
Policy-driven Business Management over Web Services

Stephen Gorton and Stephan Reiff-Marganiec
Department of Computer Science, University of Leicester, Leicester, UK

{smg24,srm13}@le.ac.uk

Abstract

Service-oriented Architecture allows for reusable services
to be composed in such a way that business tasks or ac-
tivities are easily satisfied. However, currently there is a
lack of abstraction past the composition layer, and thus a
gap between the service and business domains. We pro-
pose a method for depicting end-user business processes,
that are further specified and refined by policies. Policies
describe information that the end-user can specify, such as
requirements, preferences and constraints. The result is a
technique for end-users or business analysts to use, rather
than software engineers.

1. Introduction

Service-oriented computing (SoC) enables the creation
of customised software in a dynamic environment based on
reusable services with well-defined interfaces available on
the Internet. Services can be composed to create applica-
tions, depending on the functionality of services available.
Whilst at the moment industrial use of SoC is often on an
intra-enterprise level, there is the prospect of many more
services being released and the emergence of a competitive
service marketplace, shifting the attention from service in-
frastructure to service management [1].

While services benefit from software engineering ad-
vantages, it is our firm belief that their potential can only
be reached if the the gap between the business domain and
the software domain can be bridged. Our hypothesis is
that services become more useful if there is some suitable
method, abstract from technological details, to specify re-
quirements which are then used by the system to discover
and compose services into an executable application that
satisfies the end-user’s original goal. Our vision is that a
user can enter a list of high-level rules that specify their
requirements in the form of process notation and policies.

We present two methods of specification: a process no-
tation specifying what task is executed when, and policies
to encode further information about the requirements and
constraints of the task. We have previously presented an

approach for the process notation [3] and for policies [2],
here we present the overall framework for specifying busi-
ness requirements for Web Services.

2. Background

Our motivation for this work is to enable the end-user
to have control over their software. This is based on work
in telecommunications, where the focus was to give users
control over their call settings using policies [6]. Here we
also consider business process requirements

Business modelling refers to the specification of busi-
ness processes and logic by business analysts (rather than
software system analysts). In the world of Web Ser-
vices, there are few options available for expressing these
business requirements. Composition technologies such as
BPEL can express sequence logic in service usage, but not
at the more abstract business level. Graphical notations
generally provide an intuitive method to define processes
by a sequence of activities or tasks – the most widely-
accepted universal process notation for business processes
is the Business Process Modelling Notation [5]. BPMN can
be used to model a BPEL process [10]. However, BPMN
is not meant to capture business rules. We note that BPMN
does not support the expression of non-functional business
requirements. Business process modelling is often seen as
an extension of workflow modelling, therefore some work-
flow languages are appropriate for modelling business pro-
cesses. Among several notations, YAWL [9] is a workflow
language that extends Petri nets to provide a powerful for-
mal language with defined syntax and semantics.

Notations in general lack the ability to express any in-
formation that is not graphical, e.g. “this task should be
completed in 2 days” or similar. Therefore we require a
particular capability of expressing this further information,
down to the sub-process (i.e. task or activity) level.

Policies are “information which can be used to mod-
ify the behaviour of a system” [4] without the need for
re-compiling or re-deploying. In essence, a system’s be-
haviour reacts to, or is constrained by policies. Policies are
loosely coupled with the system they interact with. In order
to maintain an effective IT environment, computer systems



must adapt to changing business requirements. Policies
have proven useful in evolving computing environments.
We refine the definition of policy from [7] in the context
of our Web Service management system as “a high level
statement as to how business requirements should be pro-
cessed in the management system”. Policies can be de-
fined from different viewpoints. For example, an organisa-
tion may have general usage policies over software whereas
project teams may have further policies specific to them,
and even further an individual who has their own policies.

We consider two particular types of policy: Event-
Condition-Action (ECA) rules and goals (ECAs without
triggering events). Each policy encodes information about
a particular business activity. These are well defined in the
APPEL policy definition language [8].

