
A Semantic Approach for Efficient and
Customized Management of IaaS Resources

Luis H. V. Nakamura∗, Julio C. Estrella∗, Regina H. C. Santana∗,
Marcos J. Santana∗, Stephan Reiff-Marganiec †

∗ University of São Paulo (USP)
Institute of Mathematics and Computer Science (ICMC), São Carlos-SP, Brazil

Email: {nakamura, jcezar, mjs, rcs}@icmc.usp.br
† University of Leicester

University Road, Leicester, LE1 7RH - UK
Email: srm13@le.ac.uk

Abstract—This paper presents a semantic approach to custom
management of IaaS (Infrastructure as a Service) resources
in a cloud computing environment requiring minimal human
intervention from both the cloud provider and the user. The
proposal differs from other approaches by using autonomic com-
puting and semantic web techniques together to provide a self-
configuring and self-optimizing environment that aims to satisfy
SLAs (Service Level Agreements). The approach monitors the
virtualized resources to guarantee a customized and optimized
use based on financial criteria and energy consumption policies.

Keywords-IaaS; Cloud Computing, Autonomic Computing, Se-
mantic Web, Management;

I. INTRODUTION

Nowadays, efficient management for Infrastructure as a
Service (IaaS) resources is a challenge in the cloud computing
context. The basic idea of resource management is to allocate
appropriate resources to a service according to the SLAs
(Service Level Agreements) agreed between cloud computing
providers and cloud computing users. Providers typically offer
virtualized infrastructure instead of real hardware directly. An
example of IaaS services is Amazon Web Services (AWS)1

with processing services (Elastic Compute Cloud - EC2) and
storage (Simple Storage Service - S3) [1].

Both providers and users would share the same manage-
ment goals, for example, SLAs satisfaction. But they also
would have different visions of an efficient management. For
instance, while users would like to use as few machines-hours
as possible, providers would like to have the maximum of tasks
running in the mimimum of real machines to save energy and
consequently increase profit.

There are several resource management approaches for
cloud computing providing efficient solutions [2][3][4][5][6]
for different aims like financial (economic-based/marketing-
based, return on investment, predictions, etc.), energy saving
(Green Computing) and to avoid SLA violations (SLA-Aware).
However, to provide an automatic resource management solu-
tion involving all these scopes and also customizing desired
settings for both users and provider is an innovative approach.

1https://aws.amazon.com/

In this paper, we propose an efficient and customized
management of IaaS resources through the use of Semantic
Web and Autonomic Computing concepts and techniques. We
use an ontology to represent an IaaS environment, storing
relevant information about virtualized resources, SLAs and
custom polices regarding financial, energy saving and Quality
of Services (QoS). Mechanisms can Monitor the resources and
store information in this ontology; Analyze this data; Plan
actions; and Execute new reconfigurations in the infrastruc-
ture (self-configuration). To perform an efficient and custom
management, optimization algorithms consider the providers’
and users’ information stored in the ontology (Knowledgement
Base) (self-optimization). This MAPE-K2 loop control is
an Autonomic Computing concept [7] used to provide self-
management in computer systems.

This paper is structured as follows: Section II presents a
short review of the concepts involved in this study. In Sec-
tion III the proposed framework is briefly described. Related
work is discussed in Section III-D. Finally, Section IV presents
the conclusions and future work.

II. BACKGROUND

A. Semantic Web

Semantic Web proposes a vision in which information is
delivered explicitly allowing machines to process and integrate
information more easily [8]. Ontologies facilitate the represen-
tation of semantic information, avoid redundancy of informa-
tion and provide a formal representation of a knowledge base.
The creation and use of computational agents that are able to
interpret this information and make inferences is one of the
great advantages of the Semantic Web. Inferences, e.g. based
on existing rules in the ontology, make these agents capable
of answering questions and making decisions.

B. Autonomic Computing

Autonomic Computing is a computing paradigm inspired
by biological systems (e.g., autonomic nervous system) that
aim to handle the administration of complex systems offering

2Monitor, Analyze, Plan, Execute and Knowledgement

978-3-901882-48-7 c� 2012 IFIP



possibilities for self-management, minimizing the need for
human intervention [9]. The autonomic computing concept
defines four properties; Self-Configuration, Self-Optimization,
Self-Healing and Self-Protection.

The autonomic computing theory also defines a MAPE-K
loop control mentioned earlier in this paper. However, this
theory does not describe what features or technologies must
be used. At this point, we can use some features from the
Semantic Web, for example, an ontology can be used as a
knowledgement base and computional agents can use inference
process and rules to plan, analyze and make decisions.

