
Design and Implementation of Fault Tolerance
Techniques to improve QoS in SOA

Edvard Martins Oliveira∗, Júlio Cézar Estrella∗, Bruno Tardiole Kuehne ∗,
Dionísio Machado Leite Filho ∗, Lucas Junqueira Adami∗, Luiz Henrique Nunes ∗,

Luis Hideo Nakamura ∗, Rafael Mira Libardi ∗, Paulo Sérgio Lopes Souza∗ and Stephan Reiff-Marganiec †
∗University of São Paulo (USP)

Institute of Mathematics and Computer Science (ICMC), São Carlos-SP, Brazil
Email: {edvard, jcezar, btkuehne, dionisio, lhnunes, ljadami, nakamura, mira, pssouza}@icmc.usp.br

† University of Leicester
University Road, Leicester, LE1 7RH - UK

Email: srm13@le.ac.uk

Abstract—Fault tolerance techniques can improve the trust
of users in service oriented architectures as they can ensure
data availability. This paper presents an implementation of a
novel fault tolerance mechanism in a SOA architecture which
simultaneously provides increased availability and better quality
of service. In addition to this mechanism, a service selector using
reputation ratings of the architecture components is discussed.
The selection is based on information from past transactions of
the components of the architecture, which allows to identify the
best web services able to meet the requests of customers. The
mechanisms are tested and a performance evaluation is presented
to validate the results.

Keywords-QoS; Service Oriented Architecture; Fault Toler-
ance; Web Services;

I. INTRODUCTION

With an increasing uptake of services users now have
a choice of getting the same functionality from different
providers. Other criteria, collectively referred to as non-
functional properties or quality of service (QoS), are used
to differentiate services based on their quality. The resulting
recognised problem is to identify the best service based on
a user’s demands. However, according to [19], the efficient
selection of web services with guaranteed quality of service
has become a critical problem. The problem occurs due to
the difficulty of obtaining values for service quality – service
providers can improve their QoS intentionally in a dishonest
way by providing unrealistically positive values in the registry.
There are no good evaluation methods available to identify
this behaviour, so there is a need to automatically determine
values for non-functional properties based on service execution
histories. Such a method will further help with fluctuations
of quality that naturally occur during service use, based on
request loads.

Fault tolerance allows a system to continue operating in the
presence of one or more failures [15]. Systems that require
security and fault tolerance mechanisms can use models based
on reputation of system components, using only the best
components in the execution of the system. Component faults
are automatically detected and treated by these mechanisms

[6]. Reputation is considered a collaborative model of services
classification [19]. The feedback obtained from users can
complement the automatic ranking mechanisms.

In the same way that fault tolerance is useful to ensure the
availability of services in SOA, reputation mechanisms are
important tools to support the service selection. It is possible
to classify the web services to meet the requests of customers
through analysis of data collected from previous executions,
i.e. the collection history. For this to be reliable, the web
services reputation needs to be regularly and dynamically
recalculated based on QoS parameters such as response time,
availability and security to select web services allowing to
predict probability levels of QoS in the next invocations [12].

In this paper, we propose a novel mechanism for selecting
services based on data mining, a logging module that bridges
UDDI failures and a set of new service selection algorithm
which ensure good selections in the presence of component
failures. These elements are applied in the WSARCH archi-
tecture, where information from past transactions is collected,
a neural network is applied to help determine providers and
ultimately the best provider to meet a request is selected.

The remainder of this paper is organized as follows: Section
II presents the WSARCH architecture. Section III shows
related work. Section IV presents the contributed mechanisms.
Section V details settings and the testing environment. Section
VI presents the results. Section VII concludes the paper and
identifies future work.

II. WSARCH

The architecture used in this work is called Web Services
Architecture (WSARCH) [7] 1 and it will be briefly presented
to allow system visualization and put the work in context.
WSARCH has five distinct modules: the client application, the
providers, the Broker, the UDDI registry and the Log Server.
Figure 1 shows the relationships between these components.

Requests from clients arrive at the Broker, specifying the
desired quality of service. The Broker is responsible for finding

1http://wsarch.lasdpc.icmc.usp.br

978-3-901882-48-7 c� 2012 IFIP

Service
Consumer

Stage Order: 1 to 7
1

P1

3
5

P2 Pn

LogServer

2

6
4

7Legend

Log-Interaction
Broker - UDDI

Broker - Provider
Client - Broker

WSARCH
Connecting Applications

QoS Broker
(Engine)

UDDI

QoS
Information

Service
Description

Ganglia
UDDI

Services
Selection

Ganglia
Broker

ServicesServices Services

QoS
Information

QoS
Information

QoS
Information

Update QoS info (2s)

Log Info QoS (1s)

LOGDAM

Fig. 1: Web Service Architecture - WSARCH. The Fault
Tolerant Mechanisms are inside the Broker and in the

LOGDAM. [7]

a specific service to meet the request. Services will be available
in one of the providers [9]. Providers are hosts for services
based on Apache Axis 2 technologies. Axis 2 is responsible
for processing the request and response messages [7].

