UNIVERSITA DI Pisa

DIPARTIMENTO DI INFORMATICA
TECHNICAL REPORT: TR-08-25

Supporting user—friendly
design of flexible Business
Processes in StPowla

P. Fantini C. Montangero
MIP - School of Management Dipartimento di Informatica
Politecnico di Milano Universita di Pisa

C. Palasciano
MIP - School of Management
Politecnico di Milano

S. Reiff-Marganiec
Department of Computer Science
University of Leicester

L. Semini
Dipartimento di Informatica
Universita di Pisa

September 24, 2008

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: 439 050 2212726

Supporting user—friendly design of flexible
Business Processes in StPowla

P. Fantini C. Montangero
MIP - School of Management Dipartimento di Informatica
Politecnico di Milano Universita di Pisa

C. Palasciano
MIP - School of Management
Politecnico di Milano

S. Reiff-Marganiec
Department of Computer Science
University of Leicester

L. Semini
Dipartimento di Informatica
Universita di Pisa

September 24, 2008

Abstract

The integration of BPM and SOA has the potential to lead to increased
agility, lower development and maintenance costs and a better alignment
between business and IT. However, it still requires large efforts by highly
skilled personnel. The Service-Targeted Policy-Oriented WorkfLow Ap-
proach attacks this problem by integrating workflows and services with
policies to clearly distinguish between the core process description and
the variations. This paper presents a first assessment of the impact of
the approach on the design of business processes. To this end, we ex-
ploit a case study, namely the activation of VoIP services by a re—seller of
telecommunication services.

1 Introduction

We are facing an unprecedented degree and speed of change in the require-
ments for software systems, since software lives nowadays in a changing open
world [4]. For instance, to reduce time-to-market, enterprises federate their op-
erations by networking via Web services, and these federations can change to
follow evolving business goals. On a smaller scale, processes may need to adapt
to temporary shortage of resources by simplifying, or even skip, some steps.
Engineers need to cope with these environmental changes while the supporting

software system is operating. Traditionally, domains where new features or fixes
had to be incorporated into a running software were rare, a notable exception
being telecommunications. Evolution is becoming more and more important in
many other domains, notably in business processes: software evolution, tradi-
tionally practiced as an off-line activity, nowadays must be accommodated at
run-time. The integration of Business Process Management (BPM) and Service
Oriented Architecture (SOA) has been recognized as a promising approach in
this respect [12].

However, the integration of BPM and SOA still requires large efforts by
highly skilled personnel. Currently, the business rules introduced by business
roles like sales or technical managers need to be mediated by a business analyst
who, thanks to his knowledge of the business processes, transforms them into
directives to the programmers for updating the workflows, e.g. in BPEL.

This paper addresses the problem of designing business processes to provide
the stakeholders with natural ways (i) to understand the basic structure of the
workflows, and (ii) to adapt the workflow behaviour in response to business
needs. We leverage the Service-Targeted Policy-Oriented WorkfLow Approach
(STPOWLA — to be read like “Saint Paula”), an approach to business process
modelling that merges three ingredients: a workflow notation, a policy language,
and the SOA [8, 5].

A policy based approach clearly distinguishes between a core description
of the process and its wvariations, which can be specified by declarative rules,
and can be deployed and removed dynamically. This foster Business Process
flexibility, by raising the abstraction level at which variations are specified, at
the same time providing a suitable implementation technique. Indeed, policies
have been successfully applied to deal with change and variability in several
software domains, e.g. software for telecommunications.

In the approach, business tasks are ultimately carried out by services, i.e.
computational entities that are characterized by two series of parameters: the
invocation parameters (related to their functionalities), and the Service Level
(SL) parameters, related to the resources they exploit to carry out their job:
Stakeholders can adapt the core workflows by requiring higher or lower service
levels, therefore consuming more or less resources.

The combination of workflows, SOA, and policies can be exploited at its best,
if a coherent design strategy is adopted to foster flexibility. In a nutshell, such
a strategy is to find the best balance between (i) keeping the workflows simple,
i.e., without explicit choices that depend on the quantity/quality of resources
available to the tasks, and (ii) providing large and foreseeing ranges of choices
to the policies, to support modelling the business rules as they pop up.