Policies may be applied to a variety of problems within
SoC. They are currently used for access control and to ex-
press reactive functionality. However, they have yet to be
applied to a business management framework. Our work
is aimed at developing a business policy framework for the
management of Web Services in the business domain. The
use of policies that we propose is orthogonal to a graphical
business modelling language. Each task within a task map
represents a unit of business activity that contributes to the
satisfaction of the wider business goal. Tasks are subjected
to external policy inputs, or global policies.

3. Graphical Notation

Our approach is based on a business goal that is satisfied
by a number of objectives, where each objective is fulfilled
by a set of tasks performed in a defined order. This process
is described using a simple graphical notation. Each task
is automatically matched to a Web Service, thus tasks can
be defined independent of prior service knowledge. Non-
functional attributes, overarching business constraints and
business rules are expressed as policies.

While policies can contain rich information, it is gener-
ally accepted that graphical notations can be easier to con-
struct, if the syntax is easy enough to use and remember.
Thus we use graphical notation to depict the order of execu-
tion and transfer of data between tasks, although the latter
aspect is not covered in this paper.

Our approach is based on a business goal that is sat-
isfied by a number of objectives; each objective is ful-
filled by a set of tasks performed in a defined order. Tasks
are automatically matched to Web Services, thus tasks can
be defined independent of prior service knowledge. Non-
functional attributes, overarching business constraints and
business rules are expressed as policies, see section 4.

A service is a computational entity that maps input data
to output data, respects certain non-functional properties,
might change a world condition and has a compensation

action. In Fig. 3 we show how a service maps to a task.
However, the mapping of tasks to services is included here
for completeness: the business user is not required to be
aware of this detail, as they work at the more abstract task
and policies level.

task
service

control data

control data

ext in error
data

dataerror

compensate side 
effect

Figure 1. Services map to Tasks.

A task map maps a set of control flows to a set of tasks.
Thus it depicts process order of task execution. It is defined
by a set of operators, a set of control flows, and a set of data
flows. We might also refer to “sub” maps, which essentially
are task maps, just that they form parts of other task maps.

An operator is a function on a control flow, with the abil-
ity to split and merge the flow as defined in this section. A
control flow is an execution sequence of entities and a data
flow is a route of data between tasks. Entities are ordered
in the task map showing their relative execution order.

fx.1 fx.2 fx.4 fx.5

fx

fx.3

(a) Flow Split.

fx

fx.1 fx.2 fx.4fx.3

n

(b) Conditional
Merge.

fx

fx.1 fx.2

test

(c) Flow
Junction.

p1tp.1 tp.2 tp.3

error

(d) Strict
Preference.

c1tc.1 tc.2 tc.3

error

(e) Random
Choice.

fx.1 fx.2 fx.4 fx.5

fx

fx.3

(f) Flow Merge.

Figure 2. Operators.

Our notation includes operators (Fig. 2) for splitting
control flow over many branches (a), synchronising two or
more flows into one (b), diverting control flow down one
one branch according to some test (c) and for merging more
than one flow where synchronisation is not an issue (f). The
strict preference operator (d) attempts tasks in a specific or-
der until one completes. The output flow is dependent on
the task that was completed. The random choice operator
(e) attempts a set of tasks simulaneously. When one task
completes or reaches a commit phase, all other tasks in the
set are cancelled. As with strict preference, the output flow
is dependent on the task that was completed.



Synchronisation between flows is only an issue when
two or more flows are active when they are to be merged. In
this case, a conditional merge operator can specify which of
the incoming flows are mandatory (i.e. have to complete) or
optional, plus a further option to specify how many flows
must complete (at least the number of mandatory flows)
before the control flow can continue.

4. Policy Framework

Our work is based on the APPEL policy description lan-
guage [8], which is allows expression of ECA rules and
goals. APPEL is a practical and comprehensive policy lan-
guage for the call control domain [8]. APPEL was chosen
because Web Services have many similarities to telecom-
munications features.

