
Matching Customer Requests to Service Offerings in Real-

Time

Marcel Tilly
European Microsoft Innovation Center

Ritterstrasse 23
Aachen, Germany

marcel.tilly@microsoft.com

Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester
Leicester, UK

srm13@le.ac.uk

ABSTRACT

Classic request-response Service-oriented architecture (SOA) has

reached a level of maturity where SOA inspired extensions are

enabling new and creative domains like the Internet of Things,

real-time business or real-time Web. These new domains impose

new requirements on SOA, such as a huge data volume, mediation

between various data structures and a large number of sources that

need to be procured, processed and provided with almost zero

latency. Service selection is one of the areas where decisions have

to be made based on consumer requests and service offerings.

Processing this data requires typical SOA behavior combined with

more elaborate approaches to process large amounts of data with

near-zero latency. The approach presented in this paper combines

pub-sub approaches for processing service offerings and

mediations with classical request-response SOA approaches for

consumer requests facilitated by Complex Event Processing

(CEP). This paper presents a novel approach for subscribing to

dynamic service properties and receiving up-to-date information

in real-time. Therefore, we are able to select services with near-

zero latency since there is no need to pull for property values

anymore. The paper shows how to map requests to streaming data,

how to process and answer complex requests with low latency and

how to enable real-time service selection.

Categories and Subject Descriptors

H3.4 [Systems and Software]: Current awareness systems,

distributed systems and user profiles and alert services

General Terms

Algorithms

Keywords

Mediation, Service Selection, Complex Event Processing, Non-

Functional Properties, SOA.

1. INTRODUCTION
Nowadays businesses as well as the Web require for

information to be available in real-time in order to reply to

request, make decisions and generally stay competitive. This in

turn requires for data to be processed in real-time. In general in

service-oriented architecture (SOA) we are less concerned about

latency of data processing. Clearly, there are investigations of

service-level agreements (SLA) and quality of service (QoS) to

guarantee service delivery. Based on this, several approaches on

monitoring SLAs have emerged and solutions to find most

relevant services for a given context have been developed. Most

of this work is assuming that the relevant information for decision

making is available and accurate.

Properties for service selection are considered to be non-

functional or functional, and the available approaches are based

on the fact that properties are pulled from service repositories

(that is from service metadata) or possibly from the services

directly before the algorithm determines the most relevant service

for a given context. Repositories are useful for static data and

polling services directly works if a small number of properties of a

small number of services is of interest. We believe that there is an

emergent need to provide methods to enable the continuous

evaluation of functional and non-functional properties especially

in the case where the number of services is high [1].

Let‟s assume there is a user who tries to locate the nearest

printer with the shortest print queue because he has a deadline and

needs to print out an important report. Therefore, the system

needs the location of the user, typically part of a user profile, the

geographical location of the printers, and information about the

print queue of each printer. In service selection, an algorithm

compares the location of the user with the location of the printer

taking into account the number of documents in each print queue.

There are several approaches which are able to identify the most

relevant printer within a given context – so this is not the

challenge we are tackling in this paper; we are interested in

obtaining the data that is used for the decision making. The

geographical location is static information – it does not change

continuously over time. We will be using the term static property

for properties whose values are static over time. The number of

documents in the print queue is not static – it is time dependent

and changes over time as documents are printed or new

documents are added to the queue. Hence the length of the print

queue is a dynamic property.

It is quite challenging to get an accurate view of this data

with classic request-response approaches which are usually

employed in SOA. Consider the number of printers within a

company, all taxis of a company within a city, or even the shuttle

service on a large company campus. Here the number of possible

services, namely printers, taxis, or shuttles is high. In addition the

length of the print queue or the geo location of taxis or shuttles

change very frequently – they are highly dynamic properties.

Using a typical request-response approach every time a user asks

for a taxi the system has to poll all the taxis‟ geo locations and

other properties just to be able to identify the most relevant one

for the request – if we consider that this might be 50 or even 100

taxis we get a feeling for the scale. In such realistic settings it is

becoming quite challenging to answer a simple question such as

„find the nearest shuttle to my location‟ quickly.

We already identified a need for methods for continuously

evaluating properties. We can define this more crisply as a need

for an approach delivering dynamic service properties at any time

to support service selection from huge lists of services.

In this paper we consider the use of complex event

processing to enable a real-time view of dynamic service

properties to enable a fast and accurate view of their values with

an application in real-time service selection. Our approach can be

seamlessly integrated with existing service selection approaches.

