
Context-sensitive Team Formation: Towards Model-
Based Context Reasoning and Update

Hong Qing Yu, Yi Hong, Reiko Heckel and Stephan Reiff-Marganiec
Department of Computer Science, University of Leicester, UK

{hqy1, yh37, reiko, srm13 @mcs.le.ac.uk}

Abstract. Selection problems tend to have two aspects: one that is structural
and one that is quantitative in nature. Here we investigate a method that allows
decisions on both aspects. The paper considers a typical example, that of
selecting members for a team, where decisions are based on context
information. We show that graph transformations are providing a solution to the
structural selection, while logic scoring of preferences allows qualitative
decision making. On an implementation level OWL and SPARQL are used to
retrieve and update context data.

1 Introduction

Selection problems occur in many aspects of computer systems and every-day life.
For example in a service oriented computing system, one finds the need to select a
service to complete a task. Or in a collaborative work environment (virtual or not) one
finds a need to assemble teams to complete specific projects which in turn requires
selecting team members. In the former example traditionally the terms functional and
non-functional requirements are used to describe the structural selection (a service
with the right interface) and a qualitative selection (the most suitable service
guaranteeing specific QoS requirements).

The latter problem, of team formation, is the one we wish to concentrate on in this
paper, as it is easy to explain, has merits of its own and allows us to present the
method to solve it – however that method is more generic and the specific problem is
to be seen as a case study. To select team members one needs to make decisions
based on structural criteria (to find a member who fits the profile required) and a
qualitative decision, to find the most suitable (experienced, qualified, …) such
member.

Of course these selection problems are influenced by many factors, with one of the
most interesting being context: both suggested selection problems are not performed
on static domains (services come and go, as do possible team members, e.g. through
being unavailable in certain weeks). Context captures the dynamic nature of the
problem environment in a way suitable for processing. In general “context is
information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user

mailto:reiko%20at%20mcs%20le%20ac%20uk

and an application, including the user and applications themselves”[1]. Context is also
a very important source of information in our computing environments.

In this paper we will use the case of team formation to investigate techniques
addressing both the structural and the qualitative aspect of selection. The structural
selection and update of context will be described by graph transformation rules,
visually expressed in a UML-like notation, while the qualitative concern will be
handled using the Logic Scoring Preference (LSP).

The paper is organized as follows: in Section 2, a motivating example of team
member selection for a Java software project is given. In Section 3, we present our
sample context model as a UML class diagram, which can be translated into an OWL
ontology. Moreover, the technologies for retrieving of and reasoning about context
information are described and we explain how to model the selection problems using
graph transformation rules which can be translated into the SPARQL query language
for OWL. In Section 4, the modified LSP method for selection and ranking of
potential team members is illustrated. Finally, conclusions and future work are
discussed in Section 5.

2 Context-sensitive Team Formation

Selecting the right people for establishing a professional team to conduct a specific
task is always combined with hard decision problems. These problems often appear in
e-business and e-government applications. The problems fall into two categories:
structural decision problems and qualitative/quantitative decision problems. The basis
for the decision process are provided by a context model capturing amongst others,
the people’s characteristics. The structural decision problem is captured by the
question: how we can choose people who satisfy the desired context structure?
Moreover, the target team formation requirements can also be expressed in this
structural way. The structures are a subset of the context model’s properties. The
“qualitative/quantitative” is concerned with selecting the best from amongst the
people who satisfy the team formation requirements.

Let us consider the following concrete example: A software company needs a
professional team of 4 to work on a software project. The people required are an
experienced specification analyzer (more than 5 years experience of analysis, having
a qualification and currently working in a project team as analyzer), a software
architect (at least 3 years Java design experience), and two good Java developers
(more than 3 years Java coding experience and interest in web technology). The
problem structure is captured by Fig. 1. Please note that we ignore additional people
such as testers, managers and integrators in order to keep the problem simple for
presentation.

