can easily talk about a
hyper-scale system.
SmartCities is a mega trend and a meta scenario. There it is possible to find
scenarios about traffic management or crime prediction. Each scenario for it
requires collecting data and processing them. Some scenarios can be
optimized in processing when data is filtered already at the data source. Some
scenarios can help preserving privacy by not giving raw data about the user
but by forwarding aggregated data and invite to the processing in a way that
the hard raw data processing happens only on the device or service the user
owns.
As a motivating example for the paper, we will now consider a fleet
management system, however the approach is not limited to this scenario and
can be applied in a wide variety of applications where services are selected
from a large set of potential providers, such as sensor network, logistics,
industry, military or consumer space – namely the kind of situations discussed
above. In fleet management, like taxi companies with a large amount of taxis
it is almost impossible to use the classical request-response approach to find
the nearest taxi for a given user location. Therefore, the fleet management
must be aware of the taxis location at any given time. The management
system only requires the latest data to process a user request to locate the
nearest taxi, thus there is no necessity to persist the data for later use. In the
scenario (see Figure 1) there is a customer with a given context, his geo
location, requesting a taxi. The fleet management system has to identify the
most relevant taxi in terms of (1) availability and (2) proximity to the
customer’s location. There are two taxis, A and C, which are close to the
customer’s location, but they are not available. Taxi B is the closest which is
available. Of course the fleet management could take traffic information into
account, and then maybe taxi D becomes the best solution because it is
reasonably close, available and might arrive earlier because of beneficial
traffic conditions.

This scenario shows (1) how different kind of properties of taxis (here:
availability and geo location), (2) properties of different services (here: taxi
and traffic) are used to select services, and (3) that taxis have to pro-actively
inform the fleet manager about their location to enable fast and reliable
responses to customer requests. Furthermore, the geo location and the traffic
information are data, which changes rapidly, and it does not make sense to
store all of this data because it is only short-lived and hence only the current
values are relevant when a service has to be selected. To achieve almost zero
latency data processing, data must be available at the place where the user
needs it. So, instead of pulling data at request time from data sources or
services, data should be pushed to a middle layer (here mediator). This is only
the first step towards a faster processing of data in terms of providing results
with low-latency. If the data sources are continuously pushing data to the
mediator there is a vast amount of overhead by unnecessarily transferring data
– a waste of bandwidth. The mediator informs the sources under which
changing situation (when) the sources should inform the mediator about the
change of their properties (what). What and when can be expressed with event
policies, which are injected into the data sources, so that we can really make
use of their intelligence. Thus, each data source will be responsible to make
the projection from its own fine-grained, raw data to some more high-level,
complex data the mediator – and ultimately the user – is interested in. The
obligations can be as smart as possible by using various sets of information,
such as the prioritization of the data. Consider for example an alarm situation
with cascading alarms. Such a system has to ensure that the most severe
alarms are delivered and the bandwidth is not occupied with unimportant
information. Thus, policy obligations executed on smart data sources –
intelligent objects or services – should enable low capacity filtering by being
context-aware.

Figure 1: Fleet Management Sample

BACKGROUND
This section introduces the basic ideas, which we combine different
approaches to enable data processing in a distributed setup. To clarify, this
work is going beyond existing big data approaches since not the amount of
data is the purpose of this work only but also the processing speed and an
improved data traffic approach. There is a tendency to call this fast data
instead of big data to address the challenges better, which occur in IoT setups
for example.
Data processing in our scenarios considers data as time-stamped events as
described in the motivating example. As we formally model the temporal
abstraction, we will also provide a short introduction to interval temporal
logic. The distribution and scaling aspect will be handled by making use of an
actor model approach. Therefore we will provide some depth into the actor
model as well. The same is true for complex event processing (CEP). We will
provide some more depth insights into CEP as well.
However, to capture the state of related work we will start with on overview
on most relevant work with regards to our approach. We will look into work
around (1) rules and reactive systems, (2) data processing in regards of
complex event processing, (3) services, service properties and service
selection, and (4) ECA rules.

RELATED WORK
The use of Event-Condition-Action (ECA) rules is well established in Data-
Stream Processing (Chakravarthy & Mishra, 1994) and ECA-based policy
languages are used to govern the behavior of systems on the basis of these
rules to control and manage distributed systems . In our work, we are however
mainly concerned about the selection and propagation of events in a P2P
infrastructure. The formalization of event policies in this work differs from
traditional ECA rules in that the condition does not only describe a Boolean
combination of events, but can address the history of a selected event stream
that allow to specify the distance	 between propagated events using ITL (Cau,
Moszkowski, & Zedan, 2011).
Data Stream processors such as SNOOP and successors already use event
histories for detecting the order of events, making this a natural model for
expressing policies that also allows for the efficient enforcement of such
policies (Helge Janicke, Cau, Siewe, & Zedan, 2007). The semantics of event-
policies is based on temporal projection as this is a natural abstraction
technique for complex system specifications. Other work by Duan et.al.
(Duan & Koutny, 2004; Tian & Duan, 2009) on propositional projection
temporal logic would provide alternative formalizations of projection, but
lead to a more complex formalization of the event policies without apparent
gain in this application context. The use of policies together with a mediator
has also been suggested in a different context by Edge et.al. (Edge, Sampaio,
Philpott, & Choudhary, 2008) where they focus on the mining institutional

