
Tasks Selection Policies for Securing Sensitive Data
on Workflow Scheduling in Clouds

Henrique Yoshikazu Shishido
1University of São Paulo
São Carlos, SP, Brazil

2Federal University of Technology of Paraná
Cornélio Procópio, PR, Brazil
shishido@{usp.br,utfpr.edu.br}

Júlio Cezar Estrella,
Claudio F. Motta Toledo

University of São Paulo
São Carlos, SP, Brazil

{jcezar,claudio}@icmc.usp.br

Stephan Reiff-Marganiec
Department of Computer Science,

University of Leicester,
Leicester, United Kingdom

srm13@le.ac.uk

Abstract—Scheduling is an important topic to support data
security for workflow execution in clouds. Some workflow
scheduling algorithms use security services such as authenti-
cation, integrity verification, and encryption for all workflow
tasks. However, applying security services to no sensitive data
does not make sense as no benefit is gained, yet it increases
the makespan and monetary costs. In this paper, we introduce
five policies for selection of tasks that handle sensitive data. We
also propose a workflow scheduling algorithm based on a multi-
populational genetic algorithm for minimizing cost while meeting
a deadline. Experiments using four workflow applications show
that our proposal can minimize both the makespan and cost while
maintaining the security of sensitive data compared to another
approach in the literature.

Index Terms—workflow scheduling; cloud computing; security;
cost; deadline; multi-population genetic algorithm (MPGA).

I. INTRODUCTION

Workflows form a very typical application model, especially
in scientific, engineering and business fields. Essentially a
workflow is a Directed Acyclic Graph (DAG), where each
node represents a task, and an edge is a task dependence [1].
Workflows face many issues including data security concern
and distributed processing on heterogeneous resources such
as cloud computing [2]. Despite the many benefits of clouds,
users or organizations are often reluctant to adopt cloud
computing due to security reasons [3].

Workflow scheduling is a topic vastly investigated in cloud
computing. Recently, workflow scheduling algorithms have
also focused on security, e.g., [4]–[10]. Workflow schedul-
ing algorithms based on security constraint consider either
setting up private clouds for processing sensitive data and
public clouds to the non-sensitive ones or apply authentication,
integrity verification and encryption on all data processed in
public clouds.

Li et al. [8] and Arunarani et al. [11] presented algorithms
to find schedules that combines different levels of authen-
tication, integrity verification, and encryption services, and
a VM instance for each task for minimizing the execution
cost, while meeting the minimum security requirement and
deadline. However, these algorithms do not guarantee that all
tasks that handle sensitive data (critical tasks) will be secured,

due the codification of the optimization. For instance, consider
a workflow composed by four tasks A-B-C-D, where A-B-C
handle non-sensitive data, and D is the critical task. Consider
solutions s1 which applies security services for tasks A-B-
C, and leaves D with no security and s2 where A-C-D are
secured, while B is not. The algorithms in [8] and [11] do not
take into consideration the semantics of each workflow task.
In their work, both solutions s1 and s2 have secured three
tasks and, therefore, present the same security level. However,
solution s1 suffers from a security breach leaving the critical
task D with no protection, while solution s2 protect critical
task D, but wasting processing time securing B and C.

To address the need for securing relevant tasks while not
wasting resources, we introduce the concept of task selection
policies for securing workflow tasks that process sensitive data
in this paper. We propose five policies that can be selected by
the user in the workflow modeling phase, namely entry/end,
gather, scatter, gather/scatter, and all. The novelty of
our work is the (1) introduction of the five task selection
policies that can be chosen by the user according to the
data sensitivity of the workflow tasks and (2) a scheduling
algorithm supporting the policies. Unlike previous work in
the literature that applies security services to all workflow
data, security services are then automatically and exclusively
applied to the tasks covered by the policy.

II. SYSTEM MODELS AND PROBLEM FORMULATION

A workflow is commonly structured as a Directed Acyclic
Graph (DAG) w = (T,E), where T = {t0, t1, ..., ti, ..., tn−1}
is a set of tasks, and E is a set of edges e(i, j) that represents
the dependencies among task ti and tj . For edge ei,j ∈ E,
ti is an immediate predecessor task of task tj and tj is an
immediate successor of task ti. pred(ti) denotes a set of all
the immediate predecessors of ti.

