
Policy Support for Business-oriented Web Service Management

Stephen Gorton and Stephan Reiff-Marganiec

Department of Computer Science
University of Leicester

University Road,
Leicester LE1 7RH

United Kingdom
Email: {smg24, srm13}@le.ac.uk

Abstract

Policies have been adopted for many reasons within
web services and Service-oriented Architecture in general.
However, while they are a favoured method of management,
this only occurs at the service level and in the software do-
main. Policies already exist in a narrow variety more fo-
cussed on service properties such as authorisation. Busi-
ness metrics are often overlooked when selecting a service
to satisfy a need and these are often different to metrics used
by the standard software engineer. As a significant number
of web services become available, more emphasis needs to
be placed on management of services in the business do-
main. The web service protocol stack provides only a hint
of business management techniques on top of any orchestra-
tion or composition mechanisms. In this paper, we propose
a policy framework that can be used to express business
requirements for web services, at a business level that is
more abstract than the current high-level composition and
orchestration technologies.

1. Introduction

The deployment of software as agile services available
on a network is the core idea behind the loosely-coupled,
open standards-based Service-oriented Architecture (SoA),
of which Web Services [1] is an implementation. Re-
search continues into this realm that contains technologies
for service discovery, description and composition. How-
ever, Casati et al [6] note that as a substantial number of
Web Services become available, so the attention shift will
be from service infrastructure to service management.

Often, the enterprise architectural level of web services
is regarded as a mangement layer, with technologies such as

BPEL1 providing a means to composition and orchestration
of composite services. However, this approach (and various
others, such as [5, 10, 15, 21, 22]) is based upon a techni-
cal perspective which is of little use in a business domain
where the primary user is a business analyst. It also as-
sumes that the underlying business process is pre-defined,
despite the fact that business needs include adaptation to
technological and political changes. It is exactly for those
reasons why management of web services should be from
a business perspective, focussing on the agility and adapt-
ability of services that can fulfil business requirements. In
addition, there is an increasing requirement to align IT ob-
jectives with business objectives. This need has been recog-
nised by industry and a recent report (“IBM has high hopes
for ’Next Big Thing’ in software”, Financial Times Online,
April 3, 2006) reported that IBM has doubled its business in
SoA and stated that “Things really rub on each other - it’s
[SoA] the intersection of technology and business”. Align-
ing these objectives cannot easily be done with low-level
XML code that refers to port types and composition views!

Services are useful, in that they hide implementation de-
tails from the invoking user. Business has little interest in
how a service performs its function, but rather that a service
does fulfil a need and does it with a certain degree of qual-
ity. We imagine that a business may also take little interest
in whether or not their software is an atomic or compos-
ite service, but rather that the resulting dynamic application
does not consume more resources than what was allocated
to it (e.g. financial cost and time).

Our approach is to use policies to manage services, in
terms of business requirements. Policies are defined in the
business domain and express what a service should do. In
addition, policies define sequences of events and responses
to specific activities. In [9], we presented a context in which

1http://www-128.ibm.com/developerworks/library/specification/ws-
bpel

1



policies are used. This paper describes policies in more de-
tail, including their structure and possible implementation
with APPEL [20], a policy environment/language designed
for the telecommunications environment. Although policies
themselves can be defined in low-level languages, they are
focussed more towards the business perspective and can be
created through the use of wizards.

In section 2, we give a general overview of SoA, together
with policies and their current uses. In section 3, we de-
scribe the adapted APPEL framework with respect to web
services. In section 4, we present an initial APPEL imple-
mentation for SoA, giving examples in section 5. Finally,
we conclude our research in section 6.

2. Background

SoA, and its implementation as Web Services, provides
an opportunity to achieve dynamic applications through au-
tomated discovery and composition of services. Services
are deployed and made available with well-defined inter-
faces, so that the implementation details are hidden. This
is suitable for the business domain, where the required per-
spective is a complete picture of the external quality of the
interactions, as perceived by the customers [6].

