
Feature Interaction in Policies

Stephan Reiff-Marganiec ∗ Kenneth J. Turner

Department of Computing Science and Mathematics, University of Stirling,
Stirling FK9 4LA, United Kingdom

Abstract

Feature interaction is a problem mostly considered in the context of telephony fea-
tures, but present in other domains. In this paper we consider policies (independent
of the system that they control) as an application domain for feature interaction
techniques. We present the feature interaction problem as it occurs in the policy
context and show how it can be approached. We give a taxonomy for policy conflict,
and introduce a generic architecture for handling policy conflict.

Key words: Feature Interaction, Policy, Policy Conflict

1 Introduction

Feature interaction has been identified as a problem in the telecommunications do-
main, where features are added as additional functionality to a basic system. This
basic system used to be POTS, the plain old telephone service. However, it has since
been recognised that the feature interaction problem occurs in many other application
domains. These include multimedia, lift control systems, interactive voice response,
internet telephony and home appliances. Problems that are very similar, but have not
been considered much, are component-based systems especially web services and policy
conflict. In this paper we concentrate on policy conflict.

The past few years have shown an increased interest in controlling systems by policies.
An active research community is considering policies for access control, system man-
agement and QoS (Quality of Service) control. While this community has recognised
that policy conflict is a problem it has been mostly put aside, often as an separate

∗ Since the initial submission of the paper, the corresponding author, Stephan Reiff-
Marganiec, has moved to the University of Leicester. The new contact details are: Department
of Computer Science, University of Leicester, Leicester LE1 7RH, UK.

Email addresses: srm13@le.ac.uk (Stephan Reiff-Marganiec), kjt@cs.stir.ac.uk (Kenneth
J. Turner).

Preprint submitted to Elsevier Preprint 13 January 2004

problem, to be addressed at a later stage. However, this problem will hinder the fur-
ther uptake of policies. Also, when policies are moved outside their traditional domains
the problem increases: for example if end-users employ policies to specify their needs.

These considerations make it timely to investigate the policy conflict problem. Due
to its similarities to feature interaction, the feature interaction community can offer
mature solutions. Many conflict issues are inherent to policies. We present a taxonomy
to provide structure for a rather complex, multi-dimensional problem. As policies can
be used to control systems, we also suggest a generic architecture that allows for this
but can handle policy conflict.

Section 2 provides the setting for the work and introduces the fundamental concepts.
Section 3 justifies policies as a new application domain. We introduce our taxonomy in
section 4 and show how conflicts can manifest themselves in section 5. The latter illus-
trates the ideas with examples. Section 6 brings the more conceptual issues discussed
in the taxonomy and examples into the context of a practical and open architecture.
We conclude with a discussion of the paper and more general issues concerning policies
as an emerging domain for feature interaction research.

2 Background

The work in this paper was influenced by and built upon work on feature interaction
work on policies for system management. In general the idea of both features and
policies is to adapt the behaviour of an existing system. Central are the concepts of
feature, feature interaction, policy and policy conflict.

Features stem from the telecommunications industry, but similar concepts exist in
other areas such as component-based systems. In general a feature is new functionality
to enhance a base system. Features are often developed in isolation. Each individual
feature’s operation is tested with respect to the base system, and also with common
known features.

Unfortunately, when two or more features are added to a base system, unexpected
behaviour might occur. This is caused by the features influencing each other, and is
referred to as feature interaction. Feature interaction is a technical issue with consider-
able significance for service developers and the public at large. As can be imagined, it is
very costly to check for feature interactions and to implement solutions. It is common
experience that introducing new features breaks others. For the ordinary telephone
user, feature interactions may result in unexpected behaviour or even failure of calls.
This is unacceptable given the dependence of commerce and even safety on telephony.

Feature interaction has therefore been extensively studied and researched. A general
discussion of the problem appears in [9,12,13]. The literature on feature interaction
is large. A good source of information are the proceedings of the Feature Interaction
Workshop, [6,10,14,18,22,37].

2

Policies are high-level statements to support personal, organisational or system goals.
Policies have been defined as information which can be used to modify the behaviour of a
system [25]. Policies have been particularly studied in applications such as distributed
systems management, network management, Quality of Service, and access control.
Many important papers are collected in the proceedings of the workshop on Policies
for Distributed Systems and Networks [27,33]. Policies are not singular entities, they
are generally arranged in groups or networks and collectively express overall goals.

Of particular relevance is the work on policy conflict, which can be regarded as similar
to the feature interaction problem. In a distributed setting, policies may contradict
since they may be set by different organisations or at different levels in the same
organisation. Detecting and resolving such conflicts is vital.

Surprisingly, there does not appear to have been much work on policy conflicts. [19]
recognises but does not address conflicts that arise in policy-driven adaptation mecha-
nisms. [1] aims to define hierarchical policies such that, by definition, the subordinate
policies cannot conflict. Conflicts are still possible if one policy in the hierarchy is
changed. The use of meta-policies (policies about policies) is proposed as a solution,
e.g. in [25], where meta-policy checks are applied when policies are specified and when
they are executed. Similar ideas, where predefined rules and good understanding of the
domain allow resolution of conflicts, are presented in [28]. In [5], it is anticipated that
authorisation policies may lead to conflict. This is resolved by providing a function to
compare policies and decide which should take precedence.

3 Policies as an Emerging Domain

Policy was a term much used at the 2003 Feature Interaction Workshop [2], show-
ing that the feature interaction community has developed an interest in this topic.
Their first mention in this context was in [1]. The views on policies and their use in a
telecommunications setting vary widely.

Moving outside the telecommunications domain, Yee and Korba consider conflicts that
arise during the use of privacy policies [39]. They introduce the issues arising and
suggests the use of negotiation to detect and resolve conflicts. However, they do not
present any concrete techniques.

Other policy work is more concentrated on telecommunications. For example, [17]
presents a feature interaction manager system where policies are used to steer the
composition of services to avoid feature interactions.

