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ABSTRACT 
The deluge of intelligent objects that are providing continuous access to data 
and services on one hand and the demand of developers and consumers to 
handle these data on the other hand require us to think about new 
communication paradigms and middleware. In hyper-scale systems, such as 
in the Internet of Things, large scale sensor networks or even mobile 
networks, one emerging requirement is to process, procure, and provide 
information with almost zero latency. This work is introducing new concepts 
for a middleware to enable fast communication by limiting information flow 
with filtering concepts using policy obligations and combining data 
processing techniques adopted from complex event processing. 
 
Keywords: Data Processing, SOA, Event-Based, Big Data, Fast Data, Internet 
of Things 

INTRODUCTION 
Today, there are various mega trends; people are talking about big data, cloud 
computing, service-oriented architecture (SOA), or the Internet of Things 
(IoT); just to name a few. All these trends have at least one common aspect: 
Data! There is a huge amount of data produced by a vast amount of 
heterogeneous sources, e.g. sensors, phones, cars, etc.. This data needs to be 
filtered, processed, and procured. Besides simply collecting all this data, there 
is rapidly growing demand to create timely insights into data. These insights 
can provide competitive avantages to business. Extracting relevant 
information from data or correlating data with other data sets as fast as 
possible is becoming a key factor for success. Latency, the time data needs to 
get processed, is getting more and more critical. 
Some questions, which need to be answered, are: 



 
• How can this data get processed as fast as possible? 
• How can relevant data be separated from irrelevant data?  
• How can data get filtered efficiently and scalable? 
• How can data from distributed, heterogeneous data sources and 

services be integrated into a system? 
• How to combine different technologies, different interaction patterns to 

make data flow efficient? 
 

This paper is providing answers to these questions. To achieve almost zero 
latency data processing, data must be available at the place where the user 
needs it, such as a data provider. So, instead of pulling data at request time 
from data sources, data should be pushed to such a data provider. This is only 
the first step towards a faster processing of data in terms of providing results 
with low-latency. If the data sources are continuously pushing data to a data 
provider (e.g. the selector) there is a vast amount of overhead by 
unnecessarily transferring data - a waste of bandwidth. 
For mobile devices the cost of bandwidth needs to be taken into account. Let's 
assume the data provider, the one who interacts with the user, knows when 
the user needs updated data and the intelligent data sources know about their 
situation. Thus, the data provider informs the sources under which changing 
situation (when) the sources should inform the data provider about the change 
of their properties (what). What and when can be expressed with event 
policies, which are injected into the data sources, so that we can really make 
use of their intelligence. 
Thus, each data source will be responsible to make the projection from its 
own fine-grained, raw data to some more high-level, complex data the data 
provider - and at the end the user - is interested in. The obligations can be as 
smart as possible by using various sets of information, such as the 
prioritization of the data. Consider for example an alarm situation with 
cascading alarms. Such a system has to ensure that the most severe alarms are 
delivered and the bandwidth is not occupied with unimportant information. 
Thus, event policies executed on smart data sources - intelligent objects - 
should enable low capacity filtering by being context-aware. 
There are already approaches available, which cover parts of the problem. 
Research has provided approaches to handle and process data with low 
latency, such as complex event processing (CEP). There are also approaches 
to distribute processing, such as the actor model. Most of the approaches are 
tackling only one specific aspect of big data, cloud computing or SOA. No 
approach is really trying to find a holistic answer to solve new mega trends, 
such as the Internet of Things. 



The approach described in this paper is trying to combine promising 
approaches to enable fast processing of data in hyper-scale and distributed 
setups. Hyper-scale means that there are millions of data sources as we can 
find in IoT setups. Data sources here can be considered as services offering 
data. This data can change over time, such as the temperature offered by a 
temperature sensor. There are other services offering weather information or 
traffic information for example.  
Our solution of combining the classical request-response paradigm with 
event-based approaches and technologies to process data and enabling 
insights with low-latency is described in this paper. Some parts of this work 
have been previously published ((Tilly & Reiff-Marganiec, 
2011),(Marganiec, Tilly, & Janicke, 2014)), however in this paper our ideas, 
our different contributions and a new detailed view on the architecture are 
being brought together for the first time. 
In combining existing paradigms, such as pub-sub approaches for processing 
service offerings and mediations with classical request-response SOA 
approaches for consumer requests facilitated by in memory data processing 
technologies, such as CEP or, more general, stream event processing, can help 
to overcome the afore mentioned challenges. 
In addition it is worth to rethink the big data strategy to process all data in the 
cloud: Sometimes it makes more sense to process or aggregate data at the 
place where it is born. 
By extending CEP queries and rules to be processed already on the service or 
device side, close to the sources, it is possible to reduce the amount of data, 
which needs to be send around. Queries can be used to correlate and 
aggregate data (events) at its origin as event policies. This approach can be 
used to overcome the scaling problem. 
Mediation between consumer requests and service offerings is the most 
challenging one because it requires pattern mining and detection. Pattern 
mining and detection can be achieved by learning from interaction between 
users and services. As soon the pattern is learned it can be expressed in terms 
of a query on the stream of incoming data or can be pushed to the service 
side. 
Although there is some relevant work around convergence of SOA and event-
based systems, we think that our work goes behind this. Providing a concept 
for convergence of SOA and event-based is almost a side-effect. Our 
approach is going behind it since it targets the processing of data in such 
setups. 
Our approach is also not about purely handling big data. It provides an 
approach to tackle setups which we typically find in IoT scenarios: huge 
amount of sources providing data which needs to be processed and procured. 
The fact that we have to deal with a huge amount of data is not the only one. 
We have to tackle aspects of where and how to process the data to achieve an 
optimized flow of data and create timely insights. 



The presented arguments can be summarized into the following challenges: 
 
• Speed: Speed means fast processing of data to provide timely insights. 

