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Abstract—With the rapid development of web service 
standards and technology, the number of web services on 
Internet is increasing rapidly. Consequently, discovering the 
right service to meet a user’s requirements quickly and 
accurately is crucial for the service community. Many web 
service discovery methods use web service models with 
semantic descriptions based on ontologies, allowing to apply 
logical reasoning to the discovery task. However, requiring 
logical reasoning can lead to sacrifices in efficiency of web 
services discovery. To address this problem, this paper 
proposes a combination of ontology encoding with the 
similarity of information content approach. We encode the 
concepts in the ontology in a binary encoding in order to 
improve the discovery efficiency and then we calculate the 
semantic similarity of information content between services. 
Validation of efficiency of the proposed approach is conducted 
through an experiment using the owls-tc2.0 as benchmark test 
set. The experimental results show that the proposed method 
not only can improve the efficiency of service discovery, but 
also can significantly improve the accuracy of service discovery 
compared with other discovery methods. 
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I.  INTRODUCTION  
Service discovery is one of the key problems in web service 
research. It is significant because many other problems in 
this area of research, such as service selection and service 
composition (see e.g. [19, 20]) are directly based on service 
discovery; it is also a crucial part of the basic service 
paradigm, namely “find” in the publish-find-bind paradigm. 
Web service exist in a dynamic global network with few a-
priori agreed conventions, service discovery based on 
conventional approaches such as keyword based matching at 
a syntactic level has many limitations. The result of service 
discovery will be negatively affected as people will use 
terminology as they feel appropriate, which could lead to 
incorrect matches and more crucially some possible matches 
cannot be identified due to language boundaries and different 
terms being used for the same concept. These challenges 
necessitate semantic description of web service to obtain 
more precise descriptions. 

The development of semantic web services aims at 
adding this level and hence improving the precision of 

service matching. A service matchmaker (or broker) is 
commonly tasked to judge whether a web service satisfies 
the needs of a service request, usually eased by an 
assumption that the service offering and the service request 
are expressed using the same service description language. 
Many semantic approaches have been proposed for service 
discovery, such as OWLS-UDDI matchmaker [15], RACER 
[10], MAMA [3], WSMO-MX [8], OWLS-MX [6], or 
OWL-S Discovery [1]. These approaches often fail to 
identify concepts with similar meaning which are not in a 
parent-child relation in the concept ontology. A further and 
crucial shortcoming is that many of these approaches rely 
heavily on ontology reasoning to unify concepts and hence 
are relatively slow. 

 In common with existing work on semantic web 
services, we use OWL-S to describe web services. OWL-S 
uses OWL (the Web Ontology Language) to build an upper 
ontology and describe the properties, capabilities and 
execution structures related to a web service.  
 However, our approach improves on efficiency and 
accuracy of matching by using the following novel 
contributions: 

1. Binary-encoding is used to encode the ontology 
concepts to support efficient service discovery based on the 
service functional input and output (IO).  

2. Semantic similarity of concepts based on Information 
Content is used to increase the accuracy of service matching. 

The remainder of this paper is arranged as follows: In 
section 2 related work is introduced. Section 3 provides the 
overview of the proposed approach and section 4 details the 
service discovery tool which was implemented; in section 5 
we discuss the experimental result and analysis of our 
method.  Finally, we conclude and provide an outline of 
further research. 

II. RELATED WORK 
As alluded to earlier, many researchers have proposed web 
service discovery methods based on semantic web 
techniques – to present a comprehensive list would be like 
including a survey paper so we focus on some representative 
samples. OWLS-MX [6] utilizes a hybrid approach that 
combines logic based reasoning with approximate matching 
based on syntactic information retrieval (IR) based similarity 
computations. Web services are described by OWLS and 
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semantic reasoning exploits OWLS-DL. During IO semantic 
matching, it applies five different filters: Exact, Plug-in, 
Subsumes, Subsumed-by and Nearest-neighbor. Information 
retrieval (IR) [17] based matching is used when semantic 
matching fails. [1] presents a new approach combining 
functional and structural matching for service discovery. The 
first four filters are using semantic matching techniques , the 
IR based matching using a structural analysis algorithm will 
be used if semantic matching fails as fifth filter. 