Fig. 1: Motivating example of a software development team

3 Model-based Context Reasoning by Graph Transformation

Since structural requirements can be presented as graphs, a graph-based approach is a
natural candidate for addressing the problem. Graph transformations (GT) [2] provide
such an approach, combining the modeling of data structures and configurations as
graphs with the use of rules to describe the update of these structures. In our case,
graphs represent snapshots of context data while rules model context selection, update
and reasoning. Apart from this abstract model, which provides the semantic core of
our approach, we suggest the use of UML as a human-oriented modeling notation,
OWL (Web Ontology Language) as a machine-readable representation of context
models, and SPARQL for pattern matching and reasoning on OWL. In this section we
will describe these different levels and their relation through examples.

3.1 Graphs and graph transformation

In our approach, graphs occur at two levels. A static context model can be represented
as a type graph TG, while a system snapshot and states are illustrated as instance
graphs G, H,…. Dynamic changes regarding the update of structure or attribute values
are modeled as graph transformation rules. A graph transformation rule p: L→ R
consists of a name p and a pair of instance graphs L, R over TG. The left-hand side
graph L describes the pre-conditions of the rule while the right-hand side R shows the
replacement of L after the transformation. The example below shows the type graph,
rule, and transformation for transferring personnel between teams in a project.

Fig 2: Type graph (previous page) and graph transformation step using rule moveTeam.

The rule moveTeam(p) specifies how a person p1 moves from team t1 to t2, both
within a common project prj. Applying the rule, we are replacing an occurrence of L
in G with a copy R, in three steps: (1) Find an occurrence oL of L in G. (2) Delete all
vertices and edges of G that are matched by L. (3) Paste to the result a copy of R to
generate the new graph H [4].

Note that one of the most essential steps in this process is graph pattern matching; we
will return our focus to this issue in due course by considering SPARQL queries on
RDF/OWL documents to find patterns corresponding to the rule’s left-hand side in an
instance graph.

3.2 Modeling Technique and Context Representation

As a human-readable front-end, UML provides a visual mechanism for modeling both
the static structure of a system and its snapshots at specific times. The UML class
diagram is used to describe static concepts such as class, property and class-level
relationships, including generalization and association, as well as cardinality
constraints. In our approach, graph diagrams are seen as a visual representation of
type graphs. Note that we are not using the full power of the language. For example,
it is not necessary to define operations or visibility of properties since these cannot be
represented in OWL. However, we make use of constraint. Assume that we would
want to express two kinds of associations: “is leader of” and “is colleague of” both
represented as self-association of class Person. But, as a matter of fact, they are quite
different – “is leader of” is transitive while “is colleague of” is symmetric association.
As we need to distinguish one from the other in terms of reasoning, the OCL (Object
Constraint Language) can be used to enhance the class diagram as follows.

Fig.3: Class diagram (type graph)

Context Person inv:
Person.allInstance->forAll(p1,p2.p2| p1.isLeaderOf=p2 & p2.isLeaderOf=p3

implies p1.isLeaderOf=p3)
 Person.allInstance->forAll(p1,p2) |
p1.isColleagueOf=p2 implies p2.isColleagueOf=p1)

Table 1: OCL constraint for class diagram

This additional information is useful when instantiating the class diagrams. Also at
implementation level, as an extension of RDF, OWL introduces the mechanism for
describing property and association characteristics, e.g. the <owl:TransitiveProperty>
in OWL Lite [5].

An instance of a class diagram is visualized by a UML object diagram, representing a
system state and corresponding to an instance graph. Object diagrams are not directly
used for modeling, except where fragments of a state are to be investigated, but
transformation rules are displayed as pairs of object diagrams as seen in Fig. 3.

Since diagrams are not very suitable for automated processing, we use semantic web
languages designed for machine-readable representation of data and documents on the
web. Among these, RDF (Resource Description Framework) [7] is a framework
recommended by W3C that describes web resources using subject-predicate-object
triples. For example, rabbit (subject) is a subclass of (predicate) mammal (object).
Consequently, RDF triples can be easily represented as vertices V and edges E, so that
each edge e (predicate) in E connects a source vertex (subject) and a target vertex
(object). In particular, we can present certain RDF triples as instance-property-value
in UML object diagram. The OWL (Web Ontology Language) is built on top of RDF
but adds more complex properties, characteristics and restrictions. A mapping
between class diagrams and OWL can be defined as shown in Table 2 below [6].