There is a demand on getting results as fast as possible. New 
paradigms are needed to improve the speed on processing service 
requests or in processing data provided by data sources, such as 
sensors. Basically, it makes sense to rethink classical request-response 
SOA approaches and to ensure that service offerings process data in 
almost real-time. This is a key challenge for moving forward towards 
to the next generation of the SOA. 

• Mediation: Here mediation is used to describe the combination of 
request-response interaction pattern and event-based interaction. These 
different pattern needs to be combined and there must be concepts 
enabling their seamless integration. 

• Scale: By combining interaction patterns the amount of transferred 
data will be increasing. Even more so if we consider sensor, cars or 
other data sources as service, which need to be integrated and their data 
be processed. This data mainly coming from event-based sources has 
to be optimized. Ideally a master service can control when data is 
forwarded and which data is forwarded through terms of aggregation 
or batching. A higher level of control of transferred data is required to 
optimize data traffic. This enables scaling up to millions of services 
sending data around. 

The paper will provide a motivating example in section 2. Section 3 will give 
some insights into used technologies as background for section 4 which will 
introduce the core ideas of this work. The architecture and building blocks are 
described in section 5. Section 6 will show some experimental results. We 
conclude the paper with a look at related work and next steps. 

MOTIVATING EXAMPLE 
In real life there is plethora of example for hyper-scale setups, such as the 
connected car green wave, friend-finder or smart cities. We will illustrate 
some of these, before showing a working example that will be used 
throughout the paper. 
In the connected car green wave scenario, car data and traffic signal data 
needs to be collected. The system will recommend to the driver the correct 
speed so that she can, depending on current traffic, catch the next signal light 
at green and does not need to stop. The current light signals state, the position 
and speed of the driver and the speed of the drivers nearby are relevant to find 
the correct speed. Clearly, some processing can happen in the cloud and 
maybe some processing in each drivers car. The calculation of the speed is the 
timely insight and has to happen ad-hoc and with low-latency otherwise the 
driver would not need it. 



The friend-finder scenario is based on the user’s social graph, their network of 
friends. Then the geo-positions in relation to geo-positions of friends can be 
considered. If one friend is near-by the system can inform the user. The 
processing can happen in the cloud, but also locally in the phone of the user to 
preserve privacy. In the privacy case the system would get only a region 
where the user is and would correlate this with the friends’ regions. 
Considering this would run for all Facebook users we can easily talk about a 
hyper-scale system. 
SmartCities is a mega trend and a meta scenario. There it is possible to find 
scenarios about traffic management or crime prediction. Each scenario for it 
requires collecting data and processing them. Some scenarios can be 
optimized in processing when data is filtered already at the data source. Some 
scenarios can help preserving privacy by not giving raw data about the user 
but by forwarding aggregated data and invite to the processing in a way that 
the hard raw data processing happens only on the device or service the user 
owns. 
As a motivating example for the paper, we will now consider a fleet 
management system, however the approach is not limited to this scenario and 
can be applied in a wide variety of applications where services are selected 
from a large set of potential providers, such as sensor network, logistics, 
industry, military or consumer space – namely the kind of situations discussed 
above. In fleet management, like taxi companies with a large amount of taxis 
it is almost impossible to use the classical request-response approach to find 
the nearest taxi for a given user location. Therefore, the fleet management 
must be aware of the taxis location at any given time. The management 
system only requires the latest data to process a user request to locate the 
nearest taxi, thus there is no necessity to persist the data for later use. In the 
scenario (see Figure 1) there is a customer with a given context, his geo 
location, requesting a taxi. The fleet management system has to identify the 
most relevant taxi in terms of (1) availability and (2) proximity to the 
customer’s location. There are two taxis, A and C, which are close to the 
customer’s location, but they are not available. Taxi B is the closest which is 
available. Of course the fleet management could take traffic information into 
account, and then maybe taxi D becomes the best solution because it is 
reasonably close, available and might arrive earlier because of beneficial 
traffic conditions. 



 
This scenario shows (1) how different kind of properties of taxis (here: 
availability and geo location), (2) properties of different services (here: taxi 
and traffic) are used to select services, and (3) that taxis have to pro-actively 
inform the fleet manager about their location to enable fast and reliable 
responses to customer requests. Furthermore, the geo location and the traffic 
information are data, which changes rapidly, and it does not make sense to 
store all of this data because it is only short-lived and hence only the current 
values are relevant when a service has to be selected. To achieve almost zero 
latency data processing, data must be available at the place where the user 
needs it. So, instead of pulling data at request time from data sources or 
services, data should be pushed to a middle layer (here mediator). This is only 
the first step towards a faster processing of data in terms of providing results 
with low-latency. If the data sources are continuously pushing data to the 
mediator there is a vast amount of overhead by unnecessarily transferring data 
– a waste of bandwidth. The mediator informs the sources under which 
changing situation (when) the sources should inform the mediator about the 
change of their properties (what). What and when can be expressed with event 
policies, which are injected into the data sources, so that we can really make 
use of their intelligence. Thus, each data source will be responsible to make 
the projection from its own fine-grained, raw data to some more high-level, 
complex data the mediator – and ultimately the user – is interested in. The 
obligations can be as smart as possible by using various sets of information, 
such as the prioritization of the data. Consider for example an alarm situation 
with cascading alarms. Such a system has to ensure that the most severe 
alarms are delivered and the bandwidth is not occupied with unimportant 
information. Thus, policy obligations executed on smart data sources – 
intelligent objects or services – should enable low capacity filtering by being 
context-aware. 