We present a novel architecture, data model and selection process

to put the above into practice.

Basically, we propose to combine existing request-response

approaches (the pull model, Figure 1(a)) with publish-subscribe

techniques (the push model) (Figure 1(b)).

Consumer

Provider A

Provider B

Provider C

(a) Pull model to get
service propterties

Consumer

Provider A

Provider B

Provider n

(b) Push model to get informed about
service property changes

...

sm
a

ll
 n

u
m

b
e

r
o

f
p

ro
v
id

e
rs

b
ig

 n
u

m
b

e
r

o
f

p
ro

v
id

e
rs

Section 2 presents a motivating example, enforcing the need

for the mechanisms presented, while section 3 provides some

essential background work. Sections 4 and 5 represent the core of

the paper where we introduce the architecture and selection

process respectively. Section 6 points to some related work while

section 7 concludes the paper and provides an outlook to further

work.

2. Motivating Example
We will introduce one example to highlight the necessity of

our approach. This approach is useful in all scenarios in which we

need to select services from a large set of services which one can

usually find in sensor networks, e.g.

 Wireless traffic sensor networks to monitor vehicle traffic on

highways or in congested parts of a city.

 Wireless surveillance sensor networks for providing security

in shopping malls, parking garages, and other facilities.

 Wireless parking lot sensor networks to determine which

spots are occupied and which are free.

In fleet management, like taxi companies, with a large

amount of taxis it is almost impossible to use the classical request-

response approach to find the nearest taxi for a given user

location. Therefore the fleet management must be aware of the

taxis location at any given time. But there is usually also no need

to store all the provided locations of all taxis forever. The

management system only requires the latest data to process a user

request to locate the nearest taxi. There is no necessity to persist

the data for later use.

In the scenario (see Figure 2) there is a customer with a given

geo location requesting a taxi. The fleet management system has

to identify the most relevant taxi in terms of (1) availability and

(2) proximity to the customer‟s location. There are two taxis, A

and C, which are close to the customer‟s location but they are not

available. Taxi B is the closest which is available. Of course the

fleet management could take traffic information into account, and

then maybe taxi D becomes the best solution because it is

reasonably close, available and might arrive earlier because of

beneficial traffic conditions.

This scenario shows (1) how different kind of properties of

taxis (here: availability and geo location) and (2) properties of

different services (here: taxi and traffic) are used to select

services. Furthermore, the geo location and the traffic information

are data which changes rapidly and it does not make sense to store

all of this data because it is only relevant when a service has to be

selected.

3. Background
This section introduces the basic ideas which we combine to

improve service selection and mediation approaches for consumer

requests in real-time. Thus, we will also provide a short

introduction to complex event processing (CEP) which we use to

process dynamic service properties.

Many SOA efforts are focusing on implementing

synchronous or asynchronous request-response interaction

patterns. This approach works for highly centralized environments

and create loose coupling for distributed software components. It

tends to create tight coupling and added dependencies for

business processes at functional level.

Figure 1: Metaphor change from pull to push model

Figure 2: Taxi management using geo location, availability

and traffic information

While this is not true on the conceptual level it is still very

valid on a technical level. On the conceptual level SOA already

achieves loose coupling this is not available on the

implementation level. On this level the consumer in most cases is

coupled to a concrete service by generating a proxy based on

interface definitions, such as WSDL.

Thus, in the migration towards real-time enterprises which

are also constantly connected and always available on the web, we

have to rethink the current approaches and have to investigate

alternative approaches and design patterns in addition to

synchronous request-driven SOA.

3.1 Complex Event Processing
Complex event processing (CEP) is the continuous and

incremental processing of event streams from multiple sources

based on declarative query and pattern specifications in quasi real-

time with near-zero latency as described in [2]. CEP is a set of

techniques and tools helping to understand and control event-

driven information systems. It consists of very simple techniques

– a set of old and new ones – from which some are well-known,

such as rule-based systems and others are novel techniques, such

as tracking causal histories of events in large distributed computer

systems. Therefore, the approach of using CEP for our approach

is very promising.

A complex event is an event which aggregates incoming

source events that are related in various ways, such as by cause,

by time, or by membership. CEP makes use of relationships

between events to answer questions like:

 “Is our system doing the things it should do?”

 “Will our shipment arrive on time?”

 “Is something going wrong in our production line?”