transaction data for fraudulent activities. However, their use of policies is
targeted to this particular application domain and is focused on the detection
of events, whereas we address the problem of event altering and propagation
as part of an infrastructure for event driven P2P systems.
As already mentioned there is a lot of work about service selection based on
non-functional properties. (H. Q. Q. Yu & Reiff-Marganiec, 2008) provides a
survey and classification of service selection based on non-functional
properties. Most of the related work on using non-functional properties for
service selection concentrates on defining QoS (Quality of Service) ontology
languages and vocabularies and identification of various QoS metrics and
their measurements with respect to semantic services. In (T. Yu, Zhang, &
Lin, 2007) QoS ontology constraints for efficient service selection are
described, while (Reiff-Marganiec, Yu, & Tilly, 2009) separates different
non-functional criteria into different service categories. This is more sensible
than ranking all kinds of services by using the same predefined criteria and
hence not considering the different attributes that occur with specific services.
All these approaches are lacking temporal aspect or NFPs.
Bonifati et al. (Bonifati, Ceri, & Paraboschi, 2002) describes a very
interesting approach for using active rules for pushing reactive services. But it
does not take into account temporal aspects or states. Roitman et al. (Roitman,
Gal, & Raschid, 2009) presents a framework for satisfaction of complex data
needs involving volatile data. But the focus is on pull-based environments.
We believe that our approach is more promising for large-scale systems. With
push-based systems, data is pushed to the system and the research focus is
mainly on aspects of efficient data processing, where load shedding
techniques (Tu, Liu, Prabhakar, & Yao, 2006) can be applied in order to
control what portions of the pushed data to process and to increase latency.
Such systems include publish-subscribe (pub/sub) (Demers, Gehrke, Hong,
Riedewald, & White, 2006) stream processing (Abadi et al., 2003), and
complex event processing, however there is no consideration of bandwidth
consumption.

INTERVAL TEMPORAL LOGIC
Interval temporal logic (ITL) is providing s solid mathematical foundation for
processing a sequence of state. We are using concepts from ITL to validate
the event processing model we are using in our middleware.
The key notion of ITL (H Janicke, Cau, Siewe, & Zedan, 2012) is an
interval. An interval σ is considered to be a (in)finite sequence of states
σ0 , σ1 . . ., where a state σi is a mapping from the set of variables
Var to the set of values Val. The length |σ| of an interval σ0 . . . σn
is equal to n (one less than the number of states in the interval, so a one state
interval has length 0).

Figure 2: Syntax of ITL

The syntax of ITL is defined in Figure 2 where µ is a constant value, a is a
static variable (does not change within an interval), A is a state variable (can
change within an interval), v a static or state variable, g is a function symbol
and p is a predicate symbol. The syntax is based on [4], however uses the
projection operator f1∆f2 as primitive and derives the operator f∗ as
introduced in (Moszkowski, 1995).

The informal semantics of the most interesting constructs are as follows:

• skip: unit interval (length 1, i.e., an interval of two states).
• f1;f2: (“chop”) holds if the interval can be decomposed

(“chopped”) into a prefix and suffix interval, such that f1 holds
over the prefix and f2 over the suffix, or if the interval is infinite
and f1 holds for that interval. Note the last state of the interval
over which f1 holds is shared with the interval over which f2
holds. This is illustrated in Figure 3.

• f1∆f2: (“projection”) is defined to be true on an interval σ iff
two conditions are met. First, the formula f2 must be true on

some interval σ′ obtained by projecting some states from σ.
Second, the formula f1 must be true on each of the subintervals of
σ bridging the gaps between the projected states.

Figure 3: Informal Semantics of f1;f2

An example is depicted in Figure 4.

Figure 4: Example of Temporal Projection

In the interval σ the value of K increases from 0 to 8 in steps of one. The
interval σ satisfies (len(2))∆(K gets K + 2). (len(2)) is true
if the interval is of length two and (K gets K +2) is true if the K
increases by 2 from state to state. The gaps between the projected states
(highlighted in red) are bridged by the formula len(2). The formal
definition of this operator is given in (Moszkowski, 1995).

• ¡v: value of v in the next state when evaluated on an interval of
length at least one, otherwise an arbitrary value.

• fin v: value of v in the final state when evaluated on a finite
interval, otherwise an arbitrary value.

The following lists some of the derived constructs used in the remainder of
this paper. The binary operators ∨ (or) and ⊃ (implication) are derived as
usual:

• ¡f = skip;f (read “next f”), means that f holds from the next
state. Example: ¡ (X = 1): Any interval such that the value of
X in the second state is 1 and the length of that interval is at least
1

• more = ¡true means the non-empty interval, i.e., any
interval of length at least one.

• empty = רmore means the empty interval, i.e., any interval of
length zero (just one state).

• inf = true;false means the infinite interval, i.e., any
interval of infinite length.

• finite = רinf means the finite interval, i.e., any interval of
finite length.

• ¯f = finite;f (read “sometimes f”), i.e., any interval such
that f holds over a suffix of that interval. Example: ¯X ≠ ̸1: Any
interval such that there exists a state in which X is not equal to 1.

• of = ר ¯ר f (read “always f”), i.e., any interval such that f
holds for all suffixes of that interval. Example: o (X = 1): Any
interval such that the value of X is equal to 1 in all states of that
interval.

• fin f= o(empty⊃f) defines the final state, i.e., any interval
such that f holds in the final state of that interval.

• halt f = o(empty = f) terminate the interval when f
holds.

• ∃𝑣 ∙ 𝑓 = ¬∀𝑣 ∙ ¬𝑓 existential quantification.