Policies are defined as “...information which can be used
to modify the behaviour of a system” [14], without the need
for re-compiling or re-deploying. Thus we consider poli-
cies as loosely coupled with the systems they interact with.
Furthermore, we refine the definition of a policy in the con-
text of our web service management system as “a high
level statement as to how business requirements should be
processed in the management system” (refined from [16]).
Policies may be applied to a variety of components within
SoA, but in particular they are currently used for access con-
trol rules and expressing reactive functionality.

The most accepted policy type to be implemented with
web services is the access control rule. Ponder [7] provides
a framework for specifying 3 types of policies. Authorisa-
tion policies can be either positive (allow) or negative (dis-
allow) and state whether a subject is allowed to perform
some form of activity. Obligation and refrain policies spec-
ify what actions must (forced) and must not be performed.
Delegation policies specify what other subject should have
certain privileges delegated to it from this policy. Parame-
ters can be passed to each policy rule, but the definitions of
activities are left to the policy implementation. These activ-
ities can only occur (or not occur depending on the policy
type) when the policy is invoked and conditions are satis-
fied.

Similarly to Ponder, KAoS policies [4] express con-
straints on allowable actions performed by subjects (either
agents or clients). These are represented using the Web On-

tology Language2 for use in the semantic web. Policies are
applied depending on the situation, which includes details
of history, state and current actions.

Rein [11] is another policy framework whose represen-
tation is ontology-based for use in the semantic web. How-
ever, rather than being based on a single ontology, every
policy in Rein has its own ontology, with the ability to im-
port other policy ontologies. Policies express constraints
over resources such as services and actions.

Rein is a decentralised, distributed framework for rep-
resenting and reasoning over policies in the semantic
web [11]. Policies use information from other policies and
web resources. Policies may be represented with differ-
ent ontologies, such that each policy can potentially have
its own ontology. Rein is a combination of Rei [12] and
N3 [3] (a human-readable syntax for RDF). While KAoS is
concerned with distributed system management and Ponder
specifies management policies for distributed object sys-
tems, Rei is a framework that integrates support for policy
specification, analysis and reasoning in pervasive applica-
tions. A more detailed comparison of KAoS, Ponder and
Rei can be found in [19].

The Web Services Policy Framework (WS-Policy)3 ex-
presses capabilities and constraints of a particular web ser-
vice, in conjunction with various other specifications such
as WS-PolicyAttachment4 and WS-ReliableMessaging5.
These specifications have service-specific applications in
the description and discovery layers of the web service
stack. Requirements are expressed as service requirements,
as opposed to business requirements.

The Web Services Policy Language (WSPL) [2] is a
strict subset of the XML Access Control Markup Language
(XACML)6. It is also an access control language based
on XML and supports various authorisation and allowance
policies. Again, policies of these types are applicable at the
service level, managing what can be done with a service
with what resources, or not.

In addition to access control situations, policies have also
been used for developing automated negotiations such as in
[13], where the authors highlight the potential of charging
a fee for web service usage and the resulting web service
marketplace. They note three market phases where the first
is matches functional properties to requirements, the second
is negotiating non-functional properties and the third is for-
malisation of agreements. Policies are used to specify for-
mal user preferences, through a framework which provides

2http://www.w3.org/TR/2004/REC-owl-features-20040210/
3http://www-128.ibm.com/developerworks/library/specification/ws-

polfram/
4http://www-128.ibm.com/developerworks/library/specification/ws-

polatt/
5http://www-128.ibm.com/developerworks/library/specification/ws-

rm/
6http://www.oasis-open.org/committees/xacml/



a generic ontology.
Thus we can see that policies are a popular approach for

many aspects of web services. Though despite the number
of uses, policies have yet to be applied to a business man-
agement framework. Our work is aimed at developing a
business policy framework for the management of web ser-
vices in the business domain.

The use of policies that we propose is orthogonal to a
graphical modelling language, such as the one presented in
[9] or UML activity diagrams. Each task within a task map
represents a unit of business activity that contributes to the
satisfaction of the wider business goal. Tasks are encoded
with policies and may be subjected to external policy inputs,
or global policies. The task map notation includes operators
that allow tasks to be carried out sequentially and in parallel,
whilst addressing synchronisation issues.

