
A Backwards Composition Context Based Service
Selection Approach for Service Composition

Hong Qing Yu and Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester
Leicester, United Kingdom

Email: {hqy1,srm13}@le.ac.uk

Abstract—In SOA applications are built from individual ser-
vices offered by different providers. Typically an application com-
prises of several such services usually stemming from different
providers leading to the question of which services to select and
compose. We present the new concept of composition context
together with a novel service selection algorithm. The approach
has been evaluated in our test bed and shows good scalability.

I. INTRODUCTION

In SOA (Service-Oriented Architecture), services are de-
fined as “self-contained, self-describing, modular applications
that can be published, located and invoke across the Web”
[TRPA06]. These characteristics allow services to be selected
and composed easily at software design time. However, one ul-
timate goal of SOA is to go beyond design time to dynamically
compose service at runtime. With the Semantic Web [FLP+06]
and the Business Process Specification Language (e.g. BPEL
[Org07]) developing, achieving this goal is becoming more and
more realistic. Meanwhile, many challenges are still existing
on the road. One of the most important question is what
kind of information should be considered for service selection
and composition at runtime. Currently, researchers suggest
three aspects of information: Service IOPE [CV04], Service
QoS (e.g. [JWJY08], [WU+08]) and Business rules/policies
(e.g. [OYP03], [SGS09]). In this paper, we introduce a new
aspect, composition context information, to drive runtime
service selection and composition. The composition context
includes service non-Functional properties, the collaboration
and communication history between services and business col-
laboration constraints between different organizations. Since
the composition context has its own features, which are
different from other information aspects, it introduces some
unique research issues. The main contributions of this paper
are:

• We introduce a new concept of composition context and
its classifications.

• We develop a backwards composition context based ser-
vice selection approach (BCCbSS) for service composi-
tion.

• We adopt the Type-based Logic Scoring Preference Ex-
tension (TLE) service selection method [YRM08] inside
the service composition approach.

The rest of the paper is organized as follows. We firstly
study two service composition scenarios in detail to discuss

what kind of information affects the service composition
and then present the composition context in section II. Then
the research problem and challenges are clearly defined in
section III. The composition context based service selection
mechanism is illustrated in section IV. The evaluation results
are discussed in section V. Finally, related work, conclusion
and future work are drawn in section VI and section VII.

II. DEFINING COMPOSITION CONTEXT

Let us study the real world service composition scenarios of
organizing a meeting and planning a trip. The main purpose of
studying these scenarios is to understand in more detail about
what information influences the selection of services in con-
junction with each other. Clearly, there is a need to organize
the results: we will call the resulting structure composition
context. We consider two scenarios as the introduce different
aspects relevant to composition. We could of course create
an artificial scenario with all aspects, but we feel it better to
use real examples from our industry partners in the inContext
project.

A. Organizing a meeting

A meeting is required to be held for discussing a plan to
deal with an emergency [TRMY07]. Organizing a meeting
involves a series of tasks. The tasks include searching suitable
participants inside the organization, finding a suitable date,
booking a meeting room and sending invitation notifications
to the participants. The meeting organizer integrates these
tasks as a workflow template (see Figure 1). Each task can
be performed by a service.

1) The participant search task that requests finding suit-
able participants who are in the organization can be
performed by a people-search service. There are two
available people-search services offered by different
providers. Both services have the same function of
taking people requirement attributes, such as skills,
experiences and positions to produce a list of people
as output. However, these two services have different
NFPs. One service can find the people who are in
the organizer’s organization and is more accurate by
having access to more information about people. The
other can search people who are both inside and outside

Fig. 1. Workflow of organizing a meeting

the organization, but it is less accurate. Also, the first
service’s response speed is slower than the second one.

2) The date finding task can be completed by the meeting
scheduling service. Again, there are two scheduling
services available offered by different providers. They
both use people’s calendars’ URL addresses as input and
return the most suitable date for all involved people as
output. One scheduling service only has ability to check
Google and MSN online calendar systems and supports
around 90% optimal dates (e.g. 9 people out of 10
are available on the scheduled date). The other service
has ability to check all kinds of current existing online
calendar systems and supports around 70% optimal date.

