
Towards Feature Interactions in
Business Processes

Stephen GORTON a,b Stephan REIFF-MARGANIEC b

a ATX Technologies Ltd, MLS Business Centres, 34-36 High Holborn,
London WC1V 6AE, United Kingdom

b Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom

email: {smg24,srm13}@le.ac.uk

Abstract. The feature interaction problem is generally associated with

conflicting features causing undesirable effects. However, in this paper

we report on a situation where the combination of features (as policies)
and service-targeted business processes yields non-negative effects. We

consider business processes as base systems and policies as a feature

mechanism for defining user-centric requirements and system variabil-
ity. The combination of business processes and a diverse range of poli-

cies leads to refinement of activities and possible reconfiguration of pro-

cesses. We discuss the ways in which policies can interact with a business
process and how these interactions are different from other approaches

such as the classical view of POTS or telecommunications features. We

also discuss the conflicts that can arise and potential resolutions.

Keywords. feature interaction, business processes, policy conflict, service

oriented architecture

1. Introduction

Feature Interaction [5] was first identified as a problem in telecommunications,
where additional units of functionality (features) would interfere with each other
and cause unpredictable behaviour. Telecommunications have become increas-
ingly complex, including the birth of Internet Telephony services. Removing
the “Telephony” part, feature interaction has also been identified in Web Ser-
vices [38,39,40,41].

Web Services [1] are an implementation of Service Oriented Architecture
(SOA), where the design of systems shifts from overall development to the or-
chestration of services. At a more abstract level, workflows are used to specify
business processes. Each task in a workflow represents a unit of activity and can
be completed by using a service. Business Process Management (BPM) research
has often reported that it is paired well with SOA to produce flexible business
software solutions (e.g. [26]).

Policies are generally agreed as information that can modify a systems be-
haviour at runtime, without the need for recompilation or redeployment [19]. In

our work, we use policies to express essential requirements and system variability
by combining them with workflows [12] – the latter essentially means treating
policies as features.

The combination of policies and workflows in the context of Service Oriented
Computing (SOC) can lead to feature interactions. What has not been studied is
the nature of these interactions. This paper discusses and classifies the types of
interactions that can occur, while also showing how the interactions occurring here
are different from those in the more traditional domain of telecommunications,
and even the more recent domain of policies.

Throughout the paper the terms conflict and interaction are used with spe-
cific meaning. Interaction will be used to describe points of contact between work-
flows and policies; interactions are by and large desirable and hence a positive
thing. Conflict will be seen as issues that arise between policies or when selecting
services and are usually undesirable. The only exceptions to this are when we
consider the traditional area of policy conflict, we will use the term policy conflict ;
when considering traditional feature interaction we will use that term.

Overview. The remainder of this paper is structured as follows: Section 2
presents some background material on workflows, Service oriented Computing
and policies. Sections 3 and 4 contains the two major contributions. First we
present an analysis of the differences and similarities of feature interaction in its
more traditional contexts and in the context of workflows, and then consider the
types of interaction that can occur in the new setting with suggestions towards
solutions. The paper is rounded off with related work in section 5 and a discussion
in section 6.

2. Background

There are three main ingredients to our work: workflows, Service Oriented Com-
puting (SOC) and policies. Each serve a distinct purpose. Workflows describe the
basic process model defining the main functionality. SOC is the foundation of
the implementation. Policies augment the workflow to customise it to a particu-
lar user’s preference. The combination of the three provides us with the Service-
Targeted, Policy-Driven Workflow approach that we call StPowla. An overview
showing the relations between the StPowla elements is shown in Figure 1.

Policies are considered an overlay mechanism (including monitoring and en-
forcement) for business processes. Business processes are the workflow models
viewed from the business or application domain. Often, the authors of such work-
flows are the end users, i.e. business analysts rather than software engineers. Busi-
ness process models may then be mapped to more precise service models (e.g.
SRML [8]) and then to concrete orchestration models. These are then mapped to
services via platform-independent middleware.

2.1. Workflows

A workflow is a connected graph of activities, or tasks. Each task represents a unit
of work that contributes to a wider goal. Workflows are the accepted mechanism

Policy Overlay

Business Process (workflows, etc.)

Choreography / Orchestration

Description, Discovery, etc.

business domain

component / service domain

Monitoring Enforcement

Middleware

Figure 1. StPowla overall architecture.

for describing business processes, where a defined sequence of tasks contribute to
the satisfaction of a business objective.