The cloud datacenter model considers a set of instance series
S = (s0, s1, s2). Each series si contains a set of VM types
VMsi = {VM1

si , ..., V M2
si , ..., vm

k
si}. A VM type vmk

si is
indicated by characteristics as instance series type s, number
of virtual processors vcpuk

si , processing capacity in MFlops
pksi , memory mk

si and storage stks , and the monetary cost cksi .

It is assumed that all virtual machines have the same data
communication bandwidth and the transmission cost among
them is zero.

The security model sets three types of security services
sli = [slai , sl

g
i , sl

c
i], where each task ti is protected by an

authentication service slai , integrity verification service slgi ,
and encryption service slci . Security services increase the over-
head of the workflow execution. Eq. 1 defines the overhead
produced by integrity and encryption services, where dli is the
amount of data to be protected using a service level slli.

SCl(ti) = F l(slli, d
l
i), l ∈ {g, c} (1)

The authentication service produces an overhead of constant
time, independent of the amount of data. Eq. 2 denotes the
overhead of authentication service.

SCl(ti) = F l(slli), l ∈ {a} (2)

The total overhead involving all three types of security
services is a simple sum of the overheads.

One algorithm for each type of security service slli was
considered in our study, and there are different VM images to
provide each security service. The transferring time from ti−1

to ti is computed by TT (ti) = Ii/B, where Ii is the size of
data to transfer and B represents the network bandwidth. It is
assumed that the size of the files is already known. When the
transferring occurs between tasks allocated on the same VM,
no time is computed.

The execution time of task ti is calculated by
ET (ti, vm

k
s) = Wi/p

k
s , where Wi represents the task

ti workload and pks is the processing capacity of the VM
assigned to execute task ti. After task processing, output data
is submitted to an encryption service to minimize the risk of
unauthorized interception. Finally, the total processing time
PT (ti, vm

k
s) of a task ti is the sum of the transferring time

TT (ti), task execution time ET (ti, vm
k
s) and the overhead

with security services SC(ti).

A. Problem formulation

The addressed problem is to find a schedule to execute
a workflow in the public cloud optimizing execution cost,
respecting deadline constraints and offering safer process-
ing of critical tasks. The scheduling scheme is denoted by
schedule = (R,M, TEC, TET) in terms of resources (R),
task-resource mapping (M), total execution cost (TEC), and
total execution time (TET).
R = {r0, r1, ..., rn−1} is the set of provisioned VMs

for workflows’ tasks, where ri is a three tuples of form
ri = (vmk

s(ti), LST (ti, vm
k
s), LET (ti, vm

k
s)). vmk

s(ti) is
the VM type leased to a task ti, which has a lease start
time LST (ti, vm

k
s) and a lease end time LET (ti, vm

k
s)).

M is the mapping of a task to a VM m(ti, vm
k
s) =

(ti, vm
k
s(ti), ST (ti), ET (ti)) in terms ti is the task mapped

to vmk
s that is expected to start at ST (ti) and complete

at time ET (ti). The remaining two terms total execution
cost TEC and total execution time TET are denoted

by TEC =
∑n−1

i=0 cks · dLET (ti, vm
k
s) − LST (ti, vm

k
s)e

and TET = max{ET (ti)|ti ∈ T}. The term cks ·
dLET (ti, vm

k
s)−LST (ti, vmk

s)e is the execution cost for task
ti on vmk

s . Formally, the problem is defined as: Minimize :
TEC and Risk(w)subject to : TET ≤ TD

III. METHOD

A. Selection of critical tasks

A workflow can present different tasks types as an entry,
end, gathering, scattering, and both gathering and scattering.
Each task type performs specific activities and has implications
if its data are stolen. We propose five task selection policies
that can be chosen according to the security requirements as
shown in Figure 1. The first policy is the Entry/End policy
which assures securing all data handled in both entry and end
tasks. It can be chosen in workflows where the initial and final
data must be protected. Gather and Scatter policies offer
protection for tasks that receive sensitive data from multiple
tasks or send sensitive data to multiple tasks, respectively.
Gather/Scatter secure the tasks which have multiple parent
tasks and multiple child tasks. Finally, All policy is used in
cases that all tasks’ data need a secured treatment.