3. APPEL Policy Framework

3.1. Overview

Tonti et al [19] suggest that suitable policies and policy
frameworks should satisfy, in addition to domain-specific
requirements, the following general requirements:

• Expressiveness to deal with a wide range of applica-
tions;

• Simplicity to make it easy for authors to use;

• Enforceability to ensure that policies can map to im-
plementation mechanisms;

• Scalability to ensure adequate performance;

• Analyzability to allow for reasoning about policies.

APPEL was developed in conjunction with the ACCENT
project at the University of Stirling, to provide a practical
and comprehensive policy language for the call control do-
main [18]. APPEL is defined by an XML grammar, enabling
the use of many common tools and parsers. We believe that
this language not only satisfies the above general require-
ments, but is advantageous in that since web services have
many similarities to telecommunications features, we can
therefore apply similar cross-domain functionality.

Due to the nature of changing requirements, particularly
in the telecommunications domain with switchable features
such as call forwarding, it was important to have some con-
trol mechanism over call features in such a way that core
software did not need changing together with recompiling
and redeployment. Web services are similar in that we often
need to combine more than one together in order to achieve
the results we desire. One specific advantage of SoA is ser-
vice level reuse, where services are loosely coupled to their

clients and can be invoked many times over. In a similar
way, web services have the potential to satisfy our software
requirements through the use of composition when (atomic)
services are not able to individually. One should note at
this point that APPEL and other policy languages are policy
description languages (PDL), and policies are those docu-
ments borne out of implementing rules using a PDL.

3.2. APPEL Description

APPEL [18] is a generic policy description language de-
veloped for use in telecommunications through language
specialisation. More specifically, it is used to specify poli-
cies that govern call control with respect to call features
such as call forwarding and call barring. APPEL is defined
by an XML schema, although a wizard was created for the
initial implementation to increase expressive power in the
end user domain and allow non-software experts a simpler
method of defining their own policies.

A basic APPEL policy defines a number of policy rules,
each of which specifies a set of triggers, a set of conditions
and a set of actions. The first two sets may be empty, but the
last cannot be, thus APPEL has the ability to express ECA
rules and user goals.

The policy itself has an owner and may be applied to a
user, a set of users or a domain (identified through email-
like addresses). Policies can specify modalities through the
preferences must, should and prefer, plus their negations.
No specification of preference would indicate that the user
was neutral about a subject.

Policies are interpreted by a policy server, implying that
they have little use other than specification at the end user
point. Policy servers are able to link to policy stores that
contain information required for policy processing, such as
protocol to policy terminology mapping.

3.3. Extension Actions

We extend the initial implementation of APPEL by
introducing the following (informally described) actions:

• Prompt
Many service input parameters are required from the
user. Previously, the user would specify values through
the orchestration script. Now, since the management
system is automated and we know no information of
any service, we add a function that can prompt a user
for a specific data value, based on a simple descrip-
tion. The action prompt(String dataName)
asks the user for a value that refers to a parameter
named dataName. All data values are required at
the beginning of a task, i.e. before an action is invoked.



Corporate Space

Project Space

Service Space

TaskTaskTask

WSWSWS

Business Domain

Web Service Domain

WSWSWS
WSWSWS

WSWSWS

TaskTaskRule
TaskTaskRule

Tasks map to 
(composite) servicesComposition / 

Orchestration 
Mechanisms

Figure 1. Cross-domain system layout

• Display

Service results or responses will need to be used
in some form. The most obvious would be a
graphical output to the user. For example, if the
user were to request train times, then they would
need some method of seeing them. The action
display(Data data) displays service re-
sponse data, as either a list or a singular object.
The action display exception(Exception
exception) outputs exception messages to the
user, and the action display empty() outputs a
default message in the case of an empty response.

3.4. Management System Architecture

The purpose of our research can be shown in Fig. 1.
Most, if not all, current uses of policies in SoA are in the
service domain, rather than the business domain. In our
approach, policies are used to encode the details of tasks,
which themselves are located in coporate space, constrained
by individual task rules and overarching corporate rules.

Abstract Web Service Protocol Stack

APPEL

Composition (BPEL, etc.)

UDDI, USML, etc.