UML concept RDF/OWL concept 1

class diagram RDF/OWL Schema

object diagram RDF/OWL document (instant of schema)

Basic data structure built-in XML Schema datatypes

Class <rdfs:Class> <owl:Class>

1 Some features such as Object property, Transitive property, Symmetric Property,

InverseFunctionalProperty , and advanced cardinality restriction are only support in OWL,
which is an extension of RDF

property (attribute) <rdf:Property>
general association <rdf:Property>
source and target of the

ass
<rdfs:domain>< rdfs:range>

ociation
specified association (transitive

association, symmetric association,
etc) between classes

nalProperty >

<owl:ObjectProperty>
<owl:TransitiveProperty>
<owl:SymmetricProperty>
<owl: InverseFunctio

class Inheritance
(ge ation)

<rdfs:subClassOf>,
neraliz
N/A 2 < rdfs:subPropertyOf>
cardinality, OCL restriction

(Size-related)
y >

<owl:cardinality>
<owl:maxCardinality>
<owl:minCardinalit

instance x of class X <x rdf:ID=’X’>
links (instance of association)

between objects
instance of <rdf:Property> etc.

Table 2: Concept mapping between UML and RDF

 representation to type graphs,
while OWL instances correspond to instance graphs.

3.3 Pattern Matching Using SPARQL

ARQL in Java,
hich provides a framework for building semantic web applications.

ptures the
entials that allow us to present the example and explain the techniques.

Hence, OWL schemata provide a machine-readable

As mentioned before, pattern matching is on of the major ingredients of graph
transformation. Since OWL instances can be seen as graphs, subgraphs satisfying a
certain pattern can be retrieved by executing a query on OWL. There are several
OWL query languages available such as SPARQL [8] (SPARQL Protocol and RDF
Query Language)3 and. OWL-QL4. Jena is an implementation of SP
w

Before we demonstrate pattern matching in SPARQL, we present our sample context
model as a class diagram. This does not claim to be complete, but ca
ess

2 UML does not explicitly support property inheritance.
3 SPARQL syntax and specification : http://www.w3.org/TR/rdf-sparql-query/
4 OWL-QL is designed at Stanford Knowledge System Laboratory

Fig. 4: Context model in class diagram (type graph)

Returning to our example, the software company needs to select a young person to
join a new developing group. She should be under 30 and currently working as a
programmer with more than 2 years experience in Java coding. We can define a
SPARQL query on the OWL document representing an instance of our context
model, to match this pattern in the instance graph below.

Fig. 5: Pattern matching in partial object diagram (instance graph)

PREFIX ns:<http://somewhere.owl#>

SELECT ?p
WHERE {
 ?p ns:playRole ?r.
 ?r ns:rolename "programmer".
 ?p ns:age ?z.
?p ns:hasProfile ?profile.
?profile ns:hasExperience ?experience.
?experience ns:month ?month.
?profile ns:hasSkill ?skill.
?skill ns:skillname "Java".
 FILTER(?z <=30 && ?month >=24)
 }

The SPARQL syntax is similar to other structured query languages such as SQL, the
WHERE statement indicates a set of triple patterns. The result set will match when the
triple pattern all match at the same time. By executing this SPARQL query on OWL
instance we are able to detect the relevant subgraphs in an instance diagram that are
candidates for context updates or reasoning by means of graph transformation. This is
specified more formally in the next section.

3.4 Context Reasoning

It is noticeable that some information may not explicitly be presented in the defined
context model. Thus, the problem is that how to derive additional information from
given context data. In this paper, we concentrate on the “Rule-based deduction”
reasoning method.

The context data is implied by that explicitly present. The rules can be given at
metadata or the application level. At the metadata level they are based on the

metamodel (the metadata definition) as a type graph. Example includes the transitivity
of subclass or subobject (composite) relations, as shown in the following example.