Figure 1: Fleet Management Sample 



BACKGROUND 
This section introduces the basic ideas, which we combine different 
approaches to enable data processing in a distributed setup. To clarify, this 
work is going beyond existing big data approaches since not the amount of 
data is the purpose of this work only but also the processing speed and an 
improved data traffic approach. There is a tendency to call this fast data 
instead of big data to address the challenges better, which occur in IoT setups 
for example. 
Data processing in our scenarios considers data as time-stamped events as 
described in the motivating example. As we formally model the temporal 
abstraction, we will also provide a short introduction to interval temporal 
logic. The distribution and scaling aspect will be handled by making use of an 
actor model approach. Therefore we will provide some depth into the actor 
model as well. The same is true for complex event processing (CEP). We will 
provide some more depth insights into CEP as well. 
However, to capture the state of related work we will start with on overview 
on most relevant work with regards to our approach. We will look into work 
around (1) rules and reactive systems, (2) data processing in regards of 
complex event processing, (3) services, service properties and service 
selection, and (4) ECA rules. 

RELATED WORK 
The use of Event-Condition-Action (ECA) rules is well established in Data-
Stream Processing (Chakravarthy & Mishra, 1994) and ECA-based policy 
languages  are used to govern the behavior of systems on the basis of these 
rules to control and manage distributed systems . In our work, we are however 
mainly concerned about the selection and propagation of events in a P2P 
infrastructure. The formalization of event policies in this work differs from 
traditional ECA rules in that the condition does not only describe a Boolean 
combination of events, but can address the history of a selected event stream 
that allow to specify the distance	  between propagated events using ITL (Cau, 
Moszkowski, & Zedan, 2011). 
Data Stream processors such as SNOOP and successors already use event 
histories for detecting the order of events, making this a natural model for 
expressing policies that also allows for the efficient enforcement of such 
policies (Helge Janicke, Cau, Siewe, & Zedan, 2007). The semantics of event-
policies is based on temporal projection  as this is a natural abstraction 
technique for complex system specifications. Other work by Duan et.al. 
(Duan & Koutny, 2004; Tian & Duan, 2009) on propositional projection 
temporal logic would provide alternative formalizations of projection, but 
lead to a more complex formalization of the event policies without apparent 
gain in this application context. The use of policies together with a mediator 
has also been suggested in a different context by Edge et.al. (Edge, Sampaio, 
Philpott, & Choudhary, 2008) where they focus on the mining institutional 



transaction data for fraudulent activities. However, their use of policies is 
targeted to this particular application domain and is focused on the detection 
of events, whereas we address the problem of event altering and propagation 
as part of an infrastructure for event driven P2P systems. 
As already mentioned there is a lot of work about service selection based on 
non-functional properties. (H. Q. Q. Yu & Reiff-Marganiec, 2008) provides a 
survey and classification of service selection based on non-functional 
properties. Most of the related work on using non-functional properties for 
service selection concentrates on defining QoS (Quality of Service) ontology 
languages and vocabularies and identification of various QoS metrics and 
their measurements with respect to semantic services. In (T. Yu, Zhang, & 
Lin, 2007) QoS ontology constraints for efficient service selection are 
described, while (Reiff-Marganiec, Yu, & Tilly, 2009) separates different 
non-functional criteria into different service categories. This is more sensible 
than ranking all kinds of services by using the same predefined criteria and 
hence not considering the different attributes that occur with specific services. 
All these approaches are lacking temporal aspect or NFPs. 
Bonifati et al. (Bonifati, Ceri, & Paraboschi, 2002) describes a very 
interesting approach for using active rules for pushing reactive services. But it 
does not take into account temporal aspects or states. Roitman et al. (Roitman, 
Gal, & Raschid, 2009) presents a framework for satisfaction of complex data 
needs involving volatile data. But the focus is on pull-based environments. 
We believe that our approach is more promising for large-scale systems. With 
push-based systems, data is pushed to the system and the research focus is 
mainly on aspects of efficient data processing, where load shedding 
techniques  (Tu, Liu, Prabhakar, & Yao, 2006) can be applied in order to 
control what portions of the pushed data to process and to increase latency. 
Such systems include publish-subscribe (pub/sub) (Demers, Gehrke, Hong, 
Riedewald, & White, 2006) stream processing (Abadi et al., 2003), and 
complex event processing, however there is no consideration of bandwidth 
consumption. 

INTERVAL TEMPORAL LOGIC 
Interval temporal logic (ITL) is providing s solid mathematical foundation for 
processing a sequence of state. We are using concepts from ITL to validate 
the event processing model we are using in our middleware. 
The key notion of ITL (H Janicke, Cau, Siewe, & Zedan, 2012) is an 
interval. An interval σ is considered to be a (in)finite sequence of states 
σ0 , σ1 . . ., where a state σi is a mapping from the set of variables 
Var to the set of values Val. The length |σ| of an interval σ0 . . . σn 
is equal to n (one less than the number of states in the interval, so a one state 
interval has length 0). 
 



 

Figure 2: Syntax of ITL 
 

The syntax of ITL is defined in Figure 2 where µ is a constant value, a is a 
static variable (does not change within an interval), A is a state variable (can 
change within an interval), v a static or state variable, g is a function symbol 
and p is a predicate symbol. The syntax is based on [4], however uses the 
projection operator f1∆f2 as primitive and derives the operator f∗ as 
introduced in (Moszkowski, 1995). 
 
The informal semantics of the most interesting constructs are as follows: 
 

• skip: unit interval (length 1, i.e., an interval of two states). 
• f1;f2: (“chop”) holds if the interval can be decomposed 

(“chopped”) into a prefix and suffix interval, such that f1 holds 
over the prefix and f2 over the suffix, or if the interval is infinite 
and f1 holds for that interval. Note the last state of the interval 
over which f1 holds is shared with the interval over which f2 
holds. This is illustrated in Figure 3. 

• f1∆f2: (“projection”) is defined to be true on an interval σ iff 
two conditions are met. First, the formula f2 must be true on 

some interval σ′ obtained by projecting some states from σ. 
Second, the formula f1 must be true on each of the subintervals of 
σ bridging the gaps between the projected states. 

 

 

Figure 3: Informal Semantics of f1;f2 
 

An example is depicted in Figure 4. 
 