Workflow description languages exist to describe processes in either code-
based or graphic-based notations. Examples of the former include YAWL [33] and
ebXML [32], while examples of the latter include BPMN [13] and UML Activity
Diagrams [7]. In terms of SOC, BPEL [24] is the most widely accepted business
process language, in that it can describe the process and orchestrate a number of
services into the process.

In our approach, a workflow is a core business model containing enough func-
tional requirements to map each task to a service (Figure 2). At runtime, a task
is automatically assigned a service. This assignment includes the discovery of the
service, binding to it and invoking it (thus each task is a distinct computation
from all other tasks). A workflow should have enough information attached to it
to run successfully on its own.

Policies are used to alter this process through either refinement or reconfigu-
ration of the workflow. This kind of intervention is required to either maintain a
current state (e.g. keep costs to a specified level) or to execute a different path of
processing.

task

service

control data

control data

error
data

dataerror

compensate
side
effect

Figure 2. Tasks and their relation to services.

The key difference between a workflow for a business process and a workflow
for another purpose (e.g. telecoms or home networks) is time. Business processes
execute over a long period of time (perhaps hours or days). They include error
handling or compensation actions for the recovery of the workflow in the case of

failures. Also, policies may not have an effect immediately. Once triggered, they
may take a period of time before the effects become evident.

2.2. Service Oriented Computing

In SOC, software exists as separate entities, developed in isolation as services that
are loosely coupled, platform independent, composable and based on open stan-
dards. In addition, they may be discoverable and self-describing. A Web Service
is discoverable through directory services such as UDDI [23], is self describing
through WSDL [36], is composable through a variety of mechanisms (the de facto
standard is WS-BPEL [24]) and is based on XML as the open standard (e.g.
messaging is often done through SOAP [35]).

Services are key to this work. They are reusable software components that
take part in a wider process. Our aim is to develop a policy-driven process model
that is satisfied by services. Thus, the author of a process is not expected to
write functional code, but rather specify enough requirements such that they can
be mapped to an existing service (we note that there is the need for syntactic
match-making between the process author and services).

Services provide agility to processes in that a system is no longer confined
to one individual implementing component. One service can be substituted for
another, provided it takes the same inputs and returns the same type of outputs.
IBM’s business model is based on the Service Component Architecture (SCA) [16],
which is based on SOA. A client’s requirements are satisfied by a composition of
IBM’s services (if a service doesn’t exist, they create it), thus the product supplied
to a client is actually a composition1.

2.3. Policies

Policies are end-user defined rules for the management of a system. Our policies
are either Event-Condition-Action rules (ECAs), or goals (e.g. constraint rules).

Policies are a proven integrated software management technique. They force a
system into dynamic behaviour as the system must react to given rules at runtime.
Policies can be added incrementally, with (theoretically) no limit on the number
that can be applied at once. However we do note that the probability of policy
conflict grows as the number of policies increases.

A policy conflict occurs when two or more policies contradict each other in
terms of what the system is instructed to do or what state it should maintain.
There are broadly three categories of conflict: goal conflicts, function conflicts
and combined goal/function conflicts. A goal conflict is when two goals are in
contradiction of each other. A functional conflict is when two policies state two
different (non-compatible) paths of system execution. A combined conflict occurs
when a functional policy chooses a system execution path that would violate a
goal.

We use the Appel policy description language [28] to define our policies.
Appel is an XML-based language, which has recently gained formal semantics
via a mapping to ∆DSTL [20] (formerly Appel only had a natural language

1Keith Goodman’s (IBM) recent keynote at IM2007

semantics). It was developed initially as a call control language for the Internet
Telephony domain, but is based on a core language with domain specialisations.
In our research, we are working towards a customisation of Appel as a policy-
mechanism for service-oriented business modelling. This requires some knowledge
of the target domain through ontologies.

3. Feature interactions in SoC workflows

Feature Interactions in the context of policies applied to workflows shows all
the characteristics of traditional feature interaction, especially that they may
hinder advancement of the system at runtime or at least violate user expectations.
However, they differ in two significant aspects: one being an assumption about
the knowledge of the main system available to policy designers and the other an
assumption about the lifespan of the effect of an action. This section discusses
both in more detail.