In [21], DAML-S is used as description language for web 
services. Inheritance relationships between ontology 
concepts are mainly exploited to realize the IO matching of 
web services. The result of the matching has been classified 
to Exact, Plug-in, Subsume, Fail. In [18], authors describe 
the idea of extracting constraints from the text of natural 
language description to allow for better matching. 

Binary encoding has been very successfully employed in 
the field of data mining, e.g. [2]. Our use of binary encoding 
is inspired by the success of this work but presents to the best 
of our knowledge the first use of the technique in the field of 
service discovery and selection,  

III. THE APPROACH 
We will now introduce our approach by first of all providing 
an overview of the Functional Matching approach – while 
this is quite similar with existing work, we will use the 
contributions of the paper (the binary encoding and concept 
similarity ) to refine some steps to increase accuracy and 
efficiency. The section conlcudes with details of the 
respective algorithms. 

A. Service Functional（IO）Matching 
Finding a service to satisfy a user’s requirements means at 
the most basic level that the input and output parameters 
need to be matched – usually this is referred to as service 
“functional matching” or “IO matching” and can be on a 
syntactic or semantic level. We are interested in semantic 
level matches as they are richer as explained earlier. The 
assumption is that all input and output parameters are 
mapped to appropriate concepts belonging to a suitable 
domain ontology. The relationship between service 
parameters and request attributes will then be determined by 
the relationship among the concepts in the domain ontology. 
A simple ontology is shown in Figure 1. 

 

 
Figure 1: Ontology Concepts 

 
The matches that we consider of interest here are matches 
between input and output parameters of the service and the 

respective user requirements. We will need to match the 
input parameter of the service to the input provided by the 
request and the output parameter of the service to the output 
required by the request. 

1. Exact match. An exact match represents the best 
case: the service needs the exact input offered and 
provides the exact output required. Considering 
this in terms of the ontology, the ontology concepts 
for the input and output map to the same node as 
those of the requirements. For example, with 
reference to the ontology in Figure 1, if the request 
parameters match to adult and male, the Service 
parameters must also be adult and male. 

2. Plug-in match. A Plug-in match substitutes a 
descendant in the ontology for a parent, thus 
providing something more specific than the exact 
match, but possibly including some options. For 
example, if the service’s output parameter is boy, 
the request could need male or person. 

3. Subsumes match. A Subsumes match is using the 
inheritance tree in the opposite direction of a Plug-
in match – it attempts to substitute an ancestor 
rather than a descendant.  

4. Fail match. A so-called Fail match occurs if none 
of the three levels above lead to a successful match. 

 

B. Functional(IO) Ontology Coding of Service 
As we have seen in the previous section, the relationship 
between two parameters will be decided by the relation of 
their related concepts in the ontology. Typically methods 
such as LSC (least specific concept) and LGC (least generic 
concept) [6] are used to decide the association (ancestor-
child, child-ancestor) of two concepts. Due to the number of 
checks in the ontology hierarchy that need to be made, these 
methods result in a large overhead and hence inefficient 
service discovery. Our approach uses  a binary-encoding to 
increase efficiency as all that is needed are some precise 
matches and then structural relations, binary encodings have 
been proposed e.g. in [4]. Specifically, we used Binary-
encoding to increase efficiency. An overview of Binary-
encoding is shown in Figure 2, building on the person 
ontology from Figure 1.The main gain to be made using bit 
encoding is in hierarchical comparisons – which are 
fundamental to Plug-in and Subsumes matches. We can 
differentiate 3 scenarios for the respective relations of 
ontology concepts for two services’ IO parameters, S1 and 
S2: 

1. the concepts exist in the same domain ontology and 
the relation is an ancestor--child relation – that is 
the two concepts exist on a path in the tree (e.g. 
boy and person).  

2. the concepts exist in the same ontology, but are 
siblings – such as male and female. 

3. the concepts do not exist in the same ontology. 



The Binary-encoding follows a topological sort over the 
ontological domain space starting from the root concepts to 
the leaf concepts and assigns binary values to the nodes, 
reflecting the association among the nodes. Thus, in Figure 
2 , person, a root node is coded 000001 while all children 
will be coded 000011, 000101 and 000111, from right to left, 
the least significant bit string being the same as the parent to 
capture inheritance. Ancestral relations can now be 
computed by fast Boolean operation on the binary strings 
using OR and AND to efficiently determine Plug-in and 
Subsumes Matches. For example, to check whether boy is a 
child node of male, the bit strings are composed with AND 
and the result should match the suspected parent coding: 
000101 (male) and 001101 (boy) will indeed be shown as 
parent and child as expected. OR will allow to check for a 
child – the resulting string will match the suspected child’s 
encoding if the relation is indeed a child relation. . If the two 
strings satisfy neither of the parent child relations tested 
using AND and OR, they will be sibling nodes (assuming 
that we are comparing values from the same ontology). 
[Note that by combining parents’ encodings using OR this 
can also express multiple inheritance]. 
 