WSDL, WSCM, etc.

Messaging (HTTP, HTTPS, SOAP, etc.)

Wizards, Display Managers, etc.Presentation

Policy

Enterprise

Description

Transport

Discovery

Figure 2. Enhanced web service architecture

We propose an additional two tiers to the more tradi-
tional web service architecture (shown in Fig. 2, which in-
cludes messaging, discovery, description and composition).
On the top of the web service stack, we add a policy server
layer and then a user interface layer. In Fig. 3 (adapted from
[17]) , the bottom service layer represents the original web
service stack. This addition of layers is intuitive, since we
are concerned with increasing the level of abstraction to-
wards and into the business domain.

The policy server layer contains the policy management
systems, together with web service search and matching en-
gines. There may be repositories which can store persistent
policies as required by policy servers, who can also share
repositories. Many policy servers may exist, depending on
demand and processing ability. Other aspects, such as me-
diation and negotiation, can also be addressed in this layer.

The user interface layer allows business users to create
new policies and activate their business requirement model.
Due to the diversity of services that can exist, we must al-
low for a number of different interfaces, for example PDAs,
PCs, mobile phones and televisions. The interface should
include wizards to aid in the creation of policies as we do
not expect business users to be familiar with low-level code.
Wizards may be customised to their particular platform.

4. Language Specialisation for Web Services

4.1. Events

An event can be defined as either a message being passed
in a system (as in event-driven programming) or a change
of properties (as in telecommunications). A specified event
acts as a trigger to a policy. In the context of web service
management, we define simple events to be:

• Message events: occur when a message is sent or
received. A message can be modelled as a set



User Interface Layer

Policy Server
Layer

Service
Layer

Policy Server Policy Server Policy Server

Service Service Service Service Service Service Service

Web-based 
GUI

Policy Store Policy Store

Context

Figure 3. Policy architecture

{source, destination, description, data}, with the
source and destination identified by URIs, the descrip-
tion being meta-data for semantic markup and the data
section being the actual message passed.

• Time events: can be either absolute, periodic or
relative time events. An absolute time event is
one where a prescribed time is reached and can be
specified with a standard XML timestamp object.
A periodic time event represents a regular period
of time, with a starting time and either duration
or ending time. Duration is modelled by the set
{years,months, days, hours,minutes, seconds}
to comply with XML timestamp formats. Relative
time events represent an absolute time that can be
calculated according to some criteria, usually a start
time and duration. These are modelled by the set
{initialT ime, duration}, with the former element
a timestamp and the latter the previously mentioned
duration object.

• Change events: occur when properties are changed
either internally or externally. A change can be to
one or more property, and can reflect that a property
has changed, or changed to a specific value. The set
{source, Prop, V al} describes a change, instigated
by the source, in terms of the properties in ques-
tion and the prescribed values, such that Prop

def=
{p1, ..., pn}, V al

def= {v1, ..., vn} and ∀x ∈ {1, ..., n}
px takes value vx. The source and properties are iden-
tified by URIs.

• Service events: are generated before a service is in-
voked or afterwards (potentially before or after a re-
sponse is received). These events are based on the
afore-mentioned message events.

• Interaction events: occur depending on what type of
service operation has been invoked. If the operation
returns a response, a call event is generated after re-
ceiving the reply. If the operation does not return a
response, then a signal event is generated on invoca-
tion.

Complex events can be built from simple events using
event composition primitives (e.g. conjunction), resulting
in event (or trigger) groups.

4.2. Conditions

Conditions are boolean values that must equate to true
when the policy is triggered in order for the action section
to be invoked. It is either a simple parameter value check or
a condition group using condition composition primitives.
Parameter values may be subject to operators such as >,≥
, < or ≤. Parameters are generally local variables that may
declared in the policy, or the wider policy system.

4.3. Actions

An action is a step towards fulfilling a business goal. In
the context of web services, an action may include the in-
vocation of a service. Actions may be atomic or composite



(action group) through the use of action composition prim-
itives. These primitives include and, or, andthen and
else as defined by the APPEL language.