III. FRAMEWORK FOR IAAS RESOURCE MANAGEMENT

Although autonomic computing theory covers four proper-
ties, In the scope of this paper, focus on Self-Configuration
and Self-Optimization. Self-Healing and Self-Protection are to
be addressed in future work.

Our proposal uses an ontology to represent the knowledge.
Monitors observe the cloud infrastructure to obtain relevant
information that will be stored in the ontology. Next step, this
information is recovered and by using inference mechanisms
and custom rules we determine whether reconfiguration is
necessary. Before executing any change in the infrastructure,
optimization algorithms plan efficient utilization of the avail-
able resources. In the whole process the restrictions/constraints
included in the rules by the providers or users are respected,
enabling a customized configuration.

A. Ontology

The structure of an ontology should reflect the domain of
its application in the real “world”; here the ontology should
represent an IaaS infrastructure model. Using the Web Ontol-
ogy Language (OWL)[8] it is possible to add create richer
vocabularies to describe the classes, relationships between
classes, comparison between classes, cardinality constraints
and characteristics of the properties. An OWL class represents
an element in the domain, for example, an instance of the class
“Machine” would represent a machine. Also the “Machine”
class has two subclasses (“Real” and “Virtual”) and it can be
related to another subclass from the “Resources” class like:
“Compute”, “Memory”, “Network”, “Storage” or “Volume”.

The ontology (Figure 1) is an extention of an unified
taxonomy for IaaS proposed by Dukaric and Juric [10].

B. Mechanisms

Mechanisms to monitor, analyze, plan and execute tasks
that ensure self-configuration and self-optimization of the
infrastructure.

1) Self-Configuration: The self-configuration mechanism
must have at least a purpose that can be governed by static
or dynamic policies. As an example of static policies, we
can consider the hibernation of an idle computer (less than
10% utilization) for resource savings or increasing memory
when this feature become bottleneck (90% utilization or high
execution of swapping). Static policies are set at design

Fig. 1. Proposed Ontology View.

time, during configuration of the mechanisms by provider’s
administrators together with users of the system.

Dynamic policies do not use fixed values for self-
configuration, but rather use a stimulus requiring a self-
configuration stating what needs to be reconfigured. This
stimulus is usually part of other mechanisms that form the
autonomous system, such as requiring a new configuration to
increase performance (e.g., self-optimization).

The computional agents monitor the infrastructure resources
continuously. The proposal for the agent development is to
use JADE (Java Agent DEvelopment Framework)3 which
is a distributed framework that has support to implement
multiagent systems. The initial prototype uses scripts that
execute the Virsh Tool4 to change the configuration of the
resources.

As mentioned earlier, the mechanisms use semantic web
resources to store information in an OWL ontology and make
decisions using reasoners and rules (e.g., Pellet5 or Hermit6

and SWRL7 respectively).
2) Self-Optimization: Self-optimization allows detecting

ideal behaviors, adapting the system voluntarily for better
configuration and is a very effective proposal to satisfy the
user needs [11].

Mechanisms for self-optimization such as policies and opti-
mization techniques seek to satisfy certain requirements of the
system efficiently. Policies indicate what should be optimized

3http://jade.tilab.com/
4http://libvirt.org/virshcmdref.html
5http://clarkparsia.com/pellet/
6http://hermit-reasoner.com/
7http://www.w3.org/Submission/SWRL/



when this optimization should occur and additionally may
include restrictions on optimization techniques that may assist
in achieving the problem goal.

The mechanisms for self-optimization should initially max-
imize performance and minimize costs. For this, the poli-
cies involved should be related to the custom criteria (SLA,
QoS, Financial and Energy saving). Optimization algorithms
available in the literature (e.g., Ant Colony Optimization,
Integer Linear Programming, Combinatorial and Allocation
Optimization, etc.) provide suitable mechanisms.

C. Architecture

The proposed architecture is shown in Figure 2. The mech-
anisms in this architecture provide the following functional
steps:

Manageable Resources

Analyze Plan

Monitor Execute

Autonomic Manager

Knowledge

Agents

SWRL
Reasoner

Database

Monitoring Executing

Administrator

Client

. . . 

. . . 