The work by Gray et al. [21] describes an architecture to support features in a social
context, following similar motivation to our own work. They foresee policy execution
engines in their tripartite architecture, where policies replace features in all aspects
where user intentions need to be expressed. In our work [32] we attempt to provide
users with control over their communications through user-defined policies. The high
level aim is to consider the purposes and not the mechanisms, as discussed in terms of

3

features in [40]. In [32] we have discussed how a call control system can be enhanced
by the use of policies, and have even suggested that policies might replace features in
the future. We have considered policy conflict, but restricted our considerations to the
application domain of call control.

In this paper we do not consider a particular system that can be enhanced by policies,
but rather consider policies in their own right. Policies have proven useful and suitable
in several domains; in all these domains the problem of policy conflict occurs. Our
stance here is that the problem of policy conflict is inherent to policies and independent
of the controlled system – although the latter might add conflicts of its own. The
goal is to study policy conflict in general, leading to resolution strategies that can be
particularised for each respective domain.

For the work in this paper we require a clear notion of what it means for policies to
conflict. In an application context we say that two or more policies conflict when they
are applicable at the same time and their actions conflict. This definition is only valid in
a specific application domain as one must be aware of what conflicting actions are. For
clarity, consider example 3.1, which shows conflicting actions in three distinct domains
and it should be obvious that these actions are only conflicting because of the specific
domain semantics.

Example 3.1 The following are conflicting actions:

Access Control: allowing access and denying access
Telephony: forwarding and blocking a call
POTS: forwarding to A and forwarding to B with A and B being distinct.

Several types of conflict exist in the policies themselves. In this paper we will concen-
trate on these.

4 A Taxonomy for Policy Conflict

Earlier we have discussed how policies are gaining popularity in many application areas.
However, we have also identified that policy conflict is a problem that is inherent to
policies and independent of the application domain. We consider policies to be a new
application domain for feature interaction techniques.

In the early days of feature interaction research, researchers attempted to tackle a
problem that was informally understood and manifold in its complexity. It is probably
fair to say that the research into feature interaction detection and resolution techniques
gained much structure after the publication of the feature interaction benchmark paper
[11]. This provided a taxonomy for feature interaction and gave concrete examples. The
latter was possible due to the restricted application domain, namely telecommunication
systems. In this section we provide a taxonomy for policy conflict, in the hope of
providing some structure for further research in policy conflict. Note that the taxonomy
is an initial classification that we expect to be developed further.

4

SE

Refinement
Relaxation

Policy Type

Modalities

Policy Relation

Domain Entity

Temporal

OPI
Authorisation

Conditional ECA

Unconditional Goal

Unconditional ECA
Conditional Goal

MESB

MEDB

MEDD

Preferences

Roles

SEMR

SESR

MEMR

MESR

Independence

Fig. 1. Dimensions of Policy Conflict

4.1 Dimensions of Conflicts

We identify five principle dimensions of policy conflict: policy types, domain entities,
roles, policy relations and modalities. Let us first discuss each of these dimensions
before considering the conflicts that they can cause. Figure 1 represents an overview of
the five dimensions. The Ponder policy framework [16] distinguishes authorisation and
obligation policies by their point of enforcement: subject or target. This would form a
suitable further dimension, but we believe that most conflicts in this category can be
classified in either the domain entity or the modality dimensions.

Analysis of individual policies allows us to position them along each of the dimensions.
In general the further a policy is from the origin, the more complex the conflict handling.
We will now examine each of the dimensions.

4.2 Policy Types

We have identified a general structure of policies [32], which we have considered in two
categories: event-condition-action (ECA) rules and goals. The former specify a trigger
event which will lead to the action when the condition is fulfilled. Goals are somewhat
more abstract, in that they do not specify a trigger event (we could see them as “CA
rules”): they simply lead to the stated action when the condition holds. However, we
allow both types to omit the condition (i.e. the condition is trivially true).

For the purpose of the taxonomy we can distinguish four types of policies: unconditional
goals (i.e. just actions), conditional goals, unconditional ECAs (i.e. an ECA with true

5

Domain STIR.AC.UKDomain SOMEWHERE.ELSE

SOMEWHERE.ELSE

A@SOMEWHERE
.ELSE

B@SOMEWHERE
.ELSE

CS.STIR.AC.UK

STIR.AC.UK

ACCENT.STIR.AC.UK

LIB.STIR.AC.UK

KJT@STIR.CS.AC.UKSRM@CS.STIR.AC.UK

LIBRARIAN@LIB.STIR.AC.UK

Fig. 2. A Typical Enterprise Domain Hierarchy

as condition) and conditional ECAs. Clearly, if a policy only specifies an action, the
notion of conflict is purely dependent on the application domain as the controlled
system describes conflict between actions. However, if further information, such as
conditions and triggers are available in the policy conflicts can be detected independent
of the application domain (e.g. by detecting contradictory conditions). For example,
a conditional goal with many conditions might provide much more information and
hence be more suitable for domain-independent conflict detection than an ECA with
a single, simple condition. A more concrete example is one where two rules have the
same action, however the conditions of one prescribe that the action should never be
executed during working hours, while the other states that the action should never be
executed outside working hours – the conflict here is clear: the action can never be
executed. This conflict can be detected independent of the application domain.

Here we would like to point out that none of the dimensions allows for a total ordering.

4.3 Domain Entities

Policies regulate the application domain by providing rules for the subjects that they
talk about. Considering a business environment, one could see policies stipulated by
the enterprise that apply to all employees, and also others that are more specific to
certain work groups or to certain job profiles. Again, other policies might be specific to
individuals in the organisation. This concept can be lifted from a business environment
and be applied in a more general context. We often find that the subjects of the policies
are related to each other in a hierarchical sense. However, entities might be part of the
same hierarchy or of a different hierarchy; with the former their relation is obvious,
with the latter we would consider the entities unrelated. An overlap of domain is not
excluded. Note that we must assume that policies are maintained in a distributed
fashion and that different domains or even entities far apart within a specific hierarchy
are unwilling to exchange details of policies.