 

Figure 4: Example of Temporal Projection 
 
In the interval σ the value of K increases from 0 to 8 in steps of one. The 
interval σ satisfies (len(2))∆(K gets K + 2). (len(2)) is true 
if the interval is of length two and (K gets K +2) is true if the K 
increases by 2 from state to state. The gaps between the projected states 
(highlighted in red) are bridged by the formula len(2). The formal 
definition of this operator is given in (Moszkowski, 1995). 
 

• ¡v: value of v in the next state when evaluated on an interval of 
length at least one, otherwise an arbitrary value. 

• fin v: value of v in the final state when evaluated on a finite 
interval, otherwise an arbitrary value. 

 
The following lists some of the derived constructs used in the remainder of 
this paper. The binary operators ∨ (or) and ⊃ (implication) are derived as 
usual: 
 

• ¡f = skip;f (read “next f”), means that f holds from the next 
state. Example: ¡ (X = 1): Any interval such that the value of 
X in the second state is 1 and the length of that interval is at least 
1 

• more = ¡true means the non-empty interval, i.e., any 
interval of length at least one. 

• empty = רmore means the empty interval, i.e., any interval of 
length zero (just one state). 

• inf = true;false means the infinite interval, i.e., any 
interval of infinite length. 



• finite = רinf means the finite interval, i.e., any interval of 
finite length. 

• ¯f = finite;f (read “sometimes f”), i.e., any interval such 
that f holds over a suffix of that interval. Example: ¯X ≠ ̸1: Any 
interval such that there exists a state in which X is not equal to 1. 

• of = ר ¯ר f (read “always f”), i.e., any interval such that f 
holds for all suffixes of that interval. Example: o (X = 1): Any 
interval such that the value of X is equal to 1 in all states of that 
interval. 

• fin f= o(empty⊃f) defines the final state, i.e., any interval 
such that f holds in the final state of that interval. 

• halt f = o(empty = f) terminate the interval when f 
holds. 

• ∃𝑣 ∙ 𝑓 = ¬∀𝑣 ∙ ¬𝑓  existential quantification. 

• 𝑙𝑒𝑛 𝑒 =   
𝑓𝑎𝑙𝑠𝑒                                                𝑖𝑓  𝑒   < 0
𝑒𝑚𝑝𝑡𝑦                                        𝑖𝑓  𝑒 = 0
𝑠𝑘𝑖𝑝; 𝑙𝑒𝑛 𝑒 − 1     𝑖𝑓  𝑒 > 0

holds if the interval 

length is e. 

• 𝑣  𝑔𝑒𝑡𝑠  𝑒 = o(𝑚𝑜𝑟𝑒   ⊃ ¡v) = 𝑒       gets, i.e., in every state 
except the initial state the variable v will be assigned the value of 
e evaluated in the previous state. 

• 𝑓∗ = 𝑓  ∆𝑡𝑟𝑢𝑒 (read “f chopstar”) holds if the interval is 
decomposable into a finite number of intervals such that for each 
of them f holds, or the interval is infinite and can be decomposed 
into an infinite number of finite intervals for which f holds.  

Complex Event Processing 
Complex event processing (CEP (Luckham, 2002)) can be seen as continuous 
and incremental processing of event streams from multiple sources based on 
declarative query and pattern specifications with near-zero latency. 
In our work we consider sensor readings as events. Thus, we can see them as 
a continuous stream of events.  
An event is a basic concept of CEP. It defines something that happened. 
There are plenty of events in our every-day life, for example: a historical or 
social happening, a car accident or receiving of a text message. There are 
different formal definitions of this term in the literature (Gehani, Jagadish, & 



Shmueli, 1993; Sayal, 2004). In this text, we will use the term event as any 
happening of interest that can be observed, recorded and reacted on in a 
system.  
An event is created in two distinct steps: observation and adaptation. Firstly, 
a particular activity of a system should be observed without changes to the 
system’s behaviour. Then observed activities are transformed into event 
objects that can be processed by the CEP system. The transformation is 
usually done by special entities called adapters. 
In natural language or everyday life an event is defined as something that 
happens or is supposed to happen. This understanding is partly valid for 
events in CEP. Because in CEP an event is represented which does an object 
trigger by an activity or happening, the significance, but it is not the activity 
itself. 
An event is also not just a pure message. The form of such an event could be 
represented by a message but it also needs to cover significance and relativity. 
Dependencies and relationships between events can have different form and 
are often the main points of interest for CEP applications 
 
There are three common relationships between events (Sethi, 2001). They are: 

1. Time. Time is used to order events, defining which of the two 
events A or B happened earlier. Usually, as soon as an event is 
created, the current time is added to the event object in a form of a 
timestamp. So, timestamps define time relationships between 
events. This type of relationship depends on the clocks in the 
system. Events can have different time relationships corresponding 
to different clocks. Events’ comparability in this case depends upon 
whether the clocks are synchronized. 

1. Cause. Event A causes event B, if the activity signifying event A 
had to happen in order for activity B to happen. Accordingly, 
causality is a relationship of dependency between activities. If 
event A can happen only after event B, then event B depends on 
event A, or event A caused event B. When neither of the events 
depends on each other, we say the events are independent. The 
relationship of time and cause is expressed in the following axiom, 
which is valid for most systems: If event B is caused by event A in 
system S, than no clock in system S will give an earlier timestamp 
to event B than to event A. Consequently, if the clocks can observe 
two dependent events, they will always observe them in the same 
order. 

2. Aggregation. If the activity corresponding to event A consists of 
other activities corresponding to a set of events B1…Bn, then event 
A is an aggregation of the events Bi. In this case we say that events 
B1…Bn are members of event A. Aggregation is a mean to abstract 
events, enabling introduction of vertical dependency. Furthermore, 
the activity signified by event A is more complex than the activities 



of member events. Because of that, its signifying event is called a 
complex event. It is easy to see, that aggregation leads to a causal 
relationship between the complex event and its members. 
Activities signified by complex events often happen over a period 
of time and instead of a timestamp a time interval is used. The time 
interval starts with the earliest activity and ends with the end of the 
latest activity from the event’s members. 

