
Efficient Data Processing for large-scale Cloud Services

Marcel Tilly
European Microsoft Innovation Center

Aachen, Germany
Email: marcel.tilly@microsoft.com

Stephan Reiff-Marganiec
University of Leicester

Leicester, UK
Email: srm13@le.ac.uk

Helge Janicke
De Montfort University

Leicester, UK
Email: heljanic@dmu.ac.uk

Abstract—The cloud concept and its implementations are
gaining in importance for systems that connect evermore new
devices which in turn require communication with each other.
In scenarios where we can find large numbers of data providers
on one side and data consumers on the other side, such
as in the Internet of Things, large scale sensor networks,
machine to machine communication or even in social media,
one emerging requirement is to process, procure, and provide
information efficiently and with almost zero latency. This work
is introducing new concepts to describe the flow of data to and
from sources to cloud services in a formal way by limiting
information flow with filtering concepts and combining data
processing techniques adopted from complex event processing.

Keywords-data filtering; policies; near-zero latency;

I. INTRODUCTION

The cloud is an emerging technology that has significant
growth and popularity over the last few years. Nowadays, the
number of available services is increasing dramatically and
the border between data and services is vanishing. Besides
the classical static web pages there are also services and
other data sources, such as sensors or phones. The term
“Internet of Things” was coined, meaning that more and
more data sources and services will be available in the
future to provide a variety and broad set of new information,
such as environmental information, geo location or social
interactions. The cloud offers capabilities to support large-
scale systems in terms of collecting data from all these
various data sources and enabling the processing of that data.
Data sources can be everything, such as smart phones, tablet
PCs, sensors, cars etc. The cloud does not limit us to any
specific type of data source. Thus, the cloud helps to provide
a new set of services where we have on one side data sources
and on the other side data sinks and in between a service
in the cloud which is able to process these data in a very
efficient way. Several aspects need to be discussed, analyzed
and solved:

1) Data provided by all data sources: How to formally
describe data and frequency of data send to the cloud
service and to ensure balance between data accuracy
and bandwidth.

2) Real-time reasoning over data: How to enable the
cloud service to enable reasoning over data with

almost zero-latency? This question is related to the
issue about how fast and with which technology can
the cloud service process data.

The interaction of data source (provider) and the cloud
service is traditionally a push-model since the providers are
sending actively data to the cloud. This is the first step
towards faster processing of data in terms of providing
results with low-latency. If the services are continuously
pushing data to a cloud service there is a vast amount of
overhead by unnecessarily transferring data – a waste of
bandwidth. The cloud service knows about when it needs
updated data and the provider knows about their context.
Thus, the cloud service informs the provider under which
changing situation (when) the providers should inform the
data provider about the change of properties (what). What
and when can be expressed with policy obligations which
are injected into the providers. Thus, each provider will be
responsible to make the projection from its own fine-grained,
raw data to some more high-level, complex data the selector
is interested in.

In this paper we provide an approach to overcome the
problem of procurement, processing and provision of infor-
mation in real-time in combination with optimizing the data
traffic. We consider the use of complex event processing
to enable a real-time view of service properties a fast and
accurate view of their values in the cloud. Initial ideas from
[19] are refined in this paper, and we add a formal syntax
definition as a projection of the policy obligation injected
on the providers. The novel contributions of the paper are
(1) an architecture, data model and selection process to put
the above into practice, and (2) a clear and well founded
definition of policy obligations expressed at an abstract XML
level as well as formally through ITL. Our approach can be
realized as a cloud service and integrated with existing data
sources. Section II presents a motivating example, enforc-
ing the need for the mechanisms presented, while section
III provides some essential background work. Section IV
represents the core of the paper where we introduce the
architecture and a formal description of the policy-based
filtering approach based on temporal projection. Section VII
points to some related work while section VIII concludes
the paper and provides an outlook to further work.



II. MOTIVATING EXAMPLE

We introduce an example of social network management
system to motivate our approach. The approach is not limited
to this scenario and can be applied in a wide variety of
applications where cloud services are matching a large set
of potential consumer to providers, such as sensor network
or logistics [19] , e.g.

1) Traffic sensor networks to monitor vehicle traffic on
highways or in congested parts of a city.

2) Parking lot sensor networks to determine which spots
are occupied and which are free.

3) Geo tracking of vehicles to support optimized routing
of deliverables.