3.1. Details of Base System

Considering traditional feature interaction, e.g. in the domain of telecommunica-
tions, we notice that there are two fundamental components: a base system and
the features. In this domain features have been written by programmers with a
sound knowledge of the base system and in general one would always expect a fea-
ture deployed on a base system to work correctly in the absence of other features.
This notion is fundamental in the definition of feature interaction: if a feature f1

satisfies a property φ1 (written f1 |= φ1), and f2 |= φ2; a feature interaction is
said to occur if, when the features are composed (denoted f1⊕f2) we do not have
f1 ⊕ f2 |= φ1 ∧ φ2.

We have argued [27] that in the context of policy conflict there is no explicit
base system and that conflict emerges between a number of policies. This proved
fruitful for addressing policy conflict in a structured way [20].

Considering workflows we are in a setting that differs from both of the above:
the workflow presents a base system onto which policies are applied – however,
the authors of policies do not need to be aware of the workflow (it would help if
they were), as for example a business might change its overarching business policy
regarding communication by email for security purposes, not realising that several
of the workflows that are conducted within the business rely to some extend on
email communication. It is clear that we have a number of stakeholders in this
setting, some that are involved in formulating the business process and some that
are involved in formulating policies applicable to the same.

Clearly this breaks the fundamental assumption in feature interaction that a
feature will operate as expected if it is put together with the base system.

3.2. Future Effects

In traditional telecommunications systems the effect of a feature is relatively
immediate: that is when a feature gets invoked it will perform some action. This
has been used extensively in the approach by Calder et al. [4] where a feature

manager was exploring the next responses and would use a commit and rollback
mechanism to select a solution. In particular reorderings of features were explored
in their work to allow for the fact that executing A followed by B might be
acceptable whereas B followed by A leads to a conflict.

Business processes differ fundamentally in this aspect in that the execution
of a service might be performed over long periods of time. Using compensation
actions (as described using the Sagas calculus in [3]) for workflow recovery, these
business processes are regarded as long running transactions (LRTs). The effect
of an LRT is that a feature that has no initial effect may have an effect sometime
in the future.

Let us consider a simple market trader. Their core business process involves
selling products to buyers, reflected in a workflow details of which we can omit
here. The trader adds two policies to their business model: the first specifies that
new stock from a supplier is ordered once a trade has occurred and the second
negotiates the price with the supplier of the product that was just sold. By adding
these policies to the workflow the business process can be streamlined.

An analysis of the example shows that if the reordering feature executes first,
then the trader reorders supply at a previously agreed price. The second feature
is then activated and a new price is negotiated. While the new price will not have
any effect on this transaction (since the purchase has already been made), it will
have an effect on future transactions. If the price negotiation feature executes
first, then the price is renegotiated and then the reordering occurs with the new
price.

This example highlights very clearly that the order of execution of the policies
matters – something that was to be expected and is very much in line with
the observation from [4]. However, what is novel is the fact that the result of
the execution of the policies, in either order, has a lasting effect on a future
transaction.

4. Types of Interaction

When considering workflows that are enhanced with policies in the context of
service oriented computing, we can distinguish three broad types of interactions:
conflicts between a number of applicable policies, conflicts between policies and
workflows as well as conflicts in the service level agreements. In this section we
consider all three types and will show that they are, while of course all being
interactions, different in the way they emerge and how they need to be dealt with.

4.1. Policy Conflict

Policy conflict occurs when two or more policies can be active at the same time
and lead to conflicting actions being requested. Policy conflict has been defined
in [27], where it was also pointed out that this definition is based on a specific
application domain: only by considering a domain can a clear statement be made
about which actions conflict. However, in addition there might be types of conflict
that exist within the policies, independent of the application domain. These have

been discussed in detail in [27] and we have mentioned these in the background
section.

Let us consider an example: In a bank loan approval process the workflow
has a task of making an offer followed by a task to vet the offer. Typical policies
attached to this might be “the vetter must be different from the offer maker” and
“managers might make offers and vet these”. Clearly the execution of the second
task (the vetting) might be allowed or blocked depending on how the two policies
are interpreted. Cases like this have been discussed in the taxonomy in [27], and
we can identify elements of Roles, Domain Entities and Policy Relation here:
the employees, including the manager have places in the domain hierarchy and
also play specific roles (vetter, offer maker). Furthermore one can argue that the
policies allowing the manager to make offers and vet them is a refinement of the
more general rule of having two people involved in the process.