The location information of service providers and their
qualifications and characteristics are provided by the Univer-
sal Description, Discovery and Integration (UDDI) registry.
The UDDI registry is used to look for published providers
and services and here also provides QoS values. The UDDI
repository could provide reputation data as well, enabling the
Broker to rank the providers based on their historic reliability.
Having access to QoS data and reputation allows the broker to
select services such that the service level agreements (SLAs)
negotiated between client and system are maintained.

The architecture also has the Log Server, which is a database
responsible for storing all the data transactions made between
components. Besides, information of quality of service offered
by the various modules are updated every second, collected by
a Ganglia monitor [14] and transmitted from each module to
the Log Server under Broker management – ensuring that most
up-to-date QoS data is avaialble for selection.

WSARCH was developed with a standard service selector
(Default Selector), working directly in the Broker. This selec-
tor uses the user’s QoS requirements as parameters to identify
the best provider, always looking for best performance.

When a provider receives many requests, its QoS values
are likely to decrease. This indicates that it may be getting
overloaded. So, clients may have problems of not receiving
expected answers, either by an increase in waiting time,
or incomplete or incorrect responses. Clearly these lead to
violations in SLAs in the extreme and can be costly for
providers. The Default Selector avoids these situations by
redirecting requests to another provider, least occupied at the
given moment. This is possible as the QoS values are updated
continuously at very small time intervals. Traffic is observed
by a Ganglia monitor running in each service provider which

transmits the data in real time to the Broker. Thus, the selector
is able to make the most appropriate choice for users.

The Default Selector works well for balancing workload of
the services, thus avoiding overloads that may lead to a decline
in some components, and could cause further disorders. When
a specific service provider has an increase in workload, the
provider will be avoided until the number of requests decreases
and it can work efficiently again. Here SLAs are assumed to be
grouped in classes of service level (specifically "Gold", "Sil-
ver" and "Bronze"). The pseudo-code of the Default Selector
is presented in Code 1:

1 r e t r i e v e t h e l i s t o f s e r v i c e p r o v i d e r s o f f e r i n g t h e s e r v i c e
2

3 i t e r a t e ove r a l l p r o v i d e r s :
4 s a v e s t h e l a r g e s t and t h e s m a l l e s t l o a d
5 c a l c u l a t e s t h e a v e r a g e l o a d
6

7 computes t h e r e f e r e n c e l o a d by c l a s s :
8 i f c l a s s == " go ld " :
9 r e f e r e n c e l o a d <− l o w e s t l o a d

10 e l s e i f c l a s s == " s i l v e r " :
11 r e f e r e n c e l o a d <− a v e r a g e l o a d
12 o t h e r w i s e (c l a s s == " b r on z e ") :
13 r e f e r e n c e l o a d <− b i g g e s t l o a d
14

15 i t e r a t e s ove r a l l p r o v i d e r s :
16 c a l c u l a t e s t h e Euc l edean d i s t a n c e o f each l o a d t o t h e

l o a d r e f e r e n c e
17

18 re turn t h e p r o v i d e r w i th t h e s h o r t e s t d i s t a n c e

Code 1: Outline of Default Selector Algorithm

III. RELATED WORK

QoS aware service selection has been investigated for a
number of years, with work focusing on modelling and using
QoS properties to make good choices [8]. But generally
to collect data at execution time and use this data is not
considered. In our work the run-time behaviour is utilized to
determinate the reputation of providers.

The idea that a client may have problems when seeking
services only based on QoS is discussed in [10]. This is par-
ticularly true when users have access to a wide range services
offering equivalent functionality. [18] suggest that selection of
services should provide the best performance, according to the
non-functional requirements. Although providers are able to
guarantee a certain quality, they may end up failing to deliver
on that promise, degrading the operation and user experience.
Thus a reputation measure is crucial for business applications,
especially for ensuring the safest choice of components and
in order to highlight the most relevant and reputable services.