4) In fleet management, like taxi companies, to find a
free taxi which is close by

In our example we are connecting virtual friends in real-
life. Users of a social networks can provide their location
information via a smart phone or tablet PC. Correlating this
information with social network data, such as friends and
their position, a service can send a notification back to the
phone whenever one of the friends is close-by so that the
user can meet his friend in real life. To do so, the user
has to provide is geo position and information about his
social network, his friends, to a service. In this scenario
we have two types of data: (1) location data which is time
dependent and might change frequently and (2) social data
which can be considered static. The location data needs to
be sent regularly to the cloud and might cause a lot of data
traffic if we consider a large number of users. Assume there
are Bob, Alice, Chris and Dave and they are all part of the
same social network (see Figure 1). Alice is a friend of Dave,
Chris and Bob, and Dave and Bob are also friends. While
Bob is sitting at home, Alice is traveling with the metro
from A to B, Dave is going by car from C to D, and Chris
is in a rush and drives from E to F. Since Bob’s geo position
is almost static he only needs to provide his position once.
In contrast, Alice, Chris and Dave are moving and hence
need to provide frequent updates of their geo positions. The
cloud service itself collects and processes all data. In case
there is a match the service can inform the users. So that
for example Alice and Dave can be informed at time t and
position X that they are close to each other so that they
can take this chance to talk to each other face to face. Since
Chris is in a hurry, he has no time to meet and talk to one of
his friends, he has set his availability to false. Although he
could meet Alice as well in Y, his device should not provide
any position data since there is no time anyway. The service
would not propose that Chris and Dave should meet in Z
because they are not friends.

This scenario shows (1) how different kind of properties
(here: availability and geo location), (2) properties of dif-
ferent services (here: geo position and social network) are
used to match user data, and (3) that users have to pro-

Alice Bob 

Chris 
Dave 

A 

B E 

F 

C 

D 

X 

Commute Relation 

Dave 

Alice 

Bob Chris 

Y 
Z 

Figure 1. Friend-Near-by Sample

actively inform the service about their location to enable fast
and reliable responses to customer requests. Thus, it makes
sense to have a rule running on the device which defines
which data should be used (event), when data should be sent
(condition) and what data should be send (action). While
each specific rule is very specific to a scenario, they help to
balance between optimizing data traffic and data accuracy in
a cloud system (and actually in terms of privacy it is even
better to keep less).

Furthermore, the geo location is data which changes
rapidly and it does not make sense to store all data because
it is only short-lived and hence only the current values are
relevant when a service has to be selected.

III. BACKGROUND

This section introduces the basic ideas and formal descrip-
tions which we combine to improve processing of data in
real-time. As we formally model the temporal abstraction,
we will also provide a short introduction to interval temporal
logic.

In this work the policies are modeled using the well-
understood Event-Condition-Action paradigm [8], [21], [22].
The novelty of the policies is that they use temporal con-
ditions that describe the distance between two consecutive
actions that push data to aggregating services and to correlate
different data streams in the cloud by using the same
paradigm. Informally a policy is a set of rules of the
following structure:

<Policy> <!-- send to Service -->
<Rule>
<Target>...</Target>
<Event>...</Event>
<Condition>...</Condition>
<Action>...</Action>

</Rule>
<Rule> ... </Rule>

</Policy>



Expressions
e ::= µ | a | A | g(e1, . . . , en) | ©v | fin v

Formulae
f ::= p(e1, . . . , en) | ¬ f | f1 ∧ f2 | ∀v q f |

skip | f1 ; f2 | f1∆f2

Figure 2. Syntax of ITL

. . . . . .
σ0 σk σ|σ|

f1 f2

Figure 3. Informal Semantics of f1 ; f2

The <Target> of a rule is a list of services on which
the <Action> of the rule is invoked if the rule is triggered.
The <Event> of a rule is a event descriptor that determines
when the <Condition> of the rule is evaluated. The
descriptor is a predicate build from primitive events (e.g.
a GPS-Update) that are domain dependent and defined in
the service description. Conceptually the event descriptor
describes an abstraction of the event trace over which the
<Condition> is evaluated. The <Condition> describes
the distance between events that are communicated down-
stream to aggregating services as a temporal formula. The
syntax that is used is an XML representation of Interval
Temporal Logic formulae that is described in III-A

A. ITL

The key notion of ITL [3] is an interval. An interval σ is
considered to be a (in)finite sequence of states σ0, σ1 . . .,
where a state σi is a mapping from the set of variables
Var to the set of values Val . The length |σ| of an interval
σ0 . . . σn is equal to n (one less than the number of states
in the interval, so a one state interval has length 0).

