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Abstract. Service Oriented Computing is a paradigm for developing software
systems as the composition of a number of services. Services are loosely coupled
entities, can be dynamically published, discovered and invoked over a network.
The engineering of such systems presents novel challenges, mostly due to the
dynamicity and distributed nature of service-based applications. In this paper, we
focus on the modelling of service orchestrations. We discuss the relationship be-
tween two languages developed under the SENSORIA project: SRML as a high
level modelling language for Service Oriented Architectures, and STPOWLA as
a process-oriented orchestration approach that separates core business processes
from system variability at the end-user’s level, where the focus is towards achiev-
ing business goals. We also extend the current status of STPOWLA to include
workflow reconfigurations. A fundamental challenge of software engineering is
to correctly align business goals with IT strategy, and as such we present an en-
coding of STPOWLA to SRML. This provides a formal framework for STPOWLA

and also a separated view of policies representing system variability that is not
present in SRML.

1 Introduction

Service Oriented Computing (SOC) is a paradigm for developing software systems as
the composition of a number of services, that are loosely coupled entities that can be
dynamically published, discovered and invoked over a network. A service is an abstract
resource whose invocation triggers a possibly interactive activity (i.e. a session) and
that provides some functionality meaningful from the perspective of the business logic
[8]. A Service Oriented Architecture (SOA) allows services with heterogeneous im-
plementations to interact relying on the same middleware infrastructure. Web Services
and the Grid are the most popular implementations of SOA. Exposing software in this
way means that applications may outsource some functionalities and be dynamically
assembled, leading to massively distributed, interoperable and evolvable systems.

The engineering of service-oriented systems presents novel challenges, mostly
due to this dynamicity [20]. In this paper we focus on the modelling of orchestra-
tions. An orchestration is the description of the executable pattern of service invoca-
tions/interactions to follow in order to achieve a business goal.
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We discuss the relationship between two modelling languages for service oriented
systems developed in the context of SENSORIA, an IST-FET Integrated Project on
Software Engineering for Service-Oriented Overlay Computers: the Sensoria Refer-
ence Modelling Language (SRML) [5,1] and STPOWLA: the Service-Targeted, Policy-
Oriented WorkfLow Approach [6]. We also discuss the advantages of their combined
usage.

SRML is a high-level modelling language for SOAs whose goal is “to provide a
set of primitives that is expressive enough to model applications in the service-oriented
paradigm and simple enough to be formalized” [5]. SRML aims at representing, in a
technology agnostic way, the various foundational aspects of SOC (e.g. service com-
position, dynamic reconfiguration, service level agreement, etc.) within one integrated
formal framework.

STPOWLA is an approach to process modelling for service-oriented systems. It has
three ingredients: workflows to express core processes, services to perform activities
and policies to express variability. Workflows are expressed using a graphical notation,
such as in [7]. Policies can make short-lived changes to a workflow instance, i.e. they
last for the duration of the workflow instance and usually will be made during the exe-
cution of the instance, rather than applied to the overall workflow model.

So far, STPOWLA has been limited to non-functional changes to a workflow. In
this paper, we extend the concept of workflow change to include reconfigurations: short
lived structural changes to a workflow instance. We substantiate this extension by defin-
ing a further encoding of these advanced control flow aspects into SRML.

The encoding of STPOWLA into SRML, on the one hand provides a formal frame-
work to STPOWLA. Business processes modelled in STPOWLA can be then represented
as SRML models and either being analyzed alone or as part of more complex modules,
where they are composed with other SRML models with heterogeneous implementa-
tions (e.g. SRML models extracted from existing BPEL processes [3]).

A second reason for the encoding is providing a higher layer to the modelling of
orchestrations in SRML that includes a process-based approach to the definition of a
workflow schedule, a separated view of policies, that had not been yet considered in
SRML, and the inter-relation between workflow and policies.

In this paper, we give an overview of the STPOWLA approach, including the ex-
tension for workflow reconfigurations in section 2. We describe the main concepts of
SRML, with respect to STPOWLA in section 3. We then provide an encoding of ba-
sic workflow control flow constructs in section 4, and proceed to describe STPOWLA
reconfigurations as advanced control flow encodings in section 5. We describe related
work and thus our position relative to these efforts in section 6, before discussing and
concluding in sections 7 and 8.

