
Logic–based detection of conflicts
in APPEL policies

Carlo Montangero1, Stephan Reiff-Marganiec2, and Laura Semini1

1 Dipartimento di Informatica, Università di Pisa
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Abstract. Appel is a general language for expressing policies in a va-
riety of application domains with a clear separation between the core
language and its specialisation for concrete domains. Policies can con-
flict, thus leading to undesired behaviour. We present a novel formal
semantics for the Appel language based on ∆DSTL(x) (so far Appel
only had an informal semantics). ∆DSTL(x) is an extension of temporal
logic to deal with global applications: it includes modalities to localize
properties to system components, an operator to deal with events, and
temporal modalities à la Unity. A further contribution of the paper is
the development of techniques based on the semantics to reason about
conflicts.

1 Motivation

In general the idea of policies is to adapt the behaviour of an existing system.
Policies are high-level statements to support personal, organisational or system
goals. Policies have been defined as information which can be used to modify the
behaviour of a system [11]. Policies have been studied in applications such as
distributed systems management, network management, Quality of Service, and
access control [12, 21].

More recently policies have been studied as means for end-users to express
how they want for a system to behave. The work has mostly concentrated on
telecommunications systems [22], but there have also been initial attempts at
transferring this to service oriented systems [9]. Notably these approaches have
been more operational in nature, that is they use a general purpose policy lan-
guage with an informal semantics.

In general policies are not singular entities, they are generally arranged in
groups to collectively express overall goals. However, when several policies are
composed (or applied simultaneously) they might contradict each other: a phe-
nomenon referred to as policy conflict. Policy conflict has been recognised as
a problem [18] and there have been some attempts to address this, mostly in
the domain of access or resource control. In the case of end-user policies the
problem is significantly increased by a number of factors. To name a few: the
application domains are much more open and hence increase difficulty in mod-
elling them, there will be many more end-user policies than there are system



policies (sheer number of policies) and end-users are not necessarily aware of
the wider consequences of a policy that they formulate. However, policy conflict
hinders maximum gain when using policies and hence it is important to tackle
the problem. Both, detection and resolution are important aspects – resolution
at design-time means redesign of the policies.

We propose a logic based reasoning approach to detect policy conflict in the
Appel policy language [19, 22]. As Appel has so far only been presented with an
informal semantics, we must first formalise this in a suitable logic. This paper
presents the novel formal semantics for Appel which is based on ∆DSTL(x)
(distributed state temporal logic [14, 15]) and then shows how this helps with
the rigorous detection of conflicts.

Policy conflicts need to be first detected and then resolved. In this paper we
concentrate on detecting conflicts in Appel policies that for simplicity are as-
sumed to be co-located (i.e. not distributed). The paper is structured as follows:
In the next section we introduce the policy language and the logic we use for
reasoning. In Section 3 we introduce the formal semantics for Appel. Section 4
considers reasoning about conflict. Section 5 discusses the results and achieve-
ments. After highlighting related work in Section 6, the paper is rounded up
with a brief summary and pointers to further work.

2 Background

2.1 APPEL

Policies have been used for some time to adapt the behaviour of systems at run-
time. Mostly they have been used in the context of Quality of Service and Access
Control. There are a number of policy languages specific to these domains. The
Appel policy language [19, 22] has been developed in the context of telecom-
munication systems, to express end-user policies. A detailed discussion why this
language was required can be found in [17].

Appel is a general language for expressing policies in a variety of application
domains with a clear separation between the core language and its specialisation
for concrete domains (e.g. telecommunications). Here we concentrate on the
core language; the semantics developed later maintains the separation between
core and application domain. As Appel is designed for end users rather than
administrators the style of Appel is closer to natural language allowing policies
to be more readily formulated and understood by ordinary users. To aid this, a
wizard has been presented to allow users to formulate policies [22].