The kind and granularity of the ‘resources’ that are identified in the business
domain define a significant part of the design space in STPOWLA, the rest being
related to task functionalities. Since STPOWLA addresses the integration of
business processes and SOA at a high level of abstraction, close to the business
goals, the kind of resources associated to service levels are often more abstract
than those usually addressed when establishing service level agreements, like
bandwidth, power, etc. For instance, a task of a given type may need higher
levels of authorization in given circumstances, and lower levels in others. In
STPoOwLA, the authorizing business roles are seen as resources, ordered along

an AuthorizationLevel dimension: the identification of these dimensions is a
key design activity in STPOWLA .

It is worthwhile to point out that the ideas presented here result from the
cooperation of authors with different backgrounds, namely software engineering
and business management. We think that this cooperation is key to following
realistic paths in our investigations.

The next section elaborates the problem we want to face, via a case study.
Section 3 reviews STPOWLA, and Section 4 revisits the case study. We discuss
our approach in section 5 and related work in section 6. Finally, we wrap up
with conclusions and future work.

2 The problem, in an example

To illustrate our point, we exploit a case study from the telecommunication
sector, proposed in the SENSORIA project [25]. In this process, dubbed VoIP
service activation, a re—seller activates a VoIP service on wireless devices that
support WiMAX and WiFi connections. The customers may be either individual
or business customers, with different requirements on the provided service and
procuring process.

The case study centers on the activation of a VoIP service by a telecom-
munication (Telco) operator for individual or business customers. The Telco
operator, in its turn, buys telephony services from certified TIER 1 interna-
tional suppliers.

The workflow consists of four tasks in sequence:

1:Customer request — the customer connects to the Telco Customer Re-
lationship Management application (CRM), identifies itself and chooses the re-
quested service features and Quality of Service (QoS).

2:Service Offer — the CRM elaborates detailed customer request data plus
the relevant technical reports and forwards the result to the Sales Depart-
ment (supported by an Order Management application). The Sales Depart-
ment chooses the third—party supplier that best matches the requested QoS
while maximizing the company profits. Finally, a service offer including service
features, validated QoS, fees and terms is sent to the customer.

3:PreDelivery — once the customer agrees to the offer, the Technical De-
partment is advised to perform service tests to validate the QoS offered. Then,
a formal sales contract is issued for the customer, with legal consultancy from
the Internal Legal Department, if necessary.

4:Activation — after the customer agrees upon the service contract, the ser-
vice is installed and the relevant information is added into the Billing Platform
application.

Consider now the following scenario: The Sales Department is handling a very
big order from a major customer and the Technical Department is overloaded.
Since 80% of the testing activities are for less relevant, individual customers, the

\VoIP Activation - 3. Pre-Delivery (testing and contract issuing)

Reject test
—0
Recaive
<>
[Accept]
tost
O_“. Perform Send test Results Identify the P N O |Prepare final Create a 'O
\'% Service Test result Acceptation proposal id SLA contract
T |
! Request legal
1 assistance
! Performing tests in
; ordr o chack whether
paramaters that
]
1

Customer

Order Management

customer are feasable

Tech. Dept

Recelve Prepare |
[Request legal report

Legal

WORKFLOW MODIFIED

Figure 1: Required changes to the VoIP workflow

Sales Manager envisages to spare on the related resources. Since this stakeholder
has the necessary authority, he issues a new business rule (we call it R1):

R1: Until the end of year, no testing must be performed
for orders of small amount from individual customers.

In order to comply to the new business rule, the business analyst (BA) has to
change all the workflows that include testing activities provided by the Technical
Department, so to reduce its workload. Here is a likely scenario:

Step 1: Search. The BA has to look carefully into all the workflow diagrams
to find testing activities. In particular, the VoIP workflow is divided into four
diagrams, one for each task. Just to show the complexity of these diagrams,
Figure 1 presents the most interesting for our purposes (Predelivery).

Step 2: Found. As per the previous description of the tasks, testing activities
are found in Task 3, Pre-Delivery.

Step 3: Analyze/Change. Accordingly, the BA has to analyze the workflow
of Task 3 in detail, and change it according to rule R1, as shown by the dotted
part of Figure 1.

Step 4: Continue. The previous activities must be repeated for each of the
other business processes of the company.

Step 5: Record. The BA has to release a new version of the workflow and
record in the BA files the rule R1 and the relevant changes made to the work-
flows. In fact, rule R1 has lost its identity in the new workflows.