A reputation scheme is based on feedback related to services
according to [2]. Some schemes may be unitary, based on
a single value such as response time. Others are multi-
layered considering more and more complex factors such as
performance or reliability. The feedback from clients is the key
to understand the reliability of web services with the model
that captures the data being implicit or explicit. The explicit
model presented is more accurate, but also computationally
expensive and hence somewhat slow. It is also important to
observe that each client can make a different assessment of

the same aspects of a system according to their preferences
[13]. However, while this seems bad, it actually creates a
heterogeneity that is crucial to select services that meet a wider
range of user expectations. The reputation models are based
on in the E-commerce domain and thus do not consider the
requirements of the web services domain adequately [8]. The
main consumers of web service are other computers that must
be able to evaluate their needs mechanically and should ignore
minor fluctuations in QoS occurring due to dynamics in the
network.

Considering some of the work that relies on user input
in ore detail, [16] presents a QoS prediction system that
uses the users reputation to determine the data needed for
collaborative filtering. This system avoids untrustworthy user
contributions and focuses on good feedback. This model
depends highly on client acting, and might have weak results
in unfriendly environments. [4] presents a system to preserve
users privacy in service composition. It uses reputation to rank
reliable mechanisms in order to avoid unreliable modules. It
allows to quantify the risk of unauthorized disclosure of user
information. The evaluation is not complete, as the authors
propose to do in future works. In [11] user feedback is utilized
as parameter to a reputation system, that combines credibility
and sensibility of raters. However, again evaluation is not
complete and dishonest raters are not considered in the work.

[17] presents an aggregated overall QoS based on Broker
interaction rates. The experimental evaluation in this paper is
quite weak, since does not present any details of the tests
performed, rather it only states that the Broker achieved better
results than before.

Even P2P systems have been using reputation to improve
the user experience. Since they do not have a central autority,
it is very difficult to coordenate the quality and security of the
services available. In [5] is presented a model that encapsulates
the behaviour of the peers and use it to predict the future. The
focus of this work is to improve the bandwidth consume, in
such a way that does not meet the needs of web services.
And the work of [3] tries to ensure the quality of connection
in networks with malicious peers. The scheme distinguish
between the quality of service and the rating of the client.
Despite of showing that the algorithms are robust, the system
overloads in high rates of requests.

None of these solutions use reputation directly in the
QoS aware selection of services. The work presented in this
paper uses reputation and automatically gathered QoS data to
increase reliability of the system by adding a fault tolerance
mechanism which reduces probability of ultimate failure of
system components.

IV. FAULT TOLERANT TRANSACTION MECHANISMS

This section will focus on the fault tolerant transaction
mechanisms which are evaluated later in the paper. The last
subsection explores the mechanism for introducing errors into
the platform to allow for testing.

Figure 2 shows an overview of the overall contribution. On
receiving a service request, the broker explores whether the

UDDI repository is available or not. If the UDDI repository is
available it will be used and the broker will make use of the
Risk Selector to determine, rank and classify suitable service.
If the UDDI repository is unavailable the Intelligent Selector
will be used for the same purpose. Once a list of services
with suitable services classes is available, a kind of intelligent
round robin approach (based on service load) will decide on
the most suitable service to handle the request.

In the following subsections, we will explore each of the
selectors (Risk, Intelligent and Round Robin) in more detail.
Specifically the subsections will describe the operation and
need for the methods.

Risk	 Selector	

Intelligent	 Selector	

UDDI	
available

?	

Find	 list	 of	 candidates	
based	 on	 Datamining	
and	 rank	 by	 QoS	 +	

Reputa?on	

Choose	 next	
service	 in	
class	 as	 s	

Find	 list	 of	
candidates	 in	

UDDI	 and	 rank	 by	
QoS	 +	 Reputa?on	

Over	
loaded	
s	 ?	

[Best	 Serices]	
yes	

no	

Group	 into	
classes	 by	

load	

s	 Select	 Top	 Service	
in	 right	 class	 as	
candidate	 s	

Return	 s	

Request	

Reply	

Use	
LogServer	
to	 assess	
load;	 each	
class	 to	 be	
internally	
ordered	 as	
in	 prev	 step	

Group	 into	
classes	 by	

load	

Use	 LogServer	 to	
assess	 load;	 each	

class	 to	 be	 internally	
ordered	 as	 in	
prev	 .step	

[Best	 Serices]	

[Best	 Serices,	
grouped]	

[Best	 Serices,	
grouped]	

no	

yes	

Fig. 2: Overview

A. Risk Selector
In high-risk operations, whether financial or life-threatening,

it is essential to ensure that the quality of service offered is as
high as possible. It is imperative to ensure that only the best
and most reliable components are involved in transactions to
avoid large losses and at the same time to allow the user to
feel confidence in the system.

The Risk Selector (see Code 2:) is a web services selector
that unites quality of service with data reputation of the
providers in order to provide both a favourable experience
of use, and confidence to clients of the system. It looks
for the safer providers to meet client demands. The search
for providers uses QoS values to rank services, penalising
providers with a high risk of failure or with a history of
unsuccessful or unduly slow method calls.