All five policies apply authentication, integrity verification,
and encryption services for securing critical tasks. The poli-
cies could be offered by the workflow management system
(WfMS) as an option for securing the workflow execution.
The proposed approach requires the knowledge of semantics
of each workflow task.

B. Coding strategy and scheduling generation

We used a genetic-based algorithm to minimize the ex-
ecution cost and meet a deadline as stated in [12]. Our
strategy discards the security services into the chromosome
codification, avoiding the possibility that critical tasks do not
receive adequate safety treatment. Critical tasks will be those
that fit the policy chosen by the user. Each critical task will
adopt a unique level for each type of security service.

The fitness is given by fitness = TEC · Risk(w), if
TET ≤ TD, where TEC is the total execution cost, Risk(w)
is the workflow execution risk, TET is the total execution time
and the deadline is the maximum execution time acceptable.
Otherwise, a penalty fitness = TEC · 106 is applied to.

(a) (b) (c) (d) (e)

Data-in
Data-out

Entry	task
End	task

Parallel task
Gather/scatter taskGather task
Scatter task

Fig. 1. Task selection policies: (a) Entry and End; (b) Gather; (c) Scatter; (d)
Gather/scatter; (e) All.

IV. RESULTS

In this section, the performance evaluation of WS-TSP
is presented. Our experiments were conducted using Work-
flowSim [13] as a simulation tool. Four real-world workflows
from different scientific areas were used, namely CyberShake,
Epigenomics, Montage, and SIPHT. We analyzed the five
policies regarding security risk and cost. We compared WS-
TSP to an adapted SCAS approach [8]. We also included
the No policy where no task is protected. It was supposed
that VMs are allocated in the same datacenter and connected
through a 1 Gbit network. Amazon EC2 instance specifications
and prices [14] were considered for experimentation.

The execution deadline constraint TD was defined by the
average between the fastest and slowest execution time. The
former was the execution considering the cheapest VM type
(slowest), while the second one consists of execution on expen-
sive VM type (fastest). Both executions considered applying
security services to all workflow’s tasks. Thus, there is always
a solution that can satisfy the deadline constraint. MPGA
parameters were set empirically based on previous tests [12]
with three populations, 50 individuals per population, 5.0 of
crossover rate, 0.7 of mutation rate, and two ramifications. We
considered time as stop criterion (900 seconds).

For computing the security cost SCti, CBC MAC AES,
TIGER, and IDEA as authentication, integrity verification
and encryption services were considered, respectively. It was
assumed that CBC MAC AES, TIGER and IDEA demand
163ms/auth, 4.36 kB/ms and 13.50 kB/ms, respectively.

A. Comparison of makespan and cost

The cost and makespan for the five task selection policies
were analyzed. Fastest VMs get the shortest makespan for all
workflows and task selection policies as expected (Figure 2).
However, the execution cost exceeds $1500. On the other hand,
the executions with only slowest VMs require a lesser budget
but carry on long makespan. The reduction of makespan in
CyberShake and Montage workflows is not significant for
executions using No policy on fastest VM instances. It is
explained due both two workflows concentrate the most CPU
utilization on few tasks. Thus, faster instances on all tasks do
not ensure a better makespan. Epigenomics presents higher
makespan under slowest VMs because it has more CPU-
intensive tasks than Cybershake and Montage. All policy
applies security services to all workflow’s tasks and conse-
quently, produces the highest makespan on all workflows. This
policy presents the most utilization of VMs and is the most
benefitted by faster VMs to process the security services.

The Gather policy increased the overhead on Montage,
Epigenomics, and SIPHT, but not CyberShake workflow. The
reason is that CyberShake has two gather tasks, but both
involve little data to be secured, resulting in low overhead.
The Scatter policy has impacted on CyberShake because each
task on the second level manipulates a large amount of data
(approx. 547 MB). Epigenomics has only one scatter task that
reads 242 MB of input and splits into multiple output files.
Security services increased slightly the overhead due its unique

scatter task that process 48 MB of input data. Considering
all four workflows, only SIPHT has a gather/scatter task
that extended the makespan slightly. Entry End and All
policies increased the makespan on CyberShake, possibly due
the Entry End tasks handle most of all workflow’s data.
Entry End also prolonged makespan of SIPHT execution.