6

We have identified four relations among domain entities based on their place in the
hierarchies: SE (the single entity), MESB (multiple entities in the same domain on the
same branch), MEDB (multiple entities in the same domain on different branches) and
MEDD (multiple entities in different domains). For examples of the groups, consult
Fig. 2 where LIB.STIR.AC.UK and LIBRARIAN@LIB.STIR.AC.UK are MESB. Further,
SRM@CS.STIR.AC.UK and KJT@CS.STIR.AC.UK are MEDB, and SRM@CS.STIR.AC.UK

and A@SOMEWHERE.ELSE are MEDD. SE should be self explanatory, but might not be
trivial if we allow for aliases.

In general we can assume that the more entities are involved and the greater their
independence, the less knowledge will be available of policies that concern them. Note
that we assume here the most general case, one might consider architectures with
a centralised policy manager that is aware of all rules and hence has all available
knowledge. However, it is unlikely that such an entity will exist, partly for scalability
reasons and partly for privacy reasons (entities might not be willing to share details of
their policies).

4.4 Roles

When discussing domain entities, we said that we do not exclude an overlap of domains.
In contrast, we would encourage this as typical users belong to many hierarchies having
distinct roles in each. Considering a typical person, say John: he could be member of
a sports club, have a role in his family, and have a role at work. He might also have
a number of roles that are imposed by the relationship of his other roles: he will be
the subordinate of some colleague, or he might be a business competitor of one of his
sports club friends because they are in competing companies.

We can identify relations between entities and their roles that might lead to conflict:
SESR (a single entity in a single role), SEMR (a single entity having multiple roles),
MESR (multiple entities in the same role) and MEMR (multiple entities each in mul-
tiple roles). Examples are given by “Jill is the departmental secretary” (SESR), “Jill is
the departmental secretary and also mother to her children” (SEMR). Any member of
a support team has the same role: “support staff” (MESR). Finally John and Bill are
golfing partners, but John is also director of his business and Bill is CEO of another
business (MEMR).

4.5 Policy Relation

Considering two policies, we might be able to identify commonalities between them.
For example one might be a more specific version of the other. That is policies might be
derived from each other by specialising certain elements: for example a domain entity
might be replaced with an entity from its sub-domain, or a time constraint might be
replaced with a tighter or looser time constraint. However, policies could be completely
independent of each other.

7

In general it is unlikely that the question whether policies are related or independent
is decidable. However, within a specific application domain this might be decidable.
Also, one could consider libraries of policy templates from which policies are derived –
much as one would have inheritance in object oriented programming. As an example,
Ponder provides a concept of inheritance.

4.6 Modalities

Modalities are very common in policies; examples are obligation, permission and inter-
diction in deontic logic based frameworks [4,3], authorisation, obligation and delegation
in access control. Other deontic logic based policy frameworks have been proposed , for
example in [24]. We have also considered temporal modalities (now, every Christmas,
weekends) and preferences (want, prefer, must) in [31].

Again, we need to consider dependence on the application domain. Temporal modalities
are concepts that are independent of the application domain as they refer to commonly
understood concepts. Preferences might be somewhat more domain-dependent, espe-
cially if we consider the meaning of certain terms in subject-specific speech (e.g. in legal
speech “shall” or “can” have a different meaning from their colloquial use). OPI and
authorisation modalities are often quite dependent on the domain: violation of these
modalities might be acceptable in some domains (albeit generally under penalties) but
absolutely not in others. Consider a company policy that staff is only permitted to hire
small cars, however a member of staff might decide that he urgently needs to attend a
customer but due to non-availbility is unable to obtain a small hire car. In this case it
is probably desirable that the policy is violated. On the other hand only the holder is
permitted to draw money from the bank account is a rule that should not be violated
under any circumstances.

5 Conflict Manifestation and Examples

Conflicts can manifest themselves within each of the dimensions discussed before, but
a single conflict might involve more than one dimension. Depending on the exact man-
ifestation we can recommend different categories of approaches to detect and resolve
the conflicts – this is where the work conducted by the feature interaction community
over the last decade will be valuable, but also where new work is required.

We will now consider how conflicts manifest themselves within each of the dimensions
in turn.

5.1 Policy Types

Conflicts in this dimension are most likely to be dependent on the controlled system,
as many conflicts here arise from conflicting actions. However, it depends on the types

8

whether the potential for conflict can be determined independently of the application
domain.

Before considering policy types in more detail, it is worthwhile discussing actions. An
action is the effect of a policy. In call control, a typical action could be the forwarding of
a call; in access control, the denial of access or the request for a password. Actions can
conflict, as is well known from feature interaction: for example in POTS simultaneous
forwarding to two distinct telephones is not possible. However, this is tightly bound to
the underlying system, as even in the telephony application domain the previous action
might be meaningful in an Voice over IP context. The underlying system prescribes
exactly which actions conflict. We will not pursue this further here due to its system
dependence.

Two (or more) unconditional goals conflict if the actions they specify are inconsistent:
this can only be determined if information about consistency of actions for the given
application domain is available. Conditional goals are similar, in that they conflict if
their actions conflict, however the conditions must also be overlapping – as illustrated
by example 5.1. Thomas [34] has discussed methods to detect such cases in the context
of feature interaction.

Example 5.1 John is an administrator. The domain prescribes that allowing and
denying access are incompatible. Then, the following two policies conflict:

• If the user is an administrator then allow access.
• If the user is John then deny access.

ECA rules conflict if (1) their actions conflict and (2) they may be triggered at the
same time and (3) their conditions overlap. Being triggered at the same time can have
two interpretations: their trigger sets overlap (and the actual trigger is in the overlap)
or the action of one is in the trigger set of the other. The former case has been called
STI (Shared Trigger Interaction) and the latter SAI (Sequential Action Interaction).
These cases, together with a hybrid method to handle them, have been discussed in
[8]. Example 5.2 and example 5.3 show cases for STI and SAI respectively. The same
holds for ECA rules with a trivial condition of true. Many interactions in this class can
be detected by syntactic analysis since much information beyond the simple action is
available.