This selector calculates a providers’ rank, according to their
behaviour to meet multiple requests. A provider that drops
requests will have their risk increased, reducing the chance to
be selected in the near future. The worse the behaviour of a
provider, the further its risk will be increased.

Furthermore, the model developed assures that an offline
provider has their risk value increased periodically (providers
are tested every 1.5 seconds for availability). If the last
response time from a service is more than five seconds ago,
the risk is increased by one.

1

2 r e t r i e v e s t h e l i s t o f s e r v i c e p r o v i d e r s o f f e r i n g t h e
s e r v i c e

3

4 i t e r a t e s ove r a l l p r o v i d e r s :
5 s a v e s t h e l a r g e s t and t h e s m a l l e s t l o a d
6 c a l c u l a t e s t h e a v e r a g e l o a d
7

8 computes t h e r e f e r e n c e l o a d a c c o r d i n g t o t h e c l a s s :
9 i f " go ld " : t h e r e f e r e n c e l o a d <− l o w e s t l o a d

10 e l s e i f " s i l v e r " : r e f e r e n c e l o a d <− a v e r a g e l o a d
11 e l s e (" b ro nz e ") : r e f e r e n c e l o a d <− b i g g e s t l o a d
12

13 o r d e r p r o v i d e r s based on t h e d i s t a n c e (E u c l i d e a n) o f each
l o a d t o t h e r e f e r e n c e l o a d

14

15 c a l c u l a t e s t h e maximum r i s k i n a c c o r d a n c e wi th t h e c l a s s :
16 i f " go ld " : maximum r i s k <− 5
17 e l s e i f " s i l v e r " : maximum r i s k <− 10
18 e l s e (" b ro nz e ") : maximum r i s k <− 15
19

20 whi le t h e b e s t p r o v i d e r (whose l o a d i s c l o s e s t t o t h e
r e f e r e n c e l o a d) has a r i s k g r e a t e r t h a n t h e maximum
r i s k :

21 removes t h e p r o v i d e r from t h e l i s t o f p r o v i d e r s
22

23 i f t h e l i s t i s empty , t h e b e s t p r o v i d e r w i l l be t h e
f i r s t o f t h e p r e v i o u s o r d i n a t i o n

24

25 r e t u r n s t h e b e s t p r o v i d e r

Code 2: Risk Selector Algorithm

The use of a selector that calculates the level of risk of
sending a request to a particular server, makes the overall SOA
(in this case implemented through WSARCH) more reliable
and robust. This is achieved as services with bad response
behaviours in the past who are hence high risk are not chosen
as the Risk Selector ensures that the components with a recent
history of problems are kept out of the transactions until
inconsistencies are resolved.

A provider with a potentially dangerous ranking position
could be chosen by the selector depending on the environ-
mental situation at a given time. For example, all providers
with good ranks start to get overloaded if large numbers of
requests are made, and this will cause a reduction in the quality
of service. As QoS is another selection criteria, the selector
will choose one of the providers with higher risk, since its QoS
will be better. However, hopefully this effect is mitigated by
load balancing introduced later in this paper – unless the load
for the system is so large that it cannot really fulfil requests
in the first place (a situation where no solution apart from
increasing resources will help).

B. Intelligent Selector

WSARCH has been enhanced with the Data Analyzer
Module for Serviced Oriented Architecture (LOGDAM) [1]
in a previous project (Fig. 1 already shows this component
attached to the broker).

LOGDAM, as we will see, mines data from the log server.
The Intelligent Selector draws on this mined data to decide on
services in the case that the UDDI repository is unavailable
– thus adding fault tolerance to a key component of SOA
(namely the repository) by providing a suitable alternative.

Recall that all information from service interactions in the

architecture is recorded in the LogServer. LOGDAM utilizes
machine learning to determine which providers have record
attendance favourable for each type of client. A trainer running
in the background uses the IP address of the client, the service
name, operation name and class of customer to understand
good selection of providers for specific needs.

For ranking, the Intelligent Selector uses a Naive Bayes
algorithm shown in Code 3. This is a simple probabilistic
classifier based on Bayes’ theorem. It is called Naive since it
assumes that the attributes are independent. That is, the value
of an attribute in a given class is independent of the values of
other attributes. This is a reasonable assumption as the QoS
parameters can independently take on any value in their range.
For each request set the probability of being achieved by a
provider will be calculated and the provider with the highest
probability of meeting the parameters will be chosen.