3) The room booking task can be executed by room book-
ing services. The booking service takes the date and
facility requirements as input and produces the place
address and room information as output. There are
two booking services available. One service supports
booking rooms with normal meeting facilities. The other
service supports booking rooms with both normal facil-
ities and advanced equipment.

4) The notification task can be performed by the notifi-
cation services. There are many services available. We
already discussed the notification services as the first
case study of the single service selection scenario.

1. Local constraints: The meeting organizer invokes the
workflow template. For task 1, a people search service is
required and two services are discovered. Local constraints
are a set of requirements for the service’s NFPs. “Local”
means the requirements are individual considerations for each

type of the services. These requirements could either be hard
criteria or soft criteria. Each requirement has a weight for
prioritizing. For instance, the organizer has preferences stating
that accuracy of the search is more important than speed, only
participants within the organization are acceptable. Therefore,
the first service (from provider 1) can be found better than
second one (from provider 2).
2. Invocation error context: Supposing a service from
provider 1 has been selected based on the local constraints (e.g.
accuracy and speed). Invoking the selected service produces
an invocation error, and hence, the other service from provider
2 has to be used instead. If this error can be saved as context
information and retrieved for future service compositions, it
can reduce the composition time and increase the composition
reliability. Thus, invocation error history is related to service
composition at runtime.
3. Coordination context: We assume the “people search
service” from provider 2 has been selected for Task 1. For
the current Task 2 of date finding, all target participants use
online Google calendars. The only local preference is the
optimal rate. When only considering the local constraints on
their own, it is easy to see that the service from provider 1
is the better one because its optimal rate is better. However,
it known that the selected people search service has more
coordination failures with the scheduling service of provider 1
than that offered by provider 2, a fact is learned from historical
composition records available in the context. Taking this into
account it is more difficult to decide which service is better.
4. provider distance: We suppose the date finding service from
provider 2 has been selected, thus the previous two tasks are
performed by the same provider. For Task 3, the aim is to
book a room with some equipments. Since both services are
qualified for the local constraints, A service can be selected
at random as there is no other user’s preference. However, the
history of coordination activities shows that services from the
same provider have a more efficient coordination rate, then
service from provider 2 may be better because it has provided
the previous two services.

B. Planning a trip

Let us consider another typical workflow example: planning
a trip. Generally, the planning activity requires three tasks of
booking transports, purchasing travel insurance and booking
hotels as shown in Figure 2. Moreover, purchasing insurance
and booking hotel are two independent tasks but both rely on
the transport date and time.

Because many travel related services are available, the
competition is tight.

1) There are many different transport services available,
the local constraints are faster speed and cheaper price
(price refers to the service fee, not tickets price or other
buying price through out this dissertation).

2) There are many insurance service as well, the local
constraints are cheaper service fee and better service
reputation.

Fig. 2. Workflow of planning a travel

3) There are also many hotel booking services, the local
constraints are the place is covered by the service,
between 3 stars and 4 stars hotel, economic and good
reputation.

5: Allowance policy
We assume that airline service A has been selected for

the booking transport task based on the user local context
constraints of covered locations, faster service response and
cheaper service fee. For the hotel booking task, some busi-
ness corporation policies are also applicable. It is useful to
make selections depending on the previous selected services’
corporation policy. The following two are examples.

• It is not allowed to continue invoking the service more
than 10 times in one workflow.

• Provider A does not allow its services to be used by
services owned by provider B.

6. Cost policy: In the commercial market, cost is an important
factor to be considered from the global point of view. The
aim of using the cost policy context is to find the cheapest
composite service, which does not necessarily mean every
single service is the cheapest one because the coordination
among different providers has different prices. This is the
main difference between local cost constraint and global cost
constraint. For example, one insurance service A takes £10 for
traveling with airline service but the airline gives £8 discount
for working with insurance service A. The other insurance
service takes £5 for traveling with the same airline service A.
Therefore, the first service is likely selected from global point
of view.
7. Composition time: Time is also a crucial factor for the
business. The time can be considered global and local. The
local view focuses on the individual service response time. In

TABLE I
COMPOSITION CONTEXT CLASSIFICATIONS

Context categories Context elements Type
Execution context Execution error rate Numerical

Connection error rate Numerical
Coordination context Provider distance Boolean

Coordination time Numerical
Physical distance Numerical

Composition policy Special cost Numerical
context Allowance Boolean

Times of uses Numerical

contrast, the global view concentrates on the overall composite
service response time. For example, one insurance service
takes more time to complete with airline A. However, the other
one will take less time to complete with the same airline. As
results, it is more reasonable to select the second one, if we
considering the composition time constraint.