Example 5.2 Blocking and Forwarding are incompatible actions in the telecommuni-
cations domain. The following two policies lead to an STI as they are triggered by the
same event but request probably incompatible actions:

• Incoming calls should be forwarded to John.
• Incoming calls should be blocked if they are not emergency calls.

Example 5.3 Blocking and Forwarding are incompatible actions in the telecommuni-
cations domain. The following two policies lead to an SAI as the forwarding requested
by the first policy causes the second to be applicable:

9

• Incoming calls should be forwarded to John.
• Forwarded calls should be blocked if they are for John.

We can also have interactions between goals and ECA rules. To detect and resolve
these, we use methods that combine the issues discussed above for ECA and goals.

5.2 Domain Entities.

While the conflicts of policy types might be relatively simple, and somewhat similar
to traditional feature interactions, domain entities introduce interesting new types of
conflict and affect how conflicts in policy types can be detected and resolved.

All policies aid the users of a system to perform certain tasks, respecting their own
wishes and the rules imposed on them by organisations. Users can serve as individuals
or in certain roles, whereby a user can clearly assume more than one role at a time.
Potential conflict exists between the policies applicable to a user, based on the diverse
roles that the user assumes as well as on the roles of different users. We consider roles
and users to be domain entities, embedded into a naturally occurring domain hierarchy
of say an enterprise (see Fig. 2). Each entity in the hierarchy can have associated policies
which might be applicable only to that entity, to all entities below it in the hierarchy,
or to other sections of the hierarchy.

We can consider four fundamentally different cases, each of which has a significant
impact on the the knowledge available for conflict detection and resolution.

SE (Single Entity): Multiple policies which are defined by a single entity might
conflict. Such an example would be a user who already has a policy that calls in the
evening should be forwarded to voicemail adds a new policy stating calls after 16:00
should be forwarded to the home phone. In the SE case it can be assumed that all the
details of the policies are known, and that the entity has the possibility of changing
all policies to achieve consistency. This case would clearly suggest the use of off-line
detection methods and redesign as resolution strategy.

MESB (Multiple Entities same domain Same Branch): Here the conflicting
policies are defined by entities that lie on the same branch in the domain hierarchy.
A typical example would be a policy of an individual and a policy imposed by
the individual’s role conflicting. Conflict detection methods can again assume full
knowledge of the policy details and hence off-line methods are again suitable. With
respect to the availability of details we should note that these might not be available
to the individual user but are available to the system. For example, a company might
have a policy to disallow the use of company cars for non-management staff with
the “hidden” agenda of saving cost, the latter is stored in the policy but not told
to the employees. Assuming that the entity farther from the root of the hierarchy is
defining a conflicting policy, the resolution should be achieved by enforcing redesign
of the policy. However if the entity closer to the root is defining a new policy that
conflicts with policies of entities farther from the root, it is difficult to decide what
a suitable resolution would be. In general, it appears that the resolution should be

10

to disable all conflicting policies and enforce the new policy. An example would be
a new enterprise policy on budget permissions “only the CEO can delegate the right
to sign purchase orders”, which should invalidate all existing delegations given by
(say) current budget holders.

MEDB (Multiple Entities same domain Different Branches): We are moving
further away from the assumption that policy details are immediately known when
policies are defined by entities that are only related at a higher level. While in the
previous two cases a certain dependence between the entities could be assumed, and
policy details could be assumed known, we no longer have this certainty when we
consider entities on different branches. However, one could argue that we are still
within the same domain, so access to policies might still exist. Thus, conflicts in this
class can be detected and resolved by the same methods suggested for MESB or they
might require the methods we suggest for MEDD.

MEDD (Multiple Entities Different Domains): The conflicting policies are de-
fined by entities that are completely independent. A possible conflict in their policies
will in general not matter, as they might never encounter each other. However, in the
case that the two entities engage in contact which leads to the policies being acti-
vated, it is difficult to detect and resolve a conflict. This scenario does not generally
occur in policies used for access control or system management, but is very likely
in policies used for call control. The only possible solution is to detect conflicts at
run-time when the actual contact is established. Resolution can only be achieved by
automated run-time methods, as redesign is not an option here.

5.3 Roles.

Policies might be associated with individuals, but as they prescribe how these indi-
viduals act in a social or commercial context they are also related to the role of the
individuals. Roles have been studied in social science, and we will not go into any
detailed discussion here. Role conflict is a well known area of study in social science.

[21] considers the importance of role when considering policies for call control. This
work brought together social scientists with telecommunications engineers – showing
that research into this area is not purely technical. We will here only consider a more
technical stance: There are four possible role/domain entity relations with possible
conflicts as follows:

SESR (Single Entity Single Role): A number of policies might be applicable to
the same user in the same role. In this case no conflict should be caused by the role
dimension. All conflicts will arise in the other dimensions.

SEMR (Single Entity Multiple Roles): However, a single user might be subject
to policies of different roles. For example, a lecturer in a university typically has a
teaching role, but also a research role and an administrative role. Policies might be
in place to disallow teachers and researchers from seeing staff files of colleagues. On
the other hand particular administration roles might have duties that can only be
accomplished by seeing these files. A similar conflict occurs when we allow researchers
on a certain project to speak to collaborators in another country but bar overseas

11

calls for all research staff. A researcher on the project will be in both roles and
hence subject to both policies. It cannot be assumed that all roles the entity might
play are known beforehand; roles might dynamically change, and roles might stem
from distinct domains and thus might not be immediately known. Clearly conflict
detection and resolution require to be dynamic, however static techniques might be
used to some extend.

