
Web Services Feature Interaction Detection based on Situation Calculus

Jiuyun Xu
1,2

, Wengong Yu
1
, Kun Chen

1

1
School of Computer and Communication Engineering

China University of Petroleum

Dongying, China

e-mail: jyxu@upc.edu.cn; yuwengong@163.com;

ck_star@126.com

2
State Key Lab of Networking and Switching

Technology

Beijing University of Posts and Telecom

Beijing, China

Stephan Reiff-Marganiec

Dept. of Computer Science

University of Leicester

Leicester, UK

e-mail: srm13@le.ac.uk

Abstract – Feature interaction has been identified as a problem

in the telecommunications domain in the 1980s, but since it has

been shown to be a problem of systems that are composed of

individually designed components. Clearly Web service

composition is a way of building services from independently

designed components and hence is subject to the same problem.

This paper investigates the detection of feature interactions in

Web services at runtime and proposes a novel detection method

by taking inspiration from the Situation Calculus. Two case

studies show that it is effective for detecting feature interactions

in composite Web services.

Keywords: Feature Interaction; Web services; Interaction

Detection; Situation Calculus; OWL-S;

I. INTRODUCTION

Features as well as services are units of functionality which

are correct on theire own, but when used in combination they

might influence their behavior in undesired ways. This

problem has been known as Feature Interaction, a term

coined by Bellcore in the late 1980s. The Feature Interaction

(FI) problem [1, 2, 3] has become one of the important

bottlenecks for the deployment of new services. FI is not a

bug in the implementation of individual services but an

emergent behavior if features are used in conjunction.

However, the feature interaction problem is not limited to

telecommunications, it can occur in any software system that

is subject to changes and build out of individually designed

components.

Service-oriented architecture (SOA) holds the promise for

businesses of allowing for quick adaptation of systems. Web

services are a way of encapsulating application functionality

in a location and implementation transparent manner.

However, if services are composed the potential feature

interaction arises. Akin to FI, Web services may interact with

each other in unexpected and often undesirable ways

negatively affecting service quality and user satisfaction. [4]

describes this as Web Services Feature Interaction (WSFI)

problem.

Interaction is fundamental to Web services and service-

oriented architecture, and in general is desirable – however

there are situations that need to be avoided as they are

undesirable. Feature interaction detection and resolution

would be concerned with the latter. While telecoms

markets have traditionally been closed and tightly

controlled, the FI problem was manageable due to in house

design knowledge, small numbers of features and good

available of working details [5]. As the telecoms market

became more open, the need for solutions to FI increased

and new challenges were posed. The Web services market

has always been open, with many people providing

services that are supposed to work seamlessly together.

Hence lessons learned in telecomms, should be considered

in the context of the WSFI problem. Predominately, the

detection and resolution of WSFI problem will become

important to increase introduction of new services and the

robustness of composite services.

There has been plenty of work on the prevention, detection

and resolution of FI in the telecommunication systems [3],

but the traditional detection methods are not suitable for

the problem in Web services as: (1) web services are not

centrally controlled and there is no global understanding of

side effects and the operation of the services and (2) FI in

Web services is based on undesirable side effects such as

an inconsistent states, or data inaccuracies rather than

inconsistent events as is often the case in telecoms.

Hence there is a need for methods that operate at runtime

to detect interactions which are caused by services

encountering each other in their operation and producing

data based side effects that can lead to inconsistencies and

violation of assumptions.

The rest of this paper is organized as follows: section 2

introduces some related work, section 3 provides required

background on the Situation Calculus and OWL-S. Section

4 describes our online detection method in detail, including

some case studies. In sections 5 and 6, we discuss our

method and conclude the paper.

II. RELATED WORK

In the telecommunications domain feature interaction has

long been established as a problem leading to a slowdown

in the introduction of new services. As a similar problem

can be seen in the area of web services, called Feature

Interactions in Web Services (WSFI), a similar negative

impact on the introduction of new services can be expected.

Traditional attempts to address the feature interaction

problem include offline method and online methods. Offline

methods are applied during design time or for web services

composition time of services, online method are applied

while the features or services are being executed. Offline

methods typically depend on the internal service logic

(modeled at some level of abstraction). Online methods

either use negotiation or feature interaction managers (FIM).