The syntax of ITL is defined in Figure 2 where µ is a
constant value, a is a static variable (does not change within
an interval), A is a state variable (can change within an
interval), v a static or state variable, g is a function symbol
and p is a predicate symbol. The syntax is based on [3],
however uses the projection operator f1∆f2 as primitive and
derives the operator f∗ as introduced in [14].

The informal semantics of the most interesting constructs
are as follows:

• skip: unit interval (length 1, i.e., an interval of two
states).

• f1 ;f2: (“chop”) holds if the interval can be decomposed
(“chopped”) into a prefix and suffix interval, such that
f1 holds over the prefix and f2 over the suffix, or if
the interval is infinite and f1 holds for that interval.
Note the last state of the interval over which f1 holds
is shared with the interval over which f2 holds. This is
illustrated in Figure 3.

• f1∆f2: (“projection”) is defined to be true on an inter-
val σ iff two conditions are met. First, the formula f2
must be true on some interval σ′ obtained by projecting
some states from σ. Second, the formula f1 must be
true on each of the subintervals of σ bridging the gaps
between the projected states.
An example is depicted in Figure 4.

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

K = 0 1 2 3 4 5 6 7 8

σ′
0 σ′

1 σ′
2 σ′

3 σ′
4

K = 0 2 4 6 8

len 2 len 2 len 2 len 2

K gets K + 2

Figure 4. Example of Temporal Projection

In the interval σ the value of K increases from 0 to 8 in
steps of one. The interval σ satisfies (len(2))∆(K gets
K + 2). (len(2)) is true if the interval is of length two
and (K gets K + 2) is true if the K increases by
2 from state to state. The gaps between the projected
states (highlighted in red) are bridged by the formula
len(2). The formal definition of this operator is given
in [14].

• ©v: value of v in the next state when evaluated on an
interval of length at least one, otherwise an arbitrary
value.

• fin v: value of v in the final state when evaluated on a
finite interval, otherwise an arbitrary value.

1) Derived Constructs.: The following lists some of the
derived constructs used in the remainder of this paper. The
binary operators ∨ (or) and ⊃ (implication) are derived as
usual.
©f =̂ skip ; f (read “next f”), means that f holds from

the next state. Example: ©(X = 1): Any interval such
that the value of X in the second state is 1 and the
length of that interval is at least 1.

more =̂ ©true means the non-empty interval, i.e., any
interval of length at least one.

empty =̂ ¬more means the empty interval, i.e., any in-
terval of length zero (just one state).

inf =̂ true ; false means the infinite interval, i.e., any
interval of infinite length.

finite =̂ ¬ inf means the finite interval, i.e., any interval
of finite length.

3f =̂ finite ; f (read “sometimes f”), i.e., any interval
such that f holds over a suffix of that interval. Ex-
ample: 3X 6= 1: Any interval such that there exists a
state in which X is not equal to 1.

2f =̂ ¬3¬ f (read “always f”), i.e., any interval such



. . . . . . . . . . . .
σ0 σi σj σk σ|σ|

f f f

Figure 5. Informal Semantics of f∗

that f holds for all suffixes of that interval. Example:
2(X = 1): Any interval such that the value of X is
equal to 1 in all states of that interval.

fin f =̂ 2(empty ⊃ f) defines the final state, i.e., any
interval such that f holds in the final state of that
interval.

halt f =̂ 2(empty ≡ f) terminate the interval when f

holds.
∃v r f =̂ ¬∀v r ¬ f existential quantification.

len(e) =̂


false if e < 0

empty if e = 0

skip ; len(e− 1) if e > 0

holds if the inter-

val length is e.

v gets e =̂ 2(more ⊃ (©v) = e) gets, i.e., in every
state except the initial state the variable v will be
assigned the value of e evaluated in the previous state.

f∗ =̂ f∆true (read “f chopstar”) holds if the interval is
decomposable into a finite number of intervals such
that for each of them f holds, or the interval is infinite
and can be decomposed into an infinite number of
finite intervals for which f holds. This is illustrated
in Figure 5.