5. Example Usage

5.1. Telecommunications Scenario

We present a simple scenario where a company director
named John wishes to call his wife Mary with his mobile
phone. He asks his personal assistant Fiona to set up the
call although Fiona only knows Mary’s email address. This
scenario makes use of two services. Firstly, a service to map
email addresses to telephone numbers. Secondly, a service
to create phone calls between two endpoints. The simple
task map is shown in Fig. 4.

tasklookup

taskbeginCall

start

end

Figure 4. Telecommunications scenario task
map.

The policy is structured with preamble, including prefer-
ence, followed by a set of policy rules, which each consist
of a set of triggers, a set of conditions and a set of actions.
The attribute owner is the author, identified with a URI
normally, but simplified in this case. In this case, Fiona is
the policy author, whereas the policy itself applies to John.
We attach the preference should to allow other policies
with stronger preference to overrule it (e.g. perhaps John
has gone over his personal call allowance and an automated
system puts a stop to any further calls). The preamble is
expressed as follows:

<policy name=’’policyOne’’
owner=’’fiona’’ applies_to’’john’’
id=’’Telephone Recipient from Email Address’’
enabled=’’true’’ changed=’’2006-05-15T12:25:23’’>

<preference>should</preference>

<policy_rule>

The policy rule is then described as a sequence of the
component triggers, conditions and actions. In our example,
Fiona has specifed two triggers for the policy. Firstly, John
may invoke the policy by sending a start message to the
management system. The <message> tag indicates that

a message is received and its <data> node indicates what
the message was. Secondly, should John forget to phone
his wife, the system will automatically start the process at
5pm on the same day. Should the policy be enabled after
5pm, the only trigger left would be John’s start message.
The triggers are expressed as follows:

<triggers>
<or />
<trigger>
<message>
<source>john</source>
<data>start</data>

</message>
</trigger>
<trigger>
<parameter>localTime</parameter>
<value>2006-05-18T17:00:00</value>

</trigger>
</triggers>

Following the triggers, the set of conditions, under which
actions may be executed, are described. In this case, Fiona
has attached two conditions to the policy rule. Both con-
ditions must be satisfied before the actions can commence
and this is specified through the <and /> tag. The first
condition specifies that the phone call cannot be until after
3:30pm (perhaps Mary is picking up children from school).
Thus the phone call must happen between 3:30pm and 5pm.
Secondly, the call cannot start if John is already on the
phone, expressed through the local variable callStatus.
Conditions are expressed as follows:

<conditions>
<and />
<condition>
<parameter>localTime</parameter>
<operator>gt</operator>
<value>2006:05:18T15:30:00</value>

</condition>
<not />
<condition>
<parameter>callStatus</parameter>
<operator>eq</operator>
<value>engaged</value>

</condition>
</condition>

Finally, the actions of the policy rule are described. This
section specifies two actions upon successful commence-
ment, with the second action occurring on completion of
the first, as denoted by the <andthen /> tag.

<actions>
<andthen />
<action arg1=’’mary@johnandmary.home.com’’>
<serviceType>
<domain>Lookup</domain>
<subDomain>Telephone Directory</subdomain>

</serviceType>
<functionality>
<input name=’’from’’>from(arg1)</input>
<postConditions>
<postCond>
<output>
<type>integer</type>

</output>



</postCond>
</postConditions>
<output type=’’integer’’>

copy_to(policyTwo:arg1)
</output>

</functionality>
<qualities>

<quality>
<parameter>price</parameter>
<operator>leq</operator>
<value>0</value>

</quality>
<quality>

<parameter>availability</parameter>
<operator>eq</operator>
<value>now</value>

</quality>
</qualities>

</action>

The first action includes one input argument, which is
Mary’s email address. For added simplicity, we assume that
she has one email address and one telephone number. Fiona
wants to invoke a service to search for a telephone number
so she specifies that the service should be in the “lookup”
domain and also the “telephone directory” subdomain. The
functionality is described as providing one output from pro-
viding one input, known as “from”. When the output is
received, it is copied to the input argument of policyTwo.
In order to ensure the policy can be completed immediately,
Fiona states that the service should be immediately avail-
able. Futhermore, it should cost nothing, or provide some
form of credit (if perhaps this was possible!). The second
action generates a system message that is passed to the sec-
ond task in order to activate it:

<action>
<message>

<source>this</source>
<destination>this:policyTwo</destination>
<description />
<data>start</data>

</message>
</action>

</actions>
</policyrule>

</policy>

The second policy has similar preamble to the previous,
and states that the only event that will trigger it is the re-
ceiving of a message from policyOne.