Negotiation based approaches regard the components of the

networks (user, terminal and value-added service, etc.) as

different intelligent entities and detect and resolve FI by

exchanging intentions of those entities. The FIM method

adds a FIM into the network to detect and resolve FI. A more

detailed overview of FI methods can be found in [3].

In the existing work on feature interaction in Web services

some investigations have been conducted into offline

methods and have yielded some results. Weiss et al. [6]

presents a goal-oriented approach for detecting feature

interactions among Web services. The authors also

distinguish explicitly between functional and non-functional

feature interactions. In [7] this is extended with emphasis on

the classification of feature interactions. Moreover, they

analyze the different types of the potential WSFI in a

"Virtual Bookstore" scenario.

Turner [8] extends the feature notation CRESS to

graphically and formally describe Web services and service

composition. Moreover, he briefly discusses the WSFI

detection using CRESS and a scenario notation called

MUSTARD.

Zhang et al. [9] propose a Petri net-based method to detect

race conditions, which can be seen as one type of functional

feature interactions. Moreover, in [4] they propose a multi-

layer WSFI detection system.

Offline methods require insight into the internal service

logic, details of which might not be publically available;

furthermore they require a knowledge of all available

services and cannot consider interactions that occur because

of run-time data. Similar issues have driven online FI work

in telecoms and we show that some types of interaction

cannot be caught by offline methods. Moreover, in the Web

service arena the number of available services is very large,

growing rapidly and services are offered by a large number

of providers (a very open market), which does not lend itself

much to offline methods.

Based on these observations we are proposing an

orthogonal method, a runtime method based on Situation

Calculus to detect FI in the Web services area. Our method

analyses the semantics of the interacting messages rather

than utilizing the internal information of service logic in

atomic services. The necessary details are obtained from

OWL-S (Web Ontology Language for Services) service

descriptions and observed SOAP messages.

III. BACKGROUND

Our detection method is based on the use of Situation

Calculus and OWL-S. In this section, we briefly introduce

the Situation Calculus concentrating on the basic concepts

of the language that will be used. For a more detailed

introduction we refer to [11, 12]. We also provide a

concise introduction to OWL-S, more information can be

found in [13].

A. Situation Calculus

The Situation Calculus is a many-sorted, first-order logical

language extended with induction. It is intended for

representing a dynamically changing world. The main idea

is that any system can be defined by a fixed initial

situation. From any situation another situation can be

reached through an action or an action set. The sorts S, A,

F and D for situations, actions, fluents, and domain

objects, respectively. Situations represent a snapshot of the

world plus a history of the evolution. Actions are regarded

as the only mean by which the world evolves from one

situation to another. Fluents are first-order functional terms

which denote properties of the world that are static. For

example, the binary fluent could mean that x is

placed on y. Fluent formulas are first-order formulas in

which every atomic sub-formula is a fluent, e.g. the fact

that all objects x are on the table can be written as

. The following are elements of the

language:

: a constant denoting the initial situation, that is the

state of the world before anything has occurred.

: for an action and a situation

 is the situation resulting from executing action

in situation .

: is true if and only if fluent or

fluent formula holds in a situation .

: is true if and only if it is

possible to execute action in situation .

: is a binary predicate which represents a

partial order between situations. is true if and only if

it is possible to reach situation from by executing a

positive number of actions.

A particular domain is modeled by the definition of

several axioms (informally we might call these “domain

specific fluents”).

We regard, as some other authors, a composite Web

service as a situation and execution of a Web service is

regarded as an action. Before a service is executed, the

composite service is in the initial state.

B. OWL-S

OWL-S is the major description language for semantic web

services. It is based on an ontology of service concepts that

supply a Web service designer with a core for describing

the properties and capabilities of a Web service in an

unambiguous computer-interpretable form.

OWL-S organizes a service description into four parts:

the process model, the profile, the grounding, and the

service. The OWL-S process model is most useful for the

work presented here, as it provides the required metadata

about the Web services.