As the previous example shows, the conflicts between policies do not show
any new characteristics, they do however continue to exist in this new domain.
Detection and resolution methods fall into the categories discussed in [27], with
a desire to detect and resolve as many issues at design-time but keeping in mind
that this is not always possible and hence that decisions will need to be taken at
runtime. Generally design-time methods will apply when the policies are under
control of the same person or details of the overarching policies are known to the
policy author (that is e.g. within a group or enterprise) detection involves some
reasoning on a logical level (as e.g. in [20]) and resolution would involve policy
redesign. However, if the workflow spans a range of businesses or the services are
outsourced then detection of conflicts will only be possible by runtime methods
and resolution will usually involve negotiation or some other dynamic means.

What is however interesting to note for the purpose of this paper is the aspect
about domains that was not considered in the taxonomy. When considering the
policies in relation to workflows, which themselves are implemented by services
we obtain several levels of ‘application domain’: on one hand we can consider
the workflow to be the application domain, on the other hand the services can
be seen as the application domain (and then one could further investigate which
domain the services belong to). The next two subsections address these issues
respectively.

4.2. Policies on Workflows

A policy has the ability to manipulate a workflow in two ways. Firstly, it can refine
the workflow by expressing further requirements for each task. An implementing
service is restricted by all requirements in the task, thus the more requirements
stated means that the service selection process becomes more precise and closer
to the user’s needs. Secondly, a policy can reconfigure a workflow. This involves
stating rules for the insertion or deletion of process components. This second
concept is explained in the following example:

Example 1. Consider a simple purchase process, where you request quotes from 3
suppliers and then you purchase from the cheapest. Suppose we add a policy that
states “If the quote from A is below £100, cancel the other quotes and purchase

directly from A”. If the price from A comes in below the given amount, then the
workflow changes (Figure 3).

Quote A

Quote C

Quote B

Purchase

Cancel request

Cancel request

Quote A

Quote C

Quote B Purchase

Reconfiguration

Figure 3. Example 4.2 basic workflow

4.2.1. Refinement Policies

A refinement policy can be created by multiple stakeholders. This implies that a
policy can be directed at different levels of process complexity. For example, an
IT director may write a policy that overarches a set of processes whereas a project
team member may write a policy solely for a single task of a process. Refinement is
done through policies specifying constraints over tasks through SLA dimensions2.

This effectively enables stakeholder (or goal-based) conflicts, where different
levels of stakeholders can add their own policies, without realising they conflict
with others. Furthermore, there is a need to specify priorities over policies.

Refinement Conflicts Policy authors are already able to specify modalities
(must, should, prefer and their negations), but in the case of two conflicting poli-
cies that both have the same modality (must in the worst case), then a resolution
is required.

Possible solutions include the prioritisation of stakeholders: higher stakehold-
ers have priority over lower stakeholders (e.g. directors over project team mem-
bers). This method requires robust selection that will ensure that only specific
stakeholders are allowed to create policies. Even then, policies should be agreed
in advance and published to other stakeholders. In this situation, only generic
policies (i.e. goals) can be expressed.

Another solution is forced interactive negotiation. In this simple situation,
two conflicting policy authors must be put in contact in order to negotiate and
find a resolution between their conflicting policies. Intuitively, this is not a good
solution if the end user wishes to have an automated process.

2more information in section 4.3

4.2.2. ECAs

ECA rules can also specify goal constraints or functional rules. In either case,
ECA rules need triggers. We have identified, through the mapping of services to
tasks, the following events that are applicable:

Workflow entry/completion/failure: Policies may be applied at the workflow level
(including sets of workflows). This level includes the commencement of a
workflow, its successful completion and an abnormal completion with no
compensation, i.e. an error result.

Task entry/completion/failure: Similar to the workflow level but this time based
on tasks. A task failure does not imply a workflow failure, but instead a
choice of control flow outputs from the task.

Service entry/completion/failure: Again similar to the previous, but based on
services. A service failure does not imply a failed task as a policy here can
recover the task processing. Conversely, a service success can theoretically
lead to task failure.

It is our opinion that these are the most relevant and interesting triggers in a
workflow from a control-flow perspective. A service is a black box, thus we cannot
see inside it to recognise any triggers. Conversely, the workflow is the highest level
at which we can inspect the system, since all policies can be applied no higher
than this. We do, however, recognise that there may be further triggers available,
especially if one considers data, constraints and resources, which are out of the
scope of this paper.