Step 6: Hand to IT department. The BA asks the IT manager to change the
program code accordingly. In business practice, often business process workflow
representations and program code are not connected with automatic transfor-
mation tools. In this cases, the BA has to hand the to-be-modified workflows
over to the I'T manager, to have the changes implemented in the code. The new

programs must then be tested and finally deployed in the business environment.
The BA has to follow up the new code development and implementation un-
til finally she can record that R1 has been successfully implemented in the IT
system.

Step 7: Restore previous. The BA has also to take note that at the end of the
year she has to check out her agenda, to ensure that rule R1 and related changes
are canceled and the company processes are restored to the previous state. At
this point, the IT engineer will have to modify the program code again and the
BA will have to cancel all changes relating to R1 in the workflows. Likely, the
code cannot simply be restored to the version preceding the changes done to
accommodate rule R1, as other changes, due to other variations, may have been
included in the version that is operative at the end of the year.

3 StPowla

As we said above, STPOWLA integrates three ingredients: workflows, policies,
and SOA. Workflows are used to define the business process core as the composi-
tion of building blocks called tasks, & la BPMN. Each task performs a meaningful
step in the business, whose purpose is well understood at an abstract level by
the stakeholders. That is, a task is understood as to its effect in the business,
regardless of the many details that need to be fixed in its actual enactment.

Policies are used to express finer details of the business process, by defining
functional and non-functional requirements of task executions. The added value
is that policies can be updated dynamically, to adapt the core workflow to the
changing needs of the various stakeholders.

3.1 Concepts.

Tasks are the units where BPM, SOA and policies converge, and where adapta-
tion occurs: we revisit the intuitive notion of task to offer a novel combination of
services and policies. To adapt a workflow to their needs, the stakeholders can
influence the behaviour of the tasks by using policies. The UML2 class diagram
in Figure 2 presents the related concepts. A Task has a TaskType, whose name
and description convey its purpose: each TaskType identifies precise func-
tional requirements in the domain. The name of the task is useful to distinguish
different occurrences of the same task type in the same workflow.
TaskType specializes Type: besides denoting a set of values and operations,
as usual, it specifies a number of task Attributes and Dimensions that play
an essential role in policy definition. Indeed, as already mentioned, a task is
carried out by a service in STPOWLA: each dimension in the task type specifies
the range of variability of the service level, with respect to one kind of resource.
The stakeholders can specify the requested levels the service must comply to
along each dimension, by writing their policies. To ensure that ranges can be
defined, dimensions are restricted to be totally ordered.

For instance, Predelivery the type of the task of interest in our scenario
(VoIP.3), is defined in Table 1: the task has an offer as input and returns a
contract, and its adaptability space is defined along three SL. dimensions, each

Task

name instancenf TaskType
defaultRange[*] | ¥ 1 | description
1
compliesTo
i evaluates i
Policy rarme {total order}
* # | type : Type * - i
Dimension
#* rame
Reconfiguration Refinement e Type 1
Policy Policy t
y y Ve
Figure 2: StPowla Concepts
Name: PreDelivery Description: Testing & Contract Issuing
Input: serviceOffer: ServiceOffer | Output: contract: Contract

SL Dimensions and default

LegalAssistance = [normal|, Signature = [normal], TestingEffort = [medium]|

Table 1: The type of task VoIP.3

with the specified defaultRange. A typical default value is the entire domain,
that is, no constraint at all. The dimensions are defined by the designer in a
table, whose relevant excerpt is shown in Table 2. We assume a standard OO
format for the definition of the data types, like ServiceOffer and Contract.

The requested service levels may also be specified taking into account the
state of execution: task attributes hold properties of individual tasks, workflow
attributes of the workflow, and global attributes maintain properties like time,
etc. STPOWLA users can capture the state of the execution evaluating them
in policies.

Finally, attributes are specified at design—-time and bound at run—time, e.g.
on task entry, as a function of the task inputs, and of the other attributes.

A task may have associated Policies, which come in two flavours: those that
adapt the workflow by constraining the task behaviour along its SL dimensions
(RefinementPolicies), and those that modify the workflow structure, adding

Name Values

LegalAssistance |none, normal
Signature normal, double
TestingEffort none, low, medium, high

Table 2: VoIP SL dimension

and/or deleting tasks (ReconfigurationPolicies). The latter are discussed
in [5]; here we will concentrate on refinement policies, and call them simply
policies. Before looking at policies, a quick overview of the run—time support is
useful.