Fig. 6 Deduction-based example – Transitivity

At the domain or application level, where reasoning rules are specific to the problem
at hand, they may be probabilistic or based on data obtained through data mining or
statistical methods. The following rule (see Fig.7), however, is deterministic, stating
that persons who are members of the same team are coworkers. (We use symbol
teamMmber, SubTeamOf, isColleagueOf stands for these associations)

Fig. 7 Deduction-based example - Inference

Applying these two rules in sequence, the following deduction can be made as Fig. 8

Fig.8 Deduction-based example

How to apply deductive rule in conjunction with SPARQL? One possible approach is
to combine Jena inference engine with Jena ARQ. Assume we want to say if “Person
a” and “Person b” are working in the same team, then we can apply the example
deduction rule to get “a” and “b” are coworker. This can be defined by Jena rule
syntax as follow:

[is_colleague_Imp: (?a belongsTo ?t),(?b belongsTo ?t)->(a? isColleagueOf ?b)]

The inference engine will apply the rules and subsequently add implicit triples to a
new generated Inferred graph based on the original model. Then when we execute a
SPARQL query to list all isColleagueOf triples, it should be able to return A and B
even the links do not exist in the original model. So far, a prototype of reasoning
component has been made and accessible via SOAP.

3.5 Team Formation as Graph Transformation

The team formation problem can be separated into two parts, the selection of team
members and their actual assignment to the team. The first step corresponds to the
graph matching inherent in the application of a transformation rule, while the second
is represented by the actual application of the rule. Based on the context model in Fig.
4, seen as a type graph, the team members’ context requirements can be given by an
instance graph forming the left hand side L of the rule in Fig. 6. The graph R presents
the intended replacement of this structure by the newly formed team.

Fig. 6: Specifying the team formation problem by graph transformation rule

Reorganize

Because the context model is based on an OWL ontology, we can use SPARQL for
implementing the three patterns for the candidates’ profiles as discussed in section 3.3.
The patterns are treated as preferences for the selection. For example, the criteria for
searching the correct analyzer are generated by the following query code.

PREFIX ns:<http://somewhere.owl#>

SELECT ?p
WHERE {
 ?p ns:playRole ?r.
 ?r ns:rolename "analyzer".

?p ns:hasProfile ?profile.
?profile ns:hasExperience ?experience.
?experience ns:month ?month.
?profile ns:hasWorkExperience ?w
?w ns:jobTitle ?jt.
FILTER(regex (?jt,"developer","i") || regex (?jt,"analyzer","i") || regex
(?jt," architecture","i"))
FILTER(?month >=60)

 }

As result, we obtain values for the criteria “rolename”, “workExperience.month”, and
“workExperience.jobTitle”. SPARQL returns all candidates satisfying the
requirements as given by the structural criteria. In the case of only one candidate for
every position we could directly apply the rule and create the only team possible in
the present state. However, most of the time we will have a number of suitable
potential team members among which we must select the most suitable ones. This
corresponds to selecting one of a number of possible occurrences for the application
of a graph transformation rule, and this selection will be based on qualitative criteria.
The next section realizes this based on a modified LSP method, guiding the graph
transformation process by selecting the “best” occurrences for every rule application.

4 LSP Method for Ranking and Selection

LSP is a quantitative method based on scoring techniques and a continuous preference
logic [9]. The method allows establishment of an evaluation criterion by specifying
the expected properties of a system. To each one of these properties a criterion
function is assigned. These functions transform specific domain values to a
normalized scale indicating the degree of satisfaction of the corresponding preference.
Then, all preference values can be properly grouped using a stepwise aggregation
structure to yield a global preference. This can be achieved by means of a preference
aggregation function, called generalized conjunction/disjunction or andor, combining
weighted power means to obtain the global preference e0 as in:

() 1...... /1
110 =W++W,eW++eW=e k1

rr
kk

r (1)

Where the power r can be suitably selected to obtain desired logical properties (see
[9, 10] for further details). However, the disadvantages of the method are that they
require the input of a human expert, which is not suitable for working in a dynamic

environment [11]. We have defined a modified LSP method which is applicable to
finding solutions for dynamic problems. In the rest of this section, we will introduce
how to use this method to solve the quantitative aspect of our team formation problem.

4.1 Type-based Unified Evaluation Methods

In order to address dynamic problems such as ranking of structural matches, we have
modified the original LSP method. The first change is in defining a unified evaluation
method. With regard to the context model defined in section 3, we find that the
context information is formatted as four types: Boolean (“gender”), String (such as
“name”), Level (such as “skill.level”), and Number (such as “workexperience.year”).
Thus, we identified four different evaluation functions to capture these four
information types. The four functions are: “exact match” (equation 3), “set overlap”
(equation 4), “level match” (equation 5) and “specific value” (equation 6).