C. Composition Context

Based on the presented case studies, we define eight
composition context constraints in three categories: execution
context, coordination context and composition policy context
(see Table I).

Remember that composition context contains only the data
related to explore how services behave with each other
and hence how desirable their composition might be; non-
functional aspects and matching user requirements for each
specific service is conducted in the local evaluation of each
individual service selection.

The composition context focuses on the context information
which will affect service composition. We believe that the
three top-level categories are complete, as information either
is related to events occurring during service execution, is given
by the static relation between two services or can be influenced
by business decisions.

We do not claim the elements defined inside the categories
are complete, but they have shown sufficient for the case
studies encountered in our work. Further elements can be
added if needed and they should not affect the feasibility of
our selection mechanism.

Analyzing the 3 groups of context, we find that composition
context can also be separated in dynamic context and static
context. The dynamic context (e.g. coordination time, execu-
tion context of execution error rate and connecting error rate)
means the context changes very frequently. Thus, dynamic
context needs to be detected, calculated and stored at runtime.
Static context refers to the composition information which
does not change frequently (e.g. provider distance and special
cost).

III. RESEARCH PROBLEM AND CHALLENGES

Definition 1: Given a set of subtasks, defined in a service
composition template, the composition context aware service
selection problem is to dynamically and efficiently find the
most suitable set of executed services for completing each

Fig. 3. Composition complexity analysis

subtask.

What exactly is most suitable depends on three external
factors:

• the composition context constraints which defined in the
Table I,

• the user context constraints for selecting individual ser-
vice for a sub-task, and

• the services’ runtime context information.

More detailed information about user context constraints
can be found in [YRM09]. The composition context aware
service selection problem raises some important issues:

(1) The balance between globally optimal and locally
optimal solutions is an important issue to achieve. Unlike
general global optimization problems, composition context
aware service selection requires to not only consider global
composition context constraints but also user’s local context
constraints. For example, in order to send a suitable message
to a meeting participant (the last sub-task for organizing a
meeting service composition), based on the current context of
a user (the user currently has a mobile phone but is without
Internet connection), an SMS message sending service is
required. If we only consider composition context from global
optimization point of view we may choose an unusable service
to the user right now. Therefore, we need to select the service
which should satisfy both sides of the optimization. Otherwise,
the selection result may not correct.

(2) The balance between complexity/efficiency and cor-
rectness. Composition context information is a dynamic and
multiple value constraint that is a difficult global optimization
problem. Normally, global optimization problems have a fixed
value. For example, if each node has a fixed value in a graph
when computing a cheapest path problem (see Figure 3.a), then
we can use a greedy algorithm to find the cheapest solution.
However, in our case, the service composition context data is
different for each service. For example, the composition price
is £6 between Service1 and Service2, but is free between
Service1 and Service3 (see Figure 3.b). Additionally we have
to consider the multiple constraint dimensions, and hence the
global optimization becomes infeasible. Therefore, existing
global optimization solutions are unsuitable for the dynamic
composition context-aware service selection. Finding a service

Fig. 4. The BCCbSS approach

composition solution with low complexity and efficiency is
required.

(3) Control flow structure affects the global optimal
strategy. The other unusual global optimization issue is that
the composition specification is a workflow with control flow
structures such as sequence, parallel (and) and split (or).
Especially, the split control flow decides the possible choice
of workflow paths, which means that only when a service is
selected and invoked, the next workflow path can be deter-
mined based on an assessment of the output data. However,
the runtime service output cannot be predicted. As result, an
upfront selection (rather than during execution) has a chance
to be completely wrong and would need to be recomputed
after each split (see also Figure 3.c).