3.2 Run—time support.

The merging of processes and policies occurs at execution time; that is, each
instance of the workflow might be executed differently depending on the envi-
ronment and the applicable policies. In this section we provide insight into the
run-time environment and how this ensures that policies are enforced; however
the fine technical details are beyond the scope of this paper. The runtime sys-
tem consists of a two layer architecture. Figure 3 presents an overview, where
the topmost layer is a user interface layer that allows for formulation of policies
and upload of the same to the policy server. The bottom layer consists of the
workflow execution environment. The top layer is referred to as policy server
layer; it is here that policies are stored, evaluated and actions are initiated. The
actions are executed by the workflow engine. We will now describe the relevant
parts in more detail.

As we say next, we expect users to use tables as a natural policy specification
mechanism. The process of deploying a policy means that the corresponding
table is sent to the policy server which has a built-in compiler to convert it into
its own representation.

The policy server is core to the whole architecture: it provides interfaces
for users to deploy new policies and it interacts with the workflow engine to
enforce the policies at execution time. The workflow engine temporarily halts
the execution when a new task is entered and passes the trigger (task_entry)
to the policy server together with some environment information, i.e. the data
for the attributes and the evaluation of the SL constraints. The policy server
evaluates its policies and determines the actions to take. Usually these will
establish the requirements for the service that should be executed to complete
the task. At this point the policy server invokes a service-lookup engine to
obtain a suitable endpoint that it passes to the workflow engine, which finally
resumes the execution of the refined workflow. That is, STPOWLA relies on
invocation time service binding, in the terminology of [17].

GuI Web Services
Polic e N <y L
Lpg!icyDﬂj {— [Policyserver C;Cg_; SerwceLookup,);}
= = ———
Policy fayer

WF execution layer

4.)}

BP core WF = \:.’_ s r’ﬁ
Design | BPdatabase WFenglne =i S
(.Mr,)’

Figure 3: STPOWLA run—time architecture

3.3 Policy representation.

Policies are specified in tabular form, whose structure is exemplified in Table 4.
From top to bottom: the first rows associates the table with the task (VoIP.3)
and the trigger (TaskEntry) it applies to (the task type permits local checks).
The rest of the table is divided in two: on the right side the constraints, on
the left side the conditions for their applicability when the policy has been
triggered. On the right side, the first row specifies how the policy affects the SL
dimensions: each of the rows below defines one possible set of constraints. The
default value is taken if the entry is empty.

On the left side, we have a tabular representation of the decision tree to
select the appropriate set of constraints: the top cell in each column shows
the type of the discriminating values; below it is the expression to evaluate
the discriminator on task entry. The next rows are the actual encoding of the
tree: if the leftmost discriminating value falls in the top range, and the other
discriminating value also falls in the top range of its column, then the top row of
constraints applies; if, on the contrary, the other value falls in the second range
of its column, then the second row applies; and so on. This encoding extends
obviously to any number of discriminators.

Finally, the rule names in the requested service level entries are there for
traceability reasons: given the policy definition process outlined in the previous
section, they permit to recover the business rules that motivated the business
analyst to introduce each constraint.

The details of the language used to express values and ranges in policy tables,
largely depend on the implementation, and specifically on the policy engine. In
this paper, for sake of space, we skept the issue using only enumeration types
and fixed values, respectively.

3.4 Implementation issues.

STPOWLA is intended to be independent of the workflow notation: we have been
using the SENSORIA UML4SOA profile [13] to accommodate useful workflow
operators.

STPOWLA is also intended to be independent of the policy language. In pre-
vious work we envisaged that the Business Analyst (BA) would express policies
in a well established policy language, namely APPEL [19], whose run—time has
been successfully used for telecommunication services [23]. The approach has

Policies for VoIP.3 : PreDelivery when taskEntry

Discriminators Requested SLs
Customer Type OrderRange . ” .
tllisTasl{.custonilﬂ‘ype tllisTaslc.orderlege LegalAssistance | SignatureType | TestingF ffort
s simall R :none
nelivichal medium, large RX : none Ry : double
business suall
mediom, large Ry : double

Figure 4: An example of policy table

several advantages, but a major drawback, in that often the BA is not computer
literate enough to be confident with the language. The tables introduced here
can be easily compiled in the XML format of APPEL.