To demonstrate the use of trigger points and error handling (with policies)
in a long running transaction, we use simple example as follows:

Example 2. Consider a workflow to make a drink and then consume it, plus a sep-
arate workflow to purchase coffee granules (Figure 4). The workflow is augmented
with policies that state:

“if it is morning, I would like a coffee. Otherwise I would like tea”;

“if there is no coffee, I would like tea”; and

“if there is no coffee or tea, buy some more coffee granules”.

The time of day is thus important to the final objective of the initial task (make-
Coffee or makeTea), but of small significance in this example (we include it to
make a point about time being a factor in business processes).

If it is morning, we will try makeCoffee. If this fails, we will try makeTea. If
this succeeds, then the task completes successfully. If not, then we execute the
extra workflow to purchase coffee granules. If this completes successfully, we can
go back and try makeCoffee, which will hopefully work now. Otherwise, should
this extra workflow fail, then the main task makeDrink has not been compensated
and the task ends in an error state.

makeDrink

consumeDrink

purchaseCoffee
Granules

start

end

start

end

Figure 4. Workflow for making and consuming a drink.

ECA Conflicts arise when an event triggers two incompatible policies (i.e. a
functional policy conflict, or combined functional/goal conflicts). A functional
conflict is one where at least two paths of execution exist, but only one can be
chosen. In a state-based system such as a workflow, it exists when the current state
is X and two transitions are implied by policies (P1 : X

a−→ Y and P2 : X
b−→ Z).

This is an example of a shared trigger interaction.
At design time, this can be detected if the policy triggers are not dependent

on runtime information. Otherwise, an online detection and resolution method
is required. This may include priority sequences as an offline solution or user
interaction as an online solution.

Missed trigger interactions occur when a policy forces a workflow reconfigu-
ration, and this avoids the desirable effects of another policy. For example, the
cancelling of a doctors appointment may also inadvertently cancel the task of
picking up a prescription, since the journey to the surgery is not made.

Sequential action interactions occur when one policy triggers another. For
example, we define a simple fail() function that declares a task to have completed
abnormally. By calling this function, we might trigger any policies that exist,
whose trigger is the current task’s failure, even if this is not what was desired
(e.g. the failure policy may try to compensate but we might not want that if we
have explicitly declared the task to have failed).

Looping interactions occur when one policy triggers another, which triggers
the first, etc. Again, provided that the policies are not based on runtime informa-
tion, these can be avoided at design time. Otherwise, it is difficult to detect and
resolve any loops, especially if runtime information is due to change.

4.3. Service Selection

Each task inside a workflow has a functional requirement description. In addition
it has a default policy. This policy is represented as follows:
appliesTo taskId

when task_entry
do req(main, Inv, SLA)

The function req takes three parameters: main is the functional requirement of
the task, Inv is the service invocation parameters and SLA is a set of Service Level
Agreement (SLA) dimensions. It essentially says that when a task is reached in
the control flow, it should execute according to the stated requirements (including
finding, binding to and invoking a service).

The primary basis of service selection is the functional requirement. The sec-
ondary basis is SLA dimensions. In this set, the policy author can add various
non-functional requirements of the service, provided they are measurable in some
meaningful way. For example, consider a task makeCoffee with a particular re-
quirement that the served cup should be warm. Then, the policy would refine
service selection as follows:

appliesTo makeCoffee
when task_entry
do req(main, Inv, [cupTemperature=’’warm’’]3)

Furthermore, since policies can be added incrementally, Appel includes compo-
sition operators such that policies can be added at runtime4. Therefore, many
policies stating many different SLA dimensions can be added to even a single
task. This is also a method for adding general SLA dimensions across workflows.

SLA Conflicts are easily identifiable conflicts. If two or more SLA dimensions
address the same service attribute and require different values, then a conflict
may exist. These conflicts can be resolved by prioritisation of policies (perhaps
the most specific policy first), or by the addition of policy strength indicators.
Even then, with two policies conflicting and being as strong as each other, there
is still a conflict and a need for resolution.

Brokerage services can lead to a feature interaction problem, under the aus-
pices of an SLA conflict. For example, suppose a user does not wish to use service
X. Instead at runtime, service Y is found, bound to and invoked. However, Y is a
broker service and delegates its task to X, and returning X’s results to the user.
The user is unaware of the involvement of X despite their requirement against
using X and thus a feature interaction has occurred. This situation is synonymous
with the traditional telecoms example of a feature interaction between Call For-
warding and Call Barring features. The most direct route to resolution in this case
is to specify further SLA constraints that require a service to not be a broker, or
to provide assurances that the SLA requirements are passed down the brokerage
chain.