2 Specifying and Reconfiguring StPowla Workflows

In this section, we give a brief introduction to the main concepts of STPOWLA. In
addition, we present the concept of workflow reconfiguration, which is an extension to
the current state of STPOWLA.



policyName
appliesTo task_id

when task_entry
do req(main, Inv, SLA)

Fig. 1. A STPOWLA task’s default policy. The semantics of the req function are essen-
tially to execute the processing of the task, as specified with functional requirements
described in the main argument, in accordance with invocation parameters in the sec-
ond argument and keeping to default SLA constraints in the third argument.

2.1 Overview

STPOWLA has three ingredients: workflows, SOA and policies. Workflows specify core
business processes, in which all task requirements are satisfied by services. Each work-
flow task has a default policy as in Fig. 1.

We describe a workflow, according to [7], with the following grammar to show how
complex processes can be composed:

WF ::= start;P ; end root process
P ::= T simple task

| P ;P sequence
| λ?P : P condition and simple (XOR) join
| FJ(m, {P,B}, ..., {P,B}) split and complex (AND) join
| SP (T, ..., T ) strict preference
| RC(T, ..., T ) random choice

We describe the semantics of each construct with a description of the relevant SRML
transition in section 4.

Policies are either Event-Condition-Action (ECA) rules (in which case they require
a trigger), or goals (essentially ECAs without triggers). The purpose of policies is to
express system variability. Policies are written in APPEL [14], a policy description lan-
guage with formal semantics via a mapping to ∆DSTL [10]. They are written by the
end (business) user and are added and removed at any time to the workflow. In addition
to default policies, other policies can be added to the workflow to express system vari-
ability in terms of refinement and reconfiguration. The former type express constraints
over runtime execution and service selection, but is out of the scope of this paper.

We have mentioned in an earlier paper [6] that the choice of workflow notation in
STPOWLA is of small significance. What is of interest is the identification of a common
set of triggers for ECA policies. We have identified the following as valid triggers:

– Workflow entry/success/failure/abort;
– Task entry/success/failure/abort;
– Service entry/success/failure.

Note that in STPOWLA, we view services as a black box, i.e. we cannot intervene
in their processing between invocation and (possible) response.



Function Syntax Informal Description
fail() Declare the current task to have failed, i.e. discard further task

processing and generate the task failure event.
abort() Abort the current task and progress to the next task, generating

the task abort event.
block(s, p) Wait until predicate p is true before commencing scope s.
insert(x, y, z) Insert task or scope y into the current workflow instance after

task x if z is true, or in parallel with x if z is false.
delete(x) Delete scope x from the current workflow instance.

Table 1. Policy reconfiguration functions

2.2 Reconfiguring Workflows with Policies

A workflow reconfiguration is the structural change of a workflow instance. In
STPOWLA, a policy can express a reconfiguration rule based on a number of avail-
able functions, as described in Table 1. These changes are short-lived, i.e. they only
affect the workflow instance and not the overall workflow model.

As an example, consider a supplier whose business process is to receive an order
from a registered customer, and then to process that order (which includes collecting,
packing and shipping the items, plus invoicing the client). There are no extra constraints
on each task, therefore the default task policies are effectively “empty”.

Now consider that under certain conditions (e.g. financial pressure), a financial guar-
antee is required from all customers whose order is above a certain amount. We may
have the following policy:

GetDepositIfLargeOrder
appliesTo receiveOrder

when task_completion
if receiveOrder.orderValue > £250000
do insert(requestDeposit, receiveOrder, false)

Intuitively, this policy (named GetDepositIfLargeOrder) applies to the receive-
Order. It says that when the task completes successfully and the attribute orderValue
(bound to that task) is above £250000, then there should be an action. The action in this
case is the insertion of a task requestDeposit into the workflow instance after (not in
parallel to) the receiveOrder task. The workflow instance thus undergoes the transfor-
mation as shown in Fig. 2.

3 Encoding of StPowla to SRML - Foundational Concepts

In SRML, composite services are modelled through modules. A module declares one
or more components, that are tightly bound and defined at design time, a number of
requires-interfaces that specify services, that need to be provided by external parties,
and (at most) one provides-interface that describes the service that is offered by the
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Fig. 2. A simple reconfiguration example where a core business process is transformed via the
insertion of the getDeposit task after the receiveOrder task. The transformation rule comes from
a policy.

module. A number of wires establish interaction protocols among the components and
between the components and the external interfaces.