CEP is applicable to a many information systems and in fact

is already used in e.g. analysing click-streams of users in the

internet. It helps to define and utilize relationships between

events. In addition it is also flexible because a user can specify the

events and their relation at any time. In these efforts, the goal is to

build a data management system that handles data streams as first

class citizens. These systems use SQL like query languages in

order to express queries on the data streams. We will be using

CEP as a system to process incoming events and provide a real-

time view to the subscribed service properties.

4. Basic concepts
In our work, services offer dynamic properties to which

consumer can subscribe, such as the dynamic GeoLocation

property of a taxis service and the number of current passengers

from which the system can derive if the taxi is available or not.

We envision that our approach can be adopted easily as it

only requires the addition of two interfaces: (1) The publisher

endpoint is exposed on the service side to which the consumer can

register or subscribe to events and (2) the subscriber endpoint is

exposed by the consumer to enable the services to fire events in a

fire and forget fashion (see Figure 3).

The publisher interface which enables the registry to subscribe to

a set of dynamic properties provides two operations:

Subscribe(topic, refresh time, endpoint): Id

 topic: the topic to be subscribed to, using dot notation

such as Dynamic.GEOLocation

 refreshTime: how often should events be send out

 endpoint: the endpoint of the publish event operation

 Id: Unique registration id for the subscription

Unsubscribe(Id)

 Id: Unique registration id

The subscriber interface offered by the consumer provides only

one operation:

PublishEvent(event)

An event event is a tuple of values event=<se, ts, te, p>,

containing service endpoint address se, time information ts and te,

and payload p. The time information defines the valid start time ts

and end time te of the event and the payload is defined by the type

of the subscribed topic. For example the GeoLocation could be

defined as record with Longitude and Latitude, both of the XML

schema type xs:int.

As described in [3] processing of streaming data is an

important practical problem that arises in time-sensitive

applications where the data must be analyzed as soon as they

arrive, or where the large volume of incoming data makes storing

all data for future analysis impossible. Stream processing has

become a hot research topic in several areas including stream data

mining, stream database or continuous queries, and sensor

networks.

We define static properties ps as constant over time, such as a

location of a printer, the vendor of a printing machine, or the

number of a taxi etc. Dynamic properties pd are changing over

time. Using these, we define non-functional properties NFP as a

tuple of static properties and dynamic properties:

NFP(t)=<ps, pd>.

For the fleet management scenario the schema of the non-

functional properties might look as follows:

<NFProperties>

 <Static>

 <TaxiId type=”xs:string”/>

 </Static>

 <Dynamic>

Figure 3: Pub/Sub endpoints

 <GEOLocation>

 <Longitude type=”xs:int”/>

 <Latitude type=”xs:int”/>

 </GEOLocation>

 <PassengerNumber type=”xs:int”/>

 </Dynamic>

</NFProperties>

This presents the static data schema; like a snapshot in time.

Temporal aspects are covered by events and therefore we would

see different data at different point in time.

Since temporal dynamic properties are defined as time

dependent we can see them as discrete events and use standard

temporal algebra approaches to reason over them. Current

temporal algebra research and solutions are focusing on complex

event processing. Therefore, we can use on consumer side rule

based approaches to select and project events from data streams.

SQL-like syntax can be used to express complex aggregations and

correlations on those event streams, such as

Select e from s where Op(e)

with

e: event from stream

s: event stream

Op: Operation on events from stream

5. Architecture
As a central instance we still use a Registry. This Registry

encapsulates the processing of the incoming request from

consumer side and the incoming events from service side and

maps both. To setup the system there is a need that for a potential

consumer request (here: Find a taxi) the system has to identify all

services and subscribe to the relevant non-functional properties

which will support our service selection during runtime (see

Figure 4).

Thus, during runtime the Registry is receiving continuous

streams of events from subscribed services. Then, an incoming

consumer request is handled as a query on subscribed service

properties.
Instead of pulling at request time all the data from all

services the registry knows at any time the status of all services.

Therefore, this allows for service selection in real-time

independent of the number of services.

An event will contain metadata and payload. The metadata

contains information about the time when the event was created

on publisher side. We are enriching this time information also

with subscriber time information when the event enters the

subscribers system. The payload is defined by the schema of the

subscribed topic, such as GeoLocation containing Longitude and

Latitude.

5.1 Request Mediator
The Request Mediator exposes an endpoint to collect all

incoming events from registered services. Its responsibility is to

normalize the incoming data streams. Usually, not all events

provide the same data structure therefore the Request Mediator

maintains a mapping table to transform incoming events from

endpoints into a normalized data stream. Let‟s assume the

service1 provides events containing GEOLocation and

availability while service service3 provides the data as

MyLocation and Customer_Number. In our current

implementation we are simply using XSLT scripts to normalize

event streams internally before the event data is forwarded to the

Information Mediator.