• 𝑙𝑒𝑛 𝑒 =
𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑒 < 0
𝑒𝑚𝑝𝑡𝑦 𝑖𝑓 𝑒 = 0
𝑠𝑘𝑖𝑝; 𝑙𝑒𝑛 𝑒 − 1 𝑖𝑓 𝑒 > 0

holds if the interval

length is e.

• 𝑣 𝑔𝑒𝑡𝑠 𝑒 = o(𝑚𝑜𝑟𝑒 ⊃ ¡v) = 𝑒 gets, i.e., in every state
except the initial state the variable v will be assigned the value of
e evaluated in the previous state.

• 𝑓∗ = 𝑓 ∆𝑡𝑟𝑢𝑒 (read “f chopstar”) holds if the interval is
decomposable into a finite number of intervals such that for each
of them f holds, or the interval is infinite and can be decomposed
into an infinite number of finite intervals for which f holds.

Complex Event Processing
Complex event processing (CEP (Luckham, 2002)) can be seen as continuous
and incremental processing of event streams from multiple sources based on
declarative query and pattern specifications with near-zero latency.
In our work we consider sensor readings as events. Thus, we can see them as
a continuous stream of events.
An event is a basic concept of CEP. It defines something that happened.
There are plenty of events in our every-day life, for example: a historical or
social happening, a car accident or receiving of a text message. There are
different formal definitions of this term in the literature (Gehani, Jagadish, &

Shmueli, 1993; Sayal, 2004). In this text, we will use the term event as any
happening of interest that can be observed, recorded and reacted on in a
system.
An event is created in two distinct steps: observation and adaptation. Firstly,
a particular activity of a system should be observed without changes to the
system’s behaviour. Then observed activities are transformed into event
objects that can be processed by the CEP system. The transformation is
usually done by special entities called adapters.
In natural language or everyday life an event is defined as something that
happens or is supposed to happen. This understanding is partly valid for
events in CEP. Because in CEP an event is represented which does an object
trigger by an activity or happening, the significance, but it is not the activity
itself.
An event is also not just a pure message. The form of such an event could be
represented by a message but it also needs to cover significance and relativity.
Dependencies and relationships between events can have different form and
are often the main points of interest for CEP applications

There are three common relationships between events (Sethi, 2001). They are:

1. Time. Time is used to order events, defining which of the two
events A or B happened earlier. Usually, as soon as an event is
created, the current time is added to the event object in a form of a
timestamp. So, timestamps define time relationships between
events. This type of relationship depends on the clocks in the
system. Events can have different time relationships corresponding
to different clocks. Events’ comparability in this case depends upon
whether the clocks are synchronized.

1. Cause. Event A causes event B, if the activity signifying event A
had to happen in order for activity B to happen. Accordingly,
causality is a relationship of dependency between activities. If
event A can happen only after event B, then event B depends on
event A, or event A caused event B. When neither of the events
depends on each other, we say the events are independent. The
relationship of time and cause is expressed in the following axiom,
which is valid for most systems: If event B is caused by event A in
system S, than no clock in system S will give an earlier timestamp
to event B than to event A. Consequently, if the clocks can observe
two dependent events, they will always observe them in the same
order.

2. Aggregation. If the activity corresponding to event A consists of
other activities corresponding to a set of events B1…Bn, then event
A is an aggregation of the events Bi. In this case we say that events
B1…Bn are members of event A. Aggregation is a mean to abstract
events, enabling introduction of vertical dependency. Furthermore,
the activity signified by event A is more complex than the activities

of member events. Because of that, its signifying event is called a
complex event. It is easy to see, that aggregation leads to a causal
relationship between the complex event and its members.
Activities signified by complex events often happen over a period
of time and instead of a timestamp a time interval is used. The time
interval starts with the earliest activity and ends with the end of the
latest activity from the event’s members.

Actor Model
Handling big data in a fast and efficient way might require to process data in a
concurrent, parallel way. The actor model has its theoretical roots in
concurrency modeling (Hewitt, Bishop, & Steiger, 1973) and message
passing concepts. The fundamental idea of the actor model is to use actors as
concurrent primitives that can act upon receiving messages in different ways:

• Send a finite number of messages to other actors.
• Spawn a finite number of new actors.
• Change its own internal behavior, taking effect when the next

incoming message is handled.

For communication, the actor model uses asynchronous message passing. In
particular, it does not use any intermediate entities such as channels. Instead,
each actor possesses a mailbox and can be addressed. These addresses are not
to be confused with identities, and each actor can have no, one or multiple
addresses. When an actor sends a message, it must know the address of the
recipient. In addition, actors are allowed to send messages to themselves,
which they will receive and handle later in a future step.
Here, the actor model will help to separate processing units in a distributed
setup. Instead of passing only messages from actors to actors, the middleware
is also passing expression – the core logic to process data – to actors. Means,
the policy obligations can be seen as injected behavior of an actor. Thus, the
actor model helps to provide a foundation for the distributed hyper-scale
setup.

BASIC CONCEPTS
In this section we are providing an overview of used core concepts. In
particular, we will introduce time dependent offerings that need to be
processed. We are also introducing a concept (policies) based on event-
condition-action paradigm so that we can express rules over continuous
stream of data to trigger actions. Therefore, we are defining a data stream
model and combine it with the notion of time. Finally, we explain how these
policies can be validated against ITL logic.