5. Related Work

There has been extensive literature published about policies. They are gaining
increasing recognition from implementers as a tool for creating system variability.
In addition, there is extensive literature on workflows. Whilst the business pro-
cesses we discuss can be described in policies or workflows separately, the former
method demands too much variable specification and the latter too much static
specification.

3we expect some knowledge of the service through ontology
4policy composition algorithms are not used as they are design time only solutions

Feature Interactions have, to our knowledge, yet to be reported in the domain of
business processes. Weiss et al. [38,39,40,41] have reported on feature interactions
in Web Services, but in general the subject is confined to telecoms and other
network systems. A more formal analysis of feature interaction in processes may
lead to specification in a temporal logic in order to provide analysis such as in [6].
In [21], the authors do apply feature interaction to workflows. However their
approach does not take into account the instance-based changes via refinement
and reconfiguration that we have considered here.

Workflow Specification. Apart from natural English, structured languages are
often used for expressing processes. BPEL [24] is considered the de facto stan-
dard for SOA-based business processes, despite its initial purpose as a service
composition language.

More traditional workflow languages are more appropriate for modelling pro-
cesses. YAWL [33] is a powerful workflow language with semantics based on Petri-
Nets. There are alternatives, include SMAWL [31] and others. These solutions
may be considered better in terms of describing processes since they abstract
away composition details that would be included in those solutions previously dis-
cussed. However, they are unable to define high-level requirements for activities
or events that occur in the workflow.

A sister approach to the code-based approaches, process calculi and Petri nets
offer a formal method in which to express workflows as processes. The formalisms
provide operational semantics allowing for reasoning about the process as used in
e.g. [15] and [9].

The most widely-accepted universal process notation for business processes is
the Business Process Modelling Notation [13] (BPMN). This graphical notation
also describes process flows, though somewhat more structured through the use
of swimlanes to describe different roles in the process. One particular advantage
of BPMN is that it can be used to model a BPEL process [42]. However, BPMN
is still limited by its inability to express service selection criteria including non-
functional service properties [25].

Workflow Adaptation is normally viewed at the overall workflow level. Despite
the reported need for flexibility in executing workflows, this is generally achieved
through some process reengineering, such as in [18]. Workflow Patterns [17], are a
common tool for expressing frequently-occurring patterns in workflows, do allow
a certain degree of adaptation. Of particular interest are the insert case and delete
case patterns. We consider workflow patterns as relevant work, but the differences
exist between their offline design nature, and our online approach to analysis of
feature interactions and workflow configuration.

Policies are descriptive and essentially provide information that is used to adapt
the behaviour of a system. Most work deals with declarative policies. Examples are
the formalisms to define access control policies, and to detect conflicts [30,14]; for-
malisms for modelling the more general notion for usage control [43]; formalisms
for Service Level Agreement, i.e. to specify client requirements and service guar-
antees, and to sign a contract with an agreement between them [22].

RuleML (www.ruleml.org) is a language for rule-based and knowledge-based
systems, and allows Web-based rule storage, retrieval and interchange. Like Ap-

pel, it is XML-based and allows for the definition of ECA rules (note that for
readability we have not used Appel’s XML syntax in this paper). These rules can
be translated through XSL transformations, depending on the application being
used.

None of this has been linked to workflows; there has been an initial discussion
on linking policies with workflows, presenting the fundamental ideas in [11,10].

Workflows and Policies are combined by Wang [37] in the Policy-driven Pro-
cess Design (PPD) methodology. Policies are linked to workflows by extracting
processes from real business policies and using a common logic to unify them.
However the work is more focussed towards extracting new process, rather than
affecting current ones. Though Wang does mention insertion and deletion, with
respect to control flows, it is only in an overview of the effects on all aspects of
workflows (including constraints, data and resources). Furthermore, Wang makes
no use of Service Oriented Architecture.

Verlaenen et al [34] have a similar approach, in that policies are used to change
workflows. However, the authors use a weaver and policy composition algorithm,
indicating an offline approach. Our work specifically addresses the online state.

6. Summary and Further Work

In this paper we considered interactions in the context of Service oriented Com-
puting – in particular we considered systems that are described by a workflow that
is subject to a number of policies capturing variability. The tasks in the workflow
are implemented by services. The two main contributions are a description of the
problem domain highlighting and a classification of conflicts in that domain. With
respect to the former we identified differences in two major aspects with respect
to traditional FI settings: the role of the base system and the longevity of effects
of policies. With regard to the latter we presented three classes of interactions:
one between policies (policy conflict), one between policies and workflows and one
dependent on service selection.