A basic APPEL policy defines a number of policy rules,
each of which specifies a set of triggers, a set of conditions
and a set of actions. The first two sets may be empty, but
the last cannot be, thus APPEL has the ability to express
ECA rules and user goals.

The policy itself has an owner and may be applied to a
user, a set of users or a domain (identified through email-
like addresses). Policies can specify modalities through the
preferences must, should and prefer, plus their negations.
No specification of preference would indicate that the user
was neutral about a subject.

An event can be defined as either a message being
passed in a system, a specified event triggers a policy. In
the context of Web Service management, we define simple
events to be: message events (which occur when a mes-
sage is sent or received), time events (which can be either
absolute, periodic or relative time events), change events
(occur when properties are changed either internally or ex-
ternally), service events (generated before a service is in-
voked or afterwards) and interaction events (occur when
a service operation returns a response). An absolute time
event is one where a prescribed time is reached and can be
specified with a standard XML timestamp object. A peri-
odic time event represents a regular period of time, with a
starting time and either duration or ending time. Relative
time events represent an absolute time that can be calcu-
lated according to some criteria, usually a start time and
duration. Complex events can be built from simple events
using event composition primitives (e.g. conjunction), re-
sulting in event (or trigger) groups.

Conditions are boolean values that must equate to true
for the policy to be triggered. An action is a step towards
fulfilling a business goal. In the context of Web Services,
an action may include the invocation of a service. Actions
may be atomic or composite. Action composition primi-
tives include and, or, andthen and else as defined by
the APPEL language.

Each task in a task map has requirements attached to it in
the form of a policy. Tasks are also subject to external pol-
icy inputs, which could influence the behaviour of the task
and potentially overrule any originally intended behaviour.
We allow external inputs to reflect different stakeholders in
a project. For example, a project team might build a soft-
ware application then submit it to the company’s software
director for approval. The director may see a function and
request that it is subject to change or further constraints.
There are similarities here with the Aspect-oriented pro-
gramming (AoP) paradigm.

In addition to task policies and external inputs, overar-
ching business constraints may be placed over entire task
maps through the use of global policies. These policies
may include preferences such as preferred suppliers and
core non-functional constraints (e.g. “we refuse to use ser-
vices originating from country X” or “we should not use a
service from an untrusted supplier”).

Policies and task maps are combined at runtime and dy-
namically bound to services to take a user to their required
applications. At design time, policies are defined along
with the task map. We note at this stage that much of the
functionality of the runtime engine is hypothetical and as-
sumed, as our main focus is on defining the requirements.

Discovery Engine

Mediator

Mediator Mediator Mediator Mediator Mediator Mediator

WS WS WSWS WS WS

Correctness

Conflict

Mediator

Full
Composition

services located and composed using UDDI, WSDL, etc. or equivalent

WS

Policies

Task Map Workflow

Skeleton 
Composition

Stubless
Composition

Figure 3. The process execution model

The policies and task map are processed in different
ways before being merged to create a full service com-
position. The task map is parsed and transformed into a
workflow document, to enable verifying correctness. Once
this has been achieved, the workflow can be transformed
into a composition script, such as BPEL, using stubs in
the place of service details. At the same time, policies are
checked against each other and all policy conflicts will be
resolved, either through negotiation or overruling. Policies
can then be passed to an intelligent discovery engine that
searches for services that satisfy each task. This engine will
require some form of semantic mediation between user-
defined data types and service-specified data types. With
details of each (composite) service, the stubs in the compo-
sition can be replaced and a full composition is generated.

Noting that tasks are atomic and should represent a sin-



gle unit of business activity, we presume that the discovery
engine can find a suitable service that will satisfy the re-
quirement. In the event that a service does not exist, the en-
gine may attempt to find or create composite services that
can perform the task. Obviously, we must assume that a
suitable amount of services already exist to be able to serve
our purposes.