<policy name=’’policyTwo’’
owner=’’fiona’’ applies_to’’john’’
id=’’Telephone Recipient from Email Address part 2’’
enabled=’’true’’ changed=’’2006-05-15T12:25:23’’>
<preference>should</preference>
<policy_rule>
<trigger>

<message>
<source>policyOne</source>
<data>start</data>

</message>
</trigger>

The second policy requires two input parameters: the first
is received from another source (in this case policyOne) and
the second is the source telephone number, as previously

specified by Fiona. This way, the system knows both end-
points of the telephone call to set up. Fiona states what type
of service is required, and the policy inputs are mapped to
the service inputs.

<action arg1=’’receive()’’
arg2=’’0116 222 1234’’>

<serviceType>
<domain>Telephone</domain>
<subDomain>Create Call</subdomain>

</serviceType>
<functionality>
<inputs>
<input name=’’from’’>from(arg2)</input>
<input name=’’to’’>to(arg1)</input>

</inputs>
</functionality>

Further to the functionality required, some qualitative as-
pects are included to specify that the price of using the ser-
vice should be less than 1 unit of local currency (e.g. GBP)
and that the service should be available immediately.

<qualities>
<quality>
<parameter>price</parameter>
<operator>leq</operator>
<value>1</value>

</quality>
<quality>
<parameter>availability</parameter>
<operator>eq</operator>
<value>now</value>

</quality>
</qualities>

</action>
</policyrule>

</policy>

Thus the scenario that generates a telephone call between
two endpoints, knowing only the source telephone number
and the destination email address, can be achieved in two
tasks, encoded by two policies.

5.2. Train Enquiry Scenario

We consider now a second scenario in which a person
requires prices for a particular train journey. There is only
one task involved so we do not include a task map. The
policy begins with typical preamble.

<policy owner=’’stephen@mcs.le.ac.uk’’
applies_to=’’@mcs.le.ac.uk’’
id=’’Query for cheapest train ticket (UK)’’
enabled=’’true’’
changed=’’2006-05-08T15:51:00’’>
<preference>must</preference>
<policy_rule>

The policy was written by the user
smg24@mcs.le.ac.uk and is available for anyone
in the mcs.le.ac.uk domain. The policy is active and
is triggered when a system start message is received.
Since no source is defined, the message could come from
anywhere. However, one limitation of the policy is that a



user can only invoke it if a local variable that keeps track of
the local country has value “UK”.

<trigger>
<message>
<data>start</data>

</message>
</trigger>
<condition>

<parameter>location</location>
<operator>eq</operator>
<value>UK</value>

<condition>

The action section specifies a set of input arguments that
must be obtained from the user through the extended
promptUser() function. The purpose for each param-
eter should be intuitive from the names.

<action arg1=’’promptUser(Departure Station)’’
arg2=’’promptUser(Arrival Station)’’
arg3=’’promptUser(Date of Travel)’’
arg4=’’promptUser(Fast or Cheap)’’
arg5=’’promptUser(Railcard)’’>

The policy requires the use of a service that should be listed
under the domain “Travel” and the subdomain “Ticket”.
The service is invoked at the end of the action section, with
defined functionality and quality as necesary parameters.

<serviceType>
<domain>Travel</domain>
<subDomain>Ticket Vendor</subdomain>

</serviceType>

Functionality is defined according the the inputs, which
will require some form of mediation to match user given
values to service input values. Mediation ensures that the
user-given values are semantically-compatible with service
required inputs, and furthermore applies any appropriate
transformation to data values to ensure syntactic compati-
bility. Presuming that the inputs are correct, no precondi-
tions or assumptions are specified.