Future work includes the formalisation of StPowla, that is the development
of a formal semantics for the workflow part which will allow to extend the conflict
reasoning techniques for Appel to be extended to the interaction of policies and
workflow.

Acknowledgements

This work has been partially sponsored by the project SENSORIA, IST-2005-
016004.

References

[1] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services: Con-
cepts, Architectures and Applications. Springer-Verlag Berlin and Heidelberg GmbH &

Co. K, 2003.

[2] Daniel Amyot and Luigi Logrippo, editors. Feature Interactions in Telecommunications

and Software Systems VII, June 11-13, 2003, Ottawa, Canada. IOS Press, 2003.

[3] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. Theoretical foundations for
compensations in flow composition languages. In Jens Palsberg and Mart́ın Abadi, editors,

POPL, pages 209–220. ACM, 2005.
[4] Muffy Calder, Mario Kolberg, Evan H. Magill, Dave Marples, and Stephan Reiff-

Marganiec. Hybrid solutions to the feature interaction problem. In Amyot and Logrippo

[2], pages 295–312.
[5] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. Feature

interaction: a critical review and considered forecast. Computer Networks, 41(1):115–141,

2003.
[6] Muffy Calder and Alice Miller. Using spin for feature interaction analysis - a case study.

In Matthew B. Dwyer, editor, SPIN, volume 2057 of Lecture Notes in Computer Science,

pages 143–162. Springer, 2001.
[7] Marlon Dumas and Arthur H. M. ter Hofstede. Uml activity diagrams as a workflow

specification language. In Martin Gogolla and Cris Kobryn, editors, UML, volume 2185

of Lecture Notes in Computer Science, pages 76–90. Springer, 2001.
[8] José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. A formal approach to service com-

ponent architecture. In Mario Bravetti, Manuel Núñez, and Gianluigi Zavattaro, editors,
WS-FM, volume 4184 of Lecture Notes in Computer Science, pages 193–213. Springer,

2006.

[9] Xiang Fu, Tevfik Bultan, and Jianwen Su. Formal verification of e-services and workflows.
In C. Bussler, R. Hull, S. A. McIlraith, M. E. Orlowska, B. Pernici, and J. Yang, editors,

WES, volume 2512 of Lecture Notes in Computer Science, pages 188–202. Springer, 2002.

[10] Stephen Gorton and Stephan Reiff-Marganiec. Policy support for business-oriented web
service management. In J. Alfredo Sánchez, editor, LA-WEB, pages 199–202. IEEE Com-

puter Society, 2006.

[11] Stephen Gorton and Stephan Reiff-Marganiec. Towards a task-oriented, policy-driven
business requirements specification for web services. In Schahram Dustdar, José Luiz

Fiadeiro, and Amit P. Sheth, editors, Business Process Management, volume 4102 of

Lecture Notes in Computer Science, pages 465–470. Springer, 2006.
[12] Stephen Gorton and Stephan Reiff-Marganiec. Policy driven business management over

web services. In Rodosek and Aschenbrenner [29], pages 721–724.
[13] Object Management Group. Business Process Modelling Notation (BPMN) specification.

http://www.bpmn.org, Feb 2006.

[14] Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason about policies.
In CSFW, pages 187–201. IEEE Computer Society, 2003.

[15] Rachid Hamadi and Boualem Benatallah. A petri net-based model for web service com-

position. In Klaus-Dieter Schewe and Xiaofang Zhou, editors, ADC, volume 17 of CRPIT,
pages 191–200. Australian Computer Society, 2003.

[16] IBM. Service component architecture.

http://www.ibm.com/developerworks/library/specification/ws-sca/, 2007. Last accessed
4 June 2007.

[17] Workflow Patterns Initiative. Workflow patterns, 2007. accessed 24 July 2007.

[18] Beat Liver, Jeannette Braun, Beatrix Rentsch, and Peter Roth. Developing flexible service
portals. In CEC ’05: Proceedings of the Seventh IEEE International Conference on E-

Commerce Technology (CEC’05), pages 570–573, Washington, DC, USA, 2005. IEEE
Computer Society.

[19] Emil Lupu and Morris Sloman. Conflicts in policy-based distributed systems management.