The lookup service developed in the inContext project [22] is a natural candi-
date for service search, as one of the authors is involved in the project. However,
any other service lookup that can deal with SL requests would do.

We are now ready to review the Telco scenario.

4 Implementing R1 in StPowla

We now follow the STPOWLA BA in addressing rule R1, assuming the previous
design of the business process. We keep the same numbering as in Section 2, to
facilitate the comparison.

Step 1: Search. The BA searches the STPOWLA Business Process repository
for tasks that consume resources for testing, i.e. that feature the TestingEffort
dimension.

Step 2: Found. The search returns a table with pointers to the relevant task
definitions, in particular to VoIP.3, as per Table 1.

Step 3: Analyze/change. The BA analyzes the current policy table associ-
ated to VoIP.3 (Figure 4), to check the policy for small orders from individual
customers. Therefore, the BA has to consider the task policy table, The table
shows that the PreDelivery discriminators already include CustomerType and
OrderRange, and that testing is always executed by default at level medium.
Therefore, to implement R1 it is enough that the BA changes, in the Testing-
Effort column of the policy table, the uppermost empty entry to ‘R1 : none’.
Indeed, this entry relates to individual customers and small orders.

Step 4: Continue. The search in step 2 returns all the task featuring the
TestingEffort dimension. Therefore looping through all the tasks is much
easier. Once all the relevant entries are updated as shown in step 3, the tables
can be re-deployed in the policy server: R1 is implemented and the Technical
Department is free to concentrate on the critical order, till the end of the year.

Step 5: Record. Now, the BA has to record the implemented business rule
R1 in his records; he probably also wishes to record the changes that have been
applied. Again a support tool is envisioned to help here.

Step 6: Hand to IT. There is no longer need to hand a change request over to
the IT Department; as previously noted, the implementation is now automatic.

Step 7: Restore previous. Potentially, the workflow engine could take into
account the new business rule only within its period of validity (until the end of
the year), by means of ’temporal discriminators’. The flexibility introduced by
the business rules substitutes in some cases the software version management
procedures.

5 Discussion

5.1 Design issues.

The process to manage adaptation that underlies STPOWLA involves at least
two roles. One is the BA, who is in charge of business process modelling, the
other is a catch-all role, Stakeholder (SH). The latter can be played by any
person involved with the business process, usually with only cursory knowledge
of the business process, but with an interests in its performance and/or out-
comes. Because of these interests the SH will from time to time express new
requirements that, once approved by the appropriate level of management, are
passed to the BA, in the form of business rules, in natural language. The BA
will then translate the rule into appropriate policy tables for the appropriate
tasks of the workflows. Often, as it is usual in software development tasks, the
BA will need to report back to the proposing SH to revise the requirement in
the light of his knowledge of the workflow. Anyhow, the table prepared by the
BA will be compiled into the policy language and deployed in the policy server,
from where it will influence the behavior of the processes as they are executed.

Attributes, and their types, are identified and introduced at different points,
during the development of the business model: a few types are predefined, i.e.
they come with STPOWLA and are applicable to any task. Most of the attributes
types are identified in the construction of the domain model, while others may
be added for the needs of specific tasks.

As it has been exemplified in the scenario above, the identification of at-
tributes and SL dimensions is a key design activity in STPOWLA. Indeed, not
only the business process flexibility depends essentially on the BA’s foresight in
this respect, but these choices have also an impact on the service implementa-
tions. In fact, any relevant combination of SL values may lead to the need of a
specific service. Product lines techniques might provide useful guidelines in this
respect.

5.2 StPowla benefits.

From the discussion on deploying R1, we can identify the following ones:

e The search in the business process space is IT supported, so that results
are easily obtained and more precise (steps 2.1 and 2.2);

e The analysis of change impacts and business rule implementation are sim-
pler, especially if the business process structure has been designed to dis-
tinguish the items (conditions of applicability and SL constraints) ad-
dressed by the new rule, as shown above (step 2.3). Then, the changes are
almost immediately implemented in the IT system;

e Some steps can be automated (2.6 and 2.7). Software configuration man-
agement is also reduced.