Actor Model 
Handling big data in a fast and efficient way might require to process data in a 
concurrent, parallel way. The actor model has its theoretical roots in 
concurrency modeling (Hewitt, Bishop, & Steiger, 1973) and message 
passing concepts. The fundamental idea of the actor model is to use actors as 
concurrent primitives that can act upon receiving messages in different ways: 
 

• Send a finite number of messages to other actors. 
• Spawn a finite number of new actors. 
• Change its own internal behavior, taking effect when the next 

incoming message is handled. 
 
For communication, the actor model uses asynchronous message passing. In 
particular, it does not use any intermediate entities such as channels. Instead, 
each actor possesses a mailbox and can be addressed. These addresses are not 
to be confused with identities, and each actor can have no, one or multiple 
addresses. When an actor sends a message, it must know the address of the 
recipient. In addition, actors are allowed to send messages to themselves, 
which they will receive and handle later in a future step.  
Here, the actor model will help to separate processing units in a distributed 
setup. Instead of passing only messages from actors to actors, the middleware 
is also passing expression – the core logic to process data – to actors. Means, 
the policy obligations can be seen as injected behavior of an actor. Thus, the 
actor model helps to provide a foundation for the distributed hyper-scale 
setup. 

BASIC CONCEPTS 
In this section we are providing an overview of used core concepts. In 
particular, we will introduce time dependent offerings that need to be 
processed. We are also introducing a concept (policies) based on event-
condition-action paradigm so that we can express rules over continuous 
stream of data to trigger actions. Therefore, we are defining a data stream 
model and combine it with the notion of time. Finally, we explain how these 
policies can be validated against ITL logic. 



Time Dependent Service Offerings 
Properties of services are considered to be non-functional or functional. Such 
properties are used for service selection or context-based service discovery. 
The available approaches are based on the fact that properties are pulled from 
service repositories (that is from service metadata) or possibly from the 
services directly before the algorithm determine the most relevant service for 
a given context. Repositories are useful for static data and polling services 
directly works if a small number of properties of a small number of services is 
of interest. We believe that there is an emergent need to provide methods to 
enable the continuous evaluation of functional and non-functional properties 
especially in the case where the number of services is high. We define static 
properties ps as constant over time, such as a location of a printer, the vendor 
of a printing machine, or the number of a taxi etc. Temporal properties pt are 
changing over time. Using these, we define non-functional properties NFP as 
a tuple of static properties and dynamic properties: 
 

NFP(t) = ⟨ps,pt(t)⟩ 

 
For the fleet management scenario the schema of the non-functional 
properties in XML might look as follows: 
 

<NFProperties> 

  <Static> 

        <TaxiId type="xs:string"/> 

  </Static> 

  <Temporal> 

        <GEOLocation id="x"> 

          <Longitude type="xs:int"/> 

          <Latitude type="xs:int"/> 

        </GEOLocation> 

        <PassengerNumber type="xs:int"/> 

  </Temporal> 

</NFProperties> 

 
This presents the static data schema; like a snapshot in time. Temporal aspects 
are covered by events and therefore we would see different data at different 
points in time. 



Event Policies 
Policies refer to obligations placed on a service to actively communicate 
dynamic information, with respect to a given data-schema, triggered by 
events and time. Informally this means that a policy defines the granularity 
over time at which data is pushed up the service chain to aggregating services 
and end- users. 
In this work the policies are modeled similar to the well-understood Event- 
Condition-Action paradigm (Twidle, Lupu, Dulay, & Sloman, 2008; Uszok et 
al., 2003). However, the novelty of the policies used in this work is that they 
use temporal conditions that describe the distance between two consecutive 
actions that push data to aggregating services, rather than defining condition 
on the system state. The advantage of this approach, compared to existing 
temporal conditions (H Janicke et al., 2012; Helge Janicke, Cau, Siewe, 
Zedan, & Jones, 2006), is that the condition bridges between two events, thus 
does not require the storage of large amounts of historical data. 
 
Informally a policy pol is a set of rules of the following structure: 
 

<Policy> <!-- send to Service --> 

  <Rule> 

    <Source>...</Source> 

    <Event>...</Event> 

    <Condition>...</Condition> 

    <Action>...</Action> 

  </Rule> 

  <Rule> ... </Rule> 

</Policy> 

 
The <Source> of a rule is a list of services on which the <Action> of the 
rule is invoked if the rule is triggered. The <Event> of a rule is an event 
descriptor that determines when the <Condition> of the rule is evaluated. 
The descriptor is a predicate build from primitive events (e.g. a GPS-Update) 
that are domain dependent and defined in the service description. 
Conceptually the event descriptor describes an abstraction of the event trace 
over which the <Condition> is evaluated. The <Condition> describes 
the distance between events that are communicated upstream to aggregating 
services as a temporal formula. The syntax that is used is an XML 
representation of Interval Temporal Logic formulae that is described in the 
next section. 



Event Policy Validation with ITL 
Evaluating the policy pols of the service s against this interval is a two-stage 
process. 

Stage 1 
First, for every rule r ∈ pols an abstraction of the interval σs is generated 
based on the Event trigger evtr of the rule r. Currently we only consider single 
event triggers, however the formal model is supporting combined events such 
as ei ∧ ej or state formulae (i.e. ITL formulae that do not contain temporal 
operators). Conceptually this stage is generating an abstracted interval σs,r of 
the interval σs that contains only those states in which evtr is true. 