IV. OUR SOLUTION: THE BCCBSS APPROACH

A. The approach

We developed a backwards composition context based
service selection approach (BCCbSS). The basic idea is to
always go back one step to check if the currently selected
services are the best composition in the light of current existing
composition knowledge and invoke the selected service as
soon as possible. The whole process is shown in Figure 4).

Step 1: Searching and returning all candidate services
from registry for the current request task in the composition
workflow. This step will ensure that service provide the right
functionality (we have not considered interface mediation in
our work, but existing work in this area can be used). For
simplifying the explanation, we only use Special Cost as
example composition context to demonstrate the selection and
composition process which shows in Figure 5.

Step 2: Invoking the ranking function F (the function will
be discuss in next subsection) to give a fixed evaluation value

Fig. 5. Demonstrated example for composing a cheapest composite service

to each candidate service by considering the user constraints
and current context information, composition context criteria
of selected service for previous task and next task. If there is
no previous selected service and no next selected service, the
ranking function only bases on the current user’s requirements.
As Figure 5.1 shows that 2 candidate services (S11 and S12)
are discovered for T1, where S11 is £2 cost and S22 is £5.
On this step, there is no composition context is available, so
S11 is selected.

Step 3: If the next control workflow is “split”, then invoke
the current selected service from previous step. Otherwise re-
select the previous service if it exist (otherwise it continues to
select next task from Step 1) and has not been invoked, then
invoke the re-selected service. If an error occurs when the
service is invoked, then record this error information into the
composition context store. Restart Step 3 to select the next best
service. Because T1 is the first task, then we go back to Step
1, 2. 2 candidate services (S21 and S22) are discovered for
T2, where S21 requires £5 to be composed with S11 and £1
with S12; S22 requires £8 to be composed with S11 and £2
with S12. Based on the first selected service S11, the S21 is
selected (see Figure 5.2). Now, we find that there is a previous
selected service existing, then we re-select the service for T1
based on its next selected service S21 to make sure the best
possible combination between T1 and T2. As result, S12 is
calculated as the better service than S11 in this process and
S12 is invoked (see Figure 5.3). The same process happens to
T3 as well as shows in Figure 5.4, 5.5 and 5.6.

Step 4: If current task is the last task in the composition

workflow, then invoke the current selected service and finish
the whole thing. Otherwise, it goes back to step 1 with next
required task. (See Figure 5.7)

Step 5: If the invocation finishes successfully, log the
execution details to the context store. Move to next activity
and return to Step 1.

B. BCCbSS optimization using TLE service selection method

In [YRM08], we introduced the Type-based LSP Extension
(TLE) service selection method to solve the multiple criteria
based service evaluation problem. In order to addressing the
composition context based global optimization issue, we define
a global ranking function F by adopting the TLE method and
using following definitions:

E1.1 = Soft local optimization criteria considering user
requirements and derived from user context;

E1.2 = Soft global optimization criteria amended and de-
rived from composition context related to the previous selected
service (if the previous selected service does not exist, then
E1.2 = 0) for the task in the workflow;

E1.3 = Soft global optimization criteria amended and de-
rived from composition context related to the next selected
service (if the next selected service does not exist, then
E1.3 = 0)for the task in the workflow;

E1 = (| W1 | Er
1.1+ | W2 | Er

1.2+ | W3 | Er
1.3)

1/r, (1)

where E1 aggregates all the soft optimization criteria, r=1,
| W1 |=| W2 |=| W3 |= 1/3.

E2 = Hard optimization criteria (including both global and
local context) represent all mandatory requirements which
must be satisfied. Any hard criterion evaluating to 0 will lead
to an aggregation result of 0. The soft criteria handle all other
preferences. Finally,

F = (| W1 | Er
1+ | W2 | Er

2)1/r, (2)

where r=-0.72, | W1 |=| W2 |= 0.5.
E1.2 is used to evaluate the composition context; the result

of the evaluation will then be merged with the local score (the
suitability of the service for the user’s needs) when computing
the overall score.