MESR (Multiple Entities Single Role): Multiple entities might fill the same
role. This is typical with administration or customer service staff. Any change to
role policies will impact many domain entities and hence will not be simple; worse,
the impact might not be known beforehand. Consider the second example given in
SEMR. If the rule that research staff cannot initiate overseas calls is introduced as
part of a money-saving scheme, it will certainly surprise researchers who were so
far able to make such calls – and it might actually hinder project progress. Conflict
detection and resolution might need to be dynamic, but depending on the domain one
could assume certain precedences: for example, a role policy might always overrule
a user policy. However, we then can find problems such as those discussed in the
policy relation domain.

MEMR (Multiple Entities Multiple Roles): This category is clearly the most
complex. Consider an example with John and Bill as golfing partners. John is prod-
uct developer in company A, Bill is technical director in a competing company B.
Company A has a rule that developers are not allowed to contact technical staff in
competing companies. If John wants to make some arrangements with Bill for an
upcoming golfing match, he might not be able to do so due to the company pol-
icy imposed on his and Bill’s respective company roles. Detection here can only be
dynamic, and resolution needs to be handled dynamically too. However policies sug-
gested by us in [31] and supported by the architecture below can take into account
context, and this might be able to help resolve the problem. For John and Bill, if a
clear indication is given that the contact is not work related it might be acceptable
for it to take place.

5.4 Policy Relation.

Another challenging type of conflict is based on the relation between two policies. One
policy might define a certain behaviour under certain circumstances. We can now define
a second policy which adapts the behaviour or circumstances of the former.

Sometimes it might be highly desirable to allow refinement or even relaxation of policies,
in other cases it might be highly undesirable. In general it is difficult to see a general
solution to this type of conflict, so we see further work being required here. Let us
conclude with another example to strengthen the point:

Example 5.4 Consider four policies:

(1) Managers can approve orders for their department
(2) Managers can approve urgent orders for any department
(3) Junior managers can approve orders under £500

12

(4) Senior managers can approve orders under £5000

Here (3) and (4) specialise (1), but they are actually vague about the department. (2)
contradicts (1), but is often desirable. However, (2) also contradicts (3) and (4), and
might be less desirable here – especially in the case of junior managers.

5.5 Modalities.

We can consider a number of modalities, such as obligation, permission and interdiction,
or authorisation and obligation. On a different level, terms such as ‘never’ and ‘always’
indicate modalities. Preferences, e.g. wish or must, are highly relevant for call control
policies. They can also be seen as modalities, albeit rather fuzzy ones. And finally
a class of temporal modalities, containing items like ‘in the future’, ‘periodically’ or
‘now’, is also relevant.

There can be interactions within each of these modality groups, e.g. one might place
an obligation to perform an action without the required permission existing (this has
been considered in Lupu and Sloman [25]).

Lupu and Sloman have identified three types of conflict: O+ and O- (the obligation to
perform and not to perform an action), A+ and A- (the authorisation and denial to
perform an action) and O+ and A- (the obligation to perform an action that we are
not authorised to perform). Similar conflicts have been described in papers on deontic
logic [38].

Temporal modalities can lead to conflicts where inconsistent time intervals are specified
such that the policy essentially never holds. Conflicts arising from temporal modalities
should be easy to detect and resolve, probably due to the good common understanding
of time-related concepts.

While preferences can lead to conflicts in themselves, it is more likely that they prove
useful as a basis for conflict resolution in negotiation approaches where they can de-
termine which policy should be given precedence by identifying how strongly users feel
about their policy. Consider a user who at 8:00pm urgently must talk to a user who
prefers not to be called in evenings. The system can use the preferences of “must” and
“prefer” to resolve this conflict, in this case in favour of the caller.

6 An Architecture for Handling Policy Conflict

We have proposed a three-layer architecture for policies for call control in [32]; this
has been implemented as part of the ACCENT 1 project. The same architecture is
viable for the more general setting of policy-controlled systems. In particular, we have

1 www.cs.stir.ac.uk/compass

13

Policy Definition Layer

Policy Server Layer

Controlled System

Policy Deployment

Policy Enforcement

S
ta

tic
 T

ec
hn

iq
ue

s

C
on

fli
ct

 D
et

ec
tio

n
an

d
R

es
ol

ut
io

n

D
yn

am
ic

 T
ec

hn
iq

ue
s

Fig. 3. Three-Layered Architecture

a policy definition layer, a policy server layer and the controlled system. We are not
too concerned with the first and last here, but will briefly discuss their roles before
concentrating on the policy server layer.

Policies are activated by events in the controlled system and the environment, and
act on the controlled system (potentially changing the environment). It is here that
conflicting policies might break the system or at least lead to annoyance of the users.
Hence actions committed by the controlled system should be conflict-free. It is one
purpose of the policy server layer to ensure this.

Policies need to be defined by users or system administrators and then be deployed in
the system. The policy definition layer encapsulates user interfaces at different levels of
complexity for different user groups. In this layer users formulate policies and submit
them to the policy server layer. If users attempt to define inconsistent policies, the
policy server layer will inform them about conflicts and enforce a redesign if desirable
(i.e. by rejecting the submitted policy).

The foregoing should explain the central role of the policy server layer, but also give
an insight into its complexity. The policy server layer consists of two main entities:
policy stores and policy servers. Policy servers provide the intelligence, as well as the
points of contact into this layer, while policy stores simply form repositories of policies.
Policy stores should provide fast access to the stored policies. Tuple spaces [20] have
been adopted for desirable technical reasons, but their details are not relevant for this
paper. Note, that we assume a distributed architecture, where more than one policy
server might use the same policy store. In addition each server might have several stores
that it uses.