Each OWL-S process is based on an IOPR (Input, Output,

Precondition, Result) model. Input represent the information

that is required for the execution of the process, Output

represents the information that the process returns to the

requester. Preconditions need to hold over Input for the

process to be successfully invoked. Result allows to specify

details about the (possible many) results. Each result can be

associated with a result condition, called inCondition, which

specifies when a particular result can occur. Therefore, an

inCondition binds inputs to the corresponding outputs. It is

assumed that such conditions are mutually exclusive, so that

only one result can be obtained for each possible situation.

When an inCondition is satisfied, there are properties

associated that specify the corresponding output (withOutput

property) and, possibly, the Effects (hasEffect properties)

produced by the execution of the process. Effects will

become true when the service completes and will change the

state of the world. The OWL-S conditions (Preconditions,

inConditions and Effects) are represented as logic formulas.

In our method, we firstly transform process descriptions

(mainly Precondition and inCondition) into sets of rules

expressed in an ontology-aware rule language, namely

Semantic Web Rule Language (SWRL) [14]. This is based

on the method presented in [15], which discusses this in

more detail. Then we define relevant predicates using the

rules to express the composite Web services state.

IV. THE METHOD

Our method is used to detect Web service feature

interactions during the execution of the service

composition. In this section, we present an overview of the

architecture and describe the detection process in detail.

Two case studies show examples for the detection of the

two conflict types that exist (the lack of resources to

complete a latter part of a workflow and the attempt to

invoke a service whose pre-conditions are not met anymore

after an earlier service execution) and are detected.

A. The System Architecture

The FI detection system interacts with three possibly

external systems: (1) a standard workflow engine

executing the service composition (the engine needs to

allow for the interception of SOAP messages as well as

temporary blocking of the execution), (2) a feature

interaction rules manager and (3) a conflict resolver. The

rules manager provides descriptions of the domain

knowledge as to what constitutes an undesirable interaction

and the conflict resolver provides a solution for recovering

the system from conflicts. Clearly the rules are not tied to a

specific instance, but are generic and there is a number of

resolution strategies possible ranging from manual

resolution via automatically applied priorities to possibly

more complex schemes.

Fig. 1: Overview of the architecture of the detection system

Workflow Execution Engine

Feature Interaction Rule Manager

Conflict Resolver

FI Detection System

Extracted

Rules
Expert Rules

OWL-S Experts

Resolver

SOAP Interceptor

SOAP Extractor

State Builder

Conflict Detector

Operation and Service

Information

Applicable Rules

Resolution

Conflict Description

Progress Action

SOAP Message

[conflict]

The architecture is designed to support service interaction

detection during the execution of composite services. It

allows for the detection of undesired interactions by

detecting conflicts between services that could lead to a

failure of the plan execution. Figure 1 provides an overview

of the architecture and we will describe the main components

next.

The Soap Interceptor is in charge of intercepting the

SOAP message for the detection system while services

interact in the workflow execution. Both SOAP request and

SOAP response messages are intercepted and sent to the

detection system. The workflow systems execution is halted

for a brief period of time until a response comes from the

Interaction detection system. If no conflicts was detected the

original SOAP message will be sent with no changes, if

conflicts were detected a new or adapted SOAP message

might be inserted into the system. Note that this type of

interception has proven to be realistic in telecommunications

systems, which tend to be extremely time critical [17].

The SOAP Extractor parses the intercepted SOAP

message to extract the input or output data (SOAP request

and response respectively). The input and output data

contains information on the service and operation used as

well as the concrete data of the specific interaction.

Information regarding the service and operation are sent to

the FI rules manager so that applicable rules can be

retrieved.

The State Builder instantiates the relevant FI rules and

generates relevant predicates to express the Web service

state. It uses the run-time data obtained extracted from the

SOAP message and information about the service (from

the OWL-S document) which is provided by the FI rules

manager.

The Conflict Detector is the core part of the detection

system and identifies whether there is a conflict in the

current state. If conflicts are detected, the Conflict

Resolver is queried for a resolution. If no conflict is

detected the SOAP interceptor will notify the workflow

engine to proceed; if a conflict was detected the resolution

will be transmitted back to the workflow engine which will

react accordingly.