In general, STPOWLA potentially improves the company efficiency, by lowering
the BA and IT labour costs, as well as its effectiveness, thanks to the shorter
time—to—market, and to less errors in BP design and programming.

10

When several policies are composed or applied simultaneously they might
contradict each other. A logic-based approach to detect policy conflicts, appli-
cable to STPOWLA, is presented in [14].

6 Related Work

Much work has been published in the area of business process specifications,
ranging from natural English to structured languages used for expressing pro-
cesses. BPEL [11] is considered the de—facto standard for SOA-based business
processes, despite its initial purpose as a service composition language. More
traditional workflow languages such as YAWL [24] may be considered better in
terms of describing processes since they abstract away composition details that
would be included in those solutions previously discussed.

Policies are descriptive and essentially provide information that is used to adapt
the behaviour of a system. Most work deals with declarative policies. Notable
examples are the formalisms for SLA, i.e. to specify client requirements and
service guarantees, and to sign an agreement between them [7, 6].

Ideas of introducing flexibility into workflows have been presented by Re-
ichert and Dadam [18] and in the Woklet system by Adams et al [3]. The
formers discuss a framework for dynamic process change, but do not include
support for changes to the workflow in progress. The latter is based on an ex-
tensible repertoire of sub—processes aligned to each task, one of which is chosen
at runtime. The difference here is that our adaptation results on changing the
Service Levels. Though less general, our approach provides a guidance during
the design phase.

Possibly AgentWork [15], where rules can be used to drop or add individual
tasks to workflows, is close to our reconfiguration policies [9, 10]. However,
there is no notion of tasks being linked to services in this work, and the policies
are concerned with task replacement rather than task implementation or service
selection.

A complementary approach, also combining rules and workflows, is taken
in [21]. Here, the objective is compliance control, with respect to regulatory,
standard—driven and business—driven requirements. They introduce a control
process under the responsibility of a compliance expert, and a computationally
efficient non-monotonic deontic logic of violations to model the constraints.

Among the various types of software tools available in the marketplace for
BPM support, several business rules management tools (BR tools) became avail-
able in recent years. Some vendors offer solutions for doing discovery and analy-
sis of business rules, other offer repositories to document the business rules and
still others offer tools to automate business rules, such as business rule engines
or code generators from business rules [20]. Among the most complete and
promising solutions are Blaze Advisor [1] and JRules [2]. Recently BR tools
have been including SOA integration features, such as deploying rule services
as part of an SOA [16].

11

7 Conclusions

STPOWLA introduces a novel combination of policies and workflows that adds to
each of the concepts being used on their own, so allowing the designer to capture
the essential requirements of a business process using a workflow notation and
at the same time permits for the variability to be expressed in a descriptive way
by policies. Additionally, STPOWLA creates a clear link between this enhanced
workflow mechanism and services: tasks are being executed by services, and
STPoOwLA allows the BA to design functional and SL requirements that together
characterize the guarantees the chosen service has to provide.

Acknowledgments.

All the authors are partially supported by the EU project SENSORIA IST-
2005-16004.

References

[1] http://www.fairisaac.com/fic/en/product-service/product-index/blaze-
advisor/. Last visited: May 2008.

[2] http://www.ilog.com/products/businessrules/index.cfm. Last visited:
May 2008.

[3] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst.
Worklets: A service-oriented implementation of dynamic flexibility in work-
flows. In R. Meersman and Z. Tari, editors, On the Move to Meaningful
Internet Systems 2006: CooplS, DOA, GADA, and ODBASE, OTM Con-
federated International Conferences, volume 4275 of LNCS, pages 291-308.
Springer, 2006.

[4] L. Baresi, E. Di Nitto, and C. Ghezzi. Towards Open-World Software.
IEEE Computer, 39:36-43, October 2006.

[5] L. Bocchi, S. Gorton, and S. Reiff-Marganiec. Engineering Service Oriented
Applications: From StPowla Processes to SRML Models. 2008. To Appear
in FASEO8.

[6] M.G. Buscemi, L. Ferrari, C. Moiso, and U. Montanari. Constraint-based
policy negotiation and enforcement for telco services. In Proc. 1st IEEFE
& IFIP Theoretical Aspects of Software Engineering Conference (TASE
2007). IEEE Computer Society, 2007.