So far, there has not been a formal semantics for Appel – one aspect that
this work is addressing. Let us consider the following syntax:



policy ::= pol rule group | pol rule group policy
pol rule group ::= polrule | pol rule group op pol rule group
op ::= g(conditions) | u | par | seq
polrule ::= [triggers] [conditions] actions
triggers ::= trigger | triggers or triggers
conditions ::= condition | not conditions |

conditions or conditions | conditions and conditions
actions ::= action | actions actionop actions
actionop ::= and | or | andthen | orelse

Trigger and action are domain specific atoms. Condition is either a domain
specific or a more generic (e.g. time) predicate.

A policy consists of a number of policy rules. The applicability of a rule de-
pends on whether its trigger has occurred and whether its conditions are satisfied.
Policy rules may be grouped using a number of operators (sequential, parallel,
guarded and unguarded choice) – we will discuss details when formalising their
semantics.

A policy rule consists of an optional trigger, an optional condition, and an
action. The core language defines the structure but not the details of these, these
are defined in specific application domains. This allows the core language to be
used for different purposes.

Triggers are caused by external events. Triggers may be combined using and
and or, with the obvious meaning that both or either must occur. Conditions
may be combined with and, or and not with the expected meaning. A condition
expresses properties of the state and of the trigger parameters. Finally, actions
have an effect on the system in which the policies are applied. A few operators
have been defined to create composite actions (again, we discuss details when
considering the formal semantics).

2.2 A fragment of the Distributed States Temporal Logic

∆DSTL(x) is an extension of temporal logic to deal with global applications: it
includes modalities to localize properties to system components, an operator to
deal with events, and temporal modalities à la Unity [14, 15]. For instance, one
may say that event ∆q (q becomes true) occurring in component m when prop-
erty p holds, entails that properties q and r hold in future states of components
n and m, respectively: m (p ∧∆q) leads to n r ∧m s.

In this paper we need the following fragment of the logic:

F ::= A | false | ∆A | ∼ F | F ∧ F ′ | mF

φ ::= ∃x̄F | F leads to F ′ | F because F ′

where: A is an atom, ∆A is an event, and mF is a located formula3. A formula
φ can be an invariant, a formula constraining the future, or a formula constrain-
ing the past: operator leads to expresses a liveness condition, F is eventually

3 Here we consider only one component, m. The spatial features will be helpful when
considering “full Appel” that distributes policies to several sites.



followed by F ′; because expresses a safety condition, and says that F has been
preceded by F ′.

For the sake of readability, we leave universal quantification implicit, and
make explicit existential quantifiers, when needed, i.e. in the case of invariants
∃x̄F . The intended meaning of a temporal formula is that a formula is univer-
sally quantified over all values of the variables appearing in its premises, and
existentially quantified on the remaining variables.

We now show the semantics. Let C be a computation, i.e. a sequence of
states. Let S be the set of C’s states: s, s′ are states in S and ds, ds′ are
distributed states in 2S 4. Moreover, let S be totally ordered by ≥, the reflexive
and transitive closure of the next state relation. These relations are extended
as follows to 2S × 2S : ds follows (precedes) ds′ iff for each s ∈ ds there exists
s′ ∈ ds′ with s ≥ s′ (≤), and for each s′ ∈ ds′ there exists s ∈ ds with s′ ≤ s (≥);
ds i–precedes (immediately precedes) ds′ iff for each s ∈ ds there exists s′ ∈ ds′

with next(s, s′) and for each s′ ∈ ds′ there exists s ∈ ds with next(s, s′). Let ϑx̄

be a grounding substitution for the (tuple of) variables x̄, ϑF for the variables
in F , and Fϑ the application of substitution ϑ to F . We say:

C |= ∃x̄F iff ∀ϑF\x̄ each ds |= FϑF\x̄ϑx̄ for some ϑx̄

C |= F leads to G iff ∀ϑF each ds |= FϑF is followed by a ds′ |= GϑF ϑG\F

for some ϑG\F

C |= F because G iff ∀ϑF each ds |= FϑF is preceded by a ds′ |= GϑF ϑG\F

for some ϑG\F

ds |= A iff each s ∈ ds |= A

ds 6|= false

ds |=∼ F iff ds 6|= F

ds |= F ∧ F ′ iff ds |= F and ds |= F ′

ds |= ∆A iff ds |= A and for ds′ i–preceding ds, ds′ |=∼ A

ds |= mF iff there exists s ∈ ds such that {s} |= F

For instance, the following computation fragment satisfies p leads to q:

→ .→ p→ .→ .→ q → .→ p→ q → .→ .→ .→ p ∧ q → .

and→ .→ p∧q → .→ .→ r∧s→ .→ . satisfies both m(p∧q) leads to m(r∧s)
and mp∧mq leads to mr∧ms. Only the latter formula is also satisfied by any
of the following:

→ .→ p ∧ q → .→ .→ r → s→ .→ .