Time Dependent Service Offerings
Properties of services are considered to be non-functional or functional. Such
properties are used for service selection or context-based service discovery.
The available approaches are based on the fact that properties are pulled from
service repositories (that is from service metadata) or possibly from the
services directly before the algorithm determine the most relevant service for
a given context. Repositories are useful for static data and polling services
directly works if a small number of properties of a small number of services is
of interest. We believe that there is an emergent need to provide methods to
enable the continuous evaluation of functional and non-functional properties
especially in the case where the number of services is high. We define static
properties ps as constant over time, such as a location of a printer, the vendor
of a printing machine, or the number of a taxi etc. Temporal properties pt are
changing over time. Using these, we define non-functional properties NFP as
a tuple of static properties and dynamic properties:

NFP(t) = ⟨ps,pt(t)⟩

For the fleet management scenario the schema of the non-functional
properties in XML might look as follows:

<NFProperties>

 <Static>

 <TaxiId type="xs:string"/>

 </Static>

 <Temporal>

 <GEOLocation id="x">

 <Longitude type="xs:int"/>

 <Latitude type="xs:int"/>

 </GEOLocation>

 <PassengerNumber type="xs:int"/>

 </Temporal>

</NFProperties>

This presents the static data schema; like a snapshot in time. Temporal aspects
are covered by events and therefore we would see different data at different
points in time.

Event Policies
Policies refer to obligations placed on a service to actively communicate
dynamic information, with respect to a given data-schema, triggered by
events and time. Informally this means that a policy defines the granularity
over time at which data is pushed up the service chain to aggregating services
and end- users.
In this work the policies are modeled similar to the well-understood Event-
Condition-Action paradigm (Twidle, Lupu, Dulay, & Sloman, 2008; Uszok et
al., 2003). However, the novelty of the policies used in this work is that they
use temporal conditions that describe the distance between two consecutive
actions that push data to aggregating services, rather than defining condition
on the system state. The advantage of this approach, compared to existing
temporal conditions (H Janicke et al., 2012; Helge Janicke, Cau, Siewe,
Zedan, & Jones, 2006), is that the condition bridges between two events, thus
does not require the storage of large amounts of historical data.

Informally a policy pol is a set of rules of the following structure:

<Policy> <!-- send to Service -->

 <Rule>

 <Source>...</Source>

 <Event>...</Event>

 <Condition>...</Condition>

 <Action>...</Action>

 </Rule>

 <Rule> ... </Rule>

</Policy>

The <Source> of a rule is a list of services on which the <Action> of the
rule is invoked if the rule is triggered. The <Event> of a rule is an event
descriptor that determines when the <Condition> of the rule is evaluated.
The descriptor is a predicate build from primitive events (e.g. a GPS-Update)
that are domain dependent and defined in the service description.
Conceptually the event descriptor describes an abstraction of the event trace
over which the <Condition> is evaluated. The <Condition> describes
the distance between events that are communicated upstream to aggregating
services as a temporal formula. The syntax that is used is an XML
representation of Interval Temporal Logic formulae that is described in the
next section.

Event Policy Validation with ITL
Evaluating the policy pols of the service s against this interval is a two-stage
process.

Stage 1
First, for every rule r ∈ pols an abstraction of the interval σs is generated
based on the Event trigger evtr of the rule r. Currently we only consider single
event triggers, however the formal model is supporting combined events such
as ei ∧ ej or state formulae (i.e. ITL formulae that do not contain temporal
operators). Conceptually this stage is generating an abstracted interval σs,r of
the interval σs that contains only those states in which evtr is true.

Stage 2
Second, for every rule r the condition of the rule cndr is evaluated against the
corresponding abstracted interval σs,r. The condition defines the distance
between two consecutive actions triggered by the same rule. This means that
the temporal formula cndr must hold over the subintervals of σs,r bridging the
gaps between the projected states.
Formally this means that the policies relate the service’s event trace, viz. the
interval σs to actions that are performed by the service as follows:

𝜎! ⊨ 𝜊ℎ𝑎𝑙𝑡(𝑒𝑣𝑡!)Δ(𝑐𝑛𝑑!Δ☐𝑎𝑐𝑡!)

Here halt(evtr)∆f conceptually yields the abstracted interval σs,r over
which the policy rule is evaluated. The condition cndr of the rule then bridges
between two consecutive actions that are performed as a consequence of the
rule. The rationale for separating the two steps is that the filtering of event
streams based on simple events (evtr) can be implemented very efficiently,
whereas the complexity of the evaluation of the conditions cndr is more
complex and can in certain cases grow linearly with the number of states that
are bridged. Thus the initial reduction using the event filter reduces the
complexity of the latter evaluation. The overall service specification is then
constructed from this as:

𝜎! ⊨ 𝜊ℎ𝑎𝑙𝑡(𝑒𝑣𝑡!)Δ(𝑐𝑛𝑑!Δ☐𝑎𝑐𝑡!)
!" !"#!