Stage 2 
Second, for every rule r the condition of the rule cndr is evaluated against the 
corresponding abstracted interval σs,r. The condition defines the distance 
between two consecutive actions triggered by the same rule. This means that 
the temporal formula cndr must hold over the subintervals of σs,r bridging the 
gaps between the projected states. 
Formally this means that the policies relate the service’s event trace, viz. the 
interval σs to actions that are performed by the service as follows: 

 
𝜎! ⊨ 𝜊ℎ𝑎𝑙𝑡(𝑒𝑣𝑡!)Δ(𝑐𝑛𝑑!Δ☐𝑎𝑐𝑡!) 

  
Here halt(evtr)∆f conceptually yields the abstracted interval σs,r over 
which the policy rule is evaluated. The condition cndr of the rule then bridges 
between two consecutive actions that are performed as a consequence of the 
rule. The rationale for separating the two steps is that the filtering of event 
streams based on simple events (evtr) can be implemented very efficiently, 
whereas the complexity of the evaluation of the conditions cndr is more 
complex and can in certain cases grow linearly with the number of states that 
are bridged. Thus the initial reduction using the event filter reduces the 
complexity of the latter evaluation. The overall service specification is then 
constructed from this as:  
 

𝜎! ⊨ 𝜊ℎ𝑎𝑙𝑡(𝑒𝑣𝑡!)Δ(𝑐𝑛𝑑!Δ☐𝑎𝑐𝑡!)
!"  !"#!

 

 
The specification of actr is not detailed here and we only consider that the 
relevant action is initiated in that state of the service interval. The model can 
be implemented straightforwardly from its semantics using some functional 
programming, resulting in the following code: 



 
//run  
// Create the source  
let evtmodel = 

[|(1,1,0);(1,0,1);(1,1,0); 
(1,0,1);(0,0,0);(0,0,1); 
(1,0,0);(1,0,0)|] 

let s = new Source() 
// example rule evaluation 
s.AsStream // selecting events Evts[0] 
|> Stream.filter( fun e -> e.p == (1,_,_))  
// show selected events, testing only 
> Stream.print ("State %d: Evts[0] = 1", e.state) 
// select every second event only 
|> Stream.len 2  
// show selected events, testing only  
|> Action (fun e ->  
printfn "State %d: Action on every 2nd Evts[0]" 
(e.Item(1).state))  
|> ignore 
// create test event trace for the service  
evtmodel |> skip s 
 

Here three events are modelled for the service, and an example trace is 
generated by the defined evtmodel. The event trigger for the encoded rule 
is Evts[0], where a value of 1 indicates that the event occurred. This is 
encoded in the first filter condition (Stream.filter( fun e -> e.p == (1,_,_)), 
which in effect generates the more abstract interval σs,r over which the second 
projection is taking place. In this example the temporal condition is selecting 
every second of the events (Stream.len 2) on which the action of the rule is 
triggered. In this proof of concept only a statement is printed out to the 
screen, but instead a message could be easily send to another service. The 
above code will produce the following output 

 
State 0: Evts[0] = 1  
State 1: Evts[0] = 1  
State 1: Action on every 2nd Evts[0]. 
State 2: Evts[0] = 1  
State 3: Evts[0] = 1  
State 3: Action on every 2nd Evts[0].  
State 6: Evts[0] = 1  
State 7: Evts[0] = 1  
State 7: Action on every 2nd Evts[0]. 

 
The event Evts[0] is raised in the states 0, 1, 2, 3, 6 and 7 as also indicated by 
the control outputs. The Action is triggered on every second occurrence of the 
event, namely in states 1, 3 and 7. 

ARCHITECTURE 
As we have pointed out above to achieve almost zero latency data processing, 
data must be available at the place where the consumer needs it. So, instead of 



pulling data at request time from data sources, data should be pushed to a data 
provider. If we apply a scan-based approach to an SOA this would mean that 
a consumer is pulling data from services (see Figure 5a). In contrast and 
event-based approach would mean that services are pushing data to a 
consumer (see Figure 5b). 

 

Figure 5: Metaphor comparison of request-response and event-based in SOA 
 
However, using event-based models is only the first step towards a faster 
processing of data in terms of providing results with low-latency. If the data 
sources are continuously pushing data to a data provider (e.g. the selector) 
there is a vast amount of overhead by unnecessarily transferring data – a 
waste of bandwidth. We introduced event policies on the data source so that 
we can control when and which data is pushed to the consumer. These 
policies can be as smart as possible by using various sets of information, such 
as the prioritization of the data. Consider for example an alarm situation with 
cascading alarms. Such a system has to ensure that the most severe alarms are 
delivered and the bandwidth is not occupied with unimportant information. 
Thus, policy obligations executed on smart data sources – intelligent objects – 
should enable low capacity filtering by being context-aware. 

Conceptual Architecture 
As a central instance we use a Mediator (see Figure 6). This Mediator 
encapsulates the processing of the incoming request from the consumer side 
and the incoming events from the service side and maps both. The Mediator is 
a service and exposed operations (methods) map internally to specific queries. 
Thus, during runtime the Mediator is receiving continuous streams of events 
from subscribed services. Then, an incoming consumer request is handled as a 
query on subscribed service properties. Instead of pulling at request time all 
the data from all services the mediator knows at any time the status of all 
services. Therefore, this allows for service selection in real-time independent 
of the number of services. 



 

Figure 6: Logical mediation service architecture 

 
An event will contain metadata and payload. The metadata contains 
information about the time when the event was created on the publisher side. 
The schema of the subscribed topic, such as temperature or vibration, defines 
the payload. New event policies are injected via the Mediator into the correct 
service (publisher). 