14

P
o

licy S
to

re

P
o

licy S
erver

P
o

licy S
erver

P
o

licy S
erver

P
o

licy S
to

re

C
o

n
text

Interface to P
olicy

D
efinition Layer

Interface to C
ontrolled

S
ystem

Interface to P
olicy

D
efinition Layer

Interface to P
olicy

D
efinition Layer

Interface to C
ontrolled

S
ystem

Interface to C
ontrolled

S
ystem

P
olicy D

eploym
ent H

andler

P
olicy E

nforcem
ent H

andler

 Interaction H
andler

static analysis

dynam
ic analysis

Inter-
face

D
om

ain
S

epcific
H

andler

P
olicy

A
pplicator

Inter-
face

P
olicy

D
eployer

to policy store

from
 policy store P

o
licy D

efin
itio

n
 L

ayer

C
o

n
tro

lled
 S

ystem

Context

Context

Fig. 4. The Policy Server Layer close up

15

More interestingly the policy server provides two interfaces, one for policy deployment
and one for policy enforcement. We will now consider each in turn before very briefly
considering what feature interaction can contribute.

6.1 Policy Deployment

A (currently proprietary) protocol allows us to deploy policies by sending requests to a
policy server on its deployment interface. The protocol provides six functions: upload,
update, delete, enable, disable and query. These deploy a new policy, update or delete
an existing policy, enable or disable policies (a disabled policy remains in the policy
store but will not be applied), and query the policies that a user currently has deployed.

Each request consists of the given function, a user or policy identifier, and if required
a policy description. Policy descriptions in APPEL (the Accent Project Policy Envi-
ronment/Language) are encoded as XML, and hence it will be practical to move from
the proprietary interface to a more general SOAP-based one – however, this will not
impact on the functionality.

Received requests are passed to the policy deployer, which performs a simple algorithm
which varies slightly depending on the function. The general operation is as discussed
next. The policy store is queried for the existence of a policy with the provided id.
This might raise an ID failure, which will lead to termination of the operation. If this
succeeds, a static interaction handler will be created and the policy will be checked
for conflicts. If a conflict occurs, a CONFLICT error will be reported. Assuming that
no conflict occurs, the operation proceeds. If no system problem occurs, success will
be reported, otherwise GENERAL FAILURE is issued to the user interface. Each error
message is accompanied by further details, in particular the CONFLICT error will be
supported by a set of conflicting policies as well as suggestions for possible solutions.

Note that the interaction handler might make use of context information (such as
domain hierarchies as appropriate). However, if conflict detection is dependent on such
(semi-permanent) context information, one could only warn of possible conflict or not
detect a conflict at all.

Also note that policy deployment process is completely independent of the application
domain and the underlying system. However, to detect conflicts caused by actions the
interaction handler requires a notion of what constitutes such interactions. Clearly, the
policies themselves will be somewhat dependent on the controlled system as the actions
they specify must be meaningful in the application domain.

6.2 Policy Enforcement

The process of policy enforcement might be more interesting. In order for this to work,
information from the system must be passed to the policy server. An interface to the
controlled system exists for this purpose, and the information passed depends on the

16

controlled system. In call control, this will be the requests and responses sent through
the network; in access control this might be the requests to access objects.

To keep the architecture open and as general as possible, the information from the
network is provided again in a proprietary protocol (which again can be substituted by
SOAP). This means that on the controlled system, an extra interface component needs
to be deployed which extracts and packages the information into the required format.
In general the format contains an identifier for the controlled system (which will be
used to identify the domain-specific handler), the raw information and the structured
information in key/value pairs. As extremes, we might not provide any structured
information, letting the domain specific handler extract this from the raw information,
or we might provide no raw data having extracted all required information at the
controlled system side. Example 6.1 shows how the information passed might look for
a SIP communications system.

Example 6.1

SIP\n
SERVER_NAME: d254196.cs.stir.ac.uk\n
MSG\n
INVITE sip:cs.stir.ac.uk SIP/2.0\n
Via: SIP/2.0/UDP 139.153.254.196:5062\n
CSeq: 3732 REGISTER\n
To: "Stephan" <sip:srm@cs.stir.ac.uk>\n
Expires: 900\n
From: "Stephan" <sip:srm@cs.stir.ac.uk>\n
Call-ID: 1815056773@139.153.254.196\n
Content-Length: 0\n
User-Agent: KPhone/2.11\n
Event: registration\n
Allow-Events: presence\n
Contact:"root"<sip:root\@139.153.254.196:5062;transport=udp>;
methods="INVITE, MESSAGE, INFO, SUBSCRIBE, OPTIONS, BYE, CANCEL, NOTIFY, ACK"\n
\n

The interface then identifies the appropriate domain-specific handler and passes the
received information on. The domain-specific handler continues processing of raw data
as required, and most importantly converts all information into the terms used by
the policy language. The latter allows us to have a generic policy applicator that is
independent of the controlled system. Finally the information is passed to the policy
applicator, which will identify the relevant policies (dependent on the current context
and received information).

A dynamic interaction handler is intended to determine any possibly conflicting poli-
cies, and also to resolve any conflict by either disabling policies or reordering them.
The details of the policy conflict detection and resolution are dependent on the par-
ticular run-time resolution method chosen. For examples of such methods please see

17

section 6.3. Some methods might require negotiation between policy servers, and the
presented architecture enables such contact. In particular we foresee that the originat-
ing policy server might contact the remote end policy server to “pre-negotiate” which
is helpful to avoid actions that might lead to conflict later on or “post-negotiation”
where the remote end on detecting a conflict must resolve this. The latter might be
easier to implement, while the former might be more powerful. Details require further
investigation. Once all conflicts are resolved, the policy applicator returns an ordered
list of actions to be performed by the domain-specific handler.

The domain-specific handler must process the list of received actions (which is in policy
terms) and convert them into the messages required by the system before being passed
back to the controlled system and the action being enforced.

Clearly, policy enforcement is dependent on the controlled system, however, the archi-
tecture as presented neatly separates the generic from the system-dependent function-
ality justifying our claim as to its genericity.