1 Le t D be a s e t o f t r a i n i n g examples r e c o v e r e d from LogServer
2 C o n s i d e r i n g t h e e x i s t e n c e o f n p r o v i d e r s and a t u p l e X t o

be c l a s s i f i e d
3 The p r o v i d e r p of X w i l l be t h e p r o v i d e r t h a t has t h e

h i g h e s t v a l u e o f t h e p o s t e r i o r p r o b a b i l i t y c o n d i t i o n i n g
t o X :

4 P (pi|X) > P (pj |X), 1 ≤ i, j ≤ n, i �= j
5 The g o a l i s t o maximize P (ci|X) :
6 P (ci|X) =

P (X|ci)P (ci)

P (X)

7 To r e d u c e t h e c o m p u t a t i o n o f P (X|ci) , t h e a s s u m p t i o n naive
t h a t t h e a t t r i b u t e s a r e i n d e p e n d e n t o f t h e t u p l e i s
made :

8 P (X|ci) =
�n

k=1
P (xk|ci)

Code 3: Naive Bayes Algorithm

Over time, there is a concern that the data to be used by
the machine learning algorithm in LOGDAM will be biased,
since the same small set of services might be chosen as
favourable (a risk of all machine learning algorithms). This
potential problem is mitigated by the fact that a kind of round
robin algorithm is used in the process to share load between
a number of service candidates. Also, this mechanism has the
disadvantage that it only relies on data from previous service
executions and thus cannot detect newly added services. How-
ever, as the mechanism is seen as a fallback in case that UDDI
is not available, new services added to UDDI will be used by
the risk selector and can build up a profile and thus become
available later in case of UDDI failures.

C. Load Balancing

To address the learning concern mentioned in the previous
section, but more crucially to address the concern that the same
service might be chosen as preferred candidate all the time a
Round Robin Selector phase is added in the overall process.
This selector provides load balancing across service candidates
to ensure that we do not end up in a situation where the
best service becomes overloaded by rotating request between
candidates. This selector does not directly make assessments
of QoS, nor does it assess the reputation of the providers.
It uses the ranked lists provided by the Risk or Intelligent
Selector, decides on the right service category required (e.g.
"Gold" and then considers the load on the service candidates.

If the load of the most highly ranked service candidate is high,
the next best will be considered until one with a reasonably
low load is found and selected. (Note that the system might be
so overloaded that no low load service can be found – we have
not considered this, but a good solution might be to randomly
assign a request to any of the candidates).

D. Fault Injection

For the experiments performed for this article, it was
necessary to develop a tool to simulate faults in a service-
oriented architecture.The providers of WSARCH operate from
virtual machines based on KVM.

The risk selector was designed to deflect requests to
providers with service problems. For example, once a provider
is again showing as available, it is not immediately selected
since its reputation rank would have been modified, deeming
the provider unsafer. Only after some time in operation, the
reputation will increase again. In general, the longer a provider
is online the more reliable they are assumed to be.

For the experiments we created a shell script with the ability
to pause virtual machines, thus emulating a failure (simulating
server or network failure, as both would lead to provider
unavailability). The script ensures that VMs recover to their
previous state, thus making the provider available again.

The interval between failures refers to the time that a
provider is available. The recovery time of failure refers to
the time it takes for the provider to recover from when it is
send into a failure state (that is a VM is taken offline). These
intervals are randomly set, based on exponential distribution.
Thus the events occur randomly, but with a set and math-
ematically predictable behaviour. An exponential function is
used as a basis to define the ranges of failures during testing,
considering the two different intervals, i.e. the interval between
failure and the recovery time.

In detail, the interval between failures is generated as a
random number based on a exponential function. The failure
recovery time is considered to be the average of the same
exponential function, but uses a fraction of the time between
failure. This approach is used to ensure that recovery can occur
between failures and there is time for the providers’ rating
to recover so that they can meet clients request again. The
operation is presented in Code 4.

V. PERFORMANCE EVALUATION

The main goal of this study is to evaluate fault tolerant
techniques for Web Services selection using the reputation
mechanisms. Thus, the testing environment is composed of
several physical machines, each running VMs: There are 4
physical machines each running 3 client instances, again 4
physical machines each with 3 service provider instances and a
further 4 machines each running 3 UDDI repository instances.
Finally one physical machine is hosting the Broker responsible
for controlling transmission of requests between the client
and service provider. Each physical machine has 3 network
interfaces, so that we can exclude contention on the network
interface as a negative factor. This setup also dictated the