The Conflict Detector consists of three subsystems: a

Knowledge Base, an Inference Engine and a Management

Interface. The Knowledge Base stores axioms of the world

and reasoning rules, the Inference Engine is used to

determine whether service states are consistent assuming

the domain knowledge and reasoning rules. The

Management Interface allows for human intervention,

experts can utilize the interface to add inference rules into

Fig. 2: Outline of the situation calculus based detection process

State Si-1

Preconditions and SOAPi Input

P(x1,x2,…)ÙQ(x1,x2,…)

…

W(z1,z2,…)

Facts from State Si-2

P(x1,x2,…)ÙQ(x1,x2,…)

…

W(z1,z2,…)

Add Facts of Addlist Si-1

Delete Facts same to Deletelist Si-1

InConditions

Rules:

H(x1,x2,…)→B(x1,x2,…)

...

Addlist Si

Effects from Si-1

Deletelist Si

Effects from Si-1

turn to be false

WSi

Restruct Facts

according to

InConditions and

SOAPi Output

State Si

Facts from State Si-1

P(x1,x2,…)ÙQ(x1,x2,…)

…

W(z1,z2,…)

Add Facts of Addlist Si

Delete Facts same to

Deletelist Si

Add to

Service1 Servicei ServicenS0 Se…

OWL-Si

Preconditions

InConditionds

Effects

SOAPi request

message

Input

SOAPi response

message

Output

…

the Knowledge Base according to the requirement of new

services. Moreover, experts can control or adjust the

detection process through the interface. While ideally the

process is automatic, in practice it is useful to have the

manual mechanisms available to increase detection accuracy

in the light of unknown feature interactions.

In addition, two more subsystems can be attached to the

Conflict Detector: an Interaction Information Base and an

Event Recorder. The Interaction Information Base is a library

storing information on all known services interaction

phenomena [4, 12], which aids in detecting known

interactions more quickly and accurately. The contents of

this library will be periodically updated to contain new

knowledge. The Event Recorder records the detection

activities and logs the related information to a database.

Experts can analyze this to improve the detection process.

B. Service Interaction Detection Process

The detection method is based on situation calculus. At the

beginning, the composite service is in the initial state. After

each atomic service within the composite service is executed

(that is an action is taken), we get a new service state (or

situation), and so on. If the former state is inconsistent with

the latter one, or some predicate (fluent or fluent formula)

becomes false we have identified a feature interaction. Figure

2 outlines the detection of feature interactions based on

situation calculus.

 Figure 3 provides an overview of the detection process,

which consists of six steps as follows:

Step 1. In the first step the SOAP request or SOAP response

message of the current service in the workflow execution

engine is intercepted, processing is put on hold until a reply

message is injected in the system.

Step 2. We extract Preconditions, Effects and inConditions

from the OWL-S document using Mindswap OWL-S API

[16], which can conveniently read or write OWL-S

document. This task is performed by the Feature Interaction

Rules Manager. The required data to invoke the functions is

available in the SOAP message as described earlier and is

transmitted in this step.

Step 3. This is the first key step in the detection process as it

builds the service state information and prepares the

extracted data and obtained rules for the detection phase. In

more detail, we require two state pools, a Former_state_pool

and a Latter_state_pool. The former denotes the state before

the execution of the current service (initially this is the initial

situation). The latter contains information of the state after

executing the service, or in situation calculus terms

(assuming action to be the service execution and to be the

current state) the state reached after . Before the

service is executed, Preconditions and input data from the

SOAP request message generate facts (predicates whose

values are definitely true); these are put into the

Former_state_pool. We also maintain two lists, called

Addlist and Deletelist for storing the new predicates during

the execution process of the service. The new predicates

whose values are definitely true are put into Addlist, the

predicates whose values change from true to false are put

into Deletelist. inConditions is used to generate FI rules.

After the service is executed, FI rules affect the service

state and the state is changed according to Effects and the

output data from the SOAP response message. In

particular, we delete each predicate that occurs in both the

Deletelist and the Former_state_pool from the latter. Then

all remaining predicates from the Former_state_pool and

all the predicates from the Addlist are added to the

Latter_state_pool. The two state pools now represent two

states during the execution process of the service

composition which will be evaluated in step 4.