6.3 Conflict Handling: A Glance at Traditional FI

Both the policy deployment and enforcement processes make use of an interaction
handler to detect and resolve any policy conflicts. This is an area where we can refer
to past work in the feature interaction community. There we find two main streams:
off-line methods which detect conflict using some formal model of the system or using
pragmatic techniques (resolution is by redesign); on-line methods which detect conflict
at runtime and must also resolve conflicts at runtime. For a detailed review of the
available techniques see [9]. Off-line methods are often static techniques whereas on-
line methods are rather dynamic, taking into account the current context and state of
the system.

Both categories can be useful here, as we have a requirement for static techniques
for policy deployment and dynamic techniques for policy enforcement. We have made
recommendations for both static and dynamic techniques in [32] to be used for the
detection and resolution of policy conflict, which we will briefly repeat here.

Off-line methods considered most appropriate for the policy context are Anise [35]
(pre-defined or user-defined operators allow to build progressively more complex fea-
tures while avoiding certain forms of interaction) and Zave and Jackson’s [41] Pipe
and Filter approach. Also, Dahl and Najm’s [15] (occurrence of common gates in two
processes) and Thomas’ [34] (guarded choices) approaches, where the occurrence of
non-determinism highlights the potential for interactions, are suitable. We can also
detect the potential for conflict. That is, we can filter cases where an interaction might
occur depending on contextual data. A suitable approach might be derived from the
work of Kolberg et al. [23].

There are also several on-line approaches that are suitable. The feature manager in
[26] detects interactions by recognising that different features are activated and wish

18

to control the call. The resolution mechanism for this approach [30] is based on general
rules describing desired and undesired behaviour. In negotiation approaches, features
communicate with each other to achieve their respective goals [36]. Buhr et al. [7] use
a blackboard technique for the negotiation, thus introducing a central entity.

While these methods have been devised in the telecommunications domain, we believe
that they are not bound to this domain and will be applicable in the more general con-
text discussed in this paper. We also believe that other techniques might be adaptable
or suitable for this new domain, and leave this as question for further investigation.

7 Policies as an Emerging Domain: Revisited

Policies have entered the area of feature interaction as is apparent from the recent
feature interaction literature. There are several ways in which policies might be relevant
for feature interaction. They could provide new handles on resolving feature interactions
in existing systems by providing a higher level of abstraction. They could also replace
features in call control. However, policies are not free of problems, and in particular
the policy conflict problem closely resembles the feature interaction problem.

In this paper we have provided a taxonomy that structures the problem space of policy
conflict, considering policies as the objects to be manipulated and not their specific
application domain. Certain conflicts can occur in policies, others might be application-
dependent. Both classes require solutions for detection and resolution of policy conflict,
but we feel that the former is more important as it is inherent to policies. As such we
believe that policies form an interesting new domain for feature interaction research.

We have shown that policies can be placed at different positions in each of the dimen-
sions, and each of the dimensions provides different challenges. In general, the further
a policy is from the origin of the domain, the less information is available about the
conflicting policies and the more dependent they are on the current situation. This
leads to a clear requirement for what has been considered on-line techniques in the
feature interaction domain. On the other hand as on-line techniques will always be
under time constraints, one could say that leaving the solutions for problems until the
last minute is bad design. One should attempt to solve conflicts occurring at design
time if possible.

The forgoing clearly shows that both main fields of feature interaction research, on-
line and off-line methods, should be pursued. Existing techniques need to be adapted
and tried in the new context of policies. This should be relatively easy in the off-line
area where many techniques have been developed. However, it will be more challenging
in the on-line area where the number of existing techniques is scarce and their past
development has often been hampered by poor signalling and lack of information. These
problems are to some extent eased in systems controlled by policies.

19

7.1 Conclusions

We have attempted to classify the dimensions of policy conflict and discussed exam-
ples and possible solution strategies for each of the dimensions. In particular we have
identified five dimensions that are inherent to policies, and have also seen that certain
conflicts are introduced by the application domain. The latter were not considered in
detail in this paper. The identified domains are policy type, domain entities, roles, pol-
icy relation and modalities – each contributing to the power of policies but introducing
problems of their own.

We have also introduced a general architecture for controlling systems by policies. The
architecture has been implemented and tried in the domain of call control as part of
the ACCENT project. The ACCENT project is currently investigating different conflict
detection and resolution techniques. However, the architecture is applicable in general
as it does not make any assumption about the controlled system – beyond the fact
that the system can be observed and influenced, which is fundamental for control by
policies anyhow. The architecture considers both policy deployment (providing answers
to the question of how policies get to their execution point) and policy enforcement
(the actual influencing of the controlled system). The architecture is distributed, but
can also handle the (simpler) case of centralised control.

A major advance over any existing architectures is the clear identification of ‘hooks’
for conflict detection and resolution techniques, both at policy deployment and policy
execution time – a problem that has been mostly ignored to date.

As policies are considered an emerging domain, the work on policy conflict detection
and resolution is in its infancy. Where work exists (such as [25]), it is tightly bound to
a particular problem in a specific application domain rather than being general. There
is much potential for feature interaction research to shape and support the future
of policy conflict detection and resolution in the emerging domain of policy control.
In particular by considering the problem on a general policy level, rather than in an
application-specific fashion, the feature interaction community can make a significant
contribution extending and building on the taxonomy and architecture presented here.

Acknowledgements

This work has been supported by EPSRC (Engineering and Physical Sciences Research Coun-
cil) under grant GR/R31263 and Mitel Networks Corporation. We thank all people who con-
tributed to the discussion of policies in the context of call control which formed the basis
for the more general considerations presented. Particular thanks are due to our colleagues at
Mitel Networks Corporation, the University of Ottawa and here at Stirling University.

20

References

[1] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii. Feature interaction resolution using
fuzzy policies. In [10], pages 94–112, 2000.

[2] D. Amyot and L. Logrippo, editors. Feature Interactions in Telecommunications and
Software Systems VII. IOS Press (Amsterdam), 2003.