→ .→ p→ .→ q → .→ .→ r → s→ .→ .

→ .p→ .→ r → .→ q → .→ s→ .→ .

since a distributed state can be composed of distinguished and possibly non
adjacent states. As a further example, the formulae m(p∧ ∼ p) and p∧ ∼ p are
4 In the full logic, these subset can contain states of several components, hence the

name.



false, while any ds containing at least a state satisfying p and a state satisfying
∼ p satisfies mp ∧m(∼ p). On the contrary, m(p ∨ q) is equivalent to mp ∨mq.

Some rules of the logic follows. All rules hold both for leads to and for
because: we abstract the operator by op. Rule CC applies when formulae G
and G′ are located, i.e. prefixed by m, or composed of located formulae.

CC F op G F ′ op G′

F ∧ F ′ op G ∧G′ PD F op G F ′ op G

F ∨ F ′ op G
E

F op false

∼ F

SW F ′ → F F op G G→ G′

F ′ op G′ TR F op G G op H
F op H

I: F op F

The logic comes with MaRK, a proof assistant that partially automates the
verification process and is a valuable tool supporting the proof process, making
it feasible to avoid error prone “by hand” arguments [8].

3 ∆DSTL(x) Semantics for APPEL

The semantics will be developed in two steps: first of all we define rules for the
interpretation of a policy rule, then we consider combining policy rules.

3.1 Semantics for a Policy Rule

Let us recall that a policy rule is essentially a triple (triggers, conditions, actions),
where triggers is either a single trigger or a combination of a number of them.
The same holds for conditions and actions. Also recall that triggers and actions
are optional.

Let us define functions M, C and T , which will map (elements of) a policy
rule into a set of ∆DSTL(x) formulae in 2φ.
What is a trigger? Assume t ∈ trigger and ts ∈ triggers.
T [[ε]] = true
T [[t]] = ∆t
T [[ts or ts′]] = T [[ts]] ∨ T [[ts′]]

What is a condition? Assume c ∈ condition and cs ∈ conditions.
C[[ε]] = true
C[[c]] = c
C[[cs or cs′]] = C[[cs]] ∨ C[[cs′]]
C[[cs and cs′]] = C[[cs]] ∧ C[[cs′]]

More complicated, what is the meaning of an action? And furthermore what does
it mean to compose actions? We note that actions can succeed and fail, which
is important in the context of composing operations. Of course what exactly it
means for an action to succeed or fail is dependent on the domain and specifics
of the operation. As we are considering the semantics for the core language, we
strive to stay clear of the domain specifics here. In order to capture the difference
of success and failure we define two functions:

S, F : actions→ φ× 2φ



The first element in the resulting pair is a formula describing the success or failure
of the action, the second element is a (possibly empty) set of side conditions
that are imposing further restrictions on the first element. These extra formulae
capture the rather intricate dependencies of executing an action depending on
success/failure of a previous one that arise with some of the operators. Hence,
for a simple action a ∈ action we gain:

S[[a]] = 〈ms(a), ∅〉 and F [[a]] = 〈mf(a), ∅〉

Irrespective of the domain, it seems sensible to expect that an action either
succeeds or fails, but never does both: s(a) ⊕ f(a). Let us postpone discussion
of the details of S and F for a moment. In the following, assume a ∈ action and
as ∈ actions. We now have all the parts to define the meaning of a policy rule
as a functionM : triggers× conditions×actions→ 2φ. Let S[[as]] = 〈hsa, scsa〉
and F [[as]] = 〈hfa, scfa〉, then:

M[[ts cs as]] = {m(T [[ts]] ∧ C[[cs]]) leads to hsa ∨ hfa} ∪ {scsa} ∪ {scfa}

The informal semantics for the action operators is as follows [19]:

and: This specifies that the policy should lead to the execution of both actions in
either order. This can be implemented by executing the actions in a specific
order or in parallel.

andthen: This is a stronger version of and, since the first action must precede
the second in any execution.

or: This specifies that either one of the actions should be taken.
orelse: This is the or operator with a prescribed order. It means that a user

feels more strongly about the first action specified.