Step 4. In this step we determine whether a Web service

feature interaction occurs. There are two situations that can

lead to feature interaction (the two types of interaction

mentioned earlier). One is that the Former_state_pool

doesn’t satisfy the Preconditions of the current service.

The other is that Former_state_pool and Latter_state_pool

are inconsistent. Using the Knowledge Base and the

Inference Engine, we identify whether either of the two

situations will occur.

Step 5. In this step information on newly detected

Fig. 3: The detection algorithm

 Former_state_pool is replaced with S0.

 Latter_state_pool is replaced with S1.

Fetch OWL-S document of current atomic service form

the composition service flow.

Get SOAP request message and SOAP response message.

No

 Extract Preconditions, InConditions and Effects from

OWL-S document, extract Input data from SOAP request

message and Output data from SOAP response message.

State pool S0 is NULL

State pool S1 is NULL

Input satisfy

Precondition ?
Conflict

Y
e
s

Use Input and Precondition to generate Facts.

Use InConditionss to generate Rules

Add Facts to S0.

Use Rules and Output to change the state.

 Predicates whose value turn to be false are put into Deletelist,

new predicates whose value turn to be true are put into Addlist.

Delete each predicate from S0 which is the same as the predicate in Deletelist.

Add all the predicates in S0 to S1.

Add all the predicates in Addlist to S1.

Fetch one predicate from S0, denoted as P(x1,x2,…,xn).

xj,xk,…,xm P(x1,x2,…,xn) S

Or xj,xk,…,xm

P(x1,x2,…,xn) R1(X) R2(X) … Rn(X) Q(x1,x2,…,xn)

Q(x1,x2,…,xn) S

Or xj,xk,…,xm Q(x1,x2,…,xn) S

Q(x1,…) Q1(X) … Qn(X) P(x1,…)

Yes Conflict End

N
o

Is there any predicate in S0

that hasn’ t been fetched?

N
o

Composition service flow is

finished?

Y
e
s

Normal

No Clear Addlist and Deletelist.

End

End

Yes

Start

interactions is recorded in the Interaction Information Base,

and the events are recorded to the log. This data helps with

future detection.

Step 6. If an interaction is detected the conflict resolver will

be queried to provide a solution. This step will lead to

transmitting progress information to the workflow execution

engine and allow for the processing of the workflow to

continue.

C. Case Study

In this section we present two scenarios to show how to carry

out the detection process. Each example shows one of the

kinds of feature interaction introduced earlier.

1) Case study 1: A reservation service

One person wishes go to another place in the country to

attend a conference and uses a reservation service to reserve

an airline ticket and a hotel. The composed service consists

of an airline ticket reservation service and a hotel reservation

service. Clearly the reservations include some form of

payment and the respective payment features are here seen as

part of the reservation service functionality. Here we only

provide the OWL-S description of the charge service, the

other two perform the obvious functionality. Expected

behavior of a payment service occurs: the charge goes

through if the card is not overdrawn; if the card is overdrawn,

the only output is a failure notification as the card limit

cannot be exceeded.

<process:AtomicProcess rdf:ID="Purchase">

 <process:hasInput>

 <process:Input rdf:ID="ObjectPurchased"/>

</process:hasInput>

 <process:hasInput>

 <process:Input rdf:ID="PurchaseAmt"/>

 </process:hasInput>

 <process:hasInput>

 <process:Input rdf:ID="CreditCard"/>

 </process:hasInput>

 <process:hasOutput>

 <process:Output rdf:ID="ConfirmationNum"/>

 </process:hasOutput>

 <process:hasResult>

 <process:Result>

<process:hasResultVar>

<process:ResultVar rdf:ID="CreditLimH">

<process:parameterType

rdf:resource="&ecom;#Dollars"/>

</process:ResultVar>

</process:hasResultVar>

<process:inCondition>

<expr:KIF-Condition>

<expr:expressionBody>

 (and (current-value (credit-limit

?CreditCard) ?CreditLimH)

(>= ?CreditLimH ?purchaseAmt))