Components, external interfaces and wires are specified in terms of Business Roles,
Business Protocols and Interaction Protocols, respectively. The specifications define the
type of the nodes.

In this paper we provide an encoding to derive, from a business process specified in
STPOWLA, an SRML component that we call BP , of type businessProcess and a sec-
ond component PI , of type policyInterface that is connected to BP and represents
the interface through which it is possible to trigger policies that modify the control flow.
PI supports the set of interactions used to trigger a workflow modification in the com-
ponent BP . Fig. 3 illustrates the structure of the SRML module representing workflow
and policies in the procurement example described earlier in this section.

Fig. 3. The structure of a SRML module for the procurement service example

Components are instances of Business Roles specified in terms of (1) the set of sup-
ported interactions, (2) the way in which the interactions are orchestrated. We provide
in the rest of this section an overview of Business Roles. The overview will not involve
the other types of specification as they are not concerned in the encoding.

Business Roles: the Interactions SRML supports asynchronous two-way conversa-
tional interactions: s&r denotes interactions that are initiated by the co-party, which
expects a reply, r&s denotes interactions that are initiated by the party, which expects



a reply from its co-party. SRML supports also asynchronous one-way and synchronous
interactions that are not discussed here as they are not involved in the encoding.

It follows the specification of the interactions supported by policyInterface, cor-
responding each to one of the STPOWLA functions in Table 1. The Business Role
businessProcess supports the complementary interactions (i.e. r&s instead of s&r).
Each interaction can have ֠ -parameters for transmitting data when the interaction is
initiated and� -parameters for carrying a reply (the example below does not make use
of the latter). The index i represents a key-parameter that allows us to handle occur-
rences of multiple interactions of the same type (as in SRML every interaction event
must occur at most once). In this case, we allow PI to trigger more instances of policy
functions of the same type.

INTERACTIONS
s&r delete[i:natural]

֠ task:taskId
s&r insert[i:natural]

֠ task:taskId
newTask:taskId
c:condition

s&r block[i:natural]

֠ task:taskId
c:condition

s&r fail[i:natural]

֠ task:taskId
s&r abort[i:natural]

֠ task:taskId

Business Roles: the Orchestration The way the declared interactions are orchestrated
is specified through a set of variables that provide an abstract view of the state of the
component, and a set of transitions that model the way the component interacts with its
co-parties. For instance, the local state of the orchestrator is defined as follows:

local start[root],start[x],start[ro],...:boolean, ...
state[root],state[x],state[ro],...:[toStart,running,exited]

An initialisation condition may define a specific initial state such as:

initialization start[root]=true
∧ start[x]=start[ro]=...=false
∧ state[root]=state[x]=state[ro]=...=toStart ∧ ...

Similarly, a termination condition may specify the situations in which the compo-
nent has terminated any activity. The behaviour of components is described by transition
rules. Each transition has a name, and a number of other features:

transition policyHandlerExample

triggeredBy samplePolicy֠ [i]?

guardedBy state[samplePolicy֠ [i].task] = toStart

effects policy[samplePolicy֠ [i].task]’ ∧ ......

sends samplePolicy� [i]!

1. A trigger is a condition: typically, the occurrence of a receive-event or a state con-
dition. In the example we engage in the policyHandlerExample transition when we
receive the initiation of the interaction samplePolicy.

2. A guard is a condition that identifies the states in which the transition can take
place. For instance, the policyHandlerExample transitions should only be taken
when the involved task is in state toStart (i.e. is not in execution and it has not
been executed yet). The involved task is identified by the parameter task of the
interaction samplePolicy (i.e., samplePolicy֠ [i].task).



3. The effects concern changes to the local state. We use var ′ to denote the value the
state variable var has after the transition.

4. The sends sentence describes the events that are sent and the values taken by their
parameters. In the example we invoke the samplePolicy reply event to notify the
correct management of the policy.

4 Basic Control Flow Encoding

In this section we present an encoding from the control constructs of STPOWLA to
SRML orchestrations. Our focus is on the control constructs and we abstract from the
interactions of the service and from the semantics of the simple activities of the work-
flow tasks.