IV. ARCHITECTURE

It is quite challenging to obtain an accurate view of data
coming from a huge number of different sources (here:
providers). We can define a need for an concept deliver-
ing responses with low latency based on dynamic service
properties at any time to users from huge lists of providers.

Basically, we propose to extend the publisher and sub-
scribe pattern with an mediator service in the cloud which
consumes data (in form of events) and produces rich results
to the subscriber (Figure 6). By running the mediation
service in the cloud the approaches benefits automatically
from elastic scaling capabilities of the cloud infrastructure.

Our approach can be adopted easily as it only requires
the addition of two interfaces:

1) The publisher endpoint is exposed on the service side
to which the consumer can register or subscribe to
events

2) the subscriber endpoint is exposed by the cloud service
to enable the services to fire events in a fire and forget
fashion (see Figure 6).

The publisher interface which enables the registry to
subscribe to a set of dynamic properties provides two

Publisher Mediator Subscriber

subscribe(...)

notify(...)

injectPolicy(...)

notify(...)

Figure 6. Mediation Pattern

operations:

injectPolicy(policyObligation) : Id

1) policyObligation: the policy obligation describes the
topic to be subscribed to, the refresh interval, and the
state changes which trigger event notification.

2) Id: Unique registration id for the subscription

unsubscribe(Id)

1) Id: Unique registration id
The mediator interfaces enables subscriber to get specific

notifications.This is following the classical pub-sub pattern:

subscribe(topic) : Id

and
unsubscribe(Id)

The mediator and the subscriber are able to receive events.
They offer the following interface:

notify(Event)

An Event is a tuple of values event = 〈se, ts, te, p〉 ,
containing the service endpoint address se, time information
ts and te, and the payload p. The time information defines
the valid start time ts and end time te of the event and
the payload is defined by the type of the subscribed topic.
For example the GeoLocation could be defined as record
with Longitude and Latitude, both of the XML schema type
xs:int.

As described in [15] processing of streaming data is
an important practical problem that arises in time-sensitive
applications where the data must be analyzed as soon as they
arrive, or where the large volume of incoming data makes
storing all data for future analysis impossible.

As a central instance we use a Mediator (see Figure 7)
running in the cloud. This Mediator encapsulates the pro-
cessing of the incoming request from the subscriber side and
the incoming events from the provider side. The Mediator is
a service and exposed operations (methods) map internally
to specific queries. Thus, during runtime the Mediator is
receiving continuous streams of events from providers. Then,
in cases there is a mapping subscribers are notified.



Provider
1

Provider
...

Provider
n

Mediator

Information
Mediator

Event
Mediator

Subscriber
1

Subscriber 
2

Subscriber.
..

Subscriber
m

Continuous stream of 
events

triggered by policy 
obligations

Subscriber 
subscribe to 
specific data

inject new policy obligation

Reasoning over event stream and 
mapping to subsriber requests

Exception 
Handling

Event
Processing

Request/
Query

Mapping

Event
Normalization

Event Policy 
Validation

Figure 7. Mediation service architecture

An event will contain metadata and payload. The metadata
contains information about the time when the event was
created on the publisher side. The schema of the subscribed
topic, such as geo location, temperature or vibration, defines
the payload. New policy obligations are injected via the
Mediator into the correct service (publisher).

A. Event Mediator

The Event Mediator exposes an endpoint to collect all
incoming events from registered providers. Its responsibility
is to normalize the incoming data streams.

B. Information Mediator

The Information Mediator maps subscriber request to
queries on continuous event streams provided by the Request
Mediator. On the subscriber side the framework still offers a
normal Web Service interface, which internally needs to be
transformed into a query, which is executed over the event
stream. The Information Mediator also ensures the quality
of the events from event streams, such as duplicated events
or out-of-order events. Here, our approach benefits from the
existing work on complex event processing (CEP), such as
[12] or [13].

C. Filtering at the source

To control the event flow from providers to the mediator
the services are accepting policy obligations as filtering
rules. These obligations are defining which state changes
within a service (on the source) trigger an event (such as
“temperature > 50.2C”) and the expected interval (refresh).
The expected interval would then also be used within an
event so that the start time is set when the event is issued

on the service and the end time is defined by the refresh
interval. Section V will deal with the specification of the
required filters in detail. Being able to set the event interval
rate and condition helps to fine-tune the system to obtain the
appropriate balance between data accuracy, response time
and data traffic.