 
Figure 2: Binary encoding 

 
We will see in the evaluation that the binary encoding 
allows for very fast comparisons of ancestral relations while 
also allowing to detect possible sibling relations. However, 
sibling relations will produce a Fail Match in the 
classification shown in the previous A. We will attempt to 
resolve some of the fail matches using our second 
contribution, the calculation of the similarity of Information 
concepts. 

C. Calculation of Semantic Similarity of Concepts Based 
On Information Content 

Semantic similarity is commonly used to measure the 
similarity among documents and terms. It is widely used in 
research domains such as information retrieval and natural 
language processing. Here we will apply it to compute the 
similarity between two concepts to improve on service 
selection. 

We use the Information Content (IC) computational 
model [5], which is not only concerned with subsets of 
nodes, but also the distance of concepts to ensuring that we 
obtain suitably precise IC. Such as formula (1.1): 
 

max

max

( ) (1 lg( ( ) 1) / lg( ))
(1 )(lg( ( )) / lg( ))

IC w k hypc w node
k deep w deep
= − +

+ −
    (1.1) 

 
Formula 1.1 determines the IC of a specific concept w. 
hypc(w) provides the number of sub-concept of a given 
concept w, deep(w) returns the depth of concept w in the 
ontology,  nodemax denotes the total number of concepts in 
the ontology, deepmax is the maximal depth of the ontology, 
k is a factor used to adjust the relation between weights and 
depth -- we use equal weights, hence k=0.5 in this paper. 
[21] presented an approach to calculate similarity. Both 
information content and the position of two concepts in the 
ontology are taken into consideration as follows: 
 

1 2 1 2

1 2 1 2

si ( , ) 1 lg( ( , )) /
lg(2 max( ( ))) (1 )
( ( ) ( ) 2 ( ( , ))) / 2

m w w k len w w
depth w k
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= − ×
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+ − ×
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1w and 2w  are two different concepts, 1 2( , )len w w  is the 

distance between 1w  and 2w  , k  is a weight factor, 
which can be adapted manually, we are using 0.5 here. 

1 2( , )len w w  denotes the least common parent node of 1w  
and 2w . max( ( ))w ontodepth w ⊂  is the maximal depth in the 
ontology. 

As we have coded concepts in the ontology using 
Binary-encoding, the values of ( )deep w , maxdeep ,

1 2( , )lso w w , 1 2( , )len w w  and max( ( ))w ontodepth w ⊂  can be 
obtained using OR  and AND  operations and the analysis 
of concept coding (0-1). ( )hypc w  has been calculated 
during encoding (to know the number of bits required for 
encoding concepts at a specific level one needs to know 
how many sibling nodes exist at that level).Overall, the 
type of calculations that need to be performed is 
computationally simple and hence the complexity of the 
calculation has been decreased to increase efficiency of 
service discovery. 

We can further improve efficiency by considering 
what we know about concepts from the earlier analysis of 
concept matching: 

1. If two concepts 1w  and 2w are the same, then the 
value of 1( )IC w  and 2( )IC w will be the same. 

1 2( , )len w w  will obviously be 0, and 1 2( , )sim w w  
will equal 1. As these observations will always 
hold for identical concepts, there is no need to 
perform calculations for information content and 



similarity and hence we check this case before 
engaging in calculations. The result is that no IC 
or similarity calculation will be undertaken for 
identical concepts. 

 
2. Similarly, If concept 1w  and 2w  are in different 

domains (that is occur in different reference 
ontologies) and are not the same then their 
similarity is 0 and we will again not undertake 
IC calculations. 

 
So, in conclusion we will only compute similarity 
measures if we have convinced ourselves that concept 1w  
and concept 2w  are in the same domain but differ.. 