STPOWLA represents a business process as the composition of a number of tasks,
either simple (e.g. interactions with services) or complex (e.g. coordinating other tasks
by executing them in sequence, parallel, etc.). In SRML we associate an identifier, of
type taskId, to any task. We denote with T the set of all the task indexes in the workflow
schedule.

For every task identifier x we define the following local variables, used to handle
the control flow and coordinate the execution of the tasks:

– start[x] is a boolean variable that, when true, triggers the execution of x,
– done[x] is a boolean variable that signals the successful termination of x and trig-

gers the continuation of the workflow schedule,
– fail[x] is a boolean variable that signals the termination with failure of x and trig-

gers the failure handler.

In general, the next activity in the control flow is executed when the previous one
terminates successfully. In case of task failure the flow blocks (i.e. the next task is wait-
ing for a signal of successful termination from the previous task) and the failure signal
is collected by a failure handler that possibly involves a number of policies. According
to the failure handler, the execution of the process can be terminated, resumed, altered,
etc. We leave the specification of the failure handling mechanisms as a future work.
Anyway, the constructs of strict preference and random choice, that try a number of
alternative tasks until one terminates with success, handle the failure signal directly
within the workflow.

We will introduce in section 5 a set of transitions, as a part of the orchestration of
BP that model the policy handler. The policy handler has the responsibility to enact the
modifications of the control flow induced by the policies triggered by PI . The policy
handler blocks the normal flow by setting the variable policy[x] = true, where x is the
identifier of the first task involved in the modification. The variable policy[x] is a guard
to the execution of x. We will describe the policy handler more later in this paper, by
now it is important to know that when a policy function has to be executed on a task,
the task has to be blocked. It is responsibility of the policy handler to reset the flow of
execution.

Some policies can be applied only on running processes (e.g. abort) and some others
only on tasks that have not started yet (e.g., the deletion). A local variable state[x]



identifies the state of the execution of x by taking the values toStart (i.e., the execution
of the task has not started yet), running (i.e. the task is in execution) and exited (i.e.
x has terminated). The state variable state[x] will be used to ensure that policies act on
a task in the correct state of execution.

We consider the simple tasks as black boxes: we are not interested in the type of
activity that they perform but only on the fact that a task, for example task x, is activated
by start[x], signals its termination along either done[x] or failed[x] and notifies its
state along state[x].

The execution of the workflow is started by a special transition root that sets
start[x] = true where x is the first task in the workflow schedule. The local vari-
ables are initialized as follows: ∀i ∈ T \ root, start[i] = false ∧ start[root] = true,
∀i ∈ T, done[i] = failed[i] = policy[i] = false and ∀i ∈ T, state[i] = toStart.

It follows the encoding of the workflow template start;P ; end where P is associ-
ated to the task identifier x:

transition root
triggeredBy start[root] ∨ done[x]
guardedBy ¬ policy[root]
effects start[root] ⊃ ¬ start[root]’ ∧ state[root]’=running ∧ start[x]’
∧ done[x] ⊃ ¬ done[x]’ ∧ done[root]’ ∧ state[root]’=exited

Sequence The sequence operator P1;P2, illustrated in Figure 4, first executes P1 and,
after the successful termination of P1, executes P2. We remark that failures are not
handled in this document and will be addressed in the future.

Fig. 4. The sequence control construct in STPOWLA

The encoding of the sequence construct in SRML is as follows. The sequence ac-
tivity triggers the execution of the first task, with task identifier p1, then collects the
termination signal from p1 and triggers the execution of the second subprocess, with
task identifier p2. The sequence is encoded in the following SRML transition, with task
identifier x:

transition X
triggeredBy start[x] ∨ done[p1] ∨ done[p2]
guardedBy ¬ policy[x]
effects start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[p1]’
∧ done[p1] ⊃ ¬ done[p1]’ ∧ start[p2]’
∧ done[p2] ⊃ ¬ done[p2]’ ∧ done[x]’ ∧ state[x]’=exited

Condition and Simple Join (XOR) The condition and simple join construct λ?P1 :
P2, illustrated in Figure 5(a), consists of the combination of the flow junction, that
diverts the control flow down one of two branches P1 and P2, represented by the task
identifiers p1 and p2, respectively, according to a condition λ, and the flow merge of a
number of flows where synchronization is not an issue.