IaaS

IaaS Platform

Web Application

Web
Services

SLA

Financial
QoS + SLA

Energy

1
2

3

5

6 7

8

4

Fig. 2. Proposal Architecture

1) The first step is the creation of a SLA between the
cloud client and the cloud provider’s administrator. This
process is accomplished outside of the architecture, but
the agreed parameters should be included in the next
step;

2) The administrator will use a web application to create a
client account, register the financial constraints, SLA and
Energy parameters. The client can choose some custom
policies regarding financial issues (e.g., restrictions and
constraints about machine-hours consumption, limits on
the number of online VMs or boost performance for
special dates);

3) All configurations from step 2 are save in a database
and transformed in static policies and parameters to be
used in SWRL rules;

4) Using a web service, an API or a web application
(Dashboard) the client will create an infrastructure. The
users’ client will use this infrastructure to consume
services and the workload changes will be noted by the
autonomic mechanisms (next steps);

5) Computational agents monitor the infrastructure con-
stantly and collect information that is stored in the

knowledge base (KB) (ontology);
6) The loop control will be executed from time to time,

making inferences based on the data from the KB and
SWRL rules;

7) The inference process classifies and relates the informa-
tion from provider, clients, resources and polices to be
used by the optimization algorithms. These algorithms
should analyze the data and decide if a new reconfig-
uration is necessary. They also need to optimize the
reconfiguration itself by scaling resources appropriately
and respecting the custom policies;

8) Finally, mechanisms trigger the computational agents to
promote the custom auto-scaling.

The relevant contribution of this architecture and its mech-
anisms is the ability to create and apply new policies dynam-
ically. For example, Amazon, one of the biggest players in
cloud computing, simply offers a system for dynamic scaling
based on load balancing that considers only three types of
adjustments (AdjustmentTypes): ChangeInCapacity, ExactCa-
pacity and PercentChangeInCapacity [12] and, basically, three
kinds of instances (ondemand, reserved and spot) for billing
[13]. Users need handling with both auto-scaling and billing to
get a simple financial control which, sometimes, is not suitable
to them.

The framework presented here offers mechanisms to the
provider and user create personalized polices. There are three
policies: Financial, Power and SLA.

The Financial policy should determine how much an user
can spend and how the financial value is distributed among
the contracted period.

The Power policy is more related to the provider side and it
is supported by an optimization mechanism which deals with
a combinational and allocation problem. The user can choose
to agree or not with a Power policy. If the user agrees then
their virtual machines may be migrate when necessary to save
energy and consequently its SLA will be relaxed, but on the
other hand the provider may offer a discount.

The SLA policy controls the service level agreed between
user and providers, this policy uses the values of QoS attributes
which were collected by the monitors in each virtual machine
and composes all this information in a single QoS index for
the entire user’s infrastructure to determine if the SLA is been
respected.

D. Related Work

Resource management in cloud computing has become a
very interesting research topic because it involves other issues
such as economic factors, rational use of energy, auto scaling,
customization, etc.

In this section, we discuss some related work:
[6] proposes an algorithm for energy efficiency in service

centers. Although the authors have not mentioned the “cloud
computing” term, the work applies in data centers and cloud
providers. They propose an algorithm based on context aware-
ness as a solution for energy efficiency at run time through
self-adaptation based on autonomic computing.



[2] proposes two self-configuration approaches for IaaS, one
based on a predictive model (Holt-Winter) and the other on
computational agents to monitor the VMs resources perfor-
mance in real time. [3] presents an adaptive configuration
resource management for cloud infrastructures with the aim
to investigate SLA violations. To archive their objectives,
the authors use two approaches one using CBR (Case-Based
Reasoning) and other using semantic web (ontology) and rules,
the results proved that the rule-based method is better than the
CBR in respect to SLA and performance.

[4] provides a framework to manage tasks. The authors
use semantic web concepts to disseminate context. However,
that work does not directly address cloud computing, the
focus is autonomous collaborative networks. [5] presents a
proposal to provide self-managing applications for platforms
of cloud computing (PaaS). The authors also use semantic web
and autonomous computing concepts, presenting a new vision
where cloud platforms are seen as networks of distributed data
sources (sensor network).

Although these studies share ideas with our proposal, there
are notable differences. For example, our focus is on the
infrastructure layer (IaaS) and we offer custom management.
Also, the approaches focus only on some management goals.
Table I shows a summary of related work comparing to this
paper.

TABLE I
BRIEF LIST OF RELATED WORK WITH CLOSEST APPROACHES

Autonomic Computing Semantic Web Management
Work Concepts Knowledge Ontology Rules Energy Financial QoS/SLA Optimization

Anghel [6] Yes Ontology Yes SWRL Yes N/A Yes N/A
Latre [4] Yes Ontology Yes SWRL/Jena N/A N/A Yes N/A

Dautov [5] Yes Ontology Yes SWRL N/A N/A Yes N/A
Our Proposal Yes Ontology Yes SWRL Yes Yes Yes Yes

IV. CONCLUSION AND FUTURE WORK

This paper proposes an semantic approach for automatic and
customized management of IaaS resources in cloud computing.
The archtecture and its mechanisms presented in this paper
work according to autonomic computing concepts and use
semantic web technologies to provide self-configuration and
self-optimization features.