V. EVENT POLICIES

We introduce event policies by a collection of represen-
tative examples:
Example 1 (Event Filter based on Explicit Time).
<Policy> <!-- send to Service -->
<Rule>
<Target>Aggregation Service</Target>
<Event>GPSUpdate()</Event>
<Condition>
<NEXT>
<HALT>
<GT>
<FIN>
<VAR Id="Time"/>

</FIN>
<SUM>
<VAR Id="Time">
<CONST type="xs:int">1000</CONST>

</SUM>
</GT>

</HALT>
</NEXT>

</Condition>
<Action name="notify">
<GPSLocation id="x"/>

</Action>
</Rule>

</Policy>

This policy would be stipulated by the Aggregation Ser-
vice (Mediator) to filter the GEOLocation updates send
by the “Publisher” Service. The single obligation rule is
only evaluated on GPSUpdate() events local to the Service.



The condition states that the time between notify Actions
is at least 1000ms and that on the first occurrence of a
GPSUpdate() thereafter the GEOLocation is pushed to the
target, in this example the Aggregation Service.

Another example would lead to an update being send
to the aggregation service whenever the Euclidean distance
between the last update and the current position exceeds
50m:

Example 2 (Update based on Dynamic Attributes).
<Policy> <!-- send to Service -->
<Rule>
<Target>Aggregation Service</Target>
<Event>GPSUpdate()</Event>
<Condition>

<NEXT>
<HALT>
<GT>

<FUNCTION name="EuclideanDistance">
<GPSLocation id="x"/>
<FIN> <GPSLocation id="x"/> </FIN>

</FUNCTION>
<CONST type="xs:int">50</CONST>

</GT>
</HALT>
</NEXT>

</Condition>
<Action name="notify">

<GPSLocation id="x"/>
</Action>

</Rule>
</Policy>

Building on earlier work [11] in the context of access
control, the condition of a policy is a temporal description
of the filter that is applied to the selected event stream.

Conceptually the service is filtering its event stream as
depicted in Figure 8. Here the Service is processing its own
stream of events (Service Events) that define its internal
behaviour. The Event trigger in the definition of rules
selects a sub-stream that contains only those states in the
Service’s behaviour at which the Event was raised. The
condition in the rule is evaluated over this filtered event-
stream and further restricts the behaviour based on the
condition expressed in the rules. The condition is an interval
temporal logic formula that defines the distance between any
two selected states. In theses states an action is performed
(e.g. “notify”) that exposes information to other connected
services, in this case the Aggregation Service. As a result,
the policy determines the externally observable behaviour of
the service. Connected services can influence this behaviour
by updating the event policies via the injectPolicy()
operation.

Services that support these policy filters can be combined
into hierarchies as shown in Figure 8, yielding service
compositions that fuse and filter information defined in their
NFP schemas based on policies. The information will be
provided on a PUSH model with policies determining the
frequency and conditions of updates, yielding a flexible,
policy-based publish-subscribe infrastructure.

Service Events

Rule Events

Push Actions

Service

Service Events

Rule Events

Push Actions

Aggregation Service

Other Services

Service Consumer

Figure 8. Policy-Based Event Stream Filter

A. Formal Model

Let each service s ∈ Services be defined over a con-
tinuous stream σs of events ei ∈ Eventss, observed by
the service s. This is modelled by representing σs as an
ITL interval and Events as a set of propositional state
variables that indicate the occurrence of events (recall that
state variables can change their value from state to state).
This model allows for the concurrent occurrence of events,
e.g. ei ∧ ej (i 6= j), and only captures the sequence of
events, rather than their absolute timing. The creation time
of the event is stored explicitly as part of the event tuple
and can be referred to in the conditions of policy rules.

An event is described as a tuple 〈se, ts, te, p〉, denoting
the service se creating the event, the time-stamp when the
event was created ts, te (based on the clock of s) and an
optional payload p. We use the notation e.se, e.ts, e.te and
e.p when referring to a specific element of an event tuple e.

B. Event Policy Validation

Evaluating the policy pols of the service s against this
interval is a two stage process.

1) Stage 1: First, for every rule r ∈ pols an abstraction
of the interval σs is generated based on the Event trigger
evtr of the rule r. Currently we only consider single event
triggers, however the formal model is supporting combined
events such as ei ∧ ej or state formulae (i.e. ITL formulae
that do not contain temporal operators). Conceptually this
stage is generating an abstracted interval σs,r of the interval
σs that contains only those states in which evtr is true. This
is depicted in Figure 9.