The condition and simple join are encoded into the following SRML transition:



(a) Condition/simple join (b) Split/complex join

Fig. 5. Multiple branches constructs in STPOWLA

transition X
triggeredBy start[x] ∨ done[p1] ∨ done[p2]
guardedBy ¬ policy[x]
effects start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running
∧ (λ ⊃ start[p1]’) ∧ (¬ λ ⊃ start[p2]’)

∧ done[p1] ⊃ ¬ done[p1]’ ∧ done[x]’ ∧ state[x]’=exited
∧ done[p2] ⊃ ¬ done[p2]’ ∧ done[x]’ ∧ state[x]’=exited

Split and Complex Join (AND) The split and complex join construct
FJ(m, {P1,B1}, . . . , {Pn,Bn}) consists of the combination of the flow split, that
splits the control flow over many branches, and the conditional merge, that synchronizes
two or more flows into one. The value of m, that is statically determined, represents the
minimum number of branches that have to be synchronized. Furthermore, any branch
is associated to a boolean Bi that determines whether the i− th branch is mandatory in
the synchronization. The graphical notation of the construct is illustrated in Fig. 5(b).

The encoding is as follows: Let S be the set, with cardinality n, of the task indexes
associated to the branches of the split/join. Let the identifiers for the subtasks of x to
range over p1, . . . , pn. Let N be the set of indexes of the necessary tasks and m ∈ N be
the minimum number of branches that have to be synchronized. We assume that m ≤
|N |. The complex join is encoded in the following SRML transition, where Kcomb is
the set of (m− |N |)− subsets of S \N :

transition X
triggeredBy start[x] ∨ (∧i∈Ndone[pi]∧(∨K∈Kcomb(∧k∈Kdone[pj])))
guardedBy ¬ policy[x]
effects start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧i∈[1,...,n] start[pi]’
∧ ¬ start[x] ⊃ done[x]’ ∧ state[x]’=exited ∧i:[1..n](¬ done[pi]’)

The transition is executed: (1) when the task x is triggered or (2) in case of success-
ful termination of all the necessary subtasks (i.e., ∧i∈Ndone[pi]) and of a number of
tasks greater or equal to m (i.e., ∨K∈Kcomb(∧k∈Kdone[pj])).

Strict Preference The strict preference SP (P1, . . . , Pn), illustrated in Figure 6(a), at-
tempts the tasks P1, . . . , Pn one by one, in a specific order, until one completes success-
fully. In this case, with no loss of generality we consider the tasks ordered by increasing
index numbers.

The strict preference is encoded in the following SRML transition:



(a) Strict preference (b) Random choice

Fig. 6. Other constructs in STPOWLA

transition X
triggeredBy start[x] ∨i:[1..n](done[pi] ∨ failed[pi])
guardedBy ¬ policy[x]
effects start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[p1]’
∧i:[2..n−1]failed[pi] ⊃ ¬ failed[pi]’ ∧ start[p(i+1)]’
∧ failed[pn] ⊃ ¬ failed[pn]’ ∧ failed[x]’ ∧ state[x]’=exited
∧ ∨i:[1..n]done[pi] ⊃ done[x]’ ∧ state[x]’=exited ∧i:[1..n]done[pi]’

Random Choice The random choice RC(P1, . . . , Pn), illustrated in Figure 6(b), at-
tempts the tasks P1, . . . , Pn simultaneously and completes when one completes suc-
cessfully.

The random choice is encoded in the following SRML transition:

transition X
triggeredBy start[x] ∨i:[1..n](done[pi])∨ (∧i:[1..n](failed[pi]))
guardedBy ¬ policy[x]
effects start[x] ⊃ ¬ start[x]’ ∧ state[x]=running ∧i:[1..n]start[pi]’
∧ (∧i:[1..n]failed[pi])⊃ failed[x]’∧ state[x]’=exited ∧i:[1..n]¬ failed[pi]’
∧ (∨i:[1..n]done[pi]) ⊃ done[x]’ ∧ state[x]’=exited
∧i:[1..n](¬ done[pi]’ ∧ ¬ failed[pi]’)

5 Advanced Control Flow Encoding

One of the aims of this paper is to illustrate how policies can influence the control
flow and how this can be modelled in SRML. In this section we discuss the encoding
of policies, as described in STPOWLA, into SRML orchestrations. Each interaction is
handled, in the orchestration of BP , by one or more transitions that model the policy
handler. We will see such transitions in detail when discussing individual interactions,
in the rest of this section.