<functionality>
<inputs>

<input name=’’from’’>
from(arg1)

</input>
<input name=’’to’’>

to(arg2)
</input>
<input name=’’date’’>

date(arg3)
</input>
<input name=’’preference’’>

preference(arg4)
</input>
<input name=’’railcard’’>

railcard(arg5)
</input>

</inputs>

The outputs should only be in two forms: firstly a list ob-
ject and secondly an empty object, where the former can
contain one or more sub-objects. Depending on the output
type, the object is passed to a respective display() or
display empty() function.

<postConditions>
<postCond>
<output>
<or />
<type>list</type>
<type>empty</type>

</output>
</postCond>

</postConditions>
<outputs>
<output type=’’list’’>
display(this)

</output>
<output type=’’empty’’>
display_empty()

</output>
</outputs>
<exceptions>
<exception name=’’default’’>
display_exception(this)

</exception>
</exceptions>

Exceptions are addressed in a generic sense, i.e. if any ex-
ception occurs, the function display error() is called.
Any negative side effects (i.e. those that impose financial
penalties) are disallowed while any bonus side effects (i.e.
any that offer rewards) are allowed.

The side effects considered are bonuses which are al-
lowed and penalities which are not allowed.

<sideEffects>
<sideEffect>
<penalty>
<type>default</type>
<permission>disallow</permission>

</penalty>
<bonus>
<type>default</type>
<permission>allow</permission>

</bonus>
</sideEffects>

</functionality>

In terms of quality, the policy states that the price of using
the service should be free (or offer a financial bonus indi-
cating a negative cost). Additionally, the service should be
available immediately upon policy activation.

<qualities>
<quality>
<parameter>price</parameter>
<operator>leq</operator>
<value>0</value>

</quality>
<quality>
<parameter>availability</parameter>
<operator>eq</operator>
<value>now</value>

</quality>
</qualities>

</action>

Now, upon specification of functional and non-functional
requirements, the policy is complete.

6. Conclusion

Policies are already in use for a wide variety of applic-
tions, specific to the management of distributed systems.



Futhermore, policies are often used in SoA to define ac-
cess control constraints on services. We have presented an
event-condition-action policy framework, derived from the
APPEL policy language, to lift policies from the service do-
main into the business domain.

Our work is novel in that policies are used only in the
service domain thus far, rather than in the business domain.
The latter domain requires more of a business perspective
and the input of business metrics, such as quality. It also
requires agility in order to continually align corporate IT
systems with key business objectives.

We have presented two scenarios in which policies have
been defined and explained to the reader. We envisage that
business users will not create policies using such low level
code without assistance. Therefore we need to introduce
wizards to simplify this process.

We have concentrated on the policy description language
here, but the framework includes an architecture that allows
for policies to be used in the selection of suitable services
and also to govern service execution.

The gain achieved by our work is that policies are a pow-
erful and flexible means of management in the face of dy-
namic environments, such as service composition. While
services may change through updates, removals, etc., poli-
cies can continue to express the constraints as required by
the end user. Therefore, the potentially long process of dis-
covering and composing the “ideal” service for a require-
ment is significantly reduced. APPEL, although a generic
policy framework, can be specialised to the service domain,
as it was with telecommunications. It allows us to express
a range of policies such as goals and ECAs, whilst using
XML as a widely-accepted interchange format.

Our further work involves improving the language spe-
cialisation for APPEL by defining more accurately the ex-
tended functions as previously described. We also plan to
add operational semantics to the language in an effort to
formalise it further. Finally, in conjunction with a business
modelling notation, we will look to integrate a system that
combines graphical modelling with underlying policies.

Acknowledgements

This work is funded by the IST-FET IST-2005-16004
project SENSORIA (Software Engineering for Service-
Oriented Overlay Computers).

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraiu. Web Ser-
vices: Concepts, Architectures and Applications. Springer,
2004.

[2] A. H. Anderson. An introduction to the web services policy
language (wspl). In POLICY, pages 189–192. IEEE Com-
puter Society, 2004.

[3] T. Berners-Lee. Notation 3.
http://www.w3.org/DesignIssues/Notation3.html, 1998.
accessed on 24-May-2006.