Let S[[As]] = 〈hsa, scsa〉, S[[Bs]] = 〈hsb, scsb〉, F [[As]] = 〈hfa, scfa〉, F [[Bs]] =
〈hfb, scfb〉, then
S[[As and Bs]] = 〈hsa ∧ hsb, scsa ∪ scsb〉
S[[As or Bs]] = 〈hsa ∨ hsb, scsa ∪ scsb〉
S[[As andthen Bs]] = 〈hsa ∧ hsb, hsb because hsa ∪ scsa ∪ scsb〉
S[[As orelse Bs]] = 〈hsa ∨ hsb, hsb because hfa ∪ scsa ∪ scsb ∪ scfa〉

and
F [[As and Bs]] = 〈hfa ∨ hfb, scfa ∪ scfb〉
F [[As or Bs]] = 〈hfa ∧ hfb, scfa ∪ scfb〉
F [[As andthen Bs]] = 〈hfa ∨ hfb, hfb because hsa ∪ scfa ∪ scfb ∪ scsa〉
F [[As orelse Bs]] = 〈hfa ∧ hfb, hfb because hfa ∪ scfa ∪ scfb〉

Let us consider an example, S[[(a orelse b) orelse c]], with a, b, c ∈ action.
S[[(a orelse b) orelse c]]

S[[a orelse b]]
S[[a]] = 〈ms(a), ∅〉
S[[b]] = 〈ms(b), ∅〉
F [[a]] = 〈mf(a), ∅〉

= 〈ms(a) ∨ms(b),ms(b) because mf(a)〉



S[[c]] = 〈s(c), ∅〉
F [[a orelse b]]

F [[a]] = 〈mf(a), ∅〉
F [[b]] = 〈mf(b), ∅〉

= 〈mf(a) ∧mf(b),mf(b) because mf(a)〉
= 〈ms(a) ∨ms(b) ∨ms(c),
{ms(b) because mf(a),ms(c) because mf(a)∧mf(b),mf(b) because mf(a)}〉

3.2 Semantics for a Policy Rule Group

A policy rule group is the composition of a number of policy rules. The Ap-
pel language provides a number of operators to compose policy rules with the
following informal semantics [19]:

g(condition): When two policy rules are joined by the guarded choice operator,
the execution engine will first evaluate the nested condition. If the guard
evaluates to true, the first of the two rules will be applied, otherwise the
second. Clearly once the guard has been evaluated it is necessary to decide
whether the individual rule is applicable. Once a guarded choice has been
made, it is not undone even if the resulting rule is not followed.

u: Unguarded choice provides more flexibility, as both parts will be tested for
applicability. If only one of the two policy rules is applicable, this will be
chosen. If both are applicable, the system can choose one at random.

seq: Sequential composition allows the rules to be enforced in the specified or-
der. That is we traverse the structure, determining whether the first rule
is applicable. If so we apply the first rule, otherwise we check the second
rule. Note that the second rule will only be checked if the first rule is not
applicable.

par: Parallel composition of two rules allows for a user to express an indifference
with respect to the order of two rules. Both rules are applied, but the order
in which this is done is not important.