D. The Algorithms  
The algorithms encode the diverse aspects of our approach, 
mainly the functional matching, the encoding and the 
calculation of semantic similarity based on IC. Overall the 
approach is guided by a user set threshold that controls that 
only services scoring higher than the threshold will be 
returned. 
________________________________________ 
Algorithm 1: Function(IO) Ontology Coding of Service 
________________________________________ 
1 function IOEncoding() 
2  int countConceptsNode [] = countNodes(); 
3  ArrayList sortConcepts = topologicalSort(); 
4  HashMap conceptCoding =    
      Encoding(countConceptNode, sortConcepts); 
5 end function 
________________________________________ 
 
Algorithm 1 handles the binary encoding. Algorithm 2 
encodes the matching itself: it is controlled by a set of 
service request (requestSet) and the threshold value (a). 
The set of services available is available as serviceSet, 
result will be collected in resultsSet – which will 
includes the services matching the requirements based on 
our approach. 
 
Algorithm 2: Matching Services to requirements. 
_______________________________________ 
1 function match(set requestSet, a) 
2 set  resultSet , failSet 
3 HashMap  serviceSet = readConceptCoding(); 
4 for(int i=0;i< serviceSet.length;i++ )  do 
5   for(int j=0;j< requestSet.length;j++) do 
6     filterI = matchIO(serviceSet.get(i).getInput, 
requestSet.get(j).getInput) 
7 filterO=matchIO(serviceSet.get(i).getOutput, 
requestSet.get(j).getOutput) 
8         If(judgetypes(requestSet.get(j), filterI, 
FilterO)) then 
9            resultSet.add(serviceSet.get(i)) 
10            else  
11        simI =  SimIC(serviceSet.get(i).getInput, 
requestSet.get(j).getInput) 
12   simO = SimIC(serviceSet.get(i).getOutput, 
requestSet.get(j).getOutput) 

13          if(simI>=a and simO>=a) then 
14              resultSet.add(serviceSet.get(i)) 
15            else 
16               failset.add(serviceSet.get(i)) 
17             end if 
18          end if 
19     end for 
20end for 
21end function 
________________________________________  
 
Algorithms 3 and 4 deal with functional IO matching and IC 
matching respectively. 
________________________________________ 
Algorithm 3 : Functional IO Matching 
________________________________________ 
1 function  matchIO(Service s, Service r) 
2   if(exactMatch(r,s))         then       //exact 
matching 
3      return exact; 
4   else if(plug-inMatch(r,s))    then       
//plug-in matching 
5      return plug-in; 
6  else if(subsumes(r,s))       then       
//subsumes matching 
7       return subsumes; 
8  else 
9       return false; 
8    end if 
9   end function  
________________________________________  
________________________________________ 
Algorithm 4: Calculation of the similarity of concept 
semantic based on IC 
________________________________________ 
1 function matchIC(Service s,Service r) 
2    if(identifyConcept(s,r))    then               
3       sim(s,r) = 1.0 
4    else if(!hasSameField(s,r))   then          
5        sim(s,r) = 0.0 
6     else sim=calculateSim(s,r)  then             
7   end if 
8  return sim 
9   calculateSim(r,s) 
10 hypcr = calculatehypc(r);                     
11 hypcs = calculatehypc(s);                    
12 deepr = calculateDeepr(r);                    
13   deeps = calculateDeeps(s);                    
14   maxnode = calculateMaxNode();            
15   len = calculateLen(r,s);                       
16   maxDept=calculateMaxdept();                 
17   sim= 
countSim(r,s,hypcr,hypcs,deepr,deeps,maxnode,len,m
axdept);  
18   return sim; 
19  end calculateSim 
20 end function 
 

IV. SERVICE DISCOVERY TOOL 
To illustrate the functionality of our method, we have 
implemented a prototype as a service discovery tool. Users 
can describe service using an OWLS file, the tool accepts 
the requirements file in the "request" textbox (either by 
typing or through a more interactive dialogue triggered by 
"add request"). In the Figure 3 the request 
“book_price_service.owls” has been added. The other field 



in the tool accepts a file with service descriptions.. Users 
can control which types of matches (Exact, plug-in, 
subsumes and sibling) are considered – ideally one 
considers all of course. Once matching (functional and IC 
based) are completed, result are shown as in Figure 4. The 
format of the result is <service name, level of semantic 
matching> or <service name, similarity>, such as for 
example: 
Book_authorprice_service.owls(Exact) 
Monograph_price_service.owls(SUBSUMES) 
Book_taxedpriceprice_service.owls:0.93704654689298
89 
 