1 Average <= 200000
2 Off <= 10
3 On <= 40
4 Random <= 0
5 Pause <= 0
6 C o n t r o l <= 0
7

8 Do 100 t i m e s
9

10 Random <= Random Value
11

12 I f c o n t r o l = 0 do
13 pause <= ((Random d i v i d e d by Average) d i v i d e d by

Average) t i m e s 10000000) + Off
14 Suspends t h e o p e r a t i o n o f t h e v i r t u a l machine
15 S l e e p Time = pause
16 c o n t r o l <= 1
17

18 E l s e do
19 pause <= ((Random d i v i d e d by Average) d i v i d e d by

Average) t i m e s 10000000) + On
20 R e a c t i v e v i r t u a l machine o p e r a t i o n
21 Uptime = pause
22 c o n t r o l <= 0
23

24 End i f .

Code 4: Fault Injection Script Algorithm

maximal number of instances used in the experiments. The
testing environment available is detailed in Table 1.

We analysed three scenarios in the test. They consider
variations in the type of selector (Default or Risk), the presence
(or absence) of faults and the number of UDDI repository
instances. Note that we refer to the approach presented in
this paper as Risk Selector in this section. The variants are
presented in Table 2. The first scenario represents the base
line considering the ideal environment (no faults occurring)
allowing to compare the other two scenarios. Obviously since
there are no faults in this scenario there was no fault treatment
needed. The trial environment was configured with 1 and
12 UDDI instances representing the minimum and maximum
capacity available.

TABLE II: Experiments Design

Scenario Selector Faults UDDI
1 Default Selector No 1 / 12
2 Default Selector Yes 1 / 12
3 Risk Selector Yes 1 / 12

The second test scenario was set with the Default Selector,
and the environment was subjected to faults inserted into the
providers, challenging the selector service to seeks to maintain
good levels of QoS by selecting appropriate services. The first
execution in this scenario was scheduled with a single UDDI
repository, to exemplify the situation with minimal resources
available and hence a higher overhead. In the second part of
this test, the number of UDDI instances was elevated to 12, the
maximum capacity of our test architecture to share the load
between repositories. We would expect high selection times
as faults will result in bad choices.

The third scenario presents the approach defined in this
paper in the challenging situation it is meant to address,
namely the Risk Selector subjected to an environment with
failures to demonstrate its functionality and performance. We
hope that the result should be close to scenario 1, and certainly

TABLE I: Infrastructure
UDDI Provider

CPU 4 Core - Intel Core 2 Quad 8400 CPU 1 Core - Intel Core 2 Quad 8400
RAM 4GB - DDR3 RAM 2 com (512MB) and 1 com (1GB) - DDR3
HD Virtual HD - 50GB HD Virtual HD - 50GB
OS Linux Ubuntu 11.10 Server OS Linux Ubuntu 11.10 Server
Quantity 12 Quantity 12

Broker Cliente
CPU 6 Core - AMD Phenom II X6 1090T CPU 4 Core or 2 virtual Core
RAM 16GB - DDR3 RAM 8 / 4 GB (virtual
HD 500GB HD 500 / 15 GB (virtual)
OS Linux Ubuntu 11.10 Server OS Linux Ubuntu 12.04
Quantity 1 Quantity 46

superior to the results achieved by using the Default Selector
(scenario 2).

VI. RESULTS ANALYSIS

The results of the first execution, with just one UDDI
repository providing the Broker with the location of providers,
show that the presence of failures does not degrade the work of
the Risk Selector. The number of UDDI repositories positively
influences the response time.

Considering the analysed scenarios, we observe that the Risk
Selector is able to better withstand in a faulty environment.
Figure 3 exposes the average times of changes. However, in a
context with increased workload, surely this difference would
be even larger, demonstrating the efficiency of the algorithm.

Fig. 3: FL = Faultless; DS = Default Selector with Fault
Infection; RS = Risk Selector with Fault Injection.

The first half of the Figure represents the scenarios with
1 UDDI for the faultless, the Default Selector and the Risk
Selector respectively. The second half shows the results of
the experiments with 12 UDDIs. The faultless set represents
the ideal environment, in which there are no problems and
the users requests are always answered. The set with Default
Selector represents the worst case possible, when the faults
occur and there is no mechanism to avoid them. Besides, as
we can see, the average response times increase significantly.
In the experiment with 12 UDDIs the elevation is smoother.
The scenarios in which the Risk Selector operated show that
the algorithm is capable of avoiding faulty providers and thus

getting closer to the ideal scenario. This demonstrates the
efficiency of the proposed mechanism.

A. Fault Tolerance Mechanism Results

In experiments performed with the Default Selector, the
providers were not injected with faults, since the selector is
not able to treat them, and as noted earlier, the recorded times
tend to be worse. However, in the tests made with the Risk
Selector, the providers have suffered random stops to observe
the behaviour of the reputation algorithm. This decision was
made to show that Risk Selector is capable of improving the
handling of requests in faulty environments.