The specification of actr is not detailed here and we only consider that the
relevant action is initiated in that state of the service interval. The model can
be implemented straightforwardly from its semantics using some functional
programming, resulting in the following code:

//run
// Create the source
let evtmodel =

[|(1,1,0);(1,0,1);(1,1,0);
(1,0,1);(0,0,0);(0,0,1);
(1,0,0);(1,0,0)|]

let s = new Source()
// example rule evaluation
s.AsStream // selecting events Evts[0]
|> Stream.filter(fun e -> e.p == (1,_,_))
// show selected events, testing only
> Stream.print ("State %d: Evts[0] = 1", e.state)
// select every second event only
|> Stream.len 2
// show selected events, testing only
|> Action (fun e ->
printfn "State %d: Action on every 2nd Evts[0]"
(e.Item(1).state))
|> ignore
// create test event trace for the service
evtmodel |> skip s

Here three events are modelled for the service, and an example trace is
generated by the defined evtmodel. The event trigger for the encoded rule
is Evts[0], where a value of 1 indicates that the event occurred. This is
encoded in the first filter condition (Stream.filter(fun e -> e.p == (1,_,_)),
which in effect generates the more abstract interval σs,r over which the second
projection is taking place. In this example the temporal condition is selecting
every second of the events (Stream.len 2) on which the action of the rule is
triggered. In this proof of concept only a statement is printed out to the
screen, but instead a message could be easily send to another service. The
above code will produce the following output

State 0: Evts[0] = 1
State 1: Evts[0] = 1
State 1: Action on every 2nd Evts[0].
State 2: Evts[0] = 1
State 3: Evts[0] = 1
State 3: Action on every 2nd Evts[0].
State 6: Evts[0] = 1
State 7: Evts[0] = 1
State 7: Action on every 2nd Evts[0].

The event Evts[0] is raised in the states 0, 1, 2, 3, 6 and 7 as also indicated by
the control outputs. The Action is triggered on every second occurrence of the
event, namely in states 1, 3 and 7.

ARCHITECTURE
As we have pointed out above to achieve almost zero latency data processing,
data must be available at the place where the consumer needs it. So, instead of

pulling data at request time from data sources, data should be pushed to a data
provider. If we apply a scan-based approach to an SOA this would mean that
a consumer is pulling data from services (see Figure 5a). In contrast and
event-based approach would mean that services are pushing data to a
consumer (see Figure 5b).

Figure 5: Metaphor comparison of request-response and event-based in SOA

However, using event-based models is only the first step towards a faster
processing of data in terms of providing results with low-latency. If the data
sources are continuously pushing data to a data provider (e.g. the selector)
there is a vast amount of overhead by unnecessarily transferring data – a
waste of bandwidth. We introduced event policies on the data source so that
we can control when and which data is pushed to the consumer. These
policies can be as smart as possible by using various sets of information, such
as the prioritization of the data. Consider for example an alarm situation with
cascading alarms. Such a system has to ensure that the most severe alarms are
delivered and the bandwidth is not occupied with unimportant information.
Thus, policy obligations executed on smart data sources – intelligent objects –
should enable low capacity filtering by being context-aware.

Conceptual Architecture
As a central instance we use a Mediator (see Figure 6). This Mediator
encapsulates the processing of the incoming request from the consumer side
and the incoming events from the service side and maps both. The Mediator is
a service and exposed operations (methods) map internally to specific queries.
Thus, during runtime the Mediator is receiving continuous streams of events
from subscribed services. Then, an incoming consumer request is handled as a
query on subscribed service properties. Instead of pulling at request time all
the data from all services the mediator knows at any time the status of all
services. Therefore, this allows for service selection in real-time independent
of the number of services.

Figure 6: Logical mediation service architecture

An event will contain metadata and payload. The metadata contains
information about the time when the event was created on the publisher side.
The schema of the subscribed topic, such as temperature or vibration, defines
the payload. New event policies are injected via the Mediator into the correct
service (publisher).

Event Mediator
The Event Mediator exposes an endpoint to collect all incoming events from
registered services. Its responsibility is to normalize the incoming data
streams. Usually, not all events provide the same data structure and therefore
the Event Mediator maintains a mapping table to transform incoming events
from endpoints into a normalized data stream. Let’s assume the Service1
provides events containing temperature in Celsius while Service2 provides the
temperature data in Fahrenheit. The Event Mediator normalizes event streams
internally before the event data is forwarded to the Information Mediator via
the event processing component.
In addition the Event Mediator is able to detect missing events since the
refresh time is set within the subscription process. Here it is possible to apply
different retention policies to react to missing events, such as simply ignore

missing events, use the latest event until a new event arrives, or raise an
exception because the absence of an event is an exceptional case. How to
handle missing events depends on the scenario and does not require a general
solution.

Information Mediator
The Information Mediator maps consumer request to queries on continuous
event streams provided by the Event Mediator. On the consumer side the
framework still offers a normal Web Service interface, which internally needs
to be transformed into a query, which is executed over the event stream. The
Information Mediator also ensures the quality of the events from event
streams, such as duplicated events or out-of-order events.

MIDDLEWARE
In this section we will show how event processing within the mediator and
event polices can be expressed Since a stream S is considered as an (in)finite
sequence of events ei. In general streams can be filtered, mapped, or zipped
(joined). While each of these operations produces a new output stream
operators can be piped (|>). In pseudo-code filtering for odd numbers and
multiplying them with 2, could look like this:

source
|> filter(x -> isOdd(x))
|> map (x -> x *2)
|> action

Joining two streams will look like this:

source1 |> zip(source2) |> action

This is exactly what we have explained in basic concepts with event policies,
which have the form of

source |> condition |> action

In our middleware there are the following core elements (see Figure 7) as
described in basic concepts as an ECA policy:

• Source (src) produces or injects a continuous stream of events. There
are several implementations of a source. A simple one is the
RandomSource, which creates random values by a given interval. The
PushSource exposes an endpoint to which events can be pushed form
outside or actions. A PullSource can be used to get data in a request-

response way. The sources enable the convergence of pull and push
systems.