Event Mediator 
The Event Mediator exposes an endpoint to collect all incoming events from 
registered services. Its responsibility is to normalize the incoming data 
streams. Usually, not all events provide the same data structure and therefore 
the Event Mediator maintains a mapping table to transform incoming events 
from endpoints into a normalized data stream. Let’s assume the Service1 
provides events containing temperature in Celsius while Service2 provides the 
temperature data in Fahrenheit. The Event Mediator normalizes event streams 
internally before the event data is forwarded to the Information Mediator via 
the event processing component. 
In addition the Event Mediator is able to detect missing events since the 
refresh time is set within the subscription process. Here it is possible to apply 
different retention policies to react to missing events, such as simply ignore 



missing events, use the latest event until a new event arrives, or raise an 
exception because the absence of an event is an exceptional case. How to 
handle missing events depends on the scenario and does not require a general 
solution. 

Information Mediator 
The Information Mediator maps consumer request to queries on continuous 
event streams provided by the Event Mediator. On the consumer side the 
framework still offers a normal Web Service interface, which internally needs 
to be transformed into a query, which is executed over the event stream. The 
Information Mediator also ensures the quality of the events from event 
streams, such as duplicated events or out-of-order events.  

MIDDLEWARE 
In this section we will show how event processing within the mediator and 
event polices can be expressed Since a stream S is considered as an (in)finite 
sequence of events ei. In general streams can be filtered, mapped, or zipped 
(joined). While each of these operations produces a new output stream 
operators can be piped (|>). In pseudo-code filtering for odd numbers and 
multiplying them with 2, could look like this: 
 

source  
|> filter(x -> isOdd(x))  
|> map (x -> x *2)  
|> action 

 
Joining two streams will look like this: 
 

source1 |> zip(source2) |> action 

 
This is exactly what we have explained in basic concepts with event policies, 
which have the form of  

source |> condition |> action 

 
In our middleware there are the following core elements (see Figure 7) as 
described in basic concepts as an ECA policy: 
 

• Source (src) produces or injects a continuous stream of events. There 
are several implementations of a source. A simple one is the 
RandomSource, which creates random values by a given interval. The 
PushSource exposes an endpoint to which events can be pushed form 
outside or actions. A PullSource can be used to get data in a request-



response way. The sources enable the convergence of pull and push 
systems. 

• Condition (cnd) defines the transformation of events as a pipeline 
with operators like filter, map, zip, …. 

• Action (act) triggered by the condition result. An action can either 
simply sends out the event to other sources can trigger an action or 
simply output the result. The action is also used to hold the final state 
for a request. 
 

In addition to these core elements we define the following additional 
concepts: 
 

• Expression is defined by source, condition, action expr = do:  
source |> condition |> action 

• ReActor is lightweight container for expressions. A ReActor is an 
extended actor since the actor behavior is injected 
ReActor.send(reactor, expr). Please note that a ReActor 
is not a component that is reacting to things, so read “Re-Actor” and 
not “reactor”). A ReActor instance is defined by its unique process 
identifier (PID). 

• Node is process hosting multiple ReActors. A node can be identified 
by its unique node identifier (NID). 

 

 

Figure 7: Terminology of ReActor middleware 
 

ReActors can be connected with sources and actions. By connecting ReActors 
it is possible to build highly distributed and scalable processing pipelines. 
Here we are benefiting from the actor approach. Compared to classical actor a 
ReActor is not only encapsulating his state and can receive events, it is 



possible to inject the behavior of an actor. This is an extension to the original 
actor model. 
We can find similar approaches in Cloud Haskell (Epstein, Black, & Peyton-
Jones, 2012) where closures can be serialized to a mailbox as expressions or 
functions. This is more restricted to closures and is not as complete as our 
approach. In Orleans (Bykov et al., 2011) we can find a actor model 
implementation on C#/.Net but the flexibility is limited to sending around 
behavior in form of expressions. 
The notion of sources and actions allow us to have a flexible integration of 
push-based and pull-based approaches. With PullSources classical REST 
services can be integrated (see Figure 8). Another novelty is the lightweight 
nature of a ReActor. While other systems, like Yarn, are realizing this as 
processes, a ReActor is simply an actor. With having a supervisor it is 
possible to even build a reliable system.  
 

 

Figure 8: ReActor topology 
 

Implementation 
The middleware is ideally realized on top of a functional programming 
language, such as Haskell (https://www.haskell.org), F# () or Erlang 
(Armstrong, 1997, 2010; Larson, 2009) because expressing ITL logic in a 
functional programming language is straight forward..  
Haskell is the purest functional programming language and would be ideal to 
translate ITL logic into functions. But Haskell has limitations in terms of 
actor model and distribution. As mentioned the Cloud Haskell project is 
trying to build an actor comparable framework but the project is not mature 
enough compared to F# or Erlang regarding this aspect.  
F# is not a pure functional programming language. It is a mixture of OOP 
concept and functional elements. Expression ITL logic as functions is feasible 



and there are several actor model implementations for F#, like AKKA, but 
serialization of expressions is quite difficult. 
The actor model in Erlang is providing a great foundation for the hyper-
scaling setup. It can be seen a first class citizen within the Erlang framework. 
In fact, Elixir (http://elixir-lang.org) is used for Reactor. Elixir is an extension 
on top of Erlang. In Elixir everything is an expression and can be serialized 
easily to other instances. This build-in functionality in combination with the 
superior actor model implementation makes Elixir the first choice for 
realizing our ReActor middleware.  
Consider Figure 9, which shows the taxi scenario in a simplified version. The 
logic to find the nearest taxi is described as a set of expressions considering 
the topology. Here it is simple since we do have only on server and multiple 
taxis. The expression on the taxi is sending an update event to the server only 
if the taxi has changed its position by more than 50 meters and is available. 
The ReActor on the server is collecting the taxi events and keeps the state. 
Whenever a customer is asking for a taxi providing his GEOlocation, the 
Reactor has to find the taxi at that rime with minimal distance to the 
customer.  
 