Typical usage is linked to the data type of the context aspect: if the context aspect
can be expressed by a Boolean or a simple string5, then the exact match would be
used; considering sets of information (complex string type), set overlap is useful;
level match is useful for ordered discrete values (such as low, medium and high); and
finally specific value allows for complex functions that calculate a numerical value
(e.g. “workexperience.year”). Because of the link to the data type – which is apparent
from the model – it can be automatically determined which function should be used.
In addition, the weight 0<ω expresses that a lower value is desirable, while

0≥ω means that a higher value is desired. Thus the global preferences evaluation
function is changed from equation (1) to (2).

| | | | | | | | 1 1,0 with
1

/1
22110 =ωE)Eω++Eω+Eω(=e

n

=i
i

rr
nn

rr ∑≤≤… (2)

The respective formulas to compute values for these functions (E1 to En) are as
follows:

⎩
⎨
⎧

otherwise

metiscriterionif=E

0

1

 (3)

(ne++e+e=E n /...21) with being a score for each element of the set (4) ie

E=
i c

i where i is the number of levels and ci is the current level match (5)

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−

otherwise
vv

vv

ωiff
vv

vv
=E

minmax

max

minmax

max 01

(6)

5 Simple string means that only one kinds of string is filed in context attribute, for example the

“name” of the people in the context model has to be one. Contrast to that the complex string
is multi values for one attributes such as “qualifications”.

vmin being the minimum value for all people, vmax the maximum value and v the
value for the current people in (6).

4.2 Dynamic Logic Calculation

The second significant change is that we design an automated calculation method
(ACM) to find a single logic GCD (Generalized Conjunction/disjunction) function
based on Continuous Logic [12] for all preferences. For this to work, all weights of
preferences sum up to 1. (The logic meaning can be reflected by a meaningful weight,
details on deciding on which is out scope of this paper.) We consider the value of the
weight iω belonging to a set)(AA, 0,1∈ . Then we have an ordered set W =)(,...1 nωω ,

and nωω ≥≥ ...1 . Based on the meaning of or-ness in the OWA decision making
method [13], we can get the following function:

∑
−

=

−
−

=
1

1

)(
1

1 n

i
iorness in

n
ωλ , is the place in set V (7) iω thi

Here V is the ordered set obtained from W be reordering according to the following
algorithm: First, find weights i++ 1,...,11 ωω equal in value to 1ω and put them to the

tail of the set. Second, taking all i++ 212 ...ωω which have the same value as 2ω in

the new set in front of the ...in−ω nω . Repeat the second step until the last element
that has not been reordered before. For example, if W = {0.2, 0.2, 0.15, 0.15, 0.1, 0.1,
0.1}, then, V = {0.2, 0.15, 0.1, 0.15, 0.1, 0.1, 0.2} the valueλ presents the degree of
the “or-ness” as computed by equation (7). The relation between the value of r and the
value of λ is shown in Table 3.

Value of λ GCD Operator symbols Operation

3333.0<λ GEO 0=r Geometric mean

3750.03333.0 <≤ λ C- 2.0=r Weak QC

4375.03750.0 <≤ λ C-- 5.0=r Weak QC (-)

5000.04375.0 <≤ λ A 1=r Arithmetic mean

5625.05000.0 <≤ λ D-- 5.1=r Weak QD (-)

6232.05625.0 <≤ λ SQU 2=r Square mean

6250.06232.0 <≤ λ D- 3.2=r Weak QD

λ≤6250.0 D-+ 3=r Weak QD (+)

Table 3: Relation between the value of r and the value of λ

4.3 Example for Applying the Modified LSP Method

Assume that there are two analyzers satisfying all criteria, but one of them
(analyzer_1) has 8 years of work experience and a qualification of “analyzer”. The
other one (analyzer_2) has 5 years experience and two qualifications of “developer”
and “analyzer”. Additionally, the weight for experience is 0.7 while that for
qualification is 0.3. The or-ness can be calculated as 7.0)3.0)11(7.0)12((

12
1

=×−+×−
−

.