B. Risk comparison
We assumed that user knows the semantics of the workflow

tasks to select the policy that covers the sensitive data. SCAS
codifies four attributes per task: VM instance type, authentica-
tion, integrity verification and encryption services. To compare
WS-TSP to SCAS, we have simplified SCAS codification
to two attributes (VM instance and security activation) for
each task. The security activation attribute corresponds to the
three security services (authentication, integrity verification,
and encryption). It can assume values 0 and 1, where 0 sets
no security services to the task, and 1 applies the three security
services to the task.

Security risk was established to consider the percentual
risk Risk(ti) of each critical task ti on the whole workflow
risk as defined by Equation 3. The pred(ti) and succ(ti)
represent the total of parent and child tasks of a critical task
ti, and sensitive edges(w) is the sum of the edges of all
tasks that handle sensitive data. The overall workflow risk
Risk(w) is obtained from the sum of percentual tasks risk
Risk(ti) as shown in Eq. 4. The sum considers only the tasks
where its security activation attribute is equal 1. The results
show that WS-TSP was able to handle all tasks involving
sensitive data as shown in Figure 3. This is because the prior
knowledge of critical tasks allows the user to select a policy
that ensures them. SCAS exposed the workflow’s sensitive
data to security risks. We can note that task data gather,
scatter, entry/end, all were partially vulnerable to cyber-
attacks. CyberShake, Montage, and Epigenomics workflows
do not have gather/scatter tasks; then the security risk is 0.

Risk(ti) =
pred(ti) + succ(ti)

sensitive edges(w)
(3)

Risk(w) = 1−
nSec∑
i=1

Risk(ti) ∗ sec(ti) (4)

V. CONCLUDING REMARKS

We proposed the WS-TSP approach composed of five task
selection policies and a genetic-based scheduling algorithm
which takes advantage from tasks semantics for minimizing
workflow execution cost, preserving the privacy of critical
tasks while respecting the deadline. The results indicate that
task semantics can contribute to minimizing the execution
cost and data leakage. When compared to SCAS approach,
WS-TSP achieved significant cost minimization with a slight
increase of the makespan. A limitation of WS-TSP is that the
user must know the task semantics to choose an appropriate
policy. The evaluation using four workflows does not allow us
to say that WS-TSP could be efficient with any workflow, so
further case studies could be explored.

0

400

800

1200
1600

C
os

t (
U

$)

0

400

800

1200
1600

0

400

800

1200
1600

0

400

800

1200
1600

No

GAT
HER

SCAT
TER

GAT
HER_S

CAT
TER

ENTRY_E
ND All

CyberShake

No

GAT
HER

SCAT
TER

GAT
HER_S

CAT
TER

ENTRY_E
ND All

Montage

No

GAT
HER

SCAT
TER

GAT
HER_S

CAT
TER

ENTRY_E
ND All

Epigenomics

No

GAT
HER

SCAT
TER

GAT
HER_S

CAT
TER

ENTRY_E
ND All

SIPHT

Fastest WS-TSP
SCAS Slowest

0

10

20

30

40

M
ak

es
pa

n
(h

ou
r)

0

10

20

0

20

40

60

0

1

2

3

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

CyberShake

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Montage

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Epigenomics

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

SIPHT

Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP

0

10

20

30

40

M
ak

es
pa

n
(h

ou
r)

0

10

20

0

20

40

60

0

1

2

3

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

CyberShake

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Montage

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Epigenomics

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

SIPHT

Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP

0

10

20

30

40

M
ak

es
pa

n
(h

ou
r)

0

10

20

0

20

40

60

0

1

2

3

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

CyberShake

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Montage

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Epigenomics

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

SIPHT

Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP

0

10

20

30

40

M
ak

es
pa

n
(h

ou
r)

0

10

20

0

20

40

60

0

1

2

3

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

CyberShake

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Montage

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Epigenomics

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

SIPHT

Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP

0

10

20

30

40

M
ak

es
pa

n
(h

ou
r)

0

10

20

0

20

40

60

0

1

2

3

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

CyberShake

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Montage

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Epigenomics

No

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

SIPHT

Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP
Fastest

SCAS
Slowest

WS-TSP

Fig. 2. Cost and makespan of different task selection policies and workflows using Fastest, Slowest, SCAS and WS-TSP.