 
Figure 3: Input for a service request 

 

 
Figure 4: Output of the matching results 

 

I. EXPERIMENTAL RESULT AND ANALYSIS 
Our implementation was completed in Java 1.6.  We used 
the API (http://www.mindswap.org/2004/owl-s) for deve-
loped by University of Maryland was for our analysis. And 
Xampp®( http://en.wikipedia.org/wiki/XAMPP) was used 
as local service host. We used OWLS-TC as test set and the 
services come from seven different areas: education, 
medical, care, food, travel, communication, economy, and 
weaponry. 

We analyzed three aspects: precision, recall and average 
response time to gain an insight into the accuracy and 
efficiency of the approach. Considering why these three 
form good evaluation criteria, we can say that fast responses 
are obviously desirable, precision captures how good the 
match of the found services is with respect to the user’s 
needs (or very informally how many bad candidates are 
selected) and recall shows how many of the services that 
should have been identified were actually found (or very 
informally how many good candidates were missed out). 

Given a service request ( , )Q Inputs Outputs  to which 
there are n relevant services related to, our prototype will 
retrieve m  services for the query result, but only k  of them 
retrieved which is related to the service query 

( , )Q Inputs Outputs  ( k n≤  ). 
 Service Discovery Precision ( P  ) is the fraction of the k
service retrieved that are relevant to the number m of the 
user’s service need. The formula is as follows: 

 | { e _ } { e _ } |
| { e _ } |

r levant Services r trieved Services kP
r trieved Services m

∩
= =  

 
Service Discovery Recall ( R ) is the fraction of the services 
that are relevant to the query that are successfully retrieved. 
The formula is as follows: 

 | { _ } { e _ } |
| { e _ } |

relevant Services r trieved Services kR
r levant Services n

∩
= =  

 
 

 
Figure 5: Comparison of average reply time between IC-
discovery and other discovery methods 
 
 

 
 
Figure 6: Comparison of Precision and Recall between IC-
discovery and discovery methods 
 

Figure 5 and Figure 6 illustrate the average response 
time, precision and recall for different service discovery 
matchers using the same test set. In these two figures, M0-
M4 are using mixed semantic methods in OWLS-MX [6]. 
Specifically, M0 is only using an I/O based matching 
method, M4 is the best available matching method in 



OWLS-MX. OWLS-Discovery [1] adapts a combined IO 
semantic match and structural analysis which first matches 
based on I/O and if this fails, structural analysis based on a 
synonyms dictionary is used to improve accuracy. Our novel 
IC-Discovery method presented in this paper provides 
significantly improved results in terms of response time and 
hence will scale much better for larger numbers of services. 
The main reason for this significant improvement is that the 
binary encoding used to judge relation between two 
concepts using AND and OR presents a very significant 
improvement over reasoning based approaches.  

We also find that our IC-Discovery method is presenting 
better results than OWLS-MX and OWLS-Discovery (as 
shown in Figure 6). Single semantics-based web service 
discovery is not working well, as expected, for example M4 
will identify some services which M0 cannot find using 
simple similarity-based methods. OWLS-Discovery will 
find more services as it can reduce the Fail Match cases by 
applying the synonyms dictionary. Since our method uses 
IC-based similarity it produces a more comprehensive 
comparison of concepts and hence allows us to achieve 
better results – and thanks to the Binary encoding this does 
not come at a cost to the efficiency.  

I. CONCLUSION AND FUTURE WORK 
This paper proposes a hybrid approach for web service 
discovery based on functional service aspects that uses a 
combination a binary encoding of ontology concepts and 
calculation of semantic similarity based on Information 
Content (IC). Experimental evaluation confirms that this 
allows for very significantly faster service discovery with a 
higher accuracy. 

In future work, we will consider a more fine grained 
approach to matching service parameters to client 
requirements to evaluate the approach against more complex 
service interfaces and demands. We will also explore 
extending the encoding and information content calculations 
to non-functional properties of services. 

A further piece of future work will include a comparison 
to tree –based encoding techniques (e.g. [9, 13, 16]) and a 
more detailed study of the advantages and disadvantages of 
IC (e.g. [14]) vs. reasoning based encoding techniques (e.g. 
[7, 12]. 
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