To define function G, giving semantics to a policy group, we need two auxiliary
functions. The first one expresses the weakest precondition for a policy rule group
to be applicable. Let (t, c, a) ∈ polrule and ps ∈ pol rule group:
WP[[(t, c, a)]] = c
WP[[ps1 seq ps2]] =WP[[ps1]] ∨WP[[ps2]]
WP[[ps1 par ps2]] =WP[[ps1]] ∨WP[[ps2]]
WP[[ps1 g(c) ps2]] = (c ∧WP[[ps1]]) ∨ (∼ c ∧WP[[ps2]])
WP[[ps1 u ps2]] =WP[[ps1]] ∨WP[[ps2]]

The second auxiliary function is a syntactic transformation to substitute the
conditions in the policies:

d((t, c, a), x) = (t, x, a)
d(ps1 op ps2, x) = d(ps1, x) op d(ps2, x)

We can now define G : policy rule group → 2φ. Here first, second and either
are fresh predicates. Predicate pick is randomly set.
G[[(t, c, a)]] =M[[(t, c, a)]]



G[[ps1 seq ps2]] =
WP[[ps1]]←→ first
∼ WP[[ps1]] ∧WP[[ps2]]←→ second
G[[d(ps1, first)]]
G[[d(ps2, second)]]

G[[ps1 par ps2]] =
G[[ps1]]
G[[ps2]]

G[[ps1 g(c) ps2]] =
c ∧WP[[ps1]]←→ first
∼ c ∧WP[[ps2]]←→ second
G[[d(ps1, first)]]
G[[d(ps2, second)]]

G[[ps1 u ps2]] =
WP[[ps1]]∧ ∼ WP[[ps2]]←→ first
WP[[ps2]]∧ ∼ WP[[ps1]]←→ second
WP[[ps1]] ∧WP[[ps2]]←→ either
G[[d(ps1, first ∨ (either ∧ pick))]]
G[[d(ps2, second ∨ (either∧ ∼ pick))]]

3.3 The else operator

The example in the following section originally made use of the else operator in
P2 and P3. Since it is only syntactic sugar, we are not adding it to the language
presented earlier, but rather show how it can be rewritten into the considered
fragment.

The informal description of else is that it behaves like or unless it occurs
at the top level. So if it occurs at the top level, if trigger and condition then
a1 else a2 is equivalent to two rules combined with a guarded choice where the
condition is acting as guard, i.e. trigger then a1 g(condition) trigger then a2.

If the condition is empty or else occurs below the top level it can simply be
replaced with or.

3.4 A non–trivial example

We will here study Example 5.7 from [19] with the purpose of showing the formal
semantics at work. The purpose of the policies is to forward an incoming call
when the recipient is busy. Otherwise, if not answered within 5 seconds, the call
should be forwarded in a way that depends on the caller: calls from “acme” or
“tom” should be forwarded to the office. If once more unanswered, the call goes
to the recipient’s mobile. Any other call should be forwarded home. In any case,
business calls during office hours should be logged as such, and other calls as
“out of hours” calls.

The policy is expressed by the policy group P1 seq (P2 par P3), where:

P_1 = when call

if busy

do forward_to(vm)



P2 = P2a g(c2) P2b with:

c_2 = if not caller(acme) and not caller(tom)

P_2a = when not_answered(5)

do forward_to(home)

P_2b = when not_answered(5)

do forward_to(office)

orelse

do forward_to(mobile)

P3 = P3a g(c3) P3b with:

c_3 = if call_type(business) and calltime(h) and inbusinesshours(h)

P_3a = when call

do log(office_hours_call)

P_3b = when call

do log(out_of_hours_call)

So, following the definitions5 , we get
G[[P1 seq ((P2a g(c2) P2b) par (P3a g(c3) P3b))]] =

busy ←→ first

∼ busy ←→ second

m(∆call ∧ first) leads to ms(forward to(vm)) ∨mf(forward to(vm))

∼ caller(acme)∧ ∼ caller(tom) ∧ second←→ first′

(caller(acme) ∨ caller(tom)) ∧ second←→ second′

m(∆not answered(5)∧first′) leads to ms(forward to(home))∨mf(forward to(home))

m(∆not answered(5) ∧ second′) leads to

(ms(forward to(office)) ∨ms(forward to(mobile)))