2) Stage 2: Second, for every rule r the condition of the
rule cndr is evaluated against the corresponding abstracted
interval σs,r. The condition defines the distance between
two consecutive actions triggered by the same rule. This
means that the temporal formula cndr must hold over the



Service Events σs

Rule Events σs,r

Push Actions
actr actr actr

cndr cndr

evtr evtr evtr evtr

Figure 9. Policy Rule Evaluation

subintervals of σs,r bridging the gaps between the projected
states. This is depicted in Figure 4.

Formally this means that the policies relate the service’s
event trace, viz. the interval σs to actions that are performed
by the service as follows:

σs |= ©halt (evtr)∆(cndr∆2actr)

Here ©halt (evtr)∆f conceptually yields the abstracted
interval σs,r over which the policy rule is evaluated. The
condition cndr of the rule then bridges between two con-
secutive actions that are performed as a consequence of the
rule.

The rationale for separating the two steps is that the
filtering of event streams based on simple events (evtr) can
be implemented very efficiently, whereas the complexity of
the evaluation of the conditions cndr is more complex and
can in certain cases grow linearly with the number of states
that are bridged. Thus the initial reduction using the event
filter reduces the complexity of the latter evaluation.

The overall service specification is then constructed from
this as:

σs |=
∧

r∈pols

©halt (evtr)∆(cndr∆2actr)

The specification of actr is not detailed here and we only
consider that the relevant action is initiated in that state of
the service interval.

The model can be implemented straightforwardly from its
semantics using Tempura [9], [3], an executable subset of
ITL. For example:
/* run */ define example() = {
exists Evts :
{ /* create test event trace for the service */
list(Evts,3) and stable(struct(Evts)) and evtmodel(Evts) and
{ /* example rule evaluation */

(next halt(Evts[0]=1)) /* selecting events Evts[0] */
proj{ /* show selected events, testing only */
always format("Evts[0] = 1\n") and {
len(2) /* select every second event only */
proj{ /* show selected events, testing only */
always format("Action on every 2nd Evts[0].\n")

}}}}}}.

set assign_ahead = false.
define evtmodel(Evts) = {
Evts = [1,1,0] and skip ; Evts = [0,0,1] and skip ;

Evts = [1,1,0] and skip ; Evts = [1,0,1] and skip ;
Evts = [0,0,0] and skip ; Evts = [0,0,1] and skip ;
Evts = [1,0,0] and skip ; Evts = [1,0,0] and empty
}.

Here three events are modelled for the service,
and an example trace is generated by the function
evtmodel(Evts). AnaTempura can be run in a run-time
verification mode and could receive these events from an
external program. The event trigger for the encoded rule
is Evts[0], where a value of 1 indicates that the event
occurred. This is encoded in the first projection condition
(next halt(Evts[0]=1)), which in effect generates
the more abstract interval σs,r over which the second projec-
tion is taking place. In this example the temporal condition
is selecting every second of the events (len(2)) on which
the action of the rule is triggered. In this proof of concept
only a statement is printed out to the screen, but instead a
message could be easily send to another service. The above
code can be readily executed in AnaTempura (available at
http://www.cse.dmu.ac.uk/STRL/ITL/)

VI. EXAMPLE (CONT’D)

Let us go back to the motivating scenario (see section
II) to illustrate the presented theory. In this example we
have the users who want to get a notification when one
of their friends is near by. To get this notification the user
has to subscribe to the mediator. Technically the Mediator is
responsible to handle all subscriptions from users and map
it to the geo location event streams coming from all user
devices. The ECA rule running on the mediator is receiving
two data streams: (1) is the stream of the friend relationship
and (2) the stream of users’ geo locations. Since, the friend
relationship stream is considered static the events in this
stream are having infinite live time. The geo location stream
contains different events for each user and the live time of
each event is defined by the policy injected in each device,
such as the speed on changing the geo position.

Each node (user’s phone) is sending an event to the
Mediator whenever it moves more than 50 meters (see
Example 2).