</expr:expressionBody> </expr:KIF-

Condition>

</process:inCondition> <process:withOutput>

<process:OutputBinding>

<process:toParam

rdf:resource="#ConfirmationNum"/>

<process:valueFunction

rdf:parseType="Literal">

<cc:ConfirmationNum

xsd:datatype="&xsd;#string"/>

</process:valueFunction>

</process:OutputBinding>

</process:withOutput> <process:hasEffect>

<expr:KIF-Condition>

<expr:expressionBody>

 (and (confirmed (purchase ?purchaseAmt)

?ConfirmationNum) (own

?objectPurchased) (decrease

(credit-limit ?CreditCard) ?purchaseAmt))

</expr:expressionBody>

</expr:KIF-Condition>

</process:hasEffect>

 </process:Result>

</process:hasResult>

</process:AtomicProcess>

Let us consider the core aspects of the interaction detection

– clearly the whole process would be applied.

The composite service flow is as follows:

Ti cket

Reser vat i on

Hot el

Reser vat i on
S0 Se

Suppose that the balance of the card can afford for either

the airport ticket reservation service or the hotel

reservation service respectively, but cannot meet both

simultaneously. Further assume that both of the two

reservation services do not exceed the consumption

limitation of the card. Four predicates are defined:

predicate enoughMoney is used to denote that the

remaining spent on the card is sufficient to afford the

service request; predicate noExceed denotes that the cost of

the service request will not exceed the consumption limit

of the card; predicate notOverdrawn denotes that the card

is not overdrawn and predicate chargeCard denotes the

decreases in available spending power. The FI rule is

distilled from the reservation service:

FI rule:
kb:enoughMoney(?process:Balance,?process:PurchaseAmt) ∧
kb: noExceed(?process:PurchaseAmt? process:CreditLimH)

→

kb:notOverdrawn(?process:CreditCard) ∧
kb:chargeCard(?process:CreditCard,?process:PurchaseAmt)

The service states for ticket reservation are shown in Table

1.

TABLE 1: SERVICE STATES FOR TICKET RESERVATION

enoughMoney()

noExceed()

enoughMoney()

noExceed()

notOverdrawn()

Former_state_pool Latter_state_pool

After the ticket reservation service is executed, we

conclude that the two service states do not conflict. Then

the hotel reservation service is active. The Precondition of

the hotel reservation service is that the credit card can

afford the hotel rent. But the balance of the card is now

insufficient due to having executed the ticket reservation

service (and of course the card is not allowed to be

overdrawn). A feature interaction is detected, so the hotel

reservation service is withdrawn. This case of feature

interaction is a type of resource deficit and is always

dependent on the service data.

2) Case study 2: Credit risk

A credit bank provides a credit bank service. People can

request the credit service on the condition that they are not in

the blacklist of the credit service. There is also a transfer

service, which allows to transfer loans to other people.

Suppose that one person is qualified to request the credit

service, which they do before requesting the transfer service,

transferring the loan to person B. Now, further assume that

person B is in the blacklist of the credit service. Clearly this

is a case of credit risk for the bank, or in technical terms this

is a feature interaction. It is desirable to detect this feature

interaction and prevent for the credit risk to occur by

removing the interaction.

The OWL-S description of identity validation and the

credit service are as follows:

<process:inCondition>

 <expr:ConditionType>

 <expr:expressionBody>

 (identity-validate(?current-card ?Blacklist))

 </expr:expressionBody>

 </expr:ConditionType>

</process:inCondition>

<process:withOutput>

<process:OutputBinding>

<process:toParam rdf:resource="#Qualification"/>

</process:OutputBinding>

</process:withOutput>

<process:hasEffect>

 <expr:ConditionType>

 <expr:expressionBody>

 (grant-qualification(?current-card))

 </expr:expressionBody>

</expr:ConditionType>

</process:hasEffect>

The Composite service flow is as follows:

Cr edi t

Ser vi ce

Tr ansf er

Ser vi ce
S0 Se

The predicate notInBlacklist denotes people who request the

credit service are not in the blacklist of the service while

inBlacklist denotes people who are in the blacklist of the

credit service. The blacklists are integral to the credit service

and can only be obtained when the service is executed. The

predicate isCreditIdentity denotes one person is a qualified

customer of the credit service, while predicate creditTransfer

denotes credit identity transfers from one person to the other.