To enable a processing pipeline end-2-end follows these steps: 
 
Step 0: Client node (NID#1) registers itself in registry 

Step 1: Author the expression 

Step 2: By calling Node.start(…) expression will be send to the node 
with NID#2 

Step 3: The node with NID#2 will start a new ReActor instance hosting the 
given expression (expr1) 

Step 4: The ReActor will register itself at the Registry. In this case with the 
tag “GetNearestTaxi” which needs to be defined during expression definition. 

Step 5: Next expression will be send to node with NID#1 

Step 6: The node with NID#1 starts a ReActor with given expression (expr2). 
This can be scaled out to multiple nodes, such as taxis in our example. 

Step 7: The new ReActor will register itself at the Registry 

Step 8: Finally, the Reactor in NID#1 sends data to ReActor in NID#2 

Step 9: Let’s assume there is a customer looking for the nearest taxi. He has 
to provide his GEOLocation and calls the Information Mediator endpoint. 

Step 10: The Information Mediator finds the ReActor with tag 
“GetNearestTaxi” in registry 

Step 11: Without any delay the Information Mediator collects state from 
ReActor and sends this back to customer. 



 

 

Figure 9: ReActor usage 
 

EXPERIMENTAL RESULTS 
The mediator approach with filtering of events at the source was developed to 
address two key problems, namely  
 

1. a need to provide replies with near zero latency  
2. a requirement to reduce the amount of data transfer (recall that 

this was large because of the amount of small messages, not 
because the data in itself being intrinsically large).  

 
The experimental validation was geared towards proving these two aspects, so 
we conducted two evaluations: (1) we measured the latency of finding a result 
using the pull model compared with a push model and (2) counted the number 
of messages occurring during a one second time interval in the push model 
and combined pull-push model. The overall setup considered setting with up 
to 60000 data sources. 

 



 

Figure 10: Latency of scan-based approach (pull) vs. event-based approach 
(push) 

Testing pull and push approaches is quite complex since there is a big number 
of data sources required to get some significant results. Nonetheless, we had 
to distinguish between pure latency as a result of the different concepts and 
latency caused by physical setup, such as network latency and latency used by 
semantic processing. For testing we decided to run everything on one 
machine and to simulate each data sources as a small object in our test setup. 
This object can be seen as an atom, a logical, self-contained unit. By having 
all simulated data sources in memory on one machine we can say that latency 
caused by the physical setup can be neglected. The simulated objects (data 
sources) were simply holding a random value and the query in the setup was 
to find the object whose value is the closest to a given number. This simple 
setup matches the taxi example where the value would represent the geo 
position of the taxi and the given number would be the customer geo position, 
but also reflects the typical scenario where we see the approach apply. In the 
pull approach we are iterating over all objects (simulated data sources) and 
are trying to find min(value-number). In the push approach the objects 
are pushing their number to the mediator and we run a query over this data, 
such as 

 
values  
|> filter (x -> (x-number))  
|> (take 10).Min()  
|> out 

 
The results are presented in Figure 10. While the latency is increasing 

linearly for the pull approach, it remains almost constant for the push 



approach. We also find that all values for the push approach are far lower than 
those for the pull approach, with for example approx. 4ms vs. 65ms for 60000 
data sources. This clearly indicates that the push approach is superior 
compared to the pull approach in terms of latency and the trends show that for 
a growing number of data sources as those expected in scenarios like the 
Internet of Things is delivering performance close to no latency. We also 
want to point out that this is the pure measured latency ignoring network and 
processing delays – once these are added as additional factors to the 
evaluation, latency will become rapidly worse for the pull approach as much 
more communication and more processing is needed compared to push 
approach which remains constant for the full spectrum (albeit a little slower in 
real terms than measured in the isolated setting). 
The drawback of the push approach is the number of data items send from the 
data sources to the mediator. Therefore, we have introduced policies in our 
approach to avoid that messages are polluting the network unnecessarily. The 
second validation is comparing the number of messages send in a one second 
interval in pure push approach compared with the number of messages which 
sent in a push approach with filtering. The latter is expected send fewer 
messages because of the injected policy. For testing we extended the objects 
with another random value representing a state (on or off). The status here is a 
random number, either 0 or 1. The rule is saying that the objet should push 
only messages when the state is 1. Figure 11 shows the results as we 
expected. With a simple rule we can roughly save 50 percent of exchanged 
messages (based on the randomly changing values). It is clear that with even 
more specific rules and real data the number of messages can be further 
reduced.  

 



 

Figure 11: Event-based approach with injected rules and without 

Overall, both simple tests highlight how (1) using the push approach with 
mediator and (2) rule injection on the data source can be combined to form a 
promising architecture supporting low-latency for large systems. 
 

CONCLUSION 
We presented a new approach, which combines event processing based on 
interval temporal logic for fast data processing for SOA and event-based 
systems. Our approach investigates processing of service offerings with a 
huge number of potential services or data sources. By combining NFP-based 
selection with ITL we have grounded dynamic properties on a valid formal 
model. We presented a way to use ITL to express event policies as ECA rules 
which should be executed close to the sources to enable an accurate view of a 
large scale system at any point in time and to reply to consumer requests with 
almost zero latency. The sources (in our example taxis) are notifying the 
mediation service about any state change defined by policies thus the 
mediation service can (1) reason about the incoming streams and reply 
immediately to consumer requests and (2) the mediation service can make 
assumptions in terms of missing data and forecast likely future behavior. 
By using the ReActor approach we are providing a concept which is not 
limited to any SOA base approaches. The usage of the sources concept 
enables to integrate in any existing system. Requirements like scaling and 



distribution are covered by the extension of the actor model. This enables to 
avoid bottlenecks and single point of failures. Via ReActor we can easily 
scale to a number of actors, which is required. 
The next steps of our work will investigate more complex policies to be 
executed at the sources, such as the direction and speed of a taxi in addition to 
its position. We will also look into the prediction capabilities of our approach. 
Since the mediation service is aware of the lifetime of the information of each 
node it can look into the future to predict certain results. In future work we 
will also further validate and investigate limitations of our approach. 
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