5.2 Information Mediator
The Information Mediator maps consumer request to queries

on continuous event streams provided by the request mediator. On

the consumer side the framework still offers a normal Web

Service interface which internally needs to transform into a query

which is executed over the event stream. Ideally this queries are

not hard coded somewhere but they are stored in a repository to

be adaptable during runtime.

The Information Mediator also ensures the quality of the

events from event streams, such as duplicated events or out-of-

order events. Here, our approach benefits from the CEP work. The

specific time information we are adding to the event helps to

control the quality of events and result. While valid start time and

valid end time are generated at service side the Information

Mediator also added internal time information (called: System

time) to the events. Within the Information Mediator internal

clock increments are used to move time forward decoupled from

external sources. Thus, the order of events is guaranteed and the

quality of the results can be ensured. Basically, this is a classical

CEP topic (see [4]) and the approach is simply benefiting from

using CEP technology here. In addition the Information Mediator

is able to detect missing events since the refresh time is set within

the subscription process. Here it is possible to apply different

policy to react on missing events, such as simply ignore missing

events, use the latest event until a new event arrive, or raise an

exception because the absent of an event is an exceptional case.

How to handle missing events depends on the scenario and does

not require a general solution.

Basically, the decoupling of information and requests helps

to integrate other flexible work into our solution. Thus, it is easy

to improve the request mediator with some more sophisticated

Semantic Web Service implementation if needed.

Figure 4: Concept of using pub/sub for service selection

Registry

Service 1

Consumer Request

Service 2

Service 3

Service n

...

Continous
Query

Processor

Request to
Query

Translator

Request a taxi Find nearest available taxi
Subscribe to GEOLocation and

CustomerNumber changes

6. Validation example
Let us go back to the taxi management scenario to illustrate

the presented theory with a simple example. We will not describe

how a service (in this case a taxi) is sending messages („events‟)

via soap request to the request mediator. However, an event looks

like this:

E1= <

se=’http://www.contoso.com:8080/taxi3’;

ts=2010-08-20 10:30:30;

ts=2010-08-20 10:30:40,

p= <

 MyLocation.Longitude=12;

 MyLocation.Latitude = 10

 Customer_Number = 1

>

>

The event E1 is provided by the endpoint taxi1 with a valid

timespan of 10 sec. (te-ts). The payload for taxi3 is MyLocation

and Customer_Number. The Request Mediator tranforms the

payload into the normalized payload for the query. Thus, the

event E1‟ looks like:

E1’= <

se=’http://www.contoso.com:8080/taxi3’;

ts=2010-08-20 10:30:30;

ts=2010-08-20 10:30:40,

p= <

 GEOLocation.Longitude=12;

 GEOLocation.Latitude = 10

 Available = false

>

>

The Information Mediator adds system time information to

the events and checks if other events can be discarded already.

For a user request at a given time t we only have to take into

account the events in which time t is part of events‟ valid time

interval (see Figure 6). In the sample this is event e13 for taxi 1,

event e22 for taxi 2, and event e32 for taxi 3. The Information

Mediator uses only these events to execute the query to find the

nearest taxis for the given user location which is available. That‟s

it – one simple query and a reply in real-time.

7. Related Work
While much focus has been given to efficient data processing

methods that support complex data needs (expressed for example

by queries or user profiles), less attention has been given to

efficient data gathering methods in SOA for service selection and

mediation.

As already mentioned there is a lot of work about service

selection based on non-functional properties. [5] provides a

survey and classification of service selection based on non-

functional properties. Most of the related work on using non-

functional properties for service selection concentrates on

defining QoS (Quality of Service) ontology languages and

vocabularies and identification of various QoS metrics and their

measurements with respect to semantic services. In [6] QoS

ontology models are defined while [7] separates different non-

functional criteria into different service categories. This is more

sensible than ranking all kinds of services by using the same

Figure 6: Event streams of taxi 1 to 3

Figure 5: General architecture of continuous event processing for service selection

predefined criteria and hence not considering the different

attributes that occur with specific services. The key feature of this

approach is about incorporating the Logic Scoring of Preferences

(LSP) for ranking different services. In [8] there is also a strong

focus on efficiency of the algorithm but not on gathering,

collecting and aggregating properties for the algorithm itself.