∨ (mf(forward to(office)) ∧mf(forward to(mobile)))

ms(forward to(mobile)) because mf(forward to(office))

call type(business) ∧ calltime(h) ∧ inbusinesshours(h) ∧ second←→ first′′

∼ (call type(business) ∧ calltime(h) ∧ inbusinesshours(h)) ∧ second←→ second′′

m(∆call∧ first′′) leads to ms(log(office hours call))∨mf(log(office hours call))

m(∆call∧second′′) leads to ms(log(out of hours call))∨mf(log(out of hours call))

Remark 1. We model the application of two or more policies as an atomic step, inde-
pendently of the fact that the policies are applied concurrently or in sequence. We only
distinguish between before and after their application. To this purpose, we consider all
predicates to be stable, including those describing the success and failure of an action.
Stability means that once a predicate becomes true it stays so, and is related to the

following rule: F leads to mG ∧mG′

F leads to m(G ∧G′)
This rule holds only when G and G′ are stable. Since we are only interested in detecting
conflict between actions, the stability assumption is reasonable. Indeed, the execution
of an action does not cancel the fact that another action has been executed. Moreover,
stability does not hinder the detection of situations where an action is executed when

5 From now on, we will represent sets of formulae as lists, without brackets.



some conflicting conditions hold in the domain. In other words, we do not need to de-
fine the semantics of the actions and look at the state transformation caused by their
execution. Finally, note that stability is preserved by conjunction and disjunction.

4 Dealing with Policy Conflicts

A conflict arises when, as a result of the policy application, two actions are
executed, and they are defined to be conflicting in the domain description. A
conflict arises also when a state is reached where a pair of conflicting predicates
hold (these can be a predicate and its negation, or predicates defined to be
conflicting in the domain description).
We can distinguish two types of conflict:

– actual conflict: from the policy theory and the domain description, we derive
true leads to conflict. This means that the policy as it is gives raise to a
conflict.

– possible conflict: from the policy theory and the domain description, we
derive true leads to disjunction, and one of the disjuncts is a conflict. A
typical case is when the disjunction arises from two actions, like m((s(a) ∨
f(a)) ∧ (s(b) ∨ f(b))). Distributing, one sees immediately that the conflict
s(a) ∧ s(b) may be avoided because one of the actions fails.

To introduce a further kind of conflict, we look at the policies in Example 5.1 of
[18]:

P1 = if user(x) and if admin(x) do allow(x)
P2 = if user(Joe) do deny(Joe)

There is also a piece of domain information: admin(Joe). Also, we know from the
domain description that actions allow and deny are conflicting, i.e., s(allow(x))∧
s(deny(x))→ conflict . To detect conflicts, we first express the rules in the logic:

G[[P1]] = m(user(x) ∧ admin(x)) leads to ms(allow(x)) ∨mf(allow(x))
G[[P2]] = m user(Joe) leads to ms(deny(Joe)) ∨mf(deny(Joe))

and then we develop the following proof:

G[[P1]] admin(Joe)

m user(Joe) leads to ms(allow(Joe)) ∨mf(allow(Joe)) G[[P2]]

m user(Joe) leads to
m(s(allow(Joe)) ∨ f(allow(Joe))) ∧m(s(deny(Joe)) ∨ f(deny(Joe)))

We cannot go further. That is, we have not actually found a possible conflict, but
we have discovered a potential one: only if the domain description is extended
to satisfy the premise, i.e. if user(Joe) is stated, the conflict arises.

A systematic way to find all the interesting facts that might be added to
the domain description and possibly generate (potential) conflicts, is to take
finite consistent subsets of the Herbrand Base (HB) of the theory obtained from
the policies and the domain description. The HB of a theory is the set of all
ground atoms which can be constructed using the ground terms and the predicate



symbols from the language fragment used to define the theory itself6. Since
triggers and actions are not interesting extensions of the domain description, we
restrict theHB to the atoms built using the predicates symbols in the conditions.

In our example, we have
HB = {admin(Joe), user(Joe)}

Hence we can go a step further:

m(user(Joe) ∧ admin(Joe)) leads to
m(s(allow(Joe)) ∨ f(allow(Joe))) ∧m(s(deny(Joe)) ∨ f(deny(Joe))) HB

true leads to m((s(allow(Joe)) ∨ f(allow(Joe))) ∧ (s(deny(Joe)) ∨ f(deny(Joe))))

Distributing the conjunction we get a typical case of possible conflict. Since the
conflict is derived in the theory extended withHB, we consider it to be potential.