A policy related to a task can have effect (1) on the state prior to the task execution
(i.e. delete, block and insert) or (2) during the execution of a task (i.e. fail and abort).
The state of a task is notified along the variable state[y]. The policy handler must check
that the task is in the correct state according to the specific policy that has to be enacted.
The policy handler prevents the execution of either (1) the task or (2) the rest of the
task by using the variable policy[x]: the condition ¬policy[x] guards the transition(s)
corresponding to the execution of task. Notice that most of the control constructs it is
not possible to trigger policies of this second type on atomic tasks whose state changed
directly from toStart to done.



Delete Task The deletion of task (i.e. delete(x) in STPOWLA) skips the execution
of x. The policy manager prevents the execution of x by signaling a policy exception
(i.e. policy[x] = true). When the signal for the execution of x is received, the policy
handler signals the successful termination of x. The condition P delete[i]֠  ? is true
when the event delete[i]֠  ? occurred in the past.

transition policyHandler_delete_1

triggeredBy delete[i]֠ ?

guardedBy state[delete[i]֠ .task] = toStart

effects policy[delete[i]֠ .task]’

transition policyHandler_delete_2
triggeredBy start[x]

guardedBy P_delete[i]֠ ? ∧ delete[i]֠ .task=x
effects ¬ start[x]’ ∧ done[x]’ ∧ state[x]’ = done

sends delete[i]� !

Block Task The function block(x, p) in STPOWLA blocks a task until p is true. In
SRML the policy handler prevents x from executing (i.e. policy[x] becomes true) tem-
porarily until p is true. The policy handler notifies the enactment of the policy to the
environment after that the task has been unblocked.

transition policyHandler_block_1

triggeredBy block[i]֠ ?

guardedBy state[block[i]֠ .task] = toStart

effects policy[block[i]֠ .task]’

transition policyHandler_block_2

triggeredBy block[i]֠ ?.condition

guardedBy P_block[i]֠ ?

effects ¬ policy[block[i]֠ .task]’

sends block[i]� !

Insert The insertion of a task, represented by the function insert(x, y, z) in
STPOWLA, inserts the task y in sequence or in parallel with respect to x depend-
ing on the value of the boolean variable z. In SRML the insertion is triggered by
the interaction insert[i]� ? with parameter insert[i]� .task representing the task x,
insert[i]� .insertedTask representing the task y and insert[i]� .condition repre-
senting the condition z. We assume that the set of tasks that it is possible to insert is
determined a priori, in this way we assume that the SRML encoding has a set of tran-
sitions for each possible task, including the task to possibly insert, that is executed by
setting start[y] to true. We introduce in this way a limitation on the number of task
types that we can insert and on the fact that a task can be inserted only once (we will
manage multiple insertions in the future, when we will encode looping constructs) but
we do not provide any limitation on the position of the insertion.

We rely on a function next : taskId → taskId that returns, given a task, the next
task to execute in the workflow. Such function can be defined by induction on the syntax
of STPOWLA defined in Section 2.1.

The transition policyHandler insert 1 prevents the execution of the task on which
the policy applies (i.e., insert[i]� .task) and of the successive one. The transition



policyHandler insert 2 starts the execution of the task on which the policy ap-
plies (in parallel with the inserted task if insert[i]� .condition = true). The tran-
sitions policyHandler insert sequence and policyHandler insert parallel coor-
dinate the execution of the tasks (the one on which the policy applies and the inserted
one) in sequence or in parallel, according to the condition.

transition policyHandler_insert_1

triggeredBy insert[i]֠ ?

guardedBy state[insert[i]֠ .task]=toStart

effects policy[insert[i]֠ .task]’

transition policyHandler_insert_2
triggeredBy start[x]

guardedBy P_insert[i]֠ ? ∧ insert[i]֠ .task=x

effects insert[i]֠ ?.condition ⊃ ¬ policy[insert[i]֠ .task]’

∧ ¬ insert[i]֠ ?.condition ⊃ policy[insert[i]֠ .task]’