C. Contributions of BCCbSS

The overall services composition approach can be consid-
ered as a sequence of service selections and the length of that
sequence depends on the number of tasks in the workflow
template. When the composition process starts, there are only
local constraints (user context) available as the composition
context is empty because we do not know which set of services
will be relevant to the current candidate services. After the
first service is selected, the composition constraints will be
considered based on the first selected service’s composition
context. With more and more services being selected, the
composition context will become richer in information. The
data of the composition context are gained through addition of
facts from observation and the history. The BCCbSS approach
has following advanced characteristics:

1) The approach performs the selection and invocation step
by step. Some research work [CPEV05], [ZBN+05],
[YL05] suggests completing a service composition by
selecting all the services for the whole workflow tem-
plate. However, this is not an efficient way, if there
are many tasks involved in the workflow and many
candidate services are available for each of them. Taking
the organizing meeting scenario as an example, if there
are 4 services for each of the 4 tasks, then the selec-
tion method has to compare the totally 256 different
composition solutions for identifying the correct service
composition choice. With more service available, the
state explosion problem will affect the approach effi-
ciency and scalability. The step by step strategy can
essentially avoid such a problem because each step has
only to consider a small number of the services, which
is the number of the available services for the task,
previous selected or invoked service and next selected
service (only in re-selection process). Take the same
example, the step by step strategy only needs to consider
4 + (5 + 5 + 5) + 5 + (5 + 5 + 5) + 5 = 44 different
selection solutions.

2) The approach can guide the selection method to make a
choice based on existing knowledge of the composition
context. In the organizing meeting scenario, when the
people search service from Provider 1 has been selected
for task 1, the rest of the selection tasks should only

consider the composition context related to the selected
service because other people search services’ composi-
tion context is no longer useful.

3) The approach considers not only local constraints (user
context) but also the composition context as inputs for
the selection method. The local constraints specify the
user’s preferences for the individual service, e.g. quality,
execution duration and prices. Since it is difficult for
user to judge the global view of the composition service,
the composition context should be automatically applied.
The composition context or global constraints consider
the interaction and composition properties among the
selected services and available services for the current
task.

4) The approach is a run-time approach. The user’s prefer-
ences may frequently change according to his/her cur-
rent status, as will the service’s NFPs and composition
context. These dynamic features require a run-time com-
position approach rather than a design-time composition
approach. The run-time composition approach can make
sure that the composite solution is the most suitable one
for the current user’s status and composition context.

5) The approach is fault tolerant. When a selected service
can not perform correctly in a certain step, the approach
allows for the next best service to substitute the current
selected one in order to complete the composition task.
Fault tolerance is very important for a run-time approach
and real service composition scenarios. It increases the
likelihood of successful completion of the workflow.
In the example of planning a trip, when the air ticket
has been booked, the composition requires the insurance
purchase to be successful, because the previous step is
costly and irreversible.

V. EVALUATION

We evaluated the process by analyzing a number of test sce-
narios including the following (note that we have added values
to all 8 aspects of the composition composition context):

1) Increasing the number of services available for each step
of a three step workflow.

2) Increasing the length of the workflow template keeping
the number of services available for each step static.

In the first scenario we combine the 8 composition context
criteria and increasing numbers of services from 21 to 28 for
each of the 3 steps. Figure 6 represents that the method is quite
efficient to deal with up to 250 services in this situation. The
results suggest that method is linear with respect to available
services.

The second scenario is designed to test the scalability with
regard to composition steps. There are again 8 composition
context criteria and there are 4 services for each step. The test
results in Figure 7 show that the method works efficiently with
40 steps. Again, we have a linear increase in run-time when
the workflow length increases.

There are three observations that should be made here: (1)
it is unusual that workflows are much longer than 40 steps,

Fig. 6. Evaluation results for composition selection test case 2

Fig. 7. Evaluation results for composition selection test case 3

(2) the execution of the actual services will also be time-
consuming and some might be long-running services where
it is more crucial that the right service is selected than that it
is selected more quickly and (3) the method does interleave
execution and selection, so a user does not have to wait until
the selection mechanism has completed before the execution
of the workflow can start.