In the following example, we consider a slight variant on the previous:

G[[P3]] = m(user(x)∧admin(x)∧daytime) leads to ms(allow(x))∨mf(allow(x))
G[[P4]] = m(user(Joe)∧nighttime) leads to ms(deny(Joe))∨mf(deny(Joe))

and apply the same the proof pattern:

user(Joe) ∧ admin(Joe) G[[P3]]

m daytime leads to
m s(allow(Joe)) ∨m f(allow(Joe))

user(Joe) G[[P4]]

m nighttime leads to
m s(deny(Joe)) ∨m f(deny(Joe))

m daytime ∧m nighttime leads to
m(s(allow(Joe)) ∨ f(allow(Joe))) ∧m(s(deny(Joe)) ∨ f(deny(Joe)))

One could factorize m, but this is not the point. To detect a potential conflict
we would need to reduce the premise to true, by exploiting the HB. However,
any consistent subset of HB contains either daytime or nighttime, but not both
of them. Hence it is not possible to simplify to true.

5 Discussion

The above method allows to detect conflicts. However, which conflict exactly is
being detected depends on the definitions of the conflict ‘rules’. In particular
we can distinguish between two types of conflict rules that allow to detect two
distinct types of conflict: conflicts between two or more policies and conflict
between a policy and the system (in the absence of other policies).

Considering the relation between feature interaction and policy conflict, we
can draw parallels with features. When considering features we can also find
problems when a feature interacts with the system (that is in the absence of other
features) – traditionally these have been considered as bugs. Feature interaction
work is always based on the assumption that the individual features on their own

6 The formal definition of HB, in particular for the temporal case, states a set of re-
quirements on the form of the theory (e.g. clausal, skolemized). This form is equiv-
alent to that of the theories obtained from Appel policies.



(of course the base system is always present) work as expected and problems
occur when more than one feature is added to the system simultaneously.
Let us consider the following example:

[[P1]] = daytime leads to s(allow)
[[P2]] = lunchtime leads to s(blacklist)

daytime and lunchtime are overlapping, that is they can both hold at the same
time; blacklist is an action.

In the light of the previous, we could say that a policy conflict is clearly a
conflict between a number of policies and the problem does not occur if only
one policy is present. Let us first investigate this in more detail. To detect this
type of conflict, we do not require a partial specification of the actions. It is
sufficient to say that s(a) and s(b) lead to a conflict, as we have indeed done in
the previous section.

If we consider the blacklisting example at hand, the definition of conflict
here would be s(allow)∧s(blacklist)→ conflict. Adding the domain dependent
information lunchtime→ daytime, we detect the potential conflict.

In this case we do not model the fact that an action might change the value of
a predicate, say blacklisted; we also do not model the fact that predicates might
change “miracleously” (that is by other actions in the system or spontaneously).
In the light of this we can see predicates in the precondition as stable.

On the other hand, a policy interacting in an undesired way with the sys-
tem (in the absence of other policies) is also an interesting case to consider. It
might make less sense to speak about a bug here, after all policies are not imple-
mentations of system components, but rather high level descriptions of how the
system should behave. Our method allows also to detect these, however more
detail and a different definition of the conflict rules is required. The conflict
rules will include a notion of state variables and the actions need to be speci-
fied somewhat. For the example on blacklisting, this means that we know that
s(blacklist)→ blacklisted, that is the action leads to a change of the predicate.
Our definition of conflict then is blacklisted∧ s(allow)→ conflict. It should be
obvious that this conflict exists in the absence of P2, and indeed we can detect
it.

In this latter case each action comes with a (possibly empty) list of conflicting
states, while in the former each action comes with a list of conflicting actions.

One further aspect to consider, and this is again based on experience in fea-
ture interaction, is the question as to how many policies are required to generate
a conflict. In feature interaction there is only one example for a true three-way
interaction, and that is quite contrived.
In some sense this question is important, as the definition of conflict could be
done considering only conflicting pairs if the same holds for policies. Note that
it only influences the definition of conflict rules, and thus is more important as
a design guideline.