The ECA policy running on the mediator is collecting
these notifications and correlates this geo location data with



the friend relation information so that we can notify each
user if one of his friends is close by, e.g.
• we want to notify Alice when one of Alice’s friends is

closer than 50 meters
This can be translated into the following an ECA policy:

Event: GeoLocationUpdate(x)
Condition: friend(Alice, X) and distance(alice,X)
Action: Notify Alice of X

In our example we do have Alice, Bo, Chris, and Dave
(see Figure 10). At time Y Chris is at position Y but Alice
is not, so there is no action triggered. At time Z Chris and
Dave are at the same position but they are not friends. Again
no event is issued. At time Z Alice and Dave are at position
X and they are friends so that both are getting a notification.

VII. RELATED WORK

While there is work complex even processing and tem-
poral logic there is no work as far as we are aware which
combines these approaches to enable fast data processing
for large scale systems in the cloud. Bonifati et al. [2]
describes a very interesting approach for using active rules
for pushing reactive services. But it does not take into
account temporal aspects or states. Roitman et al. [16]
presents a framework for satisfaction of complex data needs
involving volatile data. But the focus is on pull-based envi-
ronments. We believe that our approach is more promising
for large scale systems and the cloud. With push based
systems, data is pushed to the system and the research focus
is mainly on aspects of efficient data processing, where
load shedding techniques [20] can be applied in order to
control what portions of the pushed data to process and
to increase latency. Such systems include publish-subscribe
(pub/sub) ([5]), stream processing ([1]), and complex event
processing, however there is no consideration of bandwidth
consumption.

The use of Event-Condition-Action (ECA) rules is well
established in Data-Stream Processing applications [8], [4]
and ECA-based policy languages [21], [22] are used to
govern the behaviour of systems on the basis of these
rules to control and manage distributed systems [17]. In
our work, we are however mainly concerned about the
selection and propagation of events in a P2P infrastructure.
The formalisation of event policies in this work differs
from traditional ECA rules in that the condition does not
only describe a Boolean combination of events, but can
address the history of a selected event stream that allow
to specify the distance between propagated events using
ITL [3]. Data Stream processors such as SNOOP [4] and
successors already use event histories for detecting the order
of events, making this a natural model for expressing policies
that also allows for the efficient enforcement of such policies
[10]. The semantics of event-policies is based on temporal
projection [14] as this is a natural abstraction technique
for complex system specifications. Other work by Duan

et.al. [6], [18] on propositional projection temporal logic
would provide alternative formalisations of projection, but
lead to a more complex formalisation of the event policies
without apparent gain in this application context. The use
of policies together with a mediator has also been suggested
in a different context by Edge et.al. [7] where they focus
on the mining institutional transaction data for fraudulent
activities. However, their use of policies is targeted to this
particular application domain and is focused on the detection
of events, whereas we address the problem of event filtering
and propagation as part of an infrastructure for cloud based
systems.

VIII. CONCLUSION AND FUTURE WORK

We presented a new approach which combines event
processing based on interval temporal logic for service
selection approaches to enable a fast data processing in
the cloud. Our approach investigates data processing and
accuracy for a huge number of potential providers and highly
dynamic service properties. By combining ECA with ITL we
have grounded dynamic service properties on a valid formal
model. We presented a way to use ITL to express policy
obligations as ECA rules which should be executed close to
the sources to enable an accurate view of a large scale system
at any point in time and to reply to subscribers with almost
zero latency. The sources (in our example geo location of
user) are notifying the mediation service about any state
change defined by policies thus the mediation service can (1)
reason about the incoming streams and reply immediately to
consumer requests and (2) the mediation service can make
assumptions in terms of missing data and forecast likely
future behaviour. In contrast to our previous work we are
using in this work the ECA policy not only on the nodes as
injected policies but also on the mediator to process streams
of data and to correlate it for fast data processing.

REFERENCES

[1] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, C. Erwin, E. Galvez, M. Hatoun, A. Maskey, A. Rasin,
A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and
S. Zdonik, Aurora: a data stream management system, Pro-
ceedings of the 2003 ACM SIGMOD international conference
on Management of data (New York, NY, USA), SIGMOD ’03,
ACM, 2003, pp. 666–666.

[2] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi, Push-
ing reactive services to XML repositories using active rules,
Computer Networks 39 (2002), 645–660.

[3] A. Cau, B. Moszkowski, and H. Zedan, The ITL homepage:
http://www.cse.dmu.ac.uk/STRL/ITL, Tech. report, Software
Technology Research Laboratory, De Montfort University,
2011.