Figure 4 (top) showns the values obtained for the two main
selectors, acting to serve 16 clients and facing the static type
of failure, in which the UDDI works just on the first requests.
When the UDDI stops, the Intelligent Selector is activated, and
if it causes overhead, the Round Robin Selector is triggered.
Figure 4 (top) shows the results achieved by the selectors in the
same conditions described above, but with 32 clients making
simultaneous requests. These results are shown in Figure 4
(bottom).

A comparison between the Default and Risk Selector, serv-
ing 16 clients with a dynamic fault model are conducted. Here,
the UDDI suffers interruptions from time to time, and made
constant changes in context, activating the (Intelligent and
Round Robin) selectors several times. The results are exhibited
in Figure 5 (top). The same set of experiments with 32 users,
lead to the results are shown in Figure 5 (bottom).

These results show that although the Risk Selector has
slightly longer response times than the Default Selector, it
is important to remember that the Default Selector one is not
experiencing faults in the providers as we know it performs
badly from the first experiment. And, as we can see in Figure
6, the Risk Selector presents a lower rate of dropped requests
because of the better selection system.

Along with that, the Risk Selector also achieves a better
distribution of the workload between the providers in the
architecture, as shown in Figure 7. This is a relevant point
as it will avoid overheads in the modules. With that it is
possible to see a improvement in the QoS, since the clients
has less problems with their requests and has to wait less to
the answers.

Fig. 4: Comparison of response times between the selectors,
with 16 (top) and 32 clients (bottom) respectively, and static

failures (UDDI repositories dropping out and remaining
unavailable).

B. Influence of Factors

Through an influence of factors analysis we can determine
which of the factors involved in the experiments have a bigger
impact on final results. Figure 8 (top) shows that the two
factors most distant from normal line are the type of selector
and the number of clients. It indicates that those change the
behaviour of the system and altered the response. In Figure 8
(middle) is possible to observe the behaviour of the system
when the factors are changed. And finally the interaction
of factors (in pairs) is represented in Figure (bottom). The
proposed algorithms are able to deal with the failures and hide
them of the clients, in such a way that the faulty modules have
time to be fixed and the interactions do not have to be stopped.

VII. CONCLUSIONS AND FUTURE WORK

The results from the experiments lead to the conclusion that
the Risk Selector has the capacity to optimize the distribution
of workload between the components, even in the presence

Fig. 5: Comparison of response times between the selectors,
with 16 (top) and 32 clients (bottom) respectively, and
dynamic failures (UDDI dropping out and coming back

repeatedly).

Fig. 6: Dropped Requests

Fig. 7: Workload Distribution

of faults. The Default Selector has a good operating capacity,
but it is blind to faults and recoveries of providers, ignoring
unfavourable historical behaviour. When there are no faults,
the Risk Selector works in the same way as the Default
Selector and the ranking system functions in background, not
causing overload.

The reputation system proved its importance by keeping
providers with recent failures as undesirable until their val-
uation levels stabilized and they are again able to answer
incoming requests reliably. Response times show the efficiency
of the model, which maintains adequate service times. In
some cases, the Broker suffered due the the high number of
requests, which caused an increase in search time. Besides,
the reputation mechanism showed the expected behaviour,
allowing to overcome the failures in the components and thus
keeping the architecture in operation.

The Intelligent Selector presented excellent results, being a
very reliable substitute for the UDDI repository when faults
occurred. It is able to suggest providers, keeping the Broker
able to organize service requests and their responses. In order
to avoid the overload of providers the Round Robin Selector,
switching between alternative providers worked well.

Finally we conclude that the presented combination of
Selectors present an important evolution of the WSARCH’s
standard selector, making possible the risk analysis of the
components in real time. The suggested selectors would be
expected to be a good addition to any broker based QoS aware
selection.

In future work, we intend to extend the reputation rating to
other components of the architecture such as UDDI, to obtain
a pattern of scalability for web services transactions. Since
the Broker is the central module of the WSARCH, there is a
replication of it, and a substitution system can be installed in
case of a general failure. A version of the architecture without
the UDDI is in study also. Fault tolerance mechanisms will
be expanded to cover other components.

Fig. 8: Influence of factors analysis, whit main effects and
interaction data

ACKNOWLEDGMENT

We thank CAPES and FAPESP (in processes 2011/09524-7, 2013/26420-6,
2011/12670-5), for the support of this research. We also like to thank ICMC-
USP and the LaSDPC for offering the necessary equipments for this study.
Some of this work was conducted while Stephan Reiff-Marganiec was on
study leave from the University of Leicester.