[3] M. Barbuceanu, T. Gray, and S. Mankovski. Coordinating with obligations. Proceedings
of the 2nd International Conference on Autonomous Agents, 1998.

[4] M. Barbuceanu, T. Gray, and S. Mankovski. How to make your agents fulfil their
obligations. Proceedings of the 3rd International Conference on the Practical Applications
of Agents and Multi-Agent Systems (PAAM-98), 1998.

[5] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A system to specify and manage
multipolicy access control models. In [27], pages 116–127, 2002.

[6] L. G. Bouma and H. Velthuijsen, editors. Feature Interactions in Telecommunications
Systems. IOS Press (Amsterdam), 1994.

[7] R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, and S. Mankovski. Feature-
interaction visualization and resolution in an agent environment. In [22], pages 135–149,
1998.

[8] M. Calder, M. Kolberg, E. Magill, D. Marples, and S. Reiff-Marganiec. Hybrid solutions
to the feature interaction problem. In [2], pages 295–312, June 2003.

[9] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature interaction: A
critical review and considered forecast. Computer Networks, 41(1):115–141, Jan 2003.

[10] M. Calder and E. Magill, editors. Feature Interactions in Telecommunications and
Software Systems VI. IOS Press (Amsterdam), 2000.

[11] E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, and W. K. Schnure. A feature
interaction benchmark for IN and beyond. In [6], pages 1–23, 1994.

[12] E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and H. Velthuijsen.
A feature interaction benchmark for IN and beyond. IEEE Communications Magazine,
pages 64–69, Mar 1993.

[13] E. J. Cameron and H. Velthuijsen. Feature interactions in telecommunications systems.
IEEE Communications, pages 18–23, Aug 1993.

[14] K. E. Cheng and T. Ohta, editors. Feature Interactions in Telecommunications Systems
III. IOS Press (Amsterdam), 1995.

[15] O. C. Dahl and E. Najm. Specification and detection of IN service interference using
Lotos. Proc. Formal Description Techniques VI, pages 53–70, 1994.

[16] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. Ponder: A language specifying security
and managements policies for distributed systems. Imperial College (London) Research
Report, 2000.

21

[17] A. De Marco and F. Khendek. eSERL: Feature interaction in Parlay/OSA using
composition constraints and configuration rules. In [2], pages 247–254, June 2003.

[18] P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interactions in Telecommunication
Networks IV. IOS Press (Amsterdam), 1997.

[19] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst. Utilising the event calculus for
policy driven adaptation on mobile systems. In [27], pages 13–24, 2002.

[20] D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, pages 80–112, Jan 1985.

[21] T. Gray, R. Liscano, B. Wellman, A. Quan Haase, T. Radakrishnan, and Y. Cho. Context
and intent in call processing. In [2], pages 177–184, June 2003.

[22] K. Kimbler and L. G. Bouma, editors. Feature Interactions in Telecommunications and
Software Systems V. IOS Press (Amsterdam), 1998.

[23] M. Kolberg and E. H. Magill. A pragmatic approach to service interaction filtering
between call control services. Computer Networks: International Journal of Computer
and Telecommunications Networking, 38(5):591–602, 2002.

[24] R. M. Lee. Bureaucracies as deontic systems. ACM Transactions on Office Information
Systems, (2):87–108, Apr 1988.

[25] E. C. Lupu and M. Sloman. Conflicts in policy-based distributed systems management.
IEEE Trans. on Software Engineering, 25(6):852–869, 1999.

[26] D. Marples and E. H. Magill. The use of rollback to prevent incorrect operation of
features in intelligent network based systems. In [22], pages 115–134, 1998.

[27] J. B. Michael, J. Lobo, and N. Dulay, editors. Proc. 3rd. International Workshop on
Policies for Distributed Systems and Networks. IEEE Computer Society, Los Alamitos,
California, USA, June 2002.

[28] J. D. Moffett and M. S. Sloman. Policy conflict analysis in distributed systems
management. Journal of Organizational Computing, (1):1–22, 1994.

[29] D. Peled and M. Vardi, editors. Formal Techniques for Networked and Distributed
Systems – FORTE 2002, LNCS 2529. Springer Verlag, 2002.

[30] S. Reiff-Marganiec. Runtime Resolution of Feature Interactions in Evolving
Telecommunications Systems. PhD thesis, University of Glasgow, Department of
Computer Science, Glasgow (UK), May 2002.

[31] S. Reiff-Marganiec and K. J. Turner. Use of logic to describe enhanced communications
services. In [29], pages 130–145, November 2002.

[32] S. Reiff-Marganiec and K. J. Turner. A policy architecture for enhancing and controlling
features. In [2], pages 239–246, June 2003.

[33] M. Sloman, J. Lobo, and E. C. Lupu, editors. Proc. 2nd International Workshop on
Policies for Distributed Systems and Networks, LNCS 1995. Springer Verlag, 2001.

[34] M. Thomas. Modelling and analysing user views of telecommunications services. In [18],
pages 168–182, 1997.

22

[35] K. J. Turner. Realising architectural feature descriptions using Lotos. Networks and
Distributed Systems, 12(2):145–187, 2000.

[36] H. Velthuijsen. Distributed artificial intelligence for runtime feature interaction
resolution. Computer, 26(8):48–55, 1993.

[37] H. Velthuijsen, N. Griffeth, and Y.-J. Lin, editors. International Workshop on Feature
Interactions in Telecommunications Software Systems, Florida, 1992.

[38] G. H. von Wright. An essay in deontic logic and the general theory of action: with a
bibliography of deontic and imperative logic. Acta Philosophica Fennica. North Holland,
Amsterdam, 1972.

[39] G. Yee and L. Korba. Feature interactions in policy driven management. In [2], pages
231–238, June 2003.

[40] P. Zave. Feature disambiguation. In [2], pages 3–9, June 2003.

[41] P. Zave and M. Jackson. New feature interactions in mobile and multimedia
telecommunication services. In [10], pages 51–66, 2000.

23