[4] S. Chakravarthy and D. Mishra, Snoop: an expressive event
specification language for active databases, Data Knowl. Eng.
14 (1994), 1–26.



Figure 10. Event Stream Reasoning

[5] A. Demers, J Gehrke, M Hong, M Riedewald, and W. White,
Towards expressive publish/subscribe systems, Advances in
Database Technology-EDBT 2006 (2006), 627–644.

[6] Zhen-Hua Duan and Maciej Koutny, A framed temporal logic
programming language, J. Comput. Sci. Technol. 19 (2004),
341–351.

[7] Michael Edge, Pedro Sampaio, Oliver Philpott, and Mo-
hammed Choudhary, A policy distribution service for proac-
tive fraud management over financial data streams, Services
Computing, IEEE International Conference on 2 (2008), 31–
38.

[8] Charles L. Forgy, Expert systems, Expert systems (Peter G.
Raeth, ed.), IEEE Computer Society Press, Los Alamitos, CA,
USA, 1990, pp. 324–341.

[9] Roger William Stephen Hale, Programming in Temporal
Logic, Ph.D. thesis, Trinity College, University of Cambridge,
October 1988.

[10] Helge Janicke, Antonio Cau, François Siewe, and Hussein
Zedan, Deriving Enforcement Mechanisms from Policies, Pro-
ceedings of the 8th IEEE international Workshop on Policies
for Distributed Systems (POLICY2007), June 2007, pp. 161–
170.

[11] Helge Janicke, Antonio Cau, Fraņcois Siewe, Hussein Zedan,
and Kevin Jones, A Compositional Event & Time-based Pol-
icy Model, Proceedings of POLICY2006, London, Ontario,
Canada (London, Ontario Canada), IEEE Computer Society,
June 2006, pp. 173–182.

[12] Ling Liu, Calton Pu, and Wei Tang, Continual queries for
internet scale event-driven information delivery, Knowledge
and Data Engineering, IEEE Transactions on 11 (2002), no. 4,
610–628.

[13] David Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems,
Addison-Wesley Longman, Amsterdam, 2002.

[14] Ben Moszkowski, Compositional Reasoning about Projected
and Infinite Time, Proceedings of the 1st IEEE International
Conference on Engineering of Complex Computer Systems
(ICECCS’95) (Fort Lauderdale, Florida), IEEE Computer
Society Press, Novenmber 1995, pp. 238–245.

[15] A Riabov and Z Liu, Scalable planning for distributed stream
processing systems, Proceedings of ICAPS, vol. 06, 2006.

[16] Haggai Roitman, Avigdor Gal, and Louiqa Raschid, Web
Monitoring 2.0: Crossing Streams to Satisfy Complex Data
Needs, Proceedings of the 2009 IEEE International Confer-
ence on Data Engineering, IEEE Computer Society, 2009,
pp. 1215–1218.

[17] M. Sloman, Policy driven management for distributed sys-
tems, Journal of Network and Systems Management 2 (1994),
333–360.

[18] Cong Tian and Zhenhua Duan, Complexity of propositional
projection temporal logic with star&#8224;, Mathematical.
Structures in Comp. Sci. 19 (2009), 73–100.

[19] Marcel Tilly and Stephan Reiff-Marganiec, Matching cus-
tomer requests to service offerings in real-time, Proceedings
of the 2011 ACM Symposium on Applied Computing, SAC
’11, ACM, 2011, pp. 456–461.

[20] Y.C. Tu, S. Liu, S. Prabhakar, and B. Yao, Load shedding in
stream databases: a control-based approach, Proceedings of
the 32nd international conference on Very large data bases,
VLDB Endowment, 2006, pp. 787–798.

[21] K. Twidle, E. Lupu, N. Dulay, and M. Sloman, Ponder2 - a
policy environment for autonomous pervasive systems, Poli-
cies for Distributed Systems and Networks, 2008. POLICY
2008. IEEE Workshop on, june 2008, pp. 245 –246.

[22] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes,
M. Breedy, L. Bunch, M. Johnson, S. Kulkarni, and J. Lott,
KAoS policy and domain services: toward a description-logic
approach to policy representation, deconfliction, and enforce-
ment, Proceedings POLICY 2003 Policies for Distributed
Systems and Networks, June 2003, pp. 93–96.