IEEE Trans. Software Eng., 25(6):852–869, 1999.
[20] Carlo Montangero, Stephan Reiff-Marganiec, and Laura Semini. Logic-based detection

of conflicts in appel policies. In FSEN2007, Lecture Notes in Computer Science LNCS.

Springer Verlag, 2007.
[21] Y. C. Ngeow, D. Chieng, A. K. Mustapha, E. Goh, and H. K. Low. Web-based device

workflow management engine. In MUE, pages 914–919. IEEE Computer Society, 2007.

[22] Rocco De Nicola, Marzia Buscemi, Laura Ferrari, Fabio Gadducci, Ivan Lanese, Roberto

Lucchi, Ugo Montanari, and Emilio Tuosto. Process calculi and coordination languages

with costs, priority and probability. 2006. SENSORIA Technical Report.

[23] OASIS. UDDI: Universal Description, Discovery and Integration.
http://www.uddi.org, 2007. Last accessed 4 June 2007.

[24] OASIS. Web services business process execution language.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, 2007. Last accessed 4 June 2007.

[25] J. O’Sullivan, D. Edmond, and A. H. M. ter Hofstede. Formal description of non-functional

service properties. Technical Report FIT-TR-2005-01, Queensland University of Technol-
ogy, Brisbane, Feb 2005.

[26] Nathaniel Palmer. BPM & SOA. 2005.

http://aiim.org/article-docrep.asp?ID=30562, last accessed 4 June 2007.
[27] Stephan Reiff-Marganiec and Kenneth J. Turner. Feature interaction in policies. Computer

Networks, 45(5):569–584, 2004.

[28] Stephan Reiff-Marganiec, Kenneth J. Turner, and Lynne Blair. Appel: the accent project
policy environment/language. Technical Report TR-161, University of Stirling, 2005.

[29] Gabi Dreo Rodosek and Edgar Aschenbrenner, editors. IM2007: 10th IFIP/IEEE Sym-

posium on Integrated Network Management. IEEE, 2007.
[30] François Siewe, Antonio Cau, and Hussein Zedan. A compositional framework for access

control policies enforcement. In Michael Backes and David A. Basin, editors, FMSE, pages
32–42. ACM, 2003.

[31] Christian Stefansen. Smawl: A small workflow language based on ccs. In Orlando Belo,

Johann Eder, João Falcão e Cunha, and Oscar Pastor, editors, CAiSE Short Paper Pro-
ceedings, volume 161 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

[32] UN/CEFACT and OASIS. Electronic business using extensible markup language.

http://www.ebxml.org/, 2007. Last accessed 4 June 2007.
[33] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. Yawl: yet another workflow

language. Inf. Syst., 30(4):245–275, 2005.

[34] Kris Verlaenen, Bart De Win, and Wouter Joosen. Towards simplified specification of
policies in different domains. In Rodosek and Aschenbrenner [29].

[35] W3C. SOAP. http://www.w3.org/TR/soap12-part1/, 2007. Last accessed 4 June 2007.

[36] W3C. WSDL: Web Service Description Language v2.0.
http://www.w3.org/TR/wsdl20/, 2007. Last accessed 4 June 2007.

[37] Harry Jiannan Wang. A Logic-based Methodology for Business Process Analysis and
Design: Linking Business Policies to Workflow Models. PhD thesis, University of Arizona,

2006.

[38] Michael Weiss. Feature interactions in web services. In Amyot and Logrippo [2], pages
149–158.

[39] Michael Weiss and Babak Esfandiari. On feature interactions among web services. In

ICWS, pages 88–95. IEEE Computer Society, 2004.
[40] Michael Weiss, Babak Esfandiari, and Yun Luo. Towards a classification of web service

feature interactions. In Boualem Benatallah, Fabio Casati, and Paolo Traverso, editors,

ICSOC, volume 3826 of Lecture Notes in Computer Science, pages 101–114. Springer,
2005.

[41] Michael Weiss, Babak Esfandiari, and Yun Luo. Towards a classification of web service

feature interactions. Computer Networks, 51(2):359–381, 2007.
[42] Stephen. A. White. Using bpmn to model a bpel process. BPTrends, 2005.

http://www.bptrends.com, accessed on 15/03/06.
[43] Xinwen Zhang, Francesco Parisi-Presicce, Ravi S. Sandhu, and Jaehong Park. Formal

model and policy specification of usage control. ACM Trans. Inf. Syst. Secur., 8(4):351–

387, 2005.