Predicate creditIdentity denotes that a credit identity is

granted to one person. We can distill two rules from the two

services: FI rule 1 from credit service and FI rule 2 from

transfer service.

FI rule 1:
kb:notInBlacklist(?process:PersonA) ∧
kb:Qualified(? process: Qualification) →

kb:creditIdentity(?process:PersonA)

FI rule 2:
kb:isCreditIdentity(?process:PersonA) ∧
kb: Qualified(? process: Qualification) →

kb:creditTransfer(?process:PersonA,?process:PersonB) ∧
kb:creditIdentity(? process:PersonB)

The service states before and after the credit service are

shown in Table 2, while Table 3 shows the respective

states for the transfer service.

TABLE 2. SERVICE STATES FOR CREDIT SERVICE

notInBlacklist(PersonA)

inBlacklist(PersonB)

notInblacklist(PersonA)

isCreditIdentity(PersonA)

inBlacklist(PersonB)

Former_state_pool Latter_state_pool

TABLE 3. SERVICE STATES FOR TRANSFER SERVICE

notInblacklist(PersonA)

isCreditIdentity(PersonA)

inBlacklist(PersonB)

notInblacklist(PersonA)

isCreditIdentity(PersonA)

inBlacklist(PersonB)

isCreditIdentity(PersonB)

Former_state_pool Latter_state_pool

From these tables it is obvious that the fact

inBlacklist(PersonB) in the Former_state_pool conflicts

with the fact isCreditIdentity(PersonB) (informally these

two mean that PersonB is not credit worthy while at the

same time being credit worthy) in the Latter_state_pool

and hence a feature interaction is detected.

 Note that the feature interaction is not a fault in the

service composition – in general the two services would

happily work with each other, but a situation that is caused

by the data of the services which makes the specific flow

undesirable.

V. DISCUSSION

An effective method for detecting Web service feature

interaction is capable of detecting dynamically not only all

kinds of specific known feature interactions, but also

unknown feature interactions, in a uniform manner.

According to this criterion, we present a Situation Calculus

based detection method. The method overcomes the

drawbacks of static detection method mostly employed in

the current research and the limitation of classification-

based approaches [6] which only allow for detecting

interactions that are known a-priori. Our approach has the

following beneficial properties:

 1) The method presented is a runtime method for WSFI

detection. Being a runtime method has several advantages,

one of which is that it allows to work in an environment

where new services might arrive and where there is no real

potential for statically checking all possible combinations.

So, this method will also work if the executed services in

the workflow are dynamically identified and bound to. The

actual service execution data is being used in the expression

of service states.

 2) The presented method is especially effective for feature

interactions based on instance data of the effects, which

could include interactions related to security and privacy

concerns. Such feature interactions cannot be detected by

static methods as the occurrence of the interaction depends

on instance data. As our method detects the interaction by

finding inconsistencies in the service state, data sensitive

interactions can easily be detected as long as the service

profile specifies the preconditions and effects of an

individual service correctly.

 3) The method avoids full exploration of large state spaces

as it only considers services that are actually invoked

together rather than all possible combinations of services and

furthermore only looks at inconsistency of the service state.

In that way, independent of the number of atomic services

involved in the service composition, we only need to

consider two states: one state before an atomic service is

being executed and the state after that execution. The

respective state pools might contain a large number of terms

for each instance, but that data would need to be considered

anyhow; however the state pools are renewed after each

detection step, meaning that the information considered is

local to the services of current interest.

 As far as feature interaction is concerned there is a

general perception that approaches in feature interaction

attempt to statically determine the absence of a feature

interaction. However, as also shown in [3], the field of

feature interaction research is quite wide and there exist run-

time approaches that attempt to deal with the problem by

detecting interactions and resolving them during system

execution time. These approaches have inspired this work, as

they are particularly adept at dealing with large numbers of

services from different providers that might encounter each

other for the first time when the system is running.

VI. CONCLUSION AND FUTURE WORK

With the rapid development of Web services and growing

use of composite services Web services feature interaction

will become a growing obstacle. While some researchers

have started to address feature interaction in the web services

domain, results are still very limited. By using the semantics

of Web services and inspiration from the situation calculus,

we proposed a novel framework and method to detect and

allow for resolution of feature interactions in web services at

execution time.