From the conducted experimentation, we can conclude that
the method is quite efficient as run-time increases are linear
with respect to the increase in workflow length as well as an
increase in the number of services.

VI. RELATED WORK

Two kinds of service selection approaches are developed
for Web service composition problem, which are local optimal
selection and global optimal selection.

Local optimization based service selection refers to se-
lection methods which only take certain selection constrains
related to the current activity in the workflow without speci-
fying and considering the constraints implied by the workflow
context and the consequences that the choice will have on
later activities. For example, a policy based BPEL workflow
Web service selection method is presented in [KHC+05]. It
extends BPEL for run-time adaptation of service by adding the
policy reference to each node. The policy documents provide
the local optimization rules which are independent from each
other. The service selection process is applied at each node
separately. A similar approach was also presented in the earlier
e-Flow project [CIJ+00]. The biggest advantage of the local
optimization methods is efficiency in selection time - the worst
case can be solved in polynomial time. However, it does not

necessarily select the optimal or even close to optimal service
in the global composition context.

Global optimization based service selection, on the other
hand, takes the global selection constraints to select a group of
services rather than one service for a node in the composition
workflow. The key assumption of this strategy is that all
suitable services for each node have already been discovered
and are inside the global optimization search space. [CPEV05],
[ZBN+05] are two example approaches. By studying these
approaches, we find they surely narrow the disadvantages
pointed out for local optimization. However, they introduce
their own problems.

• Low scalability: In general, multi-QoS constrained ser-
vice selection with optimization is an NP-complete prob-
lem [YL05], which reduces scalability of the methods.

• Lack of fault tolerance: Global optimization methods
return a set of combined services as the final solution
package. However, if one service is not available or
throws an exception at run-time, then the whole solution
package fails.

• Low flexibility: Global optimization methods need to
know all constraints at design time. However, some selec-
tion constraints are only known when certain data is pro-
duced at run-time. For example, considering a conditional
choice in a composition, the complete global constraints
are available only after the condition is evaluated.

• Lack of reflection to local constraints that are important
to reflect user context.

In contrast, the BCCbSS approach does not need to predict
all the global constraints in advance. It makes the selection
decisions activity by activity based on the currently existing
local and global composition context. The composition context
is growing as we proceed through the activities. Based on these
context constraints, we may select the best service according
to real-time knowledge for the next activity. As we continue
to select services, the composition context grows allowing for
more fine-grained selection.

Some people may argue that the knowledge for selecting the
first service probably is empty and hence we will not select the
best one without knowing the forward selection context when
the next control flow is “Split” . While this is true, in practice
it is impossible to predict the execution path as this is going
to be influenced by runtime data. Furthermore, we should not
make a decision relying on predicted knowledge which has
large chance to be wrong. For example, when selecting the best
service for the first task, one does not know all the currently
available services for the later stages. Therefore, we have to
make the service choices only based on certain knowledge that
are the user’s context constraints.

VII. CONCLUSION

Selecting the most suitable services to complete a complex
composite service is an important research topic. Industrial
scenarios requests to consider composition context which
introduces some new challenges for service selection and
composition.

By studying the real world scenarios, we introduced the
concept of the composition context which is divided into 3
classes and 8 specific elements. Based on the composition
context, we presented a novel Backward Composition Context
based Service Selection (BCCbSS) approach to meet the com-
position context aware challenges. The BCCbSS composition
process fully considers composition context factor by adopting
the TLE service selection method.

Comparing the approach to the context-aware service com-
position requirements and other composition approaches, our
approach has several advantages:

The approach is a fault tolerant step by step process. The
method scales well for large workflow as well as large numbers
of services, as the ranking considers only services for the
current task and has access for the wider workflow condition
through the composition context. The selected services are dy-
namic bound to and invoked at run-time rather than statically
bound at design time.

For the future work, we are going to investigate more service
composition scenarios in order to obtain a better understanding
about the completeness of the composition context. Moreover,
we are going to compare the BCCbSS approach to other
planning approaches on complexity and adaptability to see
whether our approach can also be used for other selection or
optimization problems.