∧ start[insert[i]֠ .insertedTask]’

transition policyHandler_insert_sequence
triggeredBy done[x] ∨ done[y]

guardedBy P_insert[i]֠ ? ∧ insert[i]֠ .condition

∧ (insert[i]֠ .task=x ∨ insert[i]֠ .insertedTask=y)
effects done[x] ⊃ ¬ done[x]’ ∧ start[y]’ ∧ done[y] ⊃
¬ done[y]’ ∧ start[next(x)]’

transition policyHandler_insert_parallel
triggeredBy done[x] ∧ done[y]

guardedBy P_insert[i]֠ ? ∧ ¬ insert[i]֠ .condition

∧ insert[i]֠ .task=x ∧ insert[i]֠ .insertedTask=y

effects ¬ done[x]’ ∧ ¬ done[y]’ ∧ start[next(block[i]֠ .task)]’

Fail Task The failure of a task must occur during the execution of the task (it has
no effects otherwise). The failure can be triggered autonomously, within the task or
induced externally by the execution of the policy fail. We consider here the second
case.

transition policyHandler_fail

triggeredBy fail[i]֠ ?

guardedBy state[fail[i]֠ .task]=running

effects policy[i][fail[i]֠ .task]’ ∧ state[fail[i]֠ .task]’=failed

sends fail[i]� !

Abort Task The abortion of a task is similar to a deletion, but it involves a running
task. An abort of a task occurring not during its execution has no effects.

transition policyHandler_abort

triggeredBy abort[i]֠ ?

guardedBy state[abort[i]֠ .task]=running

effects policy[abort֠ .task]’ ∧ state[abort[i]֠ .task]’=done

sends abort[i]� !



5.1 An Example: the Reconfiguration of the Procurement Scenario

The orchestration of the Business Role businessProtocol would consist of the se-
quence of the tasks request order (i.e. task ro) and process order (i.e. task po).

transition X
triggeredBy start[x] ∨ done[ro] ∨ done[po]
guardedBy policy[x]
effects start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[ro]’
∧ done[ro] ⊃ ¬ done[ro]’ ∧ start[po]’
∧ done[po] ⊃ ¬ done[po]’ ∧ done[x]’ ∧ state[x]’=exited

In case of a receive event of type insert[i]� ?, triggered by the component PI , with
parameter task equal to po, parameter insertedTask equal to gbd (i.e. get deposit),
and the parameter condition equal to true. The policy handler would: (1) block the
execution of ro (preventing in this way ro to trigger its continuation po = next(ro))
by setting policy[ro] = policy[po] = true, (2) wait for the condition start[ro] = true
that is triggered by transition X , (3) since the parameter condition is true, the policy
handler would unblock ro, (4) the transition policyHandler insert sequence would
handle the execution of gd after ro and, finally, trigger po by setting start[po] = true.

6 Related Work

SRML is inspired by the Service Component Architecture (SCA) [9]. SCA is a set
of specifications, proposed by an industrial consortium, that describe a middleware-
independent model for building over SOAs.

Similarly to SCA, SRML provides primitives for modelling, in a technology agnos-
tic way, business processes as assemblies of (1) tightly coupled components that may
be implemented using different technologies (including wrapped-up legacy systems,
BPEL, Java, etc.) and (2) loosely coupled, dynamically discovered services.

Differently from SRML, SCA is not a modelling language but a framework for
modelling the structure of a service-oriented software artifact and for its deployment.
SCA abstracts from the business logic provided by components in the sense that it does
not provide a means to model the behavioural aspects of services. SRML is, instead,
a modelling language that relies on a mathematical framework and that provides the
primitives to specify such behavioural aspects.

Process modelling at a business level is generally achieved using graphical languages
such as BPMN [19] or UML Activity Diagrams. However, they do not cater for all
workflow patterns [17], as described in [21] and [15], respectively. YAWL [16] caters
for all workflow patterns and has a graphical syntax with formal semantics, based on
petri nets, so it is a good candidate for the process notation. As we have previously
mentioned, the syntax is not significant, but rather the places where a policy can inter-
act is. We have used the language of [7] for its simplicity, expressive power and our
familiarity with it. At a lower business level, languages such as BPEL or WS-CDL are
capable of expressing business processes, but with a code-based approach that is not
high level enough for the end user.