In future work, we intend to investigate how to

decentralize the detection system. We also will test our

system against more complex case studies to better evaluate

efficiency and accuracy of the method. As this paper focused

mostly on the feasibility of the approach in terms of detecting

interactions, we are planning a more detailed evaluation of

performance – clearly an important consideration for a run-

time approach.

VII. ACKNOWLEDGMENT

This work is jointly supported by the National Natural

Science Foundation of China (No.60672121), National

Key Basic Research Program of China (973 Program)

(2009CB320406) and the Foundation for Innovative

Research Groups of the National Natural Science

Foundation of China (Grant No. 60821001).

VIII. REFERENCES

[1] Blair, L., Blair, G., Pang, J., and Efstratiou, C. Feature Interaction
Outside a Telecom Domain. In: Proceedings of the Workshop on
Feature Interactions in Composed Systems (ECOOP'2001) 15-20,
2001.

[2] Amyot, D. and Logrippo, L. Guest Editorial: Directions in Feature
Interaction Research. In: Computer Networks, Special Issue on
Feature Interactions in Emerging Application Domains 45 5, 563-
567, 2004.

[3] Calder, M., Kolberg, M., Magill, E.H. and Reiff-Marganiec, S.
Feature interaction: a critical review and considered forecast.
International Journal of Computer Networks. 41: pp. 115-141, 2003.

[4] Zhang, J., Yang, F., and Su, S. Detecting the Web Services Feature
Interactions. In K. Aberer et al. (Eds.): WISE 2006, LNCS 4255, pp.
169-174, 2006.

[5] Magill, E.H.. Feature Interactions: Old Hat or Deadly New Menace?
In: K. Turner, E. Magill and D. Marples (Eds.), Service Provision:
Technologies for Next Generation Communications, Wiley, pp. 235-
252, 2004.

[6] Weiss, M. and Esfandiari, B. On Feature Interactions among Web
Services. In: Proceedings of the International Conference on Web
Services (ICWS), IEEE, 2004.

[7] Weiss, M., Esfandiari, B., and Luo, Y. Towards a Classification of
Web Service Feature Interactions, In: Proceedings of the Third
International Conference on Service Oriented Computing
(ICSOC05), Amsterdam, Netherlands , 2005.

[8] Turner, K.J. Formalising Web Services. In: Proceeding of Formal
Techniques for Networked and Distributed Systems (FORTE
XVIII), LNCS 3731, 473-488, 2005.

[9] Zhang, J., Su, S., and Yang, F. Detecting Race Conditions in Web
Services, In Proceedings of the International Conference on Internet
and Web Applications and Services (ICIW'06), 2006.

[10] Zhang, J., Yang, F., Shuang, K., and Su, S. Immune-Inspired Online
Method for Service Interactions Detection. In Jan van Leeuwen et
al. (Eds.): SOFSEM 2007, LNCS 4362, pp. 808-818, 2007.

[11] Pirri, F. and Reiter, R. Some Contributions to the Metatheory of the
Situation Calculus. Journal of the ACM, 46(2):261-325, 1999.

[12] R. Reiter. Knowledge in Action: Logical Foundations for Describing
and Implementing Dynamical Systems. MIT Press, 2001.

[13] OWL-S: Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S/.

[14] Horrocks, I., Patel-Schneider, P.F., Bechhofer, S. and Tsarkov, D.:
OWL rules: A proposal and prototype implementation. J. of Web
Semantics 3 (2005), pp.23-40.

[15] Redavid, D., Iannone, L., Payne, T. and Semeraro, G. OWL-S
Atomic Services Composition with SWRL Rules. Lecture Notes in
Computer Science: Foundations of Intelligent Systems, vol. 4994,
pp. 605-611, 2008.

[16] MINDSWAP: Maryland Information and Network Dynamics Lab
Semantic Web Agents Project, OWL-S API.
http://www.mindswap.org/2004/owl-s/api/.

[17] Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry,
P. and Ireland, J. Policy Support for Call Control. Computer
Standards and Interfaces, vol 28/6 pp 635-649, 2006.

http://www.w3.org/Submission/OWL-S/
http://www.mindswap.org/2004/owl-s/api/