[7] M.G. Buscemi and U. Montanari. Ce-pi: A constraint-based language for
specifying service level agreements. In R. De Nicola, editor, Programming
Languages and Systems (ESOP 2007), pages 18-32, 2007.

[8] S. Gorton, C. Montangero, S. Reiff-Marganiec, and L. Semini. StPowla:
SOA, Policies and Workflows. 2007. To Appear in Proceedings of WESOA
2007; LNCS.

12

[9]

[18]

[19]

[20]

S. Gorton and S. Reiff-Marganiec. Policy support for business-oriented
web service management. In Proceedings of the Fourth Latin American
Web Congress (LA-WEB’06), pages 199-202, Washington, DC, USA, 2006.
IEEE Computer Society.

S. Gorton and S. Reiff-Marganiec. Towards a task-oriented, policy-driven
business requirements specification for web services. In S. Dustdar, J.L.
Fiadeiro, and A.P. Sheth, editors, Business Process Management, volume
4102 of LNCS, pages 465-470. Springer, 2006.

D. Jordan and J. Evdemon et al. Web services business process ex-
ecution language version 2.0. W3C, Aug 2006. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-specification-draft.pdf.

F. Kamoun. A roadmap towards the convergence of business process man-
agement and service oriented architecture. Ubiquity, 8(14), 2007. ACM
Press.

N. Koch, P. Mayer, R. Heckel, L. Gonczy, and C. Montangero. UML for
service-oriented systems, SENSORIA EU-IST 016004 Deliverable D1.4.a.
http://www.pst.ifi.lmu.de/projekte/Sensoria/del_24/D1.4.a.pdf, 2007.

C. Montangero, S. Reiff-Marganiec, and L. Semini. Logic-based detec-
tion of conflicts in APPEL policies. In F. Arbab and M. Sirjani, editors,
Int. Symp. on Fundamentals of Software Engineering, FSEN 2007, Tehran,
Iran, volume 4767 of LNCS, pages 257-271. Springer, 2007.

R. Miiller, U. Greiner, and E. Rahm. Agent work: a workflow system
supporting rule-based workflow adaptation. Data Knowl. Eng., 51(2):223—
256, 2004.

S. Nunez. ILOG JRules 6.5 brings rules to SOA. InfoWorld: Product
Guide: ILOG JRules 2007 : Review, 2007.

C. Pautasso and G. Alonso. Flexible binding for reusable composition of
web services. In Software Composition, volume 3628 of LNCS, pages 151—
166. Springer, 2005.

M. Reichert and Peter Dadam. ADEPT flex -supporting dynamic changes
of workflows without losing control. J. Intell. Inf. Syst., 10(2):93-129, 1998.

S. Reiff-Marganiec, K.J. Turner, and L. Blair. Appel: The accent project
policy environment /language. Technical Report TR-161, University of Stir-
ling, Dec 2005.

G. Steinke and C. Nickolette. Business rules as the basis of an organizations
information systems. Industrial Management € Data Systems, 103(1):52—
63, 2003.

S.W.Sadiq, G.Governatori, and K.Namiri. Modeling control objectives for
business process compliance. In BPM2007, volume 4714 of LNCS, pages
149-164. Springer, 2007.

13

[22]

H.-L. Truong, S. Dustdar, D. Baggio, C. Dorn, G. Giuliani, R. Gombotz,
Y. Hong, P. Kendal, C. Melchiorre, S. Moretzky, S. Peray, A. Polleres,
S. Reiff-Marganiec, D. Schall, S. Stringa, M. Tilly, and H.Q. Yu. incon-
text: a pervasive and collaborative working environment for emerging team
forms. In Proc. 2008 International Symposium on Applications and the In-
ternet, 2008. To Appear.

K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P. Perry,
and J. Ireland. Policy support for call control. Computer Standards and
Interfaces, 28(6):635-649, 2006.

W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: yet another
workflow language. Inf. Syst., 30(4):245-275, 2005.

M. Wirsing, G. Carizzon, S. Gilmore, L. Goénczy, N. Koch, P. Mayer,
and C. Palasciano. A systematic approach to developing service-
oriented systems. Technical report, EU IP-IST 016004 SENSORIA, 2007.
http://www.sensoria-ist.eu/files/sensoria_whitepaper_20080303.pdf.

14