Policies have generally been used as an administration technique in system manage-
ment (e.g. access control [11] or Internet Telephony [13]). In addition, a methodology
has been proposed to extract workflows from business policies [18]. However, we are
not aware of policies being used as a variability factor in service-targeted processes.

Dynamic processes that are based on the end-user’s needs are more difficult to find.
The closest we know of are AgentWork [12], which is dynamic only because of the
choice of rules to follow under failure, and Worklets [2], the YAWL module for dynamic
processes. Worklets though are based on a set of processing rules that are predefined,
and of which one is selected.

7 Discussion

The benefits of this work are twofold. The mapping between SRML and STPOWLA
creates a formal framework for the latter (which only benefitted from a formal semantics
for the APPEL policy language). Since applications are often designed based on the
business process, STPOWLA is the ideal vehicle for this step. Transformation to SRML
modules allows for analysis of the modules, either on their own or as part of more
complex modules. Looking at the encoding bottom-up, STPOWLA adds a higher level
of modelling to SRML modules in the form of a process-oriented workflow schedule,
with system variability separated from the core business concerns.

To exemplify the benefits, we describe an application scenario from an industrial
case study, provided by a partner in the Sensoria project. The scenario describes the
interaction between a VoIP telephony provider and their internal service network, based
on a pre-delivery state.

The trigger of the workflow is the supplier receiving an order from a customer.
Under normal operating circumstances, this proceeds to a testing phase, where the cus-
tomer can choose to accept or decline the test results. If they accept the results, then
the supplier will proceed to identifying an offer proposal. In order to do this, legal as-
sistance is required from a legal service. This assistance is then received and embedded
into a Service Level Agreement between the customer and the supplier. The contract is
created and the workflow is then complete.

There are two policies that affect how the workflow is executed. Firstly, if the order
is sufficiently small and the customer’s order is of sufficiently small value, then the
initial testing phase should be bypassed. Secondly, if the order is of sufficiently small
value, then no legal assistance should be sought. If both these policies were applied to
the workflow, then it would essentially be represented as ReceiveOrder → IdentifyOffer
→ CreateContract.

All tasks inside the workflow are handled by services, either internal to the sup-
plier or external (e.g. in the case of legal assistance and getting customer acceptance or
refusal). The service composition and configuration can then be modelled formally in
SRML. The effect of the policies can also be incorporated and through the application
to the SRML model, the effects can be analysed and reasoned about.

Any method suggested for software engineering must be considered with respect to
its scalability. The term can be interpreted in two different ways here, namely does the



encoding mechanism itself scale and also do the STPOWLA and SRML methods scale.
To answer the former, it can be said that it scales as every opeartor of STPOWLA is
mapped into a relatively straight forward transaction in SRML. The only exception is
the random choice operator, where the matching transaction is slightly more complex.
As for the latter aspect, and in our opinion this is more crucial for practical purposes, we
actually gain scalability. This is achieved by using the high-level STPOWLA notation to
capture the business process in a more abstract and more easily understandable way than
one would achieve by using SRML directly – however, reasoning for e.g. validation can
make use of the formality of SRML in addition of course to SRML being a step towards
implementation.

8 Summary and Conclusion

The engineering of Service Oriented applications, as opposed to more traditional ap-
plication development, is faced with novel challenges arising from the dynamicity of
component selection and assembly, leading to massively distributed, interoperable and
evolvable systems. Furthermore, a continuing challenge is to correctly align business
goals with IT strategy. As such, the development approach must change to accommo-
date these factors.

In this paper, we have presented a mapping from STPOWLA to SRML. SRML is a
high level modelling language for service-based applications, based on a formal frame-
work. SRML can model service compositions and configurations. The orchestration of
the services is modelled by a central agent in each SRML module. However, the busi-
ness process aspect is less clear. STPOWLA is a SOA aware approach that combines
workflows and policies. It allows to define the orchestration according to a business
process.

The main contributions of this report are 1) to encode basic STPOWLA workflow
constructs in SRML, 2) to extend STPOWLA with workflow reconfiguration functions,
and 3) to encode these reconfiguration functions in SRML.

Future work includes the application of this work to some larger case studies and
consider mapping STPOWLA refinement policies into SRML.
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