[4] J. M. Bradshaw, A. Uszok, R. Jeffers, N. Suri, P. J. Hayes,
M. H. Burstein, A. Acquisti, B. Benyo, M. R. Breedy, M. M.
Carvalho, D. J. Diller, M. Johnson, S. Kulkarni, J. Lott,
M. Sierhuis, and R. van Hoof. Representation and reason-
ing for daml-based policy and domain services in kaos and
nomads. In AAMAS, pages 835–842. ACM, 2003.

[5] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specifi-
cation: a new approach to design and analysis of e-service
composition. In WWW, pages 403–410, 2003.

[6] F. Casati, E. Shan, U. Dayal, and M.-C. Shan. Business-
oriented management of web services. Commun. ACM,
46(10):55–60, 2003.

[7] N. Dulay, N. Damianou, E. Lupu, and M. Sloman. A pol-
icy language for the management of distributed agents. In
M. Wooldridge, G. Weiß, and P. Ciancarini, editors, AOSE,
volume 2222 of Lecture Notes in Computer Science, pages
84–100. Springer, 2001.

[8] D. Fensel, K. P. Sycara, and J. Mylopoulos, editors. The
Semantic Web - ISWC 2003, Second International Semantic
Web Conference, Sanibel Island, FL, USA, October 20-23,
2003, Proceedings, volume 2870 of Lecture Notes in Com-
puter Science. Springer, 2003.

[9] S. Gorton and S. Reiff-Marganiec. Towards a task-oriented,
policy-driven business requirements specification for web
services. In S. Dustdar, J. Fiadeiro, and A. P. Sheth, ed-
itors, BPM, Lecture Notes in Computer Science. Springer,
2006. To appear.

[10] IBM. Web service flow language 1.0,
May 2001. accessed at http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
on 23-May-06.

[11] L. Kagal and T. Berners-Lee. Rein: Where policies meet
rules in the semantic web. Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, USA, 2003.

[12] L. Kagal, T. W. Finin, and A. Joshi. A policy based approach
to security for the semantic web. In Fensel et al. [8], pages
402–418.

[13] S. Lamparter and S. Agarwal. Specification of policies
for automatic negotiations of web services. In L. Kagal,
T. Finin, and J. Hendler, editors, SWPW, 2005.

[14] E. Lupu and M. Sloman. Conflicts in policy-based dis-
tributed systems management. IEEE Trans. Software Eng.,
25(6):852–869, 1999.

[15] S. A. McIlraith and T. C. Son. Adapting golog for composi-
tion of semantic web services. In D. Fensel, F. Giunchiglia,
D. L. McGuinness, and M.-A. Williams, editors, KR, pages
482–496. Morgan Kaufmann, 2002.

[16] S. Reiff-Marganiec and K. J. Turner. Use of logic to de-
scribe enhanced communications services. In D. Peled and
M. Y. Vardi, editors, FORTE, volume 2529 of Lecture Notes
in Computer Science, pages 130–145. Springer, 2002.



[17] S. Reiff-Marganiec and K. J. Turner. A policy architecture
for enhancing and controlling features. In D. Amyot and
L. Logrippo, editors, FIW, pages 239–246. IOS Press, 2003.

[18] S. Reiff-Marganiec, K. J. Turner, and L. Blair. APPEL: The
ACCENT policy environment/language. Technical Report
CSM-164, University of Stirling, Jun 2005.

[19] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri,
and A. Uszok. Semantic web languages for policy represen-
tation and reasoning: A comparison of kaos, rei, and ponder.
In Fensel et al. [8], pages 419–437.

[20] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray,
P. Perry, and J. Ireland. Policy support for call control. Com-
puter Standards and Interfaces, August 2005.

[21] W3C. Web service choreography interface 1.0, Aug 2002.
accessed at http://www.w3.org/TR/wsci/ on 23-May-06.

[22] J. Yang and M. P. Papazoglou. Web component: A substrate
for web service reuse and composition. In A. B. Pidduck,
J. Mylopoulos, C. C. Woo, and M. T. Özsu, editors, CAiSE,
volume 2348 of Lecture Notes in Computer Science, pages
21–36. Springer, 2002.