0.0

0.1

0.2

0.3

0.4

0.5

R
is

k
(%

)

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

CyberShake

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Montage

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

Epigenomics

GAT
HER

SCAT
TE

R

GAT
HER_S

CAT
TE

R

ENTR
Y_E

ND All

SIPHT

SCAS SCAS SCAS
SCAS

Fig. 3. Percentage of execution risk for the different task selection policies and workflows, considering SCAS.

ACKNOWLEDGMENTS

The authors acknowledge CAPES, FAPESP, CNPq and
USP for the resources provided, USP and UTFPR for the
scholarship to Henrique Yoshikazu Shishido.

REFERENCES

[1] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-science: An overview of workflow system features and capabilities,”
Future Gener Comput Syst, vol. 25, no. 5, pp. 528 – 540, 2009.

[2] R. Barga and D. Gannon, Scientific versus Business Workflows.
Springer, 2007, pp. 9–16.

[3] K. Hashizume, D. G. Rosado, E. Fernández-Medina, and E. B. Fernan-
dez, “An analysis of security issues for cloud computing,” J of Internet
Serv App, vol. 4, no. 1, pp. 1–13, 2013.

[4] P. Watson, “A multi-level security model for partitioning workflows over
federated clouds,” J Cloud Comp: Adv Syst App, vol. 1, no. 1, p. 15,
2012.

[5] S. Sharif, J. Taheri, A. Y. Zomaya, and S. Nepal, “Mphc: Preserving
privacy for workflow execution in hybrid clouds,” in Int Conf Parallel
and Distrib Comp App Tech, 2013, pp. 272–280.

[6] H. Liu, A. Abraham, V. Snášel, and S. McLoone, “Swarm scheduling
approaches for workflow applications with security constraints in dis-
tributed data-intensive computing environments,” Inf Sci, vol. 192, pp.
228–243, 2012.

[7] L. Zeng, B. Veeravalli, and X. Li, “Saba: A security-aware and budget-
aware workflow scheduling strategy in clouds,” J Parallel Distrib Comp,
vol. 75, pp. 141 – 151, 2015.

[8] Z. Li, J. Ge, H. Yang, L. Huang, H. Hu, H. Hu, and B. Luo, “A security
and cost aware scheduling algorithm for heterogeneous tasks of scientific
workflow in clouds,” Future Gener Comput Syst, vol. 65, pp. 140 – 152,
2016.

[9] X. Zhu, Y. Zha, P. Jiao, and H. Chen, “Security-aware workflow
scheduling with selective task duplication in clouds,” in Proc High
Perform Comput Symp, 2016, pp. 1–8.

[10] C. Jianfang, C. Junjie, and Z. Qingshan, “An optimized scheduling
algorithm on cloud workflow using discrete particle swarm,” Cybern
Inf Tech, vol. 14, no. 1, pp. 25–39, 2014.

[11] A. R. Arunarani, D. Manjula, and V. Sugumaran, “Ffbat: A security
and cost-aware workflow scheduling approach combining firefly and bat
algorithms,” Concurr Comput, vol. 29, no. 24, pp. e4295–n/a, 2017.

[12] H. Y. Shishido, J. C. Estrella, C. F. M. Toledo, and M. S. Arantes,
“Genetic-based algorithms applied to workflow scheduling algorithm
with security and deadline constraints in clouds,” Comput Electr Eng,
2017.

[13] W. Chen and E. Deelman, “Workflowsim: A toolkit for simulating
scientific workflows in distributed environments,” in Proc IEEE Int Conf
on e-Science. IEEE, 2012, pp. 1–8.

[14] A. EC2, “Amazon EC2 Pricing ,” https://aws.amazon.com/ec2/pricing,
2018, [Online; accessed 12-Dec-2017].