6 Related Work

Of particular relevance is the work on policy conflict: policies may contradict
since they may be set by different organisations or at different levels in the same



organisation. Surprisingly, there does not appear to have been much work on
policy conflicts. [7] recognises but does not address conflicts that arise in policy-
driven adaptation mechanisms. [1] aims to define hierarchical policies such that,
by definition, the subordinate policies cannot conflict. Conflicts are still possible
if one policy in the hierarchy is changed. The use of meta-policies (policies about
policies) is proposed as a solution, e.g. in [11], where meta-policy checks are
applied when policies are specified and when they are executed. Similar ideas,
where predefined rules and good understanding of the domain allow resolution of
conflicts, are presented in [13]. In [3], it is anticipated that authorisation policies
may lead to conflict. This is resolved by providing a function to compare policies
and decide which should take precedence.

Further discussion on policy conflicts exist in the area of access control poli-
cies, often using logics to model policies. A formal model that permits the en-
forcement of complex access policies through composition is presented in [20].
Policies are expressed as safety conditions in Interval Temporal Logic, and they
can be checked at run-time by the simulation tool Tempura. A fragment of first
order logic, more expressive than Datalog, is used in [10]. The restrictions are
such that no conflicts can arise. The logic permits to query the policy set for
permissible/prohibited actions, via a friendly interface for naive users. UCON,
a recent model of usage control that extends the concepts of access control has
been formalized in [23], using an extension of Lamport’s Temporal Logic of Ac-
tions.

Policy have also been applied to resource management in distributed system.
[6] discusses the need for both static and dynamic conflict detection and reso-
lution, and introduces computationally feasible algorithms to this purpose. The
underlying model exploits a deontic logic of permission, prohibition, and obliga-
tion, coupled with temporal classifiers that indicate the span of the mode. Our
approach is more flexible in expressing policies (it is not restricted to resource
management and OPI type rules) and broader in scope (the conflict detection
considers conflicting actions and not conflicting permissions applied to the same
action).

We have made comparisons to features and feature interaction in the discus-
sion; features stem from the telecommunications industry, but similar concepts
exist in other areas such as component-based systems. In general a feature is new
functionality to enhance a base system. Features are often developed in isolation
and each feature’s operation is tested with respect to the base system, and also
with common known features.

Unfortunately, when two or more features are added to a base system, un-
expected behaviour might occur. This is caused by the features influencing each
other, and is referred to as feature interaction. Feature interaction shows many
similarities to policy conflict, the main difference being the detail to which it has
been studied. A general discussion of the problem appears in [4]. The literature
on feature interaction is large [2, 16].



7 Conclusion and Further Work

In this paper we have presented a formal semantics for a slightly reduced sub-
set of the Appel policy language, which sofar benefited only from an informal
semantics. We also presented a novel method to reason about policy conflict in
Appel policies based on the developed semantics.

The semantics is a temporal logic theory, and a conflict is found if we de-
rive, from the semantics of the policies, the formula true leads to conflict, a
liveness formula stating that a conflict will surely arise.

As stated earlier, policies that are being used in software systems will be
created and maintained by different parties, ranging from system administrators
to lay users. Clearly this scope of authors and their respective interest means
that inevitably policies will conflict with each other. An automatisation of our
approach, using the proof assistant MaRK [8], will lead to tool support for
detecting conflicts when policies are created or changed. Note that, due to the
basic structure of Appel terms, the size of the HB is not an issue.

To prove the absence of a conflict, we need to derive conflict because false,
which is a safety formula. To do so, we have to augment the semantic translation
with safety conditions. This is left to further investigation.

As Appel policies can be distributed in the networked system, we will en-
hance our conflict detection technique to deal with the distributed situation.
∆DSTL(x) lends itself naturally to this as the logic as concepts of location. For
this it will be required to model the location information provided in policies in
the logic. A further aspect is the enhancement of the formal semantics to include
Appel’s user preferences.
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