• Condition (cnd) defines the transformation of events as a pipeline
with operators like filter, map, zip, ….

• Action (act) triggered by the condition result. An action can either
simply sends out the event to other sources can trigger an action or
simply output the result. The action is also used to hold the final state
for a request.

In addition to these core elements we define the following additional
concepts:

• Expression is defined by source, condition, action expr = do:
source |> condition |> action

• ReActor is lightweight container for expressions. A ReActor is an
extended actor since the actor behavior is injected
ReActor.send(reactor, expr). Please note that a ReActor
is not a component that is reacting to things, so read “Re-Actor” and
not “reactor”). A ReActor instance is defined by its unique process
identifier (PID).

• Node is process hosting multiple ReActors. A node can be identified
by its unique node identifier (NID).

Figure 7: Terminology of ReActor middleware

ReActors can be connected with sources and actions. By connecting ReActors
it is possible to build highly distributed and scalable processing pipelines.
Here we are benefiting from the actor approach. Compared to classical actor a
ReActor is not only encapsulating his state and can receive events, it is

possible to inject the behavior of an actor. This is an extension to the original
actor model.
We can find similar approaches in Cloud Haskell (Epstein, Black, & Peyton-
Jones, 2012) where closures can be serialized to a mailbox as expressions or
functions. This is more restricted to closures and is not as complete as our
approach. In Orleans (Bykov et al., 2011) we can find a actor model
implementation on C#/.Net but the flexibility is limited to sending around
behavior in form of expressions.
The notion of sources and actions allow us to have a flexible integration of
push-based and pull-based approaches. With PullSources classical REST
services can be integrated (see Figure 8). Another novelty is the lightweight
nature of a ReActor. While other systems, like Yarn, are realizing this as
processes, a ReActor is simply an actor. With having a supervisor it is
possible to even build a reliable system.

Figure 8: ReActor topology

Implementation
The middleware is ideally realized on top of a functional programming
language, such as Haskell (https://www.haskell.org), F# () or Erlang
(Armstrong, 1997, 2010; Larson, 2009) because expressing ITL logic in a
functional programming language is straight forward..
Haskell is the purest functional programming language and would be ideal to
translate ITL logic into functions. But Haskell has limitations in terms of
actor model and distribution. As mentioned the Cloud Haskell project is
trying to build an actor comparable framework but the project is not mature
enough compared to F# or Erlang regarding this aspect.
F# is not a pure functional programming language. It is a mixture of OOP
concept and functional elements. Expression ITL logic as functions is feasible

and there are several actor model implementations for F#, like AKKA, but
serialization of expressions is quite difficult.
The actor model in Erlang is providing a great foundation for the hyper-
scaling setup. It can be seen a first class citizen within the Erlang framework.
In fact, Elixir (http://elixir-lang.org) is used for Reactor. Elixir is an extension
on top of Erlang. In Elixir everything is an expression and can be serialized
easily to other instances. This build-in functionality in combination with the
superior actor model implementation makes Elixir the first choice for
realizing our ReActor middleware.
Consider Figure 9, which shows the taxi scenario in a simplified version. The
logic to find the nearest taxi is described as a set of expressions considering
the topology. Here it is simple since we do have only on server and multiple
taxis. The expression on the taxi is sending an update event to the server only
if the taxi has changed its position by more than 50 meters and is available.
The ReActor on the server is collecting the taxi events and keeps the state.
Whenever a customer is asking for a taxi providing his GEOlocation, the
Reactor has to find the taxi at that rime with minimal distance to the
customer.

To enable a processing pipeline end-2-end follows these steps:

Step 0: Client node (NID#1) registers itself in registry

Step 1: Author the expression

Step 2: By calling Node.start(…) expression will be send to the node
with NID#2

Step 3: The node with NID#2 will start a new ReActor instance hosting the
given expression (expr1)

Step 4: The ReActor will register itself at the Registry. In this case with the
tag “GetNearestTaxi” which needs to be defined during expression definition.

Step 5: Next expression will be send to node with NID#1

Step 6: The node with NID#1 starts a ReActor with given expression (expr2).
This can be scaled out to multiple nodes, such as taxis in our example.

Step 7: The new ReActor will register itself at the Registry

Step 8: Finally, the Reactor in NID#1 sends data to ReActor in NID#2

Step 9: Let’s assume there is a customer looking for the nearest taxi. He has
to provide his GEOLocation and calls the Information Mediator endpoint.

Step 10: The Information Mediator finds the ReActor with tag
“GetNearestTaxi” in registry

Step 11: Without any delay the Information Mediator collects state from
ReActor and sends this back to customer.

Figure 9: ReActor usage

EXPERIMENTAL RESULTS
The mediator approach with filtering of events at the source was developed to
address two key problems, namely

1. a need to provide replies with near zero latency
2. a requirement to reduce the amount of data transfer (recall that

this was large because of the amount of small messages, not
because the data in itself being intrinsically large).

The experimental validation was geared towards proving these two aspects, so
we conducted two evaluations: (1) we measured the latency of finding a result
using the pull model compared with a push model and (2) counted the number
of messages occurring during a one second time interval in the push model
and combined pull-push model. The overall setup considered setting with up
to 60000 data sources.

Figure 10: Latency of scan-based approach (pull) vs. event-based approach
(push)

Testing pull and push approaches is quite complex since there is a big number
of data sources required to get some significant results. Nonetheless, we had
to distinguish between pure latency as a result of the different concepts and
latency caused by physical setup, such as network latency and latency used by
semantic processing. For testing we decided to run everything on one
machine and to simulate each data sources as a small object in our test setup.
This object can be seen as an atom, a logical, self-contained unit. By having
all simulated data sources in memory on one machine we can say that latency
caused by the physical setup can be neglected. The simulated objects (data
sources) were simply holding a random value and the query in the setup was
to find the object whose value is the closest to a given number. This simple
setup matches the taxi example where the value would represent the geo
position of the taxi and the given number would be the customer geo position,
but also reflects the typical scenario where we see the approach apply. In the
pull approach we are iterating over all objects (simulated data sources) and
are trying to find min(value-number). In the push approach the objects
are pushing their number to the mediator and we run a query over this data,
such as

values
|> filter (x -> (x-number))
|> (take 10).Min()
|> out

The results are presented in Figure 10. While the latency is increasing

linearly for the pull approach, it remains almost constant for the push

approach. We also find that all values for the push approach are far lower than
those for the pull approach, with for example approx. 4ms vs. 65ms for 60000
data sources. This clearly indicates that the push approach is superior
compared to the pull approach in terms of latency and the trends show that for
a growing number of data sources as those expected in scenarios like the
Internet of Things is delivering performance close to no latency. We also
want to point out that this is the pure measured latency ignoring network and
processing delays – once these are added as additional factors to the
evaluation, latency will become rapidly worse for the pull approach as much
more communication and more processing is needed compared to push
approach which remains constant for the full spectrum (albeit a little slower in
real terms than measured in the isolated setting).
The drawback of the push approach is the number of data items send from the
data sources to the mediator. Therefore, we have introduced policies in our
approach to avoid that messages are polluting the network unnecessarily. The
second validation is comparing the number of messages send in a one second
interval in pure push approach compared with the number of messages which
sent in a push approach with filtering. The latter is expected send fewer
messages because of the injected policy. For testing we extended the objects
with another random value representing a state (on or off). The status here is a
random number, either 0 or 1. The rule is saying that the objet should push
only messages when the state is 1. Figure 11 shows the results as we
expected. With a simple rule we can roughly save 50 percent of exchanged
messages (based on the randomly changing values). It is clear that with even
more specific rules and real data the number of messages can be further
reduced.

Figure 11: Event-based approach with injected rules and without

Overall, both simple tests highlight how (1) using the push approach with
mediator and (2) rule injection on the data source can be combined to form a
promising architecture supporting low-latency for large systems.

CONCLUSION
We presented a new approach, which combines event processing based on
interval temporal logic for fast data processing for SOA and event-based
systems. Our approach investigates processing of service offerings with a
huge number of potential services or data sources. By combining NFP-based
selection with ITL we have grounded dynamic properties on a valid formal
model. We presented a way to use ITL to express event policies as ECA rules
which should be executed close to the sources to enable an accurate view of a
large scale system at any point in time and to reply to consumer requests with
almost zero latency. The sources (in our example taxis) are notifying the
mediation service about any state change defined by policies thus the
mediation service can (1) reason about the incoming streams and reply
immediately to consumer requests and (2) the mediation service can make
assumptions in terms of missing data and forecast likely future behavior.
By using the ReActor approach we are providing a concept which is not
limited to any SOA base approaches. The usage of the sources concept
enables to integrate in any existing system. Requirements like scaling and

distribution are covered by the extension of the actor model. This enables to
avoid bottlenecks and single point of failures. Via ReActor we can easily
scale to a number of actors, which is required.
The next steps of our work will investigate more complex policies to be
executed at the sources, such as the direction and speed of a taxi in addition to
its position. We will also look into the prediction capabilities of our approach.
Since the mediation service is aware of the lifetime of the information of each
node it can look into the future to predict certain results. In future work we
will also further validate and investigate limitations of our approach.

REFERENCES

Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Erwin, C.,
… M. (2003). Aurora: a data stream management system. In
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data (p. 666). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/872757.872855

Armstrong, J. (1997). The development of Erlang. ACM SIGPLAN Notices.

Armstrong, J. (2010). Erlang. Communications of the ACM.

Bonifati, A., Ceri, S., & Paraboschi, S. (2002). Pushing reactive services to
XML repositories using active rules. Computer Networks, 39, 645–660.

Bykov, S., Geller, A., Kliot, G., Larus, J. R., Pandya, R., & Thelin, J. (2011).
Orleans  : Cloud Computing for Everyone. Proceedings of the 2nd ACM
Symposium on Cloud Computing SOCC 11, 1–14. Retrieved from
http://dl.acm.org/citation.cfm?id=2038916.2038932

Cau, A., Moszkowski, B., & Zedan, H. (2011). The ITL homepage:
http://www.cse.dmu.ac.uk/STRL/ITL. Retrieved from
http://www.cse.dmu.ac.uk/STRL/ITL

Chakravarthy, S., & Mishra, D. (1994). Snoop: an expressive event
specification language for active databases. Data Knowl. Eng., 14(1), 1–
26. doi:10.1016/0169-023X(94)90006-X

Demers, A., Gehrke, J., Hong, M., Riedewald, M., & White, W. (2006).
Towards expressive publish/subscribe systems. Advances in Database
Technology-EDBT 2006, 627–644. Retrieved from
http://www.springerlink.com/index/y684305339173080.pdf

Duan, Z.-H., & Koutny, M. (2004). A framed temporal logic programming
language. J. Comput. Sci. Technol., 19(3), 341–351.
doi:10.1007/BF02944904

Edge, M., Sampaio, P., Philpott, O., & Choudhary, M. (2008). A Policy
Distribution Service for Proactive Fraud Management over Financial
Data Streams. Services Computing, IEEE International Conference on,
2, 31–38. doi:http://doi.ieeecomputersociety.org/10.1109/SCC.2008.105

Epstein, J., Black, A. P., & Peyton-Jones, S. (2012). Towards Haskell in the
cloud. ACM SIGPLAN Notices.