5. Simple Example

To provide a simple example, we define a policy that in-
fluences the results of a task concerned with service access
– in this case that enough credit must be available before
the service access is granted (the XML closing tags have
been left of for brevity):

<policy name="servicecharge" owner="admin@service.com"
applies_to="everyone">

<preference>must
<policy_rule>
<trigger>access_attempt
<conditions>

<condition>
<parameter>UserType
<operator>eq
<value>PrePaid

<and>
<condition>
<parameter>credits
<operator>gt
<value>0

<action>authorise

This goal policy essentially states that if the user is a pre-
pay customer he must have credits before access is allowed.
Note that the modality is ”must”, therefore the policy must
always be enforced.

6. Conclusions and Further Work

We have noted that the modelling notations available for
expressing business processes are all lacking in some way.
Whilst some have the ability to express non-functional re-
quirements of activities, they lack formalisms. While oth-
ers have the latter, they lack other capabilities such as non-
functional requirements specification.

In this paper we have presented a framework for man-
aging business use of Web Services. This framework in-
cludes a graphical notation for depicting when activities,
called tasks, are executed. These tasks are individually de-
fined and their requirements are expressed in policies. Each
task has one main policy attached to it, but may be exposed
to overarching business constraints or external task inputs.
Policies are written by the end-users with the assistance of
a wizard, since we do not expect them to be able to use low-
level XML code. This work leverages recent results from
the telecommunication domain, where policies are already
used to specify rich context information for the end user.

We believe this work is of benefit to the management
community because it focusses on making the Service-
oriented Architecture (SoA) accessible to businesses by ab-
stracting away implementation details such as composition,
messaging and security. Using the presented method, the
business value of SoA is increased. While there is already a
coupling between Business Process Management and SoA,
none have attempted to enable them to work together in
such a dynamic way.

Our further work includes defining more formally the
structure of policies and task maps. We also plan to look
into how policies and task maps interact and work together
at design time. Finally, we also plan to define a mapping
between task maps and a suitable workflow language, as
assumed previously.

Acknowledgements

This work is funded by the IST-FET IST-2005-16004 project
SENSORIA (SE for Service-Oriented Overlay Computers).

References

[1] F. Casati, E. Shan, U. Dayal, and M.-C. Shan. Business-
oriented management of web services. CACM, 46(10):55–
60, 2003.

[2] S. Gorton and S. Reiff-Marganiec. Policy support for web
service business requirements. In LA-Web 2006, pages 199–
202. IEEE Proceedings, 2006.

[3] S. Gorton and S. Reiff-Marganiec. Towards a task-oriented,
policy-driven business requirements specification for web
services. In S. Dustdar, J. Fiadeiro, and A. P. Sheth, edi-
tors, BPM, LNCS, pages 465–470. Springer, 2006.

[4] E. Lupu and M. Sloman. Conflicts in policy-based dis-
tributed systems management. IEEE Trans. Software Eng.,
25(6):852–869, 1999.

[5] Object Management Group (OMG). Business Process Mod-
eling Notation (BPMN) Specification, Feb 2006.

[6] S. Reiff-Marganiec. Policies: Giving users control over
calls. In M. D. Ryan, J.-J. C. Meyer, and H.-D. Ehrich, edi-
tors, Objects, Agents, and Features, volume 2975 of LNCS,
pages 189–208. Springer, 2003.

[7] S. Reiff-Marganiec and K. J. Turner. Use of logic to describe
enhanced communications services. In D. Peled and M. Y.
Vardi, editors, FORTE, volume 2529 of LNC, pages 130–
145. Springer, 2002.

[8] S. Reiff-Marganiec, K. J. Turner, and L. Blair. APPEL: The
ACCENT policy environment/language. Technical Report
CSM-164, University of Stirling, Jun 2005.

[9] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL:
yet another workflow language. Inf. Syst., 30(4):245–275,
2005.

[10] S. A. White. Using BPMN to model a BPEL process.
BPTrends, 2005. http://www.bptrends.com, accessed on
15/03/06.