Therefore the logical power of r should be 3 (as per Table 3). Then, the scoring
algorithm provides the following results:

analyzer_1= 2370.0))

3
1(3.0)

58
881(7.0(3

133 =×+
−
−

−× and

analyzer_2= 0296.0))
3
2(3.0)

58
581(7.0(3

133 =×+
−
−

−× .

These results show that analyzer_1 is clearly preferable to analyzer_2.

6 Conclusion and Future Work

In this paper, we have proposed a process for solving the problem of selecting people
to form teams based on context information. The key technologies used are OWL and
SPARQL retrieving context at the implementation level. However, more interestingly
methods at the abstract level have been defined, like the use of graph transformation
to define reasoning rules, structural matching and updates and its enhancement by the
LSP to select suitable occurrences of application according to qualitative criteria.

While we have concentrated on a rather narrow example here, we would like to

point out that this highlights many aspects that are common to selection problems and
the method is applicable in other domains such as service selection in SoC, an area
where context is also very important due to the possibility of late binding of services.

This paper lays a proof-of-concept study for an area that we will investigate further,
which is the enhancement of graph transformation techniques with methods to select
“best” candidate matches.

More practically, we are going to work on the methodology for specifying the

weight for each criteria and separating crucial preferences and desirable preferences
by defining more context information. Furthermore, we will also continue to work on
the theory of verifying the result by using graph transformation.

7 Acknowledgment

This work is supported by inContext (Interaction and Context Based Technologies for
Collaborative Teams) project: IST IST-2006-034718.

References

[1] Anind K. Dey, Understanding and Using Context, Future Computing Environments Group,
College of Computing & GVU Center, Georgia Institute of Technology, USA, 2000.

[2] Heckel R., http://www.gratra.org/
[3] Handbook of Graph Grammars and Computing by Graph Transformation: Applications,

Languages and Tools H. Ehrig, G. Engels, H-J Kreowski, Grzegorz Rozenberg, 1997, World
Scientific Publishing Co. Ptc. Ltd, ISBN: 981-02-4020-1.

[4] R. Heckel (2006), Graph Transformation in a Nutshell, Electronic Notes in Theoretical
Computer Science, pp. 187–198

[5] M. Deborah L., H. Frank van (2006) "OWL Web Ontology Language Overview" W3C
Recommendation, http://www.w3.org/TR/owl-features/

[6] C Walter W. (1998) "A Discussion of the Relationship Between RDF-Schema and
UML",W3C Note, http://www.w3.org/TR/NOTE-rdf-uml/

[7] Prud'hommeaux, E., Seaborne, A.(2006), "SPARQL query language for RDF". W3C
Working Draft, http://www.w3.org/TR/rdf-sparql-query/

[8] B. Dan, G. R.V., M. Brian(2004), RDF Vocabulary Description Language 1.0: RDF
Schema, W3C Recommendation,http://www.w3.org/TR/rdf-schema/

[9] Dujmovic J.J., Continuous Preference Logic for System Evaluation. In Proceedings of
Eurofuse 2005, edited by B. De Baets, J. Fodor, and D. Radojevic, ISBN 86-7172-022-5,
Institute “MihajloPupin”, Belgrade, 2005, pp. 56-80.

[10] Dujmovic J.J., A Method for Evaluation and Selection of Complex Hardware and
Software Systems. The 22nd International Conference for the Resource Management and
Performance Evaluation of Enterprise Computing Systems. CMG 96 Proceedings, Vol. 1,
1996, pp. 368-378.

[11] Levin V. I., Generalizations of the Continuous Logic. Automation and Remote Control,
Vol. 62, No. 10, 2001, pp. 1743-1755.

[12] Yu H.Q. and Molina H., A Modified LSP method for services evaluation and selection,
under editing, The 2nd European Young Researchers Workshop on Service Oriented
Computing, 11-12 June 2008.

[13] Robert F., OWA operators in Decision Making. In C. Carlsson ed., Exploring the limits of
Support Systems, TUCS General Publications No. 3, Turku Centre for Computer Science,
1996, pp. 85-104.

	References