Gehani, N. H., Jagadish, H. V, & Shmueli, O. (1993). COMPOSE: A System
For Composite Specification And Detection. Lecture Notes In Computer
Science Vol 759, 3–15. Retrieved from
http://portal.acm.org/citation.cfm?id=725348

Hewitt, C., Bishop, P., & Steiger, R. (1973). A Universal Modular ACTOR
Formalism for Artificial Intelligence. In IJCAI (pp. 235–245).

Janicke, H., Cau, A., Siewe, F., & Zedan, H. (2007). Deriving Enforcement
Mechanisms from Policies. In Proceedings of the 8th IEEE international
Workshop on Policies for Distributed Systems (POLICY2007) (pp. 161–
170).

Janicke, H., Cau, A., Siewe, F., & Zedan, H. (2012). Dynamic Access Control
Policies: Specification and Verification. The Computer Journal.
doi:10.1093/comjnl/bxs102

Janicke, H., Cau, A., Siewe, F., Zedan, H., & Jones, K. (2006). A
Compositional Event & Time-based Policy Model. In Proceedings of
POLICY2006, London, Ontario, Canada (pp. 173–182). London,
Ontario Canada: IEEE Computer Society.

Larson, J. (2009). Erlang for concurrent programming. Communications of
the ACM.

Luckham, D. (2002). The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Amsterdam: Addison-
Wesley Longman. Retrieved from http://www.amazon.com/Power-
Events-Introduction-Processing-Distributed/dp/0201727897

Marganiec, S. R., Tilly, M., & Janicke, H. (2014). Low-Latency Service Data
Aggregation Using Policy Obligations. 2014 IEEE International
Conference on Web Services, 526–533. doi:10.1109/ICWS.2014.80

Moszkowski, B. (1995). Compositional Reasoning about Projected and
Infinite Time. In Proceedings of the 1st IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS’95) (pp. 238–
245). Fort Lauderdale, Florida: IEEE Computer Society Press.

Reiff-Marganiec, S., Yu, H., & Tilly, M. (2009). Service selection based on
non-functional properties. In Service-Oriented Computing-ICSOC 2007
Workshops (Vol. 4907, pp. 128–138). Springer. Retrieved from
http://www.springerlink.com/index/h510k782167228r8.pdf

Roitman, H., Gal, A., & Raschid, L. (2009). Web Monitoring 2.0: Crossing
Streams to Satisfy Complex Data Needs. In Proceedings of the 2009
IEEE International Conference on Data Engineering (pp. 1215–1218).
IEEE Computer Society. Retrieved from
http://ie.technion.ac.il/~avigal/cosmos.pdf

Sayal, M. (2004). Detecting time correlations in time-series data streams.
Hewlett-Packard Company. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.3219&
;rep=rep1&type=pdf

Sethi, A. S. (2001). SEL, a new event pattern specification language for event
correlation. Proceedings Tenth International Conference on Computer
Communications and Networks Cat No01EX495, 00(C), 586–589.
doi:10.1109/ICCCN.2001.956327

Tian, C., & Duan, Z. (2009). Complexity of propositional projection temporal
logic with star. Mathematical. Structures in Comp. Sci., 19(1), 73–100.
doi:10.1017/S096012950800738X

Tilly, M., & Reiff-Marganiec, S. (2011). Matching customer requests to
service offerings in real-time. In Proceedings of the 2011 ACM
Symposium on Applied Computing - SAC ’11 (p. 456). New York, New
York, USA: ACM Press. doi:10.1145/1982185.1982285

Tu, Y. C. C., Liu, S., Prabhakar, S., & Yao, B. (2006). Load shedding in
stream databases: a control-based approach. In Proceedings of the 32nd
international conference on Very large data bases (pp. 787–798).
VLDB Endowment. Retrieved from
http://portal.acm.org/citation.cfm?id=1164195

Twidle, K., Lupu, E., Dulay, N., & Sloman, M. (2008). Ponder2 - A Policy
Environment for Autonomous Pervasive Systems. In Policies for
Distributed Systems and Networks, 2008. POLICY 2008. IEEE
Workshop on (pp. 245–246). doi:10.1109/POLICY.2008.10

Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., … Lott,
J. (2003). KAoS: policy and domain services: toward a description-logic
approach to policy representation, deconfliction, and enforcement. In
Proceedings POLICY 2003 Policies for Distributed Systems and
Networks (pp. 93–96).

Yu, H. Q. Q., & Reiff-Marganiec, S. (2008). Non-functional property based
service selection: A survey and classification of approaches. In Proc. of
2nd Non Functional Properties and Service Level Agreements in SOC
Workshop (NFPSLASOC’08). Citeseer. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.3654&am
p;rep=rep1&type=pdf

Yu, T., Zhang, Y., & Lin, K.-J. (2007). Efficient algorithms for Web services
selection with end-to-end QoS constraints. ACM Transactions on the
Web, 1(1), 6–es. doi:10.1145/1232722.1232728