ACKNOWLEDGMENT

This work is partially supported by the EU projects inCon-
text IST-2006-034718 and SENSORIA IST-2005-16004.

REFERENCES

[CIJ+00] F. Casati, S. Ilnicki, L. Jin, V. krishnamoorthy, and M. C.
Shan. Adptive and Dynamic Service Compostion in eFlow. HP
Laboratories Technique report, 2000.

[CPEV05] G. Canfora, M. D. PentaRaffaele, R. Esposito, and M. L Villani.
An approach for QoS-aware service composition based on ge-
netic algorithms. Proceedings of the 2005 conference on Genetic
and evolutionary computation, SESSION: Search-based software
engineering table of contents, pp. 1069-1075, 2005.

[CV04] I. Congiu and G. Valetto. Using owl-s iopes to drive services
selection and composition according to user preference. In
Proceeding of Semantic Web Services Workshops at ISWC, 2004.

[FLP+06] D. Fensel, H. Lausen, A. Polleres, J. De Bruijin, M. Stollberg,
D. Roman, and J. Domingue. Enabling Semantic Web Services.
Springer, 2006.

[JWJY08] C. Jin, M. Wu, T. Jiang, and J. Ying. Combine automatic and
manual process on web service selection and composition to
support qos. In 12th International Conference on Computer
Supported Cooperative Work in Design CSCWD, pages 459–464.
IEEE, 2008.

[KHC+05] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann, and
A. Buchmann. Extending BPEL for Run Time Adaptability.
Proceedings of the 9th IEEE International EDOC Enterprise
Computing Conference, pp. 15-26, 2005.

[Org07] Oasis Organization. Web Services Business Process Exe-
cution Language Version 2.0 - Primer. http://docs.oasis-
open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf, 2007.

[OYP03] B. Orriens, J. Yang, and M.P. Papazoglou. A framework for
business rule driven web service composition. Springer-Verlag
Berlin Heidelberg, 2003.

[SGS09] S Reiff-Marganiec S Gorton, C Montangero and L Semini.
Stpowla: Soa, policies and workflows. In In E. Di Nitto and
M. Ripeanu (eds.): ICSOC’07 Workshops, pages 351–362. LNCS
4907, 2009.

[TRMY07] M. Tilly, S. Reiff-Marganiec, and H.Q. Yu. Design
and Implemetationn of monitoring and aggregation mech-
anisms for context-based services - Version 1. inCon-
text project deviverables, D3.2 V1, 2007, http://www.in-
context.eu/page.asp?PageRef=10, 2007.

[TRPA06] D.T. Tsesmetzis, I.G. Roussaki, I.V. Papaioannou, and M.E.
Anagnostou. Qos awareness support in web-service semantics. In
International Conference on Internet and Web Applications and
Services/Advanced International Conference on Telecommunica-
tions AICT-ICIW ’06, pages 128–128. IEEE Computer Society,
2006.

[WU+08] C. Wan, , C. Ullrich, L. Chen, R. Huang, J. Luo, and Z. Shi.
On solving qos-aware service selection problem with service
composition. In Proceedings of Seventh International Conference
on Grid and Cooperative Computing, 2008. GCC ’08., pages
467–474. IEEE Computer Society, 2008.

[YL05] T. Yu and K. Lin. Service Selection Algorithms for Composing
Complex Services with Multiple QoS Constrains. ICSOC2005,
LNCS, vol: 3826, pp. 130-143, 2005.

[YRM08] H. Q. Yu and S. Reiff-Marganiec. A method for automated web
service selection. In 2008 IEEE International Conference on
Services Computing, volume 0, pages 513–520, Los Alamitos,
CA, USA, 2008. IEEE Computer Society.

[YRM09] H.Q. Yu and S. Reiff-Marganiec. Automated context-aware
service selection for collaborative systems. In Proceedings of The
21st International Conference on Advanced Information Systems,
pages 193–200. Springer Lecture Notes in Computer Science,
2009.

[ZBN+05] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang. QoS-aware middleware for web services compo-
sition. IEEE Transactions on Software Engineering, pp. 311-327,
2005.