In our approach, providers and users are able to create and
apply new customized policies dynamically with the aim of
obtaining a more adequate resource management.

In future work, we intend to use the OpenStack, a cloud
computing platform, instead of scripts and the Virsh tool.
We will use the Openstack API to reconfigure the distributed
infrastructure and take advantage of the benefits offered by this
platform. In addition, we will conduct performance evaluations
in our prototype. Finally, other autonomic computing concepts
as Self-Healing and Self-Protection could be contemplated in
the future.

ACKNOWLEDGMENTS

The authors thank the Brazilian Foundations CAPES (Co-
ordenação de Aperfeiçoamento de Pessoal de Nível Superior)

and FAPESP (Fundação de Amparo à Pesquisa do Estado de
São Paulo, Process: 2011/12670-5) for the support given to the
development of this work. S. Reiff-Marganiec was on study
leave from the University of Leicester while some of this work
was conducted.

REFERENCES

[1] S. Patidar, D. Rane, and P. Jain, “A survey paper on cloud computing,”
in Advanced Computing Communication Technologies (ACCT), 2012
Second International Conference on, 2012, pp. 394–398.

[2] A. S. Dias, L. H. V. Nakamura, J. C. Estrella, R. H. C. Santana, and M. J.
Santana, “Providing IaaS resources automatically through prediction and
monitoring approaches,” in Computers and Communications (ISCC),
2014 IEEE Symposium on, June 2014, pp. –.

[3] M. Maurer, I. Brandic, and R. Sakellariou, “Adaptive resource configura-
tion for cloud infrastructure management,” Future Generation Computer
Systems, vol. 29, no. 2, pp. 472 – 487, 2013, special section: Recent
advances in e-Science.

[4] S. Latre, J. Famaey, J. Strassner, and F. D. Turck, “Automated context
dissemination for autonomic collaborative networks through semantic
subscription filter generation,” Journal of Network and Computer Appli-
cations, pp. 1405 – 1417, 2013.

[5] R. Dautov, D. Kourtesis, I. Paraskakis, and M. Stannett, “Addressing
self-management in cloud platforms: a semantic sensor web approach,”
in Proceedings of the 2013 international workshop on Hot topics in
cloud services, ser. HotTopiCS ’13. New York, NY, USA: ACM, 2013,
pp. 11–18.

[6] I. Anghel, T. Cioara, I. Salomie, G. Copil, and D. Moldovan, “An
autonomic algorithm for energy efficiency in service centers,” in In-
telligent Computer Communication and Processing (ICCP), 2010 IEEE
International Conference on, aug 2010, pp. 281 –288.

[7] Y. Cheng, A. Leon-Garcia, and I. Foster, “Toward an autonomic service
management framework: A holistic vision of soa, aon, and autonomic
computing,” Communications Magazine, IEEE, vol. 46, no. 5, pp. 138
–146, may 2008.

[8] W3C, “Web ontology language overview,” 2004. [Online]. Available:
http://www.w3.org/TR/owl-features/

[9] A. Khalid, M. Haye, M. Khan, and S. Shamail, “Survey of frameworks,
architectures and techniques in autonomic computing,” in Autonomic and
Autonomous Systems, 2009. ICAS ’09. Fifth International Conference on,
april 2009, pp. 220 –225.

[10] R. Dukaric and M. B. Juric, “Towards a unified taxonomy and archi-
tecture of cloud frameworks,” Future Generation Computer Systems,
vol. 29, no. 5, pp. 1196 – 1210, 2013, special section: Hybrid Cloud
Computing.

[11] S. Hassan, D. Al-Jumeily, and A. Hussain, “Autonomic computing
paradigm to support system’s development,” in Developments in eSys-
tems Engineering (DESE), 2009 Second International Conference on,
2009, pp. 273–278.

[12] Amazon, “Developer guide - dynamic scaling,” 2010, acessed in
August 03, 2014. [Online]. Available: http://docs.aws.amazon.com/
AutoScaling/latest/DeveloperGuide/as-scale-based-on-demand.html

[13] Amazon-EC2, “Amazon ec2 pricing,” 2014, acessed in August 03,
2014. [Online]. Available: http://aws.amazon.com/pt/ec2/pricing/