Bonifati et. al. [9] describes a very interesting approach for

using active rules for pushing reactive services. The combination

of this approach with our approach would need some further

investigation but looks promising as an end-to-end solution for

pre-filtering on service side to reduce network traffic and to

correlate and aggregate on consumer side for real-time service

selection and adaptability. Roitman et. al. [10] presents a

framework for satisfaction of complex data needs involving

volatile data. But the focus is on pull-based environments.

With push based systems, data is pushed to the system and

the research focus is mainly on aspects of efficient data

processing, where load shedding techniques [11] can be applied in

order to control what portions of the pushed data to process and to

increase latency. Such systems include publish-subscribe

(pub/sub) ([12]), stream processing ([13]), and complex event

processing.

But all these systems do not combine their approach with

SOA to improve service selection. Pub-sub systems allow the

registration of complex requirements at servers and focus mainly

on the trade-off between data processing efficiency and the

expressiveness of the queries that can be processed by the system.

Stream processing systems are also push-based in nature and

focus mainly on smart filtering and load shedding techniques.

Complex event processing systems assume the pushing of a

stream of raw events and focus mainly on efficient complex events

and situations identification only.

8. Conclusions and Future Work
We presented a new approach which combines CEP with

service selection approaches to enable a new set of scenarios for

service selection. Our approach investigates service selection

problems with a huge number of potential services and highly

dynamic service properties. We presented an easy way to

seamlessly integrate our approach into existing service selection.

We presented a way to subscribe to specific dynamic properties.

This enables the service selection to be faster in their selection

process and more accurate by having more real-time data. This

was achieved by replacing the classical pull approach with a push

approach.

The next steps are to provide more validation results and to

extend it towards situations where services do not offer exactly

the same dynamic properties. We believe that we can easily adapt

work from semantic web and mediation approaches. We will also

investigate into the usage of formal temporal algebra to ground

dynamic NFP-based selections on a valid formal model.

In addition we will also investigate if the approach can also

improve service composition by using context information or user

data in real-time.

9. References

[1] D. Chou, "Using Events in Highly Distributed

Architectures," The Architecture Journal, 2008.

[2] D. Luckham, The Power of Events: An Introduction to

Complex Event Processing in Distributed Enterprise

Systems, Amsterdam: Addison-Wesley Longman, 2002.

[3] A. Riabov and Z. Liu, "Scalable planning for distributed

stream processing systems," Proceedings of ICAPS,

2006.

[4] R.S. Barga, J. Goldstein, M. Ali, and M. Hong,

"Consistent Streaming Through Time : A Vision for

Event Stream Processing 2 . CEDR Temporal Stream

Model," General Systems, 2007.

[5] H. Yu and S. Reiff-Marganiec, "Non-functional

property based service selection: A survey and

classification of approaches," Proc. of 2nd Non

Functional Properties and Service Level Agreements in

SOC Workshop (NFPSLASOC’08), Citeseer, 2008.

[6] I. Papaioannou, D. Tsesmetzis, I. Roussaki, and M.

Anagnostou, "A QoS ontology language for web-

services," 20th International Conference on Advanced

Information Networking and Applications, 2006. AINA

2006, 2006, p. 6 pp.

[7] S. Reiff-Marganiec, H. Yu, and M. Tilly, "Service

selection based on non-functional properties," Service-

Oriented Computing-ICSOC 2007 Workshops, Springer,

2009, p. 128–138.

[8] T. Yu, Y. Zhang, and K. Lin, "Efficient algorithms for

Web services selection with end-to-end QoS

constraints," ACM Transactions on the Web, vol. 1,

2007, pp. 6-es.

[9] A. Bonifati, S. Ceri, and S. Paraboschi, "Pushing

reactive services to XML repositories using active

rules," Computer Networks, vol. 39, 2002, pp. 645-660.

[10] H. Roitman, A. Gal, and L. Raschid, "Web Monitoring

2.0: Crossing Streams to Satisfy Complex Data Needs,"

Proceedings of the 2009 IEEE International Conference

on Data Engineering, IEEE Computer Society, 2009, p.

1215–1218.

[11] Y.T. Song, L. Sunil, P. Bin, and W. Lafayette, "Load

Shedding in Stream Databases : A Control-Based

Approach," Framework, pp. 787-798.

[12] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W.

White, "Towards expressive publish/subscribe systems,"

Advances in Database Technology-EDBT 2006, 2006, p.

627–644.

[13] D. Abadi, D. Carney, U. Cetintemel, and M, "Aurora: a

data stream management system," Management of data,

2003.