REFERENCES

[1] L. J. Adami and J. C. Estrella. A data analyzer module for logs of service
oriented architeture. In 3rd High Performance Computing Regional
School (ERAD), jul 2012.

[2] J. Al-Sharawneh, M.-A. Williams, and D. Goldbaum. Web service
reputation prediction based on customer feedback forecasting model.
In Enterprise Distributed Object Computing Conference Workshops
(EDOCW), 2010 14th IEEE International, pages 33 –40, oct. 2010.

[3] E. Ayday and F. Fekri. Bp-p2p: Belief propagation-based trust and
reputation management for p2p networks. In Sensor, Mesh and Ad
Hoc Communications and Networks (SECON), 2012 9th Annual IEEE
Communications Society Conference on, pages 578–586, June 2012.

[4] E. Constante, F. Paci, and N. Zannone. Privacy-aware web service
composition and ranking. In Web Services (ICWS), 2013 IEEE 20th
International Conference on, pages 131–138, June 2013.

[5] P. Dewan and P. Dasgupta. P2p reputation management using distributed
identities and decentralized recommendation chains. Knowledge and
Data Engineering, IEEE Transactions on, 22(7):1000–1013, July 2010.

[6] K. Echtle and A. Masum. A fundamental failure model for fault-tolerant
protocols. In Computer Performance and Dependability Symposium,
2000. IPDS 2000. Proceedings. IEEE International, volume 0, pages
69–78, 0 2000.

[7] J. C. Estrella, R. H. C. Santana, and M. J. Santana. WSARCH:
An Architecture for Web Services Provisioning with QoS Support -
Performance Challenges. Saarbrucken : VDM Verlag Dr. Muller
GmbH & Co, 2011. http://www.amazon.com/WSARCH-Architecture-
Provisioning-Performance-Challenges/dp/3639378245.

[8] X. Fu, P. Zou, Y. Jiang, and Z. Shang. Qos consistency as basis
of reputation measurement of web service. In Data, Privacy, and E-
Commerce, 2007. ISDPE 2007. The First International Symposium on,
pages 391 –396, nov. 2007.

[9] P. Harshavardhanan, J. Akilandeswari, and R. Sarathkumar. Dynamic
web services discovery and selection using qos-broker architecture. In
Computer Communication and Informatics (ICCCI), 2012 International
Conference on, pages 1 –5, jan. 2012.

[10] D. Janardhan and S. Devane. Web service reputation-based search
agent. In Research and Development (SCOReD), 2009 IEEE Student
Conference on, pages 184 –187, nov. 2009.

[11] G. Li, D. Song, L. Liao, F. Sun, J. Du, and K. Yang. A novel reputation
model for web services selection with raters’ sensitivity. In Service
Systems and Service Management (ICSSSM), 2013 10th International
Conference on, pages 708–712, July 2013.

[12] M. Li, J. Huai, and H. Guo. An adaptive web services selection
method based on the qos prediction mechanism. In Web Intelligence
and Intelligent Agent Technologies, 2009. WI-IAT ’09. IEEE/WIC/ACM
International Joint Conferences on, volume 1, pages 395 –402, sept.
2009.

[13] H. Liu, F. Zhong, and B. OuYang. A web services selection approach
based on personalized qos prediction. In Parallel and Distributed
Computing (ISPDC), 2011 10th International Symposium on, pages 199
–206, july 2011.

[14] M. Massie, B. Chun, and D. Culler. The ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[15] N. Mohamed and J. Al-Jaroodi. A collaborative fault-tolerant transfer
protocol for replicated data in the cloud. In Collaboration Technologies
and Systems (CTS), 2012 International Conference on, pages 203 –210,
may 2012.

[16] W. Qiu, Z. Zheng, X. Wang, X. Yang, and M. Lyu. Reputation-aware
qos value prediction of web services. In Services Computing (SCC),
2013 IEEE International Conference on, pages 41–48, June 2013.

[17] M. Rathore and U. Suman. Evaluating qos parameters for ranking web
service. In Advance Computing Conference (IACC), 2013 IEEE 3rd
International, pages 1437–1442, Feb 2013.

[18] S. Wang, Z. Zheng, Q. Sun, H. Zou, and F. Yang. Evaluating feedback
ratings for measuring reputation of web services. In Services Computing
(SCC), 2011 IEEE International Conference on, pages 192 –199, july
2011.

[19] X. Zhu, B. Wang, and S. Wang. Reputation-driven web service selection
based on collaboration network. In Web Services (ICWS), 2011 IEEE
International Conference on, pages 704 –705, july 